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Abstract

There has been a recent interest in cutting planes generated from two or more rows
of the optimal simplex tableau. One can construct examples of integer programs for
which a single cutting plane generated from two rows dominates the entire split closure.
Motivated by these theoretical results, we study the effect of adding a family of cutting
planes generated from two rows on a set of instances from the MIPLIB library. The
conclusion of whether these cuts are competitive with GMI cuts is very sensitive to the
experimental setup. In particular, we consider the issue of reliability versus aggressiveness
of the cut generators, an issue that is usually not addressed in the literature.

1 Introduction

In the last 15 years, generic cutting planes have played a major role in the progress of mixed
integer linear programming (MILP) solvers. Most cutting plane algorithms available in state
of the art solvers rely on cuts that can be derived from a single equation (note that the
equation used to derive cuts need not be one of the constraints of the problem; it may be
obtained by a linear combination of the constraints). Examples are Gomory Mixed Integer
cuts [21], MIR cuts [27], lift-and-project cuts [4], or lifted cover inequalities [16]. This general
family of cuts is known as the family of split cuts [12]. A natural extension is to derive cuts
from more than one equation, an area of research enjoying a revival in recent years.

The study of the Corner Polyhedron started by Gomory and Johnson [22, 23, 25], and of
Intersection Cuts introduced by Balas [3] provides a framework for generating cutting planes
using multiple equations. Several papers give theoretical results on cuts that can be derived
from two equations [1, 6, 8, 15, 17]. In [6], we provide examples of integer programs with
two constraints and two integer variables, where the integrality gap can be closed by a single
inequality derived from the two constraints, while the value of the linear relaxation obtained
by adding all split cuts is arbitrarily close to 0. These examples suggest that certain cuts
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4Supported by ANR grant ANR06-BLAN-0375.
5Supported by NSF grant CMMI0653419, ONR grant N00014-03-1-0133 and ANR grant ANR06-BLAN-

0375.
6Supported by ONR grant N00014-03-1-0133.

1

http://arxiv.org/abs/1701.06589v1


derived from two equations might improve the efficiency of MILP solvers. In this paper, we
test the empirical effectiveness of this class of two-row cuts.

The paper is organized as follows. In Section 2, we recall basic results on two-row cuts
and motivate the choice of the triangles used in our separation algorithm. In Section 3, we
give closed form formulas for certain types of cuts, discuss integer lifting of these cuts, as well
as their strengthening when the basic variables are nonnegative. In Section 4, we present
computational results. We show that the conclusions are very sensitive to the experimental
setup. We present two different setups which lead to opposite conclusions and argue that
the setup based on CglGomory is flawed because it overlooks the issues of reliability versus
aggressiveness of the cut generator.

2 Two-Row Cutting Planes

2.1 Basic Theory

In this paper, we study a class of cutting planes derived from two equations. Consider a
mixed-integer problem with two free integer variables and a finite number of nonnegative,
continuous variables.

x = f +

k∑

j=1

rjsj

x ∈ Z2

s ∈ Rk+ .

(1)

We assume f ∈ Q2 \ Z2, k ≥ 1, and for j = 1, . . . , k, rj ∈ Q2 \ {0}.
Model (1) naturally arises as a relaxation of a MILP having a basic feasible solution of

its linear relaxation with at least two basic integer variables, at least one of which takes a
fractional value in the optimal solution. Indeed, consider the simplex tableau corresponding
to the basic solution and keep only two equations corresponding to these two basic integer
variables. Model (1) was introduced by Andersen, Louveaux, Weismantel, and Wolsey [1].
Several recent papers discuss some of its theoretical properties such as characterization of
facets and relative strength of classes of facets [8, 6, 15, 17] but little empirical evidence on
the strength of the resulting cuts is available [19]. The remainder of this section is a short
summary of results obtained in [8, 6, 15, 17] that are directly relevant to the work in this
paper.

The inequalities sj ≥ 0 are called trivial for (1). A nontrivial valid inequality for (1) is of
the form

k∑

j=1

ψ(rj)sj ≥ 1 , (2)

where ψ : R2 → R+. A nontrivial valid inequality is minimal if there is no other nontrivial
valid inequality

∑k
j=1 ψ

′(rj)sj ≥ 1 such that ψ′(rj) ≤ ψ(rj) for all j = 1, . . . , k. Minimal
nontrivial valid inequalities are associated with functions ψ that are nonnegative positively-
homogeneous piecewise-linear and convex. Furthermore, the set

Bψ := {x ∈ R2 : ψ(x− f) ≤ 1} (3)
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is a maximal lattice-free convex set with f in its interior [8]. By lattice-free convex set we
mean a convex set with no integral point in its interior. However integral points are allowed on
the boundary. These maximal lattice-free convex sets are splits, triangles, and quadrilaterals
as proved by Lovász [26]. In this paper, we will focus on splits and triangles only.

A split is a set of the form c ≤ ax1 + bx2 ≤ c+ 1 where a and b are coprime integers and
c is an integer.

