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Motivated by addressing probabilistic 0–1 programs we study the conic quadratic knapsack polytope with
generalized upper bound (GUB) constraints. In particular, we investigate separating and extending GUB

cover inequalities. We show that, unlike in the linear case, determining whether a cover can be extended with a
single variable is NP-hard. We describe and compare a number of exact and heuristic separation and extension
algorithms which make use of the structure of the constraints. Computational experiments are performed for
comparing the proposed separation and extension algorithms. These experiments show that a judicious appli-
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constraints substantially.
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1. Introduction
We consider the conic quadratic knapsack polytope
with generalized upper bound (GUB) constraints. The
motivation for studying this polytope is to address 0-1
programming problems with probabilistic knapsack
constraints. When the coefficients of a constraint are
not deterministic, but are random variables, whether
the constraint is satisfied or not is not only a func-
tion of the solution vector chosen, but also the real-
ization of the random coefficients. In that case, one
is interested in choosing a solution vector so that the
constraint will be satisfied at least with a certain prob-
ability. Given a finite index set N , a probabilistic con-
straint over a binary vector x ∈ 80119N is stated as

Prob4ãx ≤ b5≥ �

for some 0 < � < 1. If each coefficient ãi is indepen-
dent normally distributed with mean �i and variance
�2
i , and � ≥ 005, then the above probabilistic constraint

can be formulated as a deterministic conic quadratic
constraint (see, e.g., Boyd and Vandenberghe 2004):

∑

i∈N

�ixi +ê−14�5
√

∑

i∈N

�2
i x

2
i ≤ b1

where ê is the standard normal cumulative distribu-
tion function.

GUB constraints frequently appear in practical 0–1
optimization problems and their utilization in polyhe-
dral analysis and cut generation algorithms reduces
the computational effort in solving mixed-integer pro-
grams significantly. Consider a nonempty partition-
ing of N indexed by K; that is,

⋃

k∈K Qk = N and
Qi ∩Qj = � for all distinct i1 j ∈K. GUB constraints on
the variables are upper bounding constraints of the
form

∑

i∈Qk

xi ≤ 11 ∀k ∈K0

In the following we will also refer to the sets
Q11 0 0 0 1Q�K� as GUB-sets.

In this paper we study the conic quadratic knapsack
set with GUB constraints:

X 2=

{

x ∈ 80119N 2
∑

i∈N

aixi +�
√

∑

i∈N

dix
2
i ≤ b1

∑

i∈Qk

xi ≤ 11 ∀k ∈K

}

1

where a ∈�N
+
1d ∈�N

+
, and �> 0. For S ⊆N and k ∈K,

define S∩k 2= S ∩ Qk and S\k 2= S\Qk, and for some
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v ∈ �N A2; define v4S5 2=
∑

i∈S vi. For a binary vector
x ∈ 80119N , define Sx 2= 8i ∈N2 xi = 19.

The literature on cuts for conic quadratic mixed
integer programming (MIP) is quite sparse: Atamtürk
and Narayanan (2010) and Cezik and Iyengar (2005)
describe rounding cuts, Atamtürk and Narayanan
(2011) describe lifting procedures and Atamtürk and
Narayanan (2009) consider the sub-modular knapsack
polytope, which is the same as the polytope consid-
ered here except that there are no GUB constraints.
For this polytope, the authors describe cover inequali-
ties and present a heuristic for separating them based
on the convex continuous relaxation of the separa-
tion problem. They additionally describe procedures
for extending and lifting cover inequalities in order to
strengthen them. As the polytope considered by the
authors does not include GUB constraints this work
can be seen as an extension to the case where GUB
constraints are present.

Cover inequalities for linear knapsack constraints
were introduced independently by Balas (1975),
Hammer et al. (1975), and Wolsey (1975). Both Balas
(1975) and Wolsey (1975) treat the lifting of cover
inequalities. Complexity results for obtaining lifted
cover inequalities can be found in Zemel (1989)
and Hartvigsen and Zemel (1992). If GUB constraints
are present, they may be used during lifting to further
strengthen the cover inequalities. Lifting has in this
setting been treated by Johnson and Padberg (1981),
Wolsey (1990), and Nemhauser and Vance (1994). The
separation problem has been investigated in a num-
ber of studies: Crowder et al. (1983) have shown
that the problem can be formulated as a knapsack
problem, whereas Ferreira et al. (1996), Klabjan et al.
(1998), and Gu et al. (1999) show that the separa-
tion problem for different classes of cover inequalities
is NP-hard. A number of exact and heuristic meth-
ods exist for solving the separation problem; see for
instance Gu et al. (1998) for a detailed investigation
of computational issues with respect to branch-and-
cut algorithms. For recent surveys on cuts for linear
knapsacks, the reader is referred to Atamtürk (2005)
and Kaparis and Letchford (2010).

In the context of robust knapsack problems, cover
and extended cover inequalities have been investi-
gated by Klopfenstein and Nace (2009) and by Büsing
et al. (2011).

The contribution of this work is the proposal and
analysis of a number of separation and extension
algorithms for cover inequalities for second-order
conic knapsacks in the presence of GUB constraints.
Unlike in the linear case, separation and extension
of cover inequalities are themselves nonlinear 0–1
problems. We show that the problem of determin-
ing whether a cover may be extended with even a
single variable is NP-hard. Through computational

experiments the proposed algorithms are mutually
compared with respect to bound improvement and
computation time. We show that a judicious appli-
cation of extended cover inequalities can greatly
improve the solution time of conic quadratic 0–1 pro-
grams with GUB constraints.

The outline of the paper is as follows. In §2 cov-
ers, extended covers, and extended covers under the
presence of GUB constraints are introduced. In §3 a
number of alternative algorithms for extending cov-
ers are proposed, whereas in §4 alternative separation
algorithms are described. In §5 the efficiency of the
proposed algorithms are evaluated computationally.
We conclude in §6 with a few final remarks.

2. Cover Inequalities
A subset C ⊆ N is called a cover for X if a4C5 +

�
√

d4C5 > b. A cover C is called a minimal cover if no
strict subset of C is a cover. If C satisfies �C∩k� ≤ 11
∀k ∈K, then it is called a GUB cover. Given a cover C,
the cover inequality

∑

i∈C

xi ≤ �C� − 1 (1)

is valid for X (Atamtürk and Narayanan 2009).