Following Dey and Wolsey [17], we partition the maximal lattice-free triangles into three
types (see Figure 1):

• Type 1 triangles: triangles with integral vertices and exactly one integral point in the
relative interior of each edge;

• Type 2 triangles: triangles with at least one fractional vertex v, exactly one integral
point in the relative interior of the two edges incident to v and at least two integral
points on the third edge;

• Type 3 triangles: triangles with exactly three integral points on the boundary, one in
the relative interior of each edge.

Figure 1 shows these three types of triangles as well as a maximal lattice-free quadrilateral
and a split.

Type 1 Type 2 Type 3 Quadrilateral Split

Figure 1: Maximal lattice-free convex sets with nonempty interior in R2

In this paper we focus on simple classes of split and Type 2 triangles. We motivate our
choice of cuts in Section 2.2. In Section 3, we give closed form formulas for our cuts. These
cuts can be seen as a particular case of intersection cuts [3].

2.2 Type 2 triangles versus splits

For model (1), the split closure is defined as the intersection of all minimal valid inequalities
obtained from splits [12]. Similarly, the Type 2 triangle closure is the intersection of all the
minimal valid inequalities generated from Type 2 triangles. The Type 2 triangle closure
approximates the convex hull of (1) within a factor of 2 (see [6] Theorem 7.3 for a precise
statement). On the other hand, the split closure is not always a good approximation of the
convex hull of (1). In [6], we construct integer programs where a single inequality derived
from a Type 2 triangle closes the integrality gap entirely whereas the split closure closes an
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arbitrarily small fraction of the gap. In these examples, f has one integral and one fractional
component.

These results suggest that it might be interesting to generate cuts from Type 2 triangles
in addition to the classical Gomory Mixed Integer cuts [30] when solving an MILP. Unfortu-
nately, it appears difficult to separate over all Type 2 triangle cuts, as it seems to be at least
as hard as the NP-hard problem of separating over the split closure [9, 14]. In this paper,
we separate a very restricted class of Type 2 triangle cuts. Consider the simplex tableau
obtained by solving the LP relaxation of MILP. We have

x = f +
k∑

j=1

rjsj

where x denotes the basic variables and s the nonbasic. Motivated by the examples mentioned
above, we test the effectiveness of cutting planes from two rows of the simplex tableau

xi = fi +

k∑

j=1

r
j
i sj

xℓ = fℓ +

k∑

j=1

r
j
ℓsj

(4)

where xi and xℓ are basic integer variables, fi is integral and fℓ is fractional, i.e. at least one
of the basic integral variables has an integral value and at least one has a fractional value.
Note that this will typically occur when the basis is degenerate. Without loss of generality
we can make a translation so that fi = 0 and fℓ ∈]0, 1[. We try to construct two Type 2
triangles, one where the edge that contains at least two integral points is on the line xi = −1,
and a symmetrical one where this edge is on the line xi = 1. As these two cases are similar,
we focus on the first one in the following discussion. For each ray rj such that the half-line
f+λrj for λ > 0 intersects the plane xi = −1, we compute that intersection and its projection
onto the (xi, xℓ)-plane. Among these projections, we define p2 = (p2i , p

2
ℓ) (resp. p

3 = (p3i , p
3
ℓ ))

as the point with largest (resp. smallest) xℓ-coordinate, i.e.,

p2 =

(
−1, fℓ −min

j

{
r
j
ℓ

r
j
i

| rji < 0

})
and p3 =

(
−1, fℓ −max

j

{
r
j
ℓ

r
j
i

| rji < 0

})
.

Note that p2 and p3 are not defined if rij ≥ 0 for all j = 1, . . . , k. In this case or when p2 = p3,
we do not generate a cut. Otherwise, we consider three cases:

i) There are at least two integral points in the interior of the segment p2p3. We construct
a Type 2 triangle with vertices p1, p2 and p3, where p1 is the intersection of the lines
passing through p2 and (0, 1) and through p3 and (0, 0).

ii) There is exactly one integral point in the interior of the segment p2p3. Let q2 =
(−1, ⌈p2ℓ ⌉), and q3 = (−1, ⌊p3ℓ ⌋). If ⌈p2ℓ⌉ − p2ℓ ≤ p3ℓ − ⌊p3ℓ⌋, we construct a Type 1 or
Type 2 triangle whose vertices are p1, q2 and p3 where p1 is the intersection of the lines
passing through q2 and (0, 1) and through p3 and (0, 0). Otherwise, we construct a
Type 2 triangle whose vertices are p1, p2 and q3, where p1 is the intersection of the lines
passing through p2 and (0, 1) and through q3 and (0, 0).
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Figure 2: Type 1 triangle in canonical form (µ = 0, η = 1) and Type 2 triangle in canonical
form (0 < η ≤ µ ≤ η + 1).

iii) There is no integral point in the interior of the segment p2p3. Let q2 = (−1, ⌈p2ℓ⌉), and
q3 = (−1, ⌊p3ℓ⌋). We construct a split whose sides are the lines through q2 and (0, 1)
and through q3 and (0, 0).

Therefore, if the optimal tableau of the LP relaxation of the MILP has m basic integer
variables with an integer value and n basic integer variables that are fractional, this algorithm
generates up to 2nm cuts from the optimal simplex tableau. We use variants of this basic
algorithm for generating and testing two-row cuts.

3 Derivation of the cuts

3.1 Formulas of the cut for Type 1 and Type 2 triangles

Consider a lattice-free triangle T of Type 1 or 2 with vertices p1, p2 and p3. Without loss of
generality, assume that T is in a canonical form where p2 = (−1, 1+η) and p3 = (−1,−µ) and
0 ≤ η ≤ µ ≤ η + 1. Furthermore we assume that the points (0, 0) and (0, 1) are respectively
in the relative interior of edge p3p1 and p2p1. A Type 1 or Type 2 triangle can always be
put into this canonical form by applying a unimodular transformation (see Lemma 11 and
Proposition 26 in [17]).

For a Type 1 triangle, we thus have η = 0 and µ = 1 and the three vertices of the triangle
are p1 = (1, 0), p2 = (−1, 2) and p3 = (−1, 0), see Figure 2. For a Type 2 triangle the points
(−1, 0) and (−1, 1) are in the relative interior of the line segment p2p3, see Figure 2.

As noted in [1], the cut obtained from the lattice-free set T is the intersection cut [3]
derived from the disjunction

(−xi ≥ 1) ∨ (ηxi + xℓ ≥ 1) ∨ (µxi − xℓ ≥ 0) (5)

5



Disjunction (5) simply states that all feasible points are not in the interior of triangle T .
Using the formula of the intersection cut (see Appendix A), the intersection cut obtained
from the disjunction (5) is

k∑

j=1

max

{
−rji
1 + fi

,
ηr
j
i + r

j
ℓ

1− ηfi − fℓ
,
µr

j
i − r

j
ℓ

−µfi + fℓ

}
sj ≥ 1 . (6)

Since T is a maximal lattice-free triangle, (6) is a minimal inequality for (1). In the
next two sections, we show how the cut (6) can be strengthened if some of the non-basic
variables are integer constrained (this operation is called an integer lifting of the cut) or if xi
is nonnegative.

3.2 Integer Lifting

In this section, we consider a variation of the two-row problem (4) where some of the variables
sj are constrained to be integer

xi = fi +

k∑

j=1

r
j
i sj

xℓ = fℓ +

k∑

j=1

r
j
ℓsj

xi, xℓ ∈ Z,

sj ∈ Z for all j ∈ I ⊆ {1, . . . , k},

sj ≥ 0 .

(7)

Clearly inequality (6) is valid for (7). Dey and Wolsey [17] show how to strengthen the
coefficients of the non-basic integer variables in (6) to obtain a minimal inequality for (7).
This strengthening is called integer lifting. If the lattice-free set used to generate the cut is a
triangle of Type 1 or 2, Dey and Wolsey [17] show that there is a unique integer lifting that
produces a minimal inequality for (7) and it is obtained through the so-called trivial fill-in
function. In this section, we derive a closed-form formula for this trivial lifting. We use the
terminology of intersection cuts [3].

To derive the formula of the cut strengthened by using the trivial fill-in function (see
Appendix B), we define for any j ∈ {1, . . . , k} and any integers m1 and m2:

Φj1(m1) =
m1 − r

j
i

1 + fi
,

Φj2(m1,m2) =
η
(
r
j
i −m1

)
+ r

j
ℓ −m2

1− ηfi − fℓ
,

Φj3(m1,m2) =
µ
(
r
j
i −m1

)
− r

j
ℓ +m2

−µfi + fℓ
,

and
Φj(m1,m2) = max

{
Φj1(m1),Φ

j
2(m1,m2),Φ

j
3(m1,m2)

}
.
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The strengthened cut is then given by:

∑

j∈I

min
(m1,m2)∈Z2

Φj(m1,m2)sj +
∑

j∈Ī

Φj(0, 0)sj ≥ 1 ,

where Ī = {1, . . . , k} \ I. The following proposition gives the closed form formula for
min(m1,m2)∈Z2 Φj(m1,m2).

Proposition 3.1. Let mj
2 = r

j
ℓ +

(rji−⌊rji ⌋)(−µ+(µ+η)fℓ)

1−(µ+η)fi
, mj

1 = r
j
i −

(1+fi)(rjℓ−⌊rj
ℓ
⌋)

1+η−fℓ
and m̂j

1 =

r
j
i −

(1+fi)(⌈r
j
ℓ
⌉−rj

ℓ
)

µ+fℓ
.

(i)

min
m1,m2∈Z

m1≤r
j
i

Φj(m1,m2) = min
{
Φj2

(
⌊rji ⌋, ⌊m

j
2⌋
)
,Φj3

(
⌊rji ⌋, ⌈m

j
2⌉
)}

;

(ii)

min
m1,m2∈Z

m1>r1j ,m2≤r
j

ℓ

Φj(m1,m2) =

{
min

{
Φj1

(
⌈mj

1⌉
)
,Φj2

(
⌊mj

1⌋, ⌊r
j
ℓ ⌋
)}

if mj
1 > r

j
i ,

Φj2(⌈r
j
i ⌉, ⌊r

j
ℓ ⌋) otherwise.