Example. Consider the conic quadratic GUB knap-
sack given by the constraints

3x1 + 4x2 + 2x3 + 3x4 + 1x5

+
√

2x2
1 + 1x2

2 + 2x2
3 + 1x2

4 + 10x2
5 ≤ 71 (2)

x1 + x2 ≤ 11 x3 + x4 + x5 ≤ 10 (3)

C ′ = 81129 is a cover, but not a GUB cover as x1 and x2
belong to the same GUB-set. C = 81149, on the other
hand, is a GUB cover. Both C and C ′ are minimal.

Cover inequalities do not in general define facets
of conv4X5. However, a cover inequality may be
strengthened by including variables not part of the
cover. The process of adding variables to an exist-
ing cover is called extending the cover inequality and
may be viewed as a special form of lifting procedure
where lifting coefficients may take only values zero or
one. Allowing lifting coefficients to be fractional may
result in stronger inequalities; however, as shown
by Atamtürk and Narayanan (2009), calculating the
lifting coefficients of a variable requires solving an
optimization problem over the conic quadratic 0–1
knapsack set, which is NP-hard even when no GUB
constraints are present. Considering only 0–1 lifting
coefficients makes this problem simpler (although still
NP-hard), and in the present work we restrict our
attention to this case. Atamtürk and Narayanan (2009)
describe a procedure for extending a minimal cover
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for the conic quadratic knapsack set when no GUB
constraints are present. While this procedure is valid,
utilizing the GUB constraints in extending the cover
inequalities can result in stronger inequalities for X.

2.1. Extending Cover Inequalities with
GUB Constraints

We now describe how GUB constraints can be used
to strengthen cover inequalities. For an integer n≥ 0,
and subset S ⊆ N , define W4S1n5 2= 8T ⊆ S2 �T � ≥ n∧

�T ∩k� ≤ 11∀k ∈ K9, i.e., the set of all subsets of S, of
at least size n, which contain at most one element
from each Qk. We call a subset C ⊆ N an n-cover if S
is a cover ∀S ∈ W4C1n5. An n-cover C is minimal if
C is not an n′-cover for any n′ < n. Note that a GUB
cover C is a �C�-cover.

Proposition 1. If C is an n-cover, then the following
inequality is valid for X:

∑

i∈C

xi ≤ n− 10

Proof. Let x ∈X. Assume for the sake of contradic-
tion that

∑

i∈C xi ≥ n. Let S = C ∩ Tx. We have x ∈X ⇒

Tx ∩ Qk ≤ 11∀k ∈ K ⇒ S ∩ Qk ≤ 11∀k ∈ K, and �S� =
∑

i∈S 1 =
∑

i∈C∩Tx
1 =

∑

i∈C xi ≥ n. Thus S ∈ W4C1n5,
which is a contradiction since

a4Sx5+�
√

d4Sx5≤ a4Tx5+�
√

d4Tx5≤ b1

as x ∈X. �

Example (Continued). Let us extend the 2-cover
C = 81149 with element 2 resulting in the set C ′′ =

8112149. W4C ′′125 = 8811491 821499, and since 81149,
and 82149 are both covers, the set C ′′ is a 2-cover as
well and the inequality x1 + x2 + x4 ≤ 1 is thus valid.

Proposition 2. Let C be an n-cover and i∗ ∈ Qk∗\C
for some k∗ ∈K. If

a4S5+ ai∗ +�
√

d4S5+ di∗ > b1

∀S ∈W4C\k∗

1n− 15 (4)

holds, then C ∪ 8i∗9 is also an n-cover.

Proof. Let T ∈ W4C ∪ 8i∗91n5. If i∗ 6∈ T , then T is a
cover by assumption. Assume i∗ ∈ T ; then T = S ∪ 8i∗9
for some S ∈ W4C\k∗

1n− 15, and thus a4T 5+�
√

d4T 5
> b, and T is hence a cover. Therefore C ∪ 8i∗9 is an
n-cover. �

Proposition 2 suggests a method for extending a
cover: Start with identifying a GUB cover and for
some ordering of the variables currently not in the
cover, check iteratively one at a time if the variable
can be included by evaluating condition (4). This task

can be accomplished by solving the following opti-
mization problem:

OPT2 � = min a4S5+ ai∗ +�
√

d4S5+ di∗

s.t. S ∈W4C\k∗

1n− 150

If � > b, then n-cover C can be extended with i∗.
OPT is a constrained minimization of a submodular
function. For surveys of submodular function mini-
mization we refer the reader to Fujishige (2005), and
Iwata (2008).

Example (Continued). Consider now extending
the 2-cover C ′′ = 8112149 with element i∗ = 5. Recall
that the GUB-sets are: Q1 = 81129 and Q2 = 8314159.
In this case k∗ = 2. We have W4C ′′\2115 = 88191 8299,
and since 3 + 1 +

√
2 + 10 > 7, and 4 + 1 +

√
1 + 10 > 7,

the cover may be extended with 5 and 811214159 is a
2-cover as well.

We now show that OPT is NP-hard. First note that
OPT is equivalent to the following conic quadratic
integer program (CQIP):

min
∑

i∈C\k∗

aiyi + ai∗ +�
√

∑

C\k∗

diy
2
i + di∗ (5)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈K1 k 6= k∗1 (6)

∑

i∈C\k∗

yi ≥ n− 11 (7)

yi ∈ 80119 ∀ i ∈C\k∗

1 (8)

where yi = 1 if and only if i ∈ S. Constraints (6) ensure
that S contains at most one element from each GUB-
set, and constraints (7) ensure that S contains at least
n− 1 elements.

Proposition 3. Optimization problem (5)–(8) is
NP-hard.

Proof. For ease of exposition, let I = C\k∗

=

811 0 0 0 1 p9, let K=K\8k∗9, let Qk =C∩k1 ∀k ∈K, let m=

n− 1, and let ai∗ = di∗ = 0. The problem considered is

P2 min
p
∑

i=1

aiyi +�

√

p
∑

i=1

diy
2
i 1

s.t.
∑

i∈Qk

yi ≤ 1 k ∈K1

p
∑

i=1

yi ≥m1

yi ∈ 80119 ∀ i = 11 0 0 0 1 p0

If the second part of the objective is zero (e.g.,
� = 0), the problem may be solved in polynomial
time using a simple greedy algorithm: Let ak =

min8ai ∈ Qk9. Now choosing the m smallest values of
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ak gives an optimal solution y′ with value l. The solu-
tion l is a lower bound for the general problem P .

We can also find an upper bound on an optimal
solution value of P as follows: Let D = �

√
∑p

i=1 di;
then the optimal solution value is not bigger than
u= l+D. To see this, assume an optimal solution has
value larger than l+D. Now construct a new solution
corresponding to y′; clearly

∑p
i=1 aiy

′
i +�

√

diy
′
i ≤ l+D.