;

(iii)

min
m1,m2∈Z

m1>r
j
i ,m2≥r

j
ℓ

Φ(mj
1,m

j
2) =




min

{
Φj1

(
⌈m̂j

1⌉
)
,Φj3

(
⌊m̂j

1⌋, ⌈r
j
ℓ⌉
)}

if m̂j
1 > r

j
i ,

Φj3

(
⌈rji ⌉, ⌈r

j
ℓ⌉
)

otherwise.
.

Proof. (i) First we show that ifm1 ≤ r
j
i , then Φj(m1,m2) = max

{
Φj2(m1,m2),Φ

j
3(m1,m2)

}
.

Note that ifm1 ≤ r
j
i , Φ

j
1(m1) =

m1−r
j
i

1+f1
≤ 0. On the other hand, since η and µ are nonnegative

and either m2 − r
j
ℓ or rjℓ −m2 is nonnegative Φj(m1,m2) ≥ 0.

Since η and µ are positive, if m1 ≤ ⌊rji ⌋:

η
(
r
j
i −m1

)
+ r

j
ℓ −m2

1− ηf1 − f2
≥
η
(
r
j
i − ⌊rji ⌋

)
+ r

j
ℓ −m2

1− f2 − ηf1

µ
(
r
j
i −m1

)
− r

j
ℓ +m2

f2 − µf1
≥
µ
(
r
j
i − ⌊rji ⌋

)
− r

j
ℓ +m2

f2 − µf1

and therefore min{Φj(m1,m2) | m1,m2 ∈ Z,m1 ≤ r
j
i } = min{Φj(⌊rji ⌋,m2) | m2 ∈ Z}. This

last minimum is attained either in Φj(⌊rji ⌋, ⌈m2⌉) or Φ
j(⌊rji ⌋, ⌊m2⌋). Therefore

min{Φj(m1,m2) | m1,m2 ∈ Z,m1 ≤ r
j
i } = min

{
Φj2(⌊r

j
i ⌋, ⌊m

j
2⌋),Φ

j
3(⌊r

j
i ⌋, ⌈m

j
2⌉)
}
.
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(ii) We now suppose that m1 > r
j
i and m2 ≤ r

j
ℓ . Then Φj3(m1,m2) ≤ 0 and therefore

Φj(m1,m2) = max
{
Φj1 (m1) ,Φ

j
2 (m1,m2)

}
. Furthermore, we have:

min{Φ(m1,m2) | m1,m2 ∈ Z,m1 ≤ r
j
i ,m2 ≤ r

j
ℓ} = min{Φ(m1, ⌊r

j
ℓ⌋) | m1 ∈ Z,m1 ≤ r

j
i } .

If m1 < r
j
i , the minimum is attained either in Φj(⌊m1⌋, ⌊r

j
l ⌋) or Φ(⌈m1⌉, ⌊r

j
l ⌋), otherwise

the minimum is attained in Φj(⌈rji ⌉, ⌊r
j
l ⌋). The formula follows.

(iii) Similar to the proof of (ii).

3.3 Using nonnegativity of basic variables

In model (1), the two basic variables are assumed to be free, but it may happen that one or
both are constrained to be nonnegative in the original model. This model was studied by
Fukasawa and Günlük [20], Dey and Wolsey [17], and Conforti, Cornuéjols and Zambelli [10].

In this section, we consider the case where xi is constrained to be nonnegative, and provide
a closed-form formula to strengthen the cuts (6).

Intuitively, for a triangle as described in Section 2, if we have xi ≥ 0 then we can remove
the vertical side of the triangle and expand it into an unbounded set containing no feasible
solution of (1). We call this set a wedge.

We consider a Type 1 or 2 triangle in canonical form together with the feasible set,
including the nonnegativity on xi:

xi = fi +
k∑

j=1

r
j
i sj

xℓ = fℓ +

k∑

j=1

r
j
ℓsj

xi, xℓ ∈ Z,

xi ≥ 0

sj ∈ Z for all j ∈ I ⊆ {1, . . . , k},

sj ≥ 0 .

(8)

The following disjunction is valid

(ηxi + xℓ ≥ 1) ∨ (µxi − xℓ ≥ 0) . (9)

The intersection cut obtained from (9) is given by:

∑

j∈J

max

{
ηr
j
i + r

j
ℓ

1− fℓ − ηfi
,
µr

j
i − r

j
ℓ

fℓ − µfi

}
sj ≥ 1. (10)

Note that the intersection cut (10) dominates (6). In particular some of the coefficients of
the latter cut may be negative. Balas [2] observed the following.

Proposition 3.2. Inequality (10) is valid for the split closure.

8



Proof. Let P be the polyhedron obtained by dropping the integrality constraints in (8). Let
P1 = P ∩{xℓ ≥ 1} and P2 = P ∩{xℓ ≤ 0}. Inequality (10) is valid for (P ∩ {ηxi + xℓ ≥ 1})∪
(P ∩ {µxi − xℓ ≥ 0}). Since P1 ⊆ P ∩{ηxi+xℓ ≥ 1} and P1 ⊆ P ∩{µxi−xℓ ≥ 0}, inequality
(10) is valid for P1 ∪ P2, which proves that it is a split inequality.