To prove that P is NP-hard, we consider the deci-
sion problem:

P ′2
p
∑

i=1

aiyi +�

√

p
∑

i=1

diy
2
i + s = E

∑

i∈Qk

yi ≤ 1 k ∈K1

p
∑

i=1

yi ≥m1

yi ∈ 80119 ∀ i = 11 0 0 0 1 p1

0 ≤ s ≤D0

The variable s is a slack variable, and since u− l =D
we can restrict s to be between 0 and D. If P ′ is
NP-hard, then so is P , since instances of P ′ can be
solved as follows: if E < l, we answer “no;” if E > l+D
we answer “yes” returning y′ as a certificate; other-
wise we solve P . If the objective value is above E, we
answer “no;” otherwise we answer “yes” returning
the solution to P as a certificate.

Consider the NP-complete two-partition problem
(see Karp 1972): Given a set of positive integers, W =

8w11 0 0 0 1wq9. Is it possible to separate them into two
sets, W1 and W2, such that

∑

i∈W1
wi =

∑

i∈W2
wi = C =

1
2

∑q
i=1 wi?

We reduce the two-partition problem to P ′ as fol-
lows. Let p 2= 2 · q, and for i = 11 0 0 0 1 q set ai 2= 2Dwi,
aq+i 2= 0, di 2= 0, dq+i 2= wi, set K 2= 811 0 0 0 1 q9, Qk 2=

8i1 k + i9∀k ∈ K, m 2= q, E 2= 2DC +
√
C, and � 2= 1.

This leads to the following instance of P ′:

q
∑

i=1

2Dwiyi +�

√

q
∑

i=1

wiy
2
q+i + s = 2DC +

√
C1

yi + yk+i ≤ 1 k ∈K1

2q
∑

i=1

yi ≥ q1

yi ∈ 80119 ∀ i = 11 0 0 0 1 p1

0 ≤ s ≤D0

The constraints yi +yq+i ≤ 1 and
∑2q

i=1 yi ≥ q together
imply that yi + yq+i = 1.

Assume that two-partition has a feasible solu-
tion; i.e., there exists a binary vector y, such that

∑q
i=1 wiyi = C. Setting yq+i = 1 − yi, we find a solution

to the above problem with s = 0.
Now assume the above problem has a feasible solu-

tion. The second part of the objective satisfies

0 ≤

√

q
∑

i=1

wiy
2
q+i + s ≤ 2D0

This means that if

q
∑

i=1

2Dwiyi +

√

q
∑

i=1

wiy
2
q+i + s = 2DC +

√
C1

then both the following constraints are satisfied

q
∑

i=1

wiyi =C1

√

q
∑

i=1

wiy
2
q+i + s =

√
C0

(9)

To see this assume
∑q

i=1 wiyi 6= C. This means
∑q

i=1 wiyi =C − k for some k ∈Z. We have

2D4C − k5+

√

q
∑

i=1

wiy
2
q+i + s = 2DC +

√
C1

implying that
√

q
∑

i=1

wiy
2
q+i + s =

√
C + k2D

{

> 2D1 if k ∈Z+1

< 01 if k ∈Z−1

both of which are contradictions.
But the first equation of (9) above means we have

found a solution to the two-partition problem. �
In the next section we give a number of algorithms,

which can be used to check the condition of Propo-
sition 2. The effectiveness of the proposed algorithms
will be evaluated in §5.

3. Algorithms for Extending Cover
Inequalities

First observe that it is not necessary to solve OPT to
optimality in order to decide whether a cover C can
be extended. Given a lower bound LB on �, the cover
can be extended if LB > b. Finding a lower bound
may be computationally easier, but the resulting cover
inequalities may be weaker, because certain variables,
which could have been added to the cover, may be
missed. Thus there is a trade-off between the time
spent for extending the covers, and the strength of the
resulting cover inequalities.

We now describe a generic extension algorithm,
which can be used with any procedure giving a
lower bound on �, starting with some initial GUB
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cover C. In the following, unless otherwise stated,
we assume that the variable considered for exten-
sion has index i∗ ∈ N and belongs to the GUB-set
with index k∗ ∈K. Assume that given some extended
cover C, the function LB4C1 i∗5 gives a lower bound
on OPT. The generic extension algorithm is shown in
Algorithm 1.

Algorithm 1 (Generic algorithm for extending a GUB
cover C)
Require: The initial GUB cover C to be extended.

Let I =N\C be an ordered set.
for all i∗ ∈ I do

LB ← LB4C1 i∗5.
if LB > b then
C ←C ∪ 8i∗9.

end if
end for
return C

Different orderings of I will result in different
extended covers. As the final aim is to find a violated
n-cover inequality, and variables with a large value in
the relaxed solution could be more beneficial in this
regard, the set I is sorted nonincreasingly w.r.t. the
relaxed solution values.

In the following a number of lower bounding
approaches along with an optimal solution approach
is described. The latter is included in order to eval-
uate the quality of the lower bounding approaches.
Any of these approaches can be used for computing
LB4C1 i∗5 in Algorithm 1.

3.1. Optimal Extension
As we saw in the previous section OPT can be for-
mulated as a CQIP. The resulting problem is a con-
strained submodular function minimization problem.
Atamtürk and Narayanan (2008) treat such a mini-
mization problem using a cutting plane approach. For
the computational experiments, we do not, however,
employ this approach, but instead solve the above
model directly with a CQIP solver for the purpose
of obtaining a reference to assess the quality of other
lower bounding algorithms. Note that the optimiza-
tion may be halted as soon as the current lower bound
is above b.

3.2. Lower Bound 1
A simple lower bound is obtained by relaxing the
CQIP (5)–(8) by allowing the yi’s to take fractional val-
ues. In the following we denote this convex relaxation
bound as LB1.

3.3. Lower Bound 2
The second bound is obtained by decomposing the
objective of OPT into linear and nonlinear parts.
Namely, we consider the bound:

�′
= za + zd1

where

za = min
∑

i∈C\k∗

aiyi + ai∗ (10)

s.t. (6)–(8)1 (11)

and

zd = min �
√

∑

C\k∗

diy
2
i + di∗ (12)

s.t. (6)–(8)0 (13)

�′ is a lower bound on �, since the above optimiza-
tion problem is a relaxation of OPT as the two opti-
mization problems, (10)–(11), and (12)–(13), are solved
separately; i.e., za and zd in general corresponds to
different solution vectors. A solution to the first prob-
lem can be found as follows: Let

Imin
=
{

imin
1 1 0 0 0 1 imin

k∗−11 i
min
k∗+11 0 0 0 1 i

min
�K�

}

1

where imin
k = arg min8ai2 i ∈ C∩k9. If a C∩k = �, then

no imin
k is included. Order Imin nondecreasingly by

the value of ai. A solution is the first n − 1 ele-
ments of Imin. A solution to the second problem can
be found similarly. Therefore, the running time is
O4�C� + �K� log �K�5. In the following this bound is
denoted as LB2.