An optimal integer lifting for this cut can be computed in a similar way to the trivial
lifting computed in Section 3.2. The following proposition describes how the lifting can be
adapted for disjunction (9). The difference with the lifting performed using Proposition B.1
is that here the disjunction can be shifted by any integer in the direction of xℓ but only by
a positive integer in the direction of xi. See [10] for a proof that this lifting is the unique
minimal lifting.

Proposition 3.3. For j ∈ I, let mj ∈ Z2 with mj
1 ≥ 0. The disjunction


η


xi +

∑

j∈I

m1
jsj


+ xℓ −

∑

j∈I

m
j
2sj ≥ 1


 ∨


µ


xi +

∑

j∈I

m1
jsj


− xℓ +

∑

j∈I

m
j
2sj ≥ 0




(11)
is satisfied by all points ((xi, xℓ), s) ∈ Z2 × Rn with xi ≥ 0 and sj ∈ Z+ ∀j ∈ I.

Proof. Suppose that ((xi, xℓ), s) ∈ Z2 × Rn with xi ≥ 0 and sj ∈ Z ∀j ∈ I does not satisfy

(11). Let x′i = xi +
∑

j∈Im
j
1sj and x′ℓ = xℓ −

∑
j∈I m

j
2sj. Then x′i ∈ Z+ and x′ℓ ∈ Z but

(x′i, x
′
ℓ) does not satisfy (9).

Using this proposition, we can derive a formula for a strengthened cut which uses the
integrality of the variables sj for j ∈ I. For m1 ∈ Z+ and m2 ∈ Z, we define

Ψj(m1,m2) = max




η
(
r
j
i +m1

)
+ r

j
ℓ −m2

1− fℓ − ηfi
,
µ
(
r
j
i +m1

)
+m2 − r

j
ℓ

fℓ − µfi



 .

The following cut is valid by application of Proposition 3.3:

∑

j∈I

min
(m1,m2)∈Z+×Z

Ψj(m1,m2)sj +
∑

j∈J\I

max

{
ηr
j
i + r

j
ℓ

1− fℓ − ηfi
,
µr

j
i − r

j
ℓ

fℓ − µfi

}
sj ≥ 1 (12)

The next proposition gives a closed form formula for computing the coefficients of this
strengthened cut.

Proposition 3.4.

min
(m1,m2)∈Z+×Z

Ψj(m1,m2) = min

{
ηr
j
i + r

j
ℓ − ⌊mj

2⌋

1− fℓ − ηfi
,
µr

j
i + ⌈mj

2⌉ − r
j
ℓ

fℓ − µfi

}

with mj
2 = r

j
ℓ +

r
j
i (−µ+(µ+η)fℓ)
1−(µ+η)fi

9



Proof. Since η and µ are positive and m1 ≥ 0

η
(
r
j
i −m1

)
+ r

j
ℓ −m2

1− ηfi − fℓ
≥
ηr
j
i + r

j
ℓ −m2

1− fℓ − ηfi

µ
(
r
j
i −m1

)
− r

j
ℓ +m2

fℓ − µfi
≥
µr

j
i − r

j
ℓ +m2

fℓ − µfi

and therefore
min

(m1,m2)∈Z+×Z
Ψj(m1,m2) = min

m2∈Z
Ψj(0,m2).

The minimum is attained either in Ψj(0, ⌊mj
2⌋) or Ψ

j(0, ⌈mj
2⌉).

Note that the cuts generated from the liftings of Propositions 3.1 and 3.4 are incomparable,
i.e. neither is guaranteed to dominate the other. They will be compared in Section 4.

4 Computational tests

We now present computational results obtained by applying the separation procedure devised
in Section 2.2. The cut generator is implemented in C++ using the COIN-OR framework [33]
with Cbc-2.2.2 and using Clp-1.8.2 for solving linear programs. The machine used for all the
experiments in this section is a 64 bit Monarch Empro 4-Way Tower Server with four AMD
Opteron 852 2.6GHz processors, each with eight DDR-400 SDRAM of 2 GB and running Linux
Fedora 11. The compiler is gcc version 4.4.0 20090506 (Red Hat 4.4.0-4). Results
are obtained using only one processor. Test instances for our experiments are the sixty-
eight MIPLIB3 C V2 instances [34]. These instances are slight modifications of the standard
MIPLIB3 [7] instances for which the validity of a provided feasible solution can be checked in
finite precision arithmetic.

The main motivation behind these tests is to determine if triangle cuts are substantially
different from traditional Gomory Mixed Integer (GMI) cuts, and if using them in conjunction
with GMI cuts might be useful. In other words, we are not suggesting to replace GMI cuts
by triangle cuts. Rather, we want to investigate if triangle cuts can improve performance
when used in addition to GMI cuts.

4.1 Results on gap closed by our cuts

We compare the following four generators. As described in Section 2.2, we partition the rows
of the optimal simplex tableau corresponding to the basic integer variables into fractional
rows and integer rows.

• G : A cut generator which generates one GMI cut for each fractional row.