We now show that neither bound is dominated by
the other. Consider the following instance of the opti-
mization problem (5)–(8):

min 2y1 + 1y2 + 1 +

√

1y2
1 + 4y2

2 + 1

s.t. (6)–(8)0

Here LB1 gives a lower bound of 4 (corresponding to
y1 = y2 = 005), while LB2 gives a lower bound of 2 +√

2. For this instance LB1 thus dominates LB2. Now
consider the instance:

min 1y1 + 1y2 + 1 +

√

1y2
1 + 1y2

2 + 1

s.t. (6)–(8)0

Here LB1 gives the value 2 +
√

105 (corresponding
to y1 = y2 = 005), while LB2 gives a lower bound of
2 +

√
2. For this instance LB2 thus dominates LB1.

4. Separation for Cover Inequalities
Given a fractional solution x∗, the separation for
cover inequalities is to decide whether there exists
a cover C, such that

∑

i∈C x
∗
i > �C� − 1, i.e., a violated

cover inequality, and if so, to construct it. Because the
separation problem for cover inequalities is NP-hard
already for linear knapsack constraints (see Ferreira
et al. 1996, Klabjan et al. 1998, Gu et al. 1999), it is
also so for conic quadratic knapsack constraints.
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In the absence of GUB constraints, as described by
Atamtürk and Narayanan (2009), this problem can be
answered by solving the minimization problem:

� = min
∑

i∈N

41 − x∗

i 5yi (14)

s.t.
∑

i∈N

aiyi +�
√

∑

i∈N

diy
2
i ≥ b+ �1 (15)

y ∈ 80119N 1 (16)

where � is some small positive number. Here yi = 1 if
and only if i ∈C. Note, that because of Constraint (15)
the problem may appear to be a nonconvex 0–1 prob-
lem, but it can be reformulated as an equivalent
quadratic mixed 0–1 problem (see §4.1.1). We have

∑

i∈C

x∗

i > �C� − 1 ⇐⇒ 1 >
∑

i∈N

41 − x∗

i 50

Therefore, if � < 1, then the optimal solution yields
a violated cover inequality. Even if � ≥ 1, a cover
has been identified, and an attempt to extend it can
be made. After extending the cover, the correspond-
ing extended cover inequality may be violated, even
though the original cover inequality is not.

When GUB constraints are present we instead wish
to solve the above problem with the following set of
constraints added:

∑

i∈Qk

yi ≤ 11 ∀k ∈K0 (17)

This ensures that the resulting covers are GUB covers.
Again, if � < 1, a violated cover inequality has been
found. In any case, a GUB cover has been found, and
Algorithm 1 may be applied.

Atamtürk and Narayanan (2009) solve the sepa-
ration problem (14)–(16) heuristically based on the
rounding continuous relaxation solutions that are
derived from KKT conditions. Their approach does
not, however, carry over well to the case with GUB
constraints. In the following we describe a number
of approaches for constructing good candidate GUB
covers, which are then to be extended using Algo-
rithm 1 in conjunction with one of the lower bounds
previously presented.

4.1. Algorithms for Separating GUB Covers
The algorithms for separating GUB covers should
identify a number of good candidate GUB covers for
extension. A good candidate for a GUB cover may be
one where the corresponding cover inequality is vio-
lated, or sufficiently close to being violated, but is also
easy to extend.

4.1.1. Separation Algorithm 1. The first approach
is to reformulate the separation problem (14)–(17) as

an equivalent quadratic mixed 0–1 problem and solve
it exactly using a CQIP solver. Observe that (14)–(17)
can be restated as:

� = min
n
∑

i=1

41 − x∗

i 5yi (18)

s.t.
n
∑

i=1

aiyi +�z≥ b+ �1 (19)

z2
≤
∑

i∈N

diyi1 (20)

∑

i∈Qk

yi ≤ 1 ∀k ∈K1 (21)

y ∈ 80119�N �1 z≥ 01 (22)

where z is an auxiliary variable used to break the
nonlinear constraint into two more convenient con-
straints. Because the yi variables are binary we may
perform the substitution yi = y2

i for Constraint (20),
which makes it convex quadratic. This approach is
primarily included as a reference for evaluating the
heuristic separation algorithms described next.

4.1.2. Separation Algorithms 2 and 3. Separation
Algorithms 2 and 3 are greedy heuristics that attempt
to find good solutions quickly to the separation prob-
lem. First, the variables within each GUB set are
sorted according to a weight calculated on the basis
of the current solution. Then, a set C is created con-
taining the �K� largest-weighted variables. If C is not a
cover, a new set C is created where the second largest-
weighted variable from the GUB setsA3replaces the
current variable iteratively. The algorithm progresses
until a cover is found or there are no more variables.

The variables are sorted using the following
weights: (1) wi = x∗

i , and (2) wi = 4x∗
i − 15/4ai +�

√

di5,
where x∗ is the fractional solution to cut off. Sep-
aration Algorithm 2 uses the first weight function,
whereas separation Algorithm 3 uses the second.
Weight function 2 is a generalization of the weight
function used by Crowder et al. (1983) for the linear
case where di = 0 for all i ∈N .

Once a cover inequality is found, it is extended
using the extension algorithms described in the pre-
vious section.

5. Computational Experiments
In this section, we describe the computational experi-
ments conducted to understand the value of using the
additional structure imposed by the GUB constraints
in conic quadratic MIP as well as to compare the pro-
posed separation and extension algorithms.
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5.1. Test Instances
As a test we constructed instances that have the gen-
eral form:

max
∑

i∈N

cixi (23)

∑

i∈N

aimxi +�
√

∑

i∈N

�2
imx

2
i ≤ bm m ∈M1 (24)

∑

i∈Qk

xi ≤ 1 k ∈K1 (25)

x ∈ 80119N 0 (26)

In the following let n = �N � and m = �M �. For each
instance the values of ci, aim, and �im are respectively
chosen at random based on the uniform distribution
across the integer intervals 613110007, 6031007, and
603aim7. The value for � is set to 3. The value of bm is
set as bm = � · 4

∑

i∈S aim +�
√

∑

i∈T �
2
im5, where S is the

index-set of variables with the maximal value of aim
within each Qk, and T is likewise the index-set of vari-
ables with maximal value of �im within each Qk. The
GUB-sets, Qk, are created such that they are disjoint,
each set contains a random number of variables in the
interval 6001 ·n3003 ·n7, and such that

⋃

k∈K Qk = n.
For each combination of n in 85017511009, m in

8101209 and � in 800310059, five random instances
are generated, giving a total of 60 test instances.
These instances along with the source code is avail-
able for download at http://or.man.dtu.dk/English/
research/.

5.2. Test Setup
For the computational experiments, we use ILOG
CPLEX 12.1 (CPLEX), which solves conic quadratic
relaxations at the nodes of a branch-and-bound tree.
CPLEX heuristics are turned off, and a single thread
is used. When comparing to default CPLEX, the MIP
search strategy is set to traditional branch-and-bound,
rather than the default dynamic search as it is not pos-
sible to addA4user cuts in CPLEX while retaining the
dynamic search strategy. When CPLEX is used in con-
nection with a separation algorithm (separation Algo-
rithm 1) or for calculating a bound (OPT and LB1) all
settings are left at their default (except for the number
of threads, which is set to one).

Experiments were performed on a machine with
two Intel(R) Xeon(R) CPUs @ 2.67 Ghz (16 logical
cores), with 24 GB of RAM, and running Ubuntu 10.4.

5.3. Cuts
In the following, Sep1(conic), Sep2(x-sort), and
Sep3(x/coef-sort) refers to separation Algorithm 1, 2,
and 3, respectively, and Exact(conic), LB1(convrelax),
and LB2(minsum) refers to solving OPT, and the
lower bounds LB1, and LB2, respectively.

Table 1 Table Indicating Whether Cuts Are Applied Only at the Root
(Root ) Node, or Throughout the Branch-and-Bound Tree (All )

Sep1(conic) Sep2(x-sort) Sep3(x/coef-sort)

Exact(conic) Root Root Root
LB1(convrelax) Root Root Root
LB2(minsum) All All All

Depending on which combination of separa-
tion algorithm (either Sep1(conic), Sep2(x-sort), or
Sep3(x/coef-sort)) and lower bound used (either
Exact(conic), LB1(convrelax), or LB2(minsum)), cut-
ting is applied either only at the root node, or
locally throughout the branch-and-bound tree. Cut-
ting throughout the tree turned out to be effective
for the “fast” separation algorithms and lower bound
arguments, but for the more computationally expen-
sive algorithms the overhead of cutting at each node
was too high. Table 1 lists how cutting is applied for
the different combinations.

5.4. Results
We first compare the different combinations of sep-
aration algorithms and bounds used in the generic
extension algorithm. Next, we examine the effect of
extending covers as compared to not extending them,
and finally we examine the effect of using the GUB
information to extend covers as compared to not
using this information.

In Tables 2–7 below, the column rgap is the aver-
age optimality gap at the root node after addition of
cuts. The rgap is calculated as 4UB − LB∗5/LB∗, where
UB is the objective value at the root node and LB∗ is
the objectiveA5value of an optimal solution. If no algo-
rithms solve a given instance to optimality within the
given time limit of 3,600 secs, then LB∗ is the objective
value of the best-found solution across all algorithms.
To avoid the case LB∗

= 0, we add the constant 1 to the
objective function. For the combination of separation
algorithms and bounds where cutting is only applied
at the root node, the column cuts is the average num-
ber of cover cuts (user cuts) added at the root node,
whereas for the combinations where cutting is applied
throughout the branch-and-bound tree, the column is
the average number of cuts added per node, and the
number in parenthesis is the number of cuts added
at the root node. The column nc is for the average
number of nodes explored in the branch-and-bound
tree, rt the time used in the root node in seconds, and
finally, time is the average total time used in seconds,
where the number in parenthesis shows how many of
the five instances are solved to optimality within the
time limit. Bold font indicates that all instances are
solved to optimality. The Agg. time, Agg. node, and
Solved rows, indicate the aggregate time used, the
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Table 2 Results from CPLEX

CPLEX

n m � rgap cuts nc rt time

50 10 003 77080 — 865 0 2 (5)
005 22087 — 11737 0 9 (5)

20 003 147059 — 11335 1 11 (5)
005 38083 — 21108 0 83 (5)

75 10 003 80024 — 21954 0 32 (5)
005 21012 — 31594 0 55 (5)

20 003 183040 — 21338 2 29 (5)
005 25006 — 41724 2 760 (4)

100 10 003 57069 — 41664 0 187 (5)
005 7078 — 11613 0 13 (5)

20 003 155009 — 51175 3 11035 (4)
005 23090 — 91279 3 21674 (2)

Agg. time 41889 (63)
Agg. node 401386 (2,741)
Solved 55

aggregate number of branch-and-bound nodes vis-
ited, and the total number of instances solved, respec-
tively. For Agg. time and Agg. node, the number in
parenthesis is the geometric mean.

Comparison of Separation Algorithms and
Bounds. The branch-and-bound algorithm is run
for each combination of separation algorithm and
bound argument. Tables 3–5 contain the results
for separation Algorithms 1, 2, and 3, respectively,
combined with the different bound choices. Results
from CPLEX can be seen in Table 2.

We first consider the CPLEX results. As can be
seen from Table 2 all instances could be solved up to
n= 75, and m= 10. One instance cannot be solved for
n= 75 and m= 20, while for n= 100 all instances can

Table 3 Results from Combinations of Separation Algorithm 1 and the Different Bounds

Sep1(conic)+ Exact(conic) Sep1(conic)+ LB1(convrelax) Sep1(conic)+ LB2(minsum)

n m � rgap cuts nc rt time rgap cuts nc rt time rgap cuts nc rt time

50 10 003 0040 35 1 8 8 (5) 5078 40 19 3 3 (5) 2022 45 (42) 4 1 1 (5)
005 21023 6 11597 4 12 (5) 21011 11 11663 2 11 (5) 21020 696 (8) 191 1 12 (5)

20 003 28038 55 70 14 14 (5) 33087 50 95 7 7 (5) 25041 91 (51) 16 2 4 (5)
005 32079 24 11526 11 51 (5) 33048 23 11970 3 85 (5) 32090 949 (24) 228 1 28 (5)

75 10 003 36062 18 11365 5 17 (5) 40015 21 11346 3 14 (5) 35048 276 (22) 59 1 5 (5)
005 16068 18 31104 13 68 (5) 17020 22 31504 3 113 (5) 17030 11768 (21) 467 1 47 (5)