• G-2rounds : A cut generator which applies G to generate a first round of GMI cuts,
reoptimizes the resulting LP and generates a second round of GMI cuts from the new
optimal basic solution.
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• G+Allpairs : A cut generator which generates one GMI cut for each fractional row
and all cuts derived from every pair of fractional and integer rows as explained in
Section 2.2. We also add cuts derived by removing the vertical side of the triangle
whenever possible, as outlined in Section 3.3.

• G+Deepest : G+Allpairs often generates a large number of cuts. To reduce this number,
we only add the GMI cuts and the deepest among all possible triangle cuts for each
fractional row. Note that G generates one cut per fractional row, whereas G+Deepest
generates two.

Since computers work in finite precision, cut generators sometimes generate invalid cuts.
To limit these occurrences, a variety of tolerances and safeguards are typically used. For
GMI cuts, the most important ones are a lower bound on integer infeasibility and an upper
bound on dynamism. For a solution x̄, define the integer infeasibility of an integer variable
xi as min{x̄i − ⌊x̄i⌋, ⌈x̄i⌉ − x̄i}. We do not generate a cut from a fractional row whose basic
integer variable has an integer infeasibility smaller than 0.01. Define the dynamism of a cut
as the ratio between the largest and the smallest nonzero absolute values of its left hand side
coefficients. We discard generated cuts whose dynamism is larger than 109. We use the same
parameters for the generation of two-row cuts with, in addition, the condition that, for a row
to be considered an integer row, the integer infeasibility of its basic integer variable must be
at most 10−5.

A method for testing the accuracy and strength of cut generators is given in [28]. Next
we give a short description of the method. Please refer to the original paper for additional
details.

Consider an instance I with a known feasible solution x∗. Define a cutting step as the
operation of adding cuts obtained from a cut generator and checking if x∗ is still feasible
(report failure of the cut generator if x∗ is no longer feasible). Define a branching step as
getting an optimal solution x̄ of the current LP relaxation, picking at random an integer
variable xi with a fractional value x̄i and imposing in the LP that its value must be x∗i .

The method, called a dive towards a feasible solution x∗, amounts to repeatedly performing
a cutting step followed by a branching step until an integer feasible solution of the LP
relaxation is obtained. In our experiments x∗ is chosen to be a known feasible solution whose
objective value is likely to be optimum or close to optimum. A number of dives (we use
twenty dives in our experiments) are performed for each instance I. In our experiments, we
set a time limit of 3 hours for each dive.

The motivation for using cuts in a branch-and-cut algorithm is to improve the bound
obtained from the linear relaxation and to reduce the size of the enumeration tree. With
these two goals in mind, we track the following during each dive:

• Fraction of the integrality gap closed after some given numbers of branching steps;

• Number of branching steps required to close some given fractions of the integrality gap.

The random branching step allows for meaningful statistical analysis of these two perfor-
mance measures. We used the nonparametric Quade test as described in [11]. All tests are
done with a confidence level of 95%. The statistical package R [36] version 2.10.0 (2009-10-26)
is used for the statistical analysis of the results.
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In Table 1, we give the average gap closed by the four algorithms G, G-2Rounds, G+Allpairs,

G+Deepest after 0, 4, 8 and 12 branching steps in a dive. The following problems timed out
without any results for at least one generator: 10teams c, air04 c, air05 c, arki c, dano3mip c,
fast0507 c, mitre c, mkc c, seymour c. The table gives results for the remaining 59 instances.

Table 1: Average percentage of gap closed at different depths

Depth 0 (root node) Depth 4 Depth 8 Depth 12

G 28.33 57.41 68.15 75.23

G+Allpairs 29.11 58.13 68.43 74.81

G+Deepest 28.80 58.09 68.59 75.40

G-2Rounds 36.66 59.41 68.75 75.47

We make the following observations from our results.

• Comparing G and G+Allpairs, we note that triangle cuts only improve marginally over
the GMI cuts at depths 0, 4 and 8. The improvement in average gap closed at these
three depths is less than 1%. At depth 12, the average gap closed is actually more for
G, but this difference is not statistically significant according to the Quade test.

Even restricting to instances that are degenerate at the root, the improvement is only
1.2% on average at the root which is disappointingly small given that we are generating
at least four times as many cuts.

• Comparing G+Allpairs and G+Deepest, we note that most of the above improvement at
depths 0, 4 and 8 can be achieved using only the deepest triangles. In fact, surprisingly,
at depths 8 and 12 G+Deepest closes more average gap than G+Allpairs, and at depth
12 the difference is statistically significant. This may be due to the fact that adding too
many cuts deteriorates the numerical properties of the basis, and this has an adverse
effect on the quality of the cuts at greater depths.

• Comparing G-2Rounds and G+Deepest, which generate roughly the same number of
cuts, we conclude that it is clearly better to use GMI cuts at levels 0 and 4. This is
confirmed by the Quade test which shows that the difference is statistically significant.
At depths 8 and 12 the difference is not statistically significant.

The results from Table 1 seem to indicate that our family of two-row cuts is not compet-
itive with GMI cuts in terms of gap closed. This conclusion is confirmed by statistical tests
performed on the second performance measure introduced above. For brevity, the detailed
results of these tests are not reported here.