20 003 16094 47 72 18 19 (5) 34070 51 136 10 12 (5) 20073 84 (50) 14 4 5 (5)
005 20070 20 51189 31 822 (4) 22056 16 41860 12 780 (4) 22017 31296 (14) 686 6 123 (5)

100 10 003 51044 14 21135 6 16 (5) 53008 12 21638 2 16 (5) 52029 414 (13) 100 1 9 (5)
005 5091 12 11365 31 46 (5) 5081 17 11623 5 47 (5) 5069 769 (19) 223 2 23 (5)

20 003 87048 32 816 22 44 (5) 91004 33 883 7 26 (5) 92059 256 (32) 40 3 9 (5)
005 22007 17 71906 55 31016 (1) 22046 14 101635 15 31048 (1) 22011 51450 (20) 11087 12 962 (4)

Agg. time 41131 (47) 41161 (40) 11228 (17)
Agg. node 251146 (684) 291372 (982) 31116 (101)
Solved 55 55 59

be solved for m= 10, and six instances can be solved
for m= 20. CPLEX solves a total of 55 instances using,
in total, 4,889 seconds and visiting 40,386 nodes.

We next compare the results of each combination
of bound with separation Algorithm 1 (Table 3), and
compare these to CPLEX (Table 2). Recall that sepa-
ration Algorithm 1 solved the separation problem to
optimality with CPLEX. As can be seen, in general
adding cuts using separation Algorithm 1 has a pos-
itive effect on the computational time and the num-
ber of nodes visisted. For Exact(conic) and LB1(relax)
the number of instances solved remains the same (55)
but the computational time is reduced to 4,131 and
4,161 seconds, respectively, compared to the 4,889 sec-
onds of CPLEX, and the number of nodes visited
drops from 40,384 to 25,146 and 29,372, respectively.
For LB2(minsum) the effect of cutting is quite notica-
ble, the total number of solved instances increases to
59, the total computational time is reduced to 1,228
seconds, and the number of nodes visisted falls to
3,116. All combinations improve the root gaps com-
pared to CPLEX. With respect to the root gaps the
best combination among the three is, as expected,
Sep1 + Exact(conic), but the time spent at the root
node is also the largest, which is also as expected. The
combination Sep1 + LB2(minsum) produces, in gen-
eral, better root node gaps than Sep1+LB1(convrelax)
using less time at the root node. Overall, Sep1 +

LB2(minsum) performs the best.
We next compare the use of extension lower bounds

with separation Algorithm 2 (Table 4). In general con-
siderably more cuts are added at the root node, and
as a consequence the root gap is smaller compared
to the case with separation Algorithm 1. While this
may seem odd, as the separation problem is solved
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Table 4 Results from Combinations of Separation Algorithm 2 and the Different Bounds

Sep2(x-sort)+ Exact(conic) Sep2(x-sort)+ LB1(convrelax) Sep2(x-sort)+ LB2(minsum)

n m � rgap cuts nc rt time rgap cuts nc rt time rgap cuts nc rt time

50 10 003 0000 70 0 146 146 (5) 0067 120 2 57 57 (5) 0073 96 (95) 1 0 0 (5)
005 17012 52 11112 155 161 (5) 17054 58 11175 64 68 (5) 17029 931 (56) 113 1 1 (5)

20 003 19064 129 28 700 700 (5) 26033 192 27 186 187 (5) 24064 194 (126) 17 1 1 (5)
005 26051 92 11097 400 496 (5) 28043 102 11742 98 232 (5) 27056 11290 (97) 140 1 3 (5)

75 10 003 20057 113 103 699 699 (5) 25032 175 199 186 187 (5) 24059 375 (145) 33 1 2 (5)
005 14070 55 21635 271 400 (5) 15030 79 31191 77 270 (5) 14057 21592 (82) 238 0 5 (5)

20 003 13052 161 12 998 998 (5) 9052 290 15 460 460 (5) 12043 238 (206) 8 3 3 (5)
005 18013 84 31881 644 11412 (4) 19057 99 41327 210 11158 (4) 18062 51013 (111) 410 15 30 (5)

100 10 003 31058 125 244 11710 11711 (5) 36073 231 477 428 431 (5) 37019 652 (160) 48 1 2 (5)
005 4079 35 785 339 348 (5) 5012 48 11518 63 215 (5) 4092 11702 (47) 165 2 5 (5)

20 003 42010 277 58 21481 21776 (5) 39066 342 109 885 887 (5) 44064 504 (304) 32 6 7 (5)
005 20076 65 61961 11101 31989 (1) 21003 76 91223 228 21925 (2) 20073 131624 (85) 860 21 71 (5)

Agg. time 131836 (725) 71077 (319) 132 (4)
Agg. node 161915 (241) 221006 (361) 21064 (63)
Solved 55 56 60

to optimality for separation Algorithm 1, the rea-
son is that separation Algorithm 1 only attempts to
extend the single cover corresponding to the solution
of (18)–(22), while separation Algorithm 2 will run
through a number of covers, trying to extend each
one. Extending the cover corresponding to the solu-
tion of (18)–(22) might not result in a violated inequal-
ity, while extending some of the covers examined by
separation Algorithm 2 might. The numerous cov-
ers examined by separation Algorithm 2, also explain
why Sep2 + Exact and Sep2 + LB1 spend consider-
ably more time in the root node than their counter-
parts for separation Algorithm 1. The additional cuts
separated by the combinations of Exact(conic), and
LB1(convrelax) with separation Algorithm 2 does not,

Table 5 Results from Combinations of Separation Algorithm 3 and the Different Bounds

Sep3(x/coef-sort)+ Exact(conic) Sep3(x/coef-sort)+ LB1(convrelax) Sep3(x/coef-sort)+ LB2(minsum)

n m � rgap cuts nc rt time rgap cuts nc rt time rgap cuts nc rt time

50 10 003 0000 69 0 145 145 (5) 0047 108 4 57 57 (5) 0000 106 (106) 0 0 0 (5)
005 18054 32 11120 169 175 (5) 18097 31 11560 45 55 (5) 20042 868 (24) 159 0 1 (5)

20 003 25043 91 30 463 463 (5) 27079 157 40 152 152 (5) 24045 212 (138) 17 1 1 (5)
005 28038 64 11049 398 420 (5) 30081 63 11737 96 176 (5) 29078 11111 (62) 166 1 3 (5)

75 10 003 22074 102 137 685 685 (5) 25081 164 264 137 138 (5) 27022 373 (146) 38 1 2 (5)
005 16038 42 31432 289 672 (5) 16039 53 31517 64 367 (5) 16028 21381 (54) 432 0 12 (5)

20 003 11059 200 20 11562 11599 (5) 13018 298 13 321 321 (5) 11096 295 (246) 15 3 4 (5)
005 20060 53 31943 710 11469 (4) 21035 59 41500 155 935 (4) 21026 41155 (52) 597 7 40 (5)

100 10 003 35036 134 253 11942 11944 (5) 42036 196 612 254 258 (5) 39033 625 (172) 69 1 2 (5)
005 5017 23 1163 411 507 (5) 5084 23 11729 56 769 (5) 5075 879 (31) 184 1 4 (5)

20 003 44088 309 123 31364 31784 (5) 41038 438 74 731 732 (5) 46013 539 (393) 23 5 7 (5)
005 22076 36 81416 906 31810 (1) 22003 30 81144 170 31355 (1) 22004 121336 (34) 11674 13 270 (5)

Agg. time 151673 (807) 71316 (304) 347 (5)
Agg. node 191688 (296) 221193 (405) 31372 (76)
Solved 55 55 60

however, outweigh the additional time spent in the
root node compared to separation Algorithm 1, and
the total computational time increases to 13,836 and
7,077 seconds, respectively, while only a single extra
instance is solved for LB1(convrelax). The number of
nodes visited is reduced to 16,915 and 22,006, respec-
tively, which is a consequence of the improvement in
the root gap. As n grows, we see a clear advantage
of using separation Algorithm 2 with LB2(minsum),
both compared to separation Algorithm 1 and to
CPLEX. This combination solves all 60 instances using
only 132 seconds and visiting just 2064 nodes.

Finally considering separation Algorithm 3
(Table 5), we see that the results are very similar
to separation Algorithm 2, but the performance is
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Table 6 Comparison of the Best Separation Algorithm Combination with CPLEX

CPLEX Sep2(x-sort)+ LB2(minsum)

n m � rgap cuts nc rt time rgap cuts nc rt time

50 10 003 77080 — 865 0 2 (5) 0073 96 (95) 1 0 0 (5)
005 22087 — 11737 0 9 (5) 17029 931 (56) 113 1 1 (5)

20 003 147059 — 11335 1 11 (5) 24064 194 (126) 17 1 1 (5)
005 38083 — 21108 0 83 (5) 27056 11290 (97) 140 1 3 (5)

75 10 003 80024 — 21954 0 32 (5) 24059 375 (145) 33 1 2 (5)
005 21012 — 31594 0 55 (5) 14057 21592 (82) 238 0 5 (5)

20 003 183040 — 21338 2 29 (5) 12043 238 (206) 8 3 3 (5)
005 25006 — 41724 2 760 (4) 18062 51013 (111) 410 15 30 (5)

100 10 003 57069 — 41664 0 187 (5) 37019 652 (160) 48 1 2 (5)
005 7078 — 11613 0 13 (5) 4092 11702 (47) 165 2 5 (5)

20 003 155009 — 51175 3 11035 (4) 44064 504 (304) 32 6 7 (5)
005 23090 — 91279 3 21674 (2) 20073 131624 (85) 860 21 71 (5)

Agg. time 41889 (63) 132 (4)
Agg. node 401386 (2,741) 21064 (63)
Solved 55 60

slightly worse. This is not so surprising as the only
difference between separation Algorithms 2 and 3
is the weight assigned to each variable when these
are sorted.

Separation Algorithms 2 and 3 outperform separa-
tion Algorithm 1. The main reason is that for sep-
aration Algorithm 1, a conic quadratic integer pro-
gram needs to be solved, which is slow compared
to the sorting-based separation Algorithms 2 and 3.
Also, many more cuts can be separated per call for
Algorithms 2 and 3, as more than oneA6extended
cover is attempted. There seems to be a slight advan-
tage to using separation Algorithm 2 over separation
Algorithm 3, which seems to imply that the fraction-
ality of a variable is more important than its weight,
when attempting to find a violated inequality.

Comparing bounds used for extension algorithms,
LB2(minsum) has a clear advantage compared to the
others. This is primarily because it is very fast, and
therefore, can be used to separate cuts throughout the
branch-and-bound tree.

To better illustrate the advantage of utilizing cut-
ting planes, we show in Table 6 the results from
CPLEX side-by-side with the best combination, i.e.,
separation Algorithm 2 and using LB2(minsum) for
extending covers.

Effect of Extending Covers. To examine the effect
of extending cover inequalities, we compare the
results from running the best separation algorithm
(separation Algorithm 2), with and without apply-
ing the extension algorithm (using the OPT bound)
to the covers. The reason for using the OPT bound,
even though it is slow, is that it is optimal and
should thus better illustrate the root bound quality

gained from using extension. Cutting was in both
cases only applied at the root node. As can be seen
from the results in Table 7 there is a clear gain in qual-
ity of the root bound, in the number of cuts added,
and in the number of branch-and-bound nodes when
covers are extended. The use of the slower exact
extension algorithm, however, means that the time
spent for cutting at the root node does not translate
into a gain in total solution time.

While Table 7 shows the best possible root gap
improvement, comparing no extension (Sep2(x-sort)
in Table 7) with the most effective way of extending
covers using LB2 (Sep2(x-sort) + LB2(minsum) in
Table 6), which takes only a total of 132 seconds and
solves all sixty instances,A7it clearly shows the positive
effect of extended covers in reducing the solution time
dramatically.

Effect of Using GUB Information. To examine the
effect of using the GUB information when separating
and extending a cover, we perform two exper-
iments: In the first experiment we compare the
best separation algorithm and bound argument, i.e.,
Sep2+LB2(minsum), with an altered version that does
not employ any GUB information. In the second
experiment we compare Sep2+LB2(minsum), with an
implementation of the separation and extension algo-
rithm of Atamtürk and Narayanan (2008).