We performed other experiments which seem to suggest that among the two-row cuts
that we generate, the split cuts are the more useful ones. First, we considered two variants of
G+Deepest where the choice of the cut is based on the length of the segment p2p3 as defined
in Section 2.2. In the first variant, we chose the cut with the longest segment p2p3; whereas,
in the second we chose the shortest. The motivation for the first choice comes from the
theoretical results in [6], where it is shown that the gap closed by the split closure is smaller
when the segment p2p3 is long. However, surprisingly, the second variant closes more gap on
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average at levels 0, 4, 8 and 12, although the differences are small. This may be explained
from the fact that the second variant generates more splits than the first and, in fact, at the
root it generates almost only splits.

In another experiment, we tried to see whether our two-row cuts could cut off the optimum
vertex of the split closure, as computed by Balas and Saxena [5]. For this purpose we used
the formulations in OSCLIB 1.0 [35]. In all but 2 of these instances, we could not cut off the
split optimum.

We also compared the depths of the GMI cuts with our two-row cuts. For 15 instances,
no triangle cuts are generated at the root because the optimal tableau is not degenerate and
there are no basic integer variables with integer values. For the instance nw04 c, the average
depths are too small for any meaningful comparison. For each of the 52 remaining instances,
we measure the depth of the deepest triangle cut as a percentage of the depth of the GMI
cut from the same fractional row. We then average this percentage over all fractional rows to
get a single percentage number associated with that instance. For 46 out of the 52 instances,
this percentage is between 99 and 125. The other 6 have a percentage between 125 and 200.
This shows that, in general, the deepest triangle cuts are deeper than the corresponding GMI
cuts.

4.2 Importance of the Experimental Setup

In this section, we show that one can reach drastically different conclusions by modifying
the experimental setup in a seemingly natural way. Instead of using our own GMI cut
generator, we now use the GMI cut generator CglGomory from the COIN-OR library with
default settings. The table corresponding to Table 1 is as follows :

Table 2: Average percentage of gap closed at different depths

Depth 0 (root node) Depth 4 Depth 8 Depth 12

CglGomory 23.83 51.86 62.91 69.83

CglGomory+All pairs 24.72 53.18 64.37 71.68

CglGomory+Deepest 24.45 53.92 64.54 71.19

CglGomory-2Rounds 30.89 53.73 62.85 69.97

The conclusions we reach from this table are different from those reached from Table 1.
We conclude that CglGomory+All pairs is significantly better than CglGomory at all depths
and this advantage increases with depth, with the difference being almost 2% at depth
12. These differences are statistically significant according to the Quade test. Moreover,
CglGomory+Deepest is superior to CglGomory-2Rounds at depths 4, 8 and 12 with respect
to gap closed and this difference is statistically significant at depths 8 and 12. When com-
parison is made on the number of branching steps needed to close different fractions of the
gap, CglGomory+Deepest is significantly better than CglGomory-2Rounds for closing 70% or
more of the gap according to the Quade test.

How do we reconcile the different conclusions reached from Tables 1 and 2 ?
Although our goal in this paper is to compare the strength of different cut families, in

practice we can only compare cut generators. The generator G described in the previous
section and CglGomory are two different generators for GMI cuts. We described above the
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parameter settings for accepting the cuts in G. For the default CglGomory generator the bound
on integer infeasibility is 0.05, the bound on dynamism is 109, and there are several other
parameters that may affect the acceptance or rejection of a GMI cut. Even if we set the
integer infeasibility and dynamism bounds to the same value in both generators, there are
still significant differences in these two cut generators. This raises the question of which
generator to use for our experiments and how to set the parameters. Depending on the
parameter settings, a cut generator may reject cuts more often (conservative strategy) or less
frequently (aggressive strategy).

A typical way that researchers test new cut generators is to add their generator to existing
base generators and evaluate the difference in performance. In such a setting, if the base
generator is conservative and the tested generator is aggressive, one may expect good results.
On the other hand, if the base generator is made more aggressive or the tested generator
is made more conservative, these improvements might be eroded to a large extent. The
difference between Tables 1 and 2 is a concrete example of this phenomenon. This issue
is usually not addressed in the literature. There is a trade-off between reliability of cut
generators and their aggressiveness. Therefore, a key aspect of such experimental setups
should involve measuring the reliability of cut generators. This was addressed by Margot in
[28]. The general philosophy is to put the generator under stress and to record the number of
failures due to invalid cut generation. Concretely, the reliability of a cut generator is tested
using the diving experiment described in the previous section where 10 rounds of cuts are
generated before a branching step is performed. According to this test, G is comparable in
reliability to CglGomory. In fact, G never generated an invalid cut for the 59 instances of
MIPLIB3 C V2 considered in this paper; whereas, CglGomory generated invalid cuts on the
instance harp2 c.

In our view, G should be used over CglGomory in our experiments because it is more
aggressive and equally reliable. Another advantage of G over CglGomory is that not only are
the parameter settings the same as those for the two-row cut generators, the computer code
itself is the same. This does not necessarily imply that G should be preferred to CglGomory in
a general branch-and-cut setting. More experiments would be needed to assess the reliability
of the two cut generators.