In relation to the first experiment, separation Algo-
rithm 2 is altered as follows: The variables are still
ordered w.r.t. their weight, but this is no longer done
within each GUB-set; instead, all variables are ordered
in a single list. Instead of creating a candidate cover
by selecting the largest weighted variables from each
GUB-set, a cover is created by selecting the first l vari-
ables from the ordered list, where l is chosen such
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Table 7 Results from Running Separation Algorithm 2 With and Without the Extension Algorithm Based on the Exact(Conic) Bound

Sep2(x-sort)+ Exact(conic) Sep2(x-sort)

n m � rgap cuts nc rt time rgap cuts nc rt time

50 10 003 0000 70 0 146 146 (5) 36034 45 270 0 1 (5)
005 17012 52 11112 155 161 (5) 22029 5 11758 0 9 (5)

20 003 19064 129 28 700 700 (5) 77054 36 669 1 6 (5)
005 26051 92 11097 400 496 (5) 37086 4 11926 0 85 (5)

75 10 003 20057 113 103 699 699 (5) 56086 35 21173 1 21 (5)
005 14070 55 21635 271 400 (5) 19018 10 31598 0 58 (5)

20 003 13052 161 12 998 998 (5) 83023 80 681 2 17 (5)
005 18013 84 31881 644 11412 (4) 24095 1 51155 3 887 (4)

100 10 003 31058 125 244 11710 11711 (5) 55032 12 31916 0 129 (5)
005 4079 35 785 339 348 (5) 7010 9 11512 1 13 (5)

20 003 42010 277 58 21481 21776 (5) 100040 64 11856 4 85 (5)
005 20076 65 61961 11101 31989 (1) 23060 5 91140 3 21836 (2)

Agg. time 131836 (725) 41145 (40)
Agg. node 161915 (241) 321654 (1,859)
Solved 55 56

Table 8 Results from Running Sep2+ LB2(minsum) With and Without Use of GUB Information

Sep2(x-sort)+ LB2(minsum) Sep2(x-sort)+ LB2(minsum)-GUB

n m � rgap cuts nc rt time rgap cuts nc rt time

50 10 003 0073 96 (95) 1 0 0 (5) 2068 99 (93) 4 0 1 (5)
005 17029 931 (56) 113 1 1 (5) 21087 11701 (8) 306 0 3 (5)

20 003 24064 194 (126) 17 1 1 (5) 31097 168 (119) 22 1 2 (5)
005 27056 11290 (97) 140 1 3 (5) 35065 21312 (23) 344 1 6 (5)

75 10 003 24059 375 (145) 33 1 2 (5) 34067 441 (86) 55 1 2 (5)
005 14057 21592 (82) 238 0 5 (5) 18091 41050 (20) 802 0 13 (5)

20 003 12043 238 (206) 8 3 3 (5) 24035 212 (175) 11 4 4 (5)
005 18062 51013 (111) 410 15 30 (5) 23072 81042 (16) 11051 6 65 (5)

100 10 003 37019 652 (160) 48 1 2 (5) 47091 835 (77) 104 1 3 (5)
005 4092 11702 (47) 165 2 5 (5) 6015 11922 (23) 471 1 11 (5)

20 003 44064 504 (304) 32 6 7 (5) 59049 481 (236) 38 6 7 (5)
005 20073 131624 (85) 860 21 71 (5) 23019 281468 (12) 31279 6 733 (5)

Agg. time 132 (4) 849 (7)
Agg. node 21064 (63) 61486 (137)
Solved 60 60

that the selected variables are a cover. Iteratively, the
largest weighted variable is removed from the cover,
and in the order of the list, new variables are included
until the selected variables are again a cover. This
process continues until the end of the list is reached.
Each cover generated in this way is extended using
an altered LB2, where Imin contains all variables of
the cover instead of the minimal element within each
GUB-set of the cover.

As can be seen from the results in Table 8, using
GUB information when separating and extending cuts
gives a clear gain: the average root gaps are lower
when using GUB information, and the total running
time is improved from 849 seconds to 132 seconds.

To get further indication of the usefulness of
exploiting GUB information, we conduct a second

experiment, where we compare Sep2 + LB2(minsum),
with an implementation of the separation and exten-
sion algorithm of Atamtürk and Narayanan (2008),
that does not make use of GUB information. We do
not include their advanced lifting procedure, but only
their extension algorithm. Cuts are applied through-
out the branch-and-bound tree for both algorithms.
As it can be seen from the results in Table 9, there
is again a clear gain due to employing GUB informa-
tion when separating and extending cuts. These two
comparisons clearly show the positive effect of using
GUB information in extended cover cuts.

6. Conclusion
We have investigated using the special structure of
GUB constraints in separating and extending cover
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Table 9 Comparison of Sep2+ LB2(minsum) with Atamtürk and Narayanan (2008)

Sep2(x-sort)+ LB2(minsum) Sep2(x-sort)+ LB2(minsum)-GUB

n m � rgap cuts nc rt time rgap cuts nc rt time

50 10 003 0073 96 (95) 1 0 0 (5) 51049 227 (24) 30 0 1 (5)
005 17029 931 (56) 113 1 1 (5) 22085 11193 (1) 441 0 7 (5)

20 003 24064 194 (126) 17 1 1 (5) 76095 342 (30) 28 2 4 (5)
005 27056 11290 (97) 140 1 3 (5) 38009 11861 (1) 485 0 17 (5)

75 10 003 24059 375 (145) 33 1 2 (5) 73067 11065 (8) 163 1 11 (5)
005 14057 21592 (82) 238 0 5 (5) 19059 31313 (9) 11161 0 60 (5)

20 003 12043 238 (206) 8 3 3 (5) 114011 412 (43) 26 3 7 (5)
005 18062 51013 (111) 410 15 30 (5) 24095 61021 (1) 11433 3 179 (5)

100 10 003 37019 652 (160) 48 1 2 (5) 55068 21011 (8) 277 1 37 (5)
005 4092 11702 (47) 165 2 5 (5) 7046 11290 (3) 489 1 41 (5)

20 003 44064 504 (304) 32 6 7 (5) 123024 11215 (31) 69 6 35 (5)
005 20073 131624 (85) 860 21 71 (5) 23078 211045 (2) 31405 3 11411 (5)

Agg. time 132 (4) 11811 (24)
Agg. node 21064 (63) 81007 (245)
Solved 60 60

inequalities for optimization problems with conic
quadratic knapsack constraints. We have proposed a
number of separation and extension algorithms, and
compared them computationally. Our experiments
show that relatively simple separation and exten-
sion algorithms, that employ the GUB constraints, can
speed up the solution time of conic quadratic MIPs
with GUB constraints substantially. Fast separation,
and extension algorithms are an advantage as they
make it possible to cut locally throughout the branch-
and-bound tree as opposed to only in the root node.

As a theoretical contribution we have shown that
the problem of deciding if a cover can be extended
with a single variable is NP-hard, and have estab-
lished the nondominance between two bounds: one
based on a convex relaxation (LB1) and the other
based on a decomposition (LB2).

A direction for further research is to consider the
more general lifting problem, and investigate how
(approximate) lifting coefficients could be calculated
for variables not in the current cover, taking into
account the GUB constraints.
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