This discussion shows that the setup based on CglGomory is flawed and that the correct
setup is the one used in Section 4.1, if the goal is to evaluate our two-row cuts as compared
to GMI cuts. The conclusion is that our family of two-row cuts is not competitive with GMI
cuts.
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A Intersection cuts from multiple rows

Proposition A.1 gives the general formula for the cut derived from a p-term disjunction and
m rows of a simplex tableau.

Proposition A.1. Let C = {(x, s) ∈ Zm × Rk : x = f +
∑k

j=1 r
jsj, s ≥ 0} and

Π =
(
π1x ≥ π10

)
∨ . . . ∨ (πpx ≥ π

p
0)

be a disjunction satisfied by all points of Zm and not satisfied by f . The inequality

k∑

j=1

max
l=1,...,p

{
πlrj

πl0 − πlf

}
sj ≥ 1 (13)

is valid for C.

Proof. For each l = 1, . . . , p, πlx ≥ πl0 can be rewritten using the definition of C in terms of
the s variables only:

πl


f +

k∑

j=1

rjsj


 ≥ πl0. l = 1 . . . , p.

Reorganizing the terms of the above inequality it can be rewritten as

k∑

j=1

πlrjsj ≥ πl0 − πlf. l = 1 . . . , p.

The point f does not satisfy the disjunction and therefore πl0−π
lf > 0, dividing the inequality

by πl0 − πlf we obtain

k∑

j=1

πlrj

πl0 − πlf
sj ≥ 1 l = 1 . . . , p.

Each of the above inequalities is valid for one term of the disjunction. Since they all have
the same right-hand-side and s ≥ 0, the inequality obtained by taking the component-wise
maximum is valid for all terms of the disjunction and therefore

k∑

j=1

max
l=1,...,p

{
πlrj

πl0 − πlf

}
sj ≥ 1

is valid for C.

The inequality is nothing more than the intersection cut obtained from the cone C and
the disjunction Π.
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B Integer lifting by the trivial fill-in function

Proposition B.1. Let C = {(x, s) ∈ Zm×Rk : x = f +
∑k

j=1 r
jsj, s ≥ 0}. Let I be a subset

of {1, . . . , k}, CI = C ∩
{
(x, s) ∈ Zm × Rk : sj ∈ Z, ∀j ∈ I

}
be a mixed-integer set and

Π =
(
π1x ≥ π10

)
∨ . . . ∨ (πpx ≥ π

p
0)

be a disjunction satisfied by all x ∈ Zm. For j ∈ I, let mj be an integral vector of dimension
m. The disjunction

Π′ =


π1


x−

∑

j∈I

mjsj


 ≥ π10


 ∨ . . . ∨


πp


x−

∑

j∈I

mjsj


 ≥ π

p
0




is valid for CI .

Proof. Suppose that the disjunction Π′ is not valid. Then there exist (x, s) ∈ Zm × Rk with
sj ∈ Z, ∀j ∈ I, such that:

πl(x−
∑

j∈I

mjsj) < πl0 l = 1, . . . , p.

Let x′ = x−
∑

j∈Im
jsj . x

′ ∈ Zm since x ∈ Zm, mj ∈ Zm and sj ∈ Z for all j ∈ I. Then x′

violates disjunction Π which contradicts the fact that Π is a valid disjunction.

Now we consider the intersection cut obtained from a disjunction of the form Π′ stated
in Proposition B.1.

Proposition B.2. Let C = {(x, s) ∈ Zm×Rk : x = f+
∑k

j=1 r
jsj, s ≥ 0}. Let J = {1, . . . , k}

and I be a subset of J , CI = C ∩
{
(x, s) ∈ Zm × Rk : sj ∈ Z, ∀j ∈ I

}
be a mixed-integer set

and
Π = (π1x ≥ π10) ∨ . . . ∨ (πpx ≥ π

p
0)

be a disjunction satisfied by all x ∈ Zm and not satisfied by the point f . For all mj ∈ Zm,
j = 1, . . . ,m the inequality

∑

j∈I

max
l=1,...,p

{
πl(rj −mj)

πl0 − πlf

}
sj +

∑

j∈J\I

max
l=1,...,p

{
πlrj

πl0 − πlf

}
sj ≥ 1 (14)

is valid for CI .

Proof. Since Π is valid, for all mj ∈ Zm, j = 1, . . . ,m the disjunction

Π′ = (π1(x−
∑

j∈I

mjsj) ≥ π10) ∨ . . . ∨ (πk(x−
∑

j∈I

mjsj) ≥ π
p
0)

is valid.
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The terms of the disjunction can be rewritten as:

∑

j∈I

πl(rj −mj)sj +
∑

j∈J\I

πlrjsj ≥ πl0 − πlf. l = 1 . . . , p.

The point f does not satisfy the disjunction and therefore πl0−π
lf > 0, dividing the inequality

by πl0 − πlf we obtain

∑

j∈I

πl(rj −mj)

πl0 − πlf
sj +

∑

j∈J\I

πlrj

πl0 − πlf
sj ≥ 1 l = 1 . . . , p.

Each of the above inequalities is valid for one term of the disjunction. By applying, the
disjunctive principle we obtain (14).
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