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In the context of multistage stochastic optimization problems, we propose a hybrid strategy for generalizing
to nonlinear decision rules, using machine learning, a finite data set of constrained vector-valued recourse

decisions optimized using scenario-tree techniques from multistage stochastic programming. The decision rules
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of the trees.
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1. Introduction
Stochastic optimization using scenario trees has prov-
en to be a powerful algorithmic strategy but has suf-
fered from the rapid growth in the size of scenario
trees as the number of stages grows (Birge and
Louveaux 1997, Shapiro et al. 2009). A number of
authors have undertaken research to limit the size of
the scenario tree, but problem size still grows expo-
nentially with the number of stages (Frauendorfer
1996, Dupacova et al. 2000, Høyland and Wallace
2001, Pennanen 2009, Heitsch and Römisch 2009).
As a result, most authors either severely limit the
number of decision stages or sharply limit the num-
ber of scenarios per stage (Birge 1997, Wallace and
Ziemba 2005, Dempster et al. 2008, Kallrath et al.
2009). Such approximations make it possible to opti-
mize first-stage decisions with a stochastic look-ahead
but without tight guarantees on the value of the com-
puted decisions for the true multistage problem (as a
matter of fact, bounding techniques also tend to break
down on problems with many stages).

Some authors have proposed to assess the quality
of scenario-tree based methods by out-of-sample vali-
dation (Kouwenberg 2001, Chiralaksanakul 2003, Hilli
and Pennanen 2008). The validation scheme consists
of solving the multistage program posed on a scenario
tree spanning the planning horizon T , implementing

the decision relative to time step 1, sampling the real-
ization of the stochastic process at time 1, updating
the conditional distributions of the stochastic process
from time 2 to time T , rebuilding a scenario tree span-
ning time periods 2 to T , solving the new multistage
program over the remaining horizon (with previously
implemented decisions fixed to their value), and con-
tinuing this process until the last decision at time T
has been found. The resulting sequence of decisions is
then valued according to the true objective function.
Averaging the result of this procedure repeated over
many independent scenarios drawn according to the
true distributions of the problem produces an unbi-
ased estimate of the expected value of the solution for
the true problem. Unfortunately, such simulations are
very demanding computationally. Moreover, the vari-
ance of the empirical estimate is likely to be larger
for problems with many stages, calling for even more
simulations in that case. As a result, running times
restrict the use of this technique to relatively sim-
ple optimization problems and simple scenario-tree
updating schemes.

In this paper, we propose a hybrid approach that
combines scenario trees with the estimation of statis-
tical models for returning a decision given a state.
One could call these statistical models policy function
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approximations (PFAs). We solve an optimization prob-
lem on a scenario tree to obtain optimal decisions
(given the tree), and then we use the decisions at all
stages in the tree to fit the policy function approxi-
mations using methods based on supervised learning
(Hastie et al. 2009). We repeat this exercise for differ-
ent samples of scenario trees, producing a family of
policy function approximations. Each policy function
approximation is then tested on a fresh set of samples
to determine the best policy function approximation.

Machine learning methods have often been applied
to stochastic optimization, primarily in the context
of approximating a value function (Berstsekas and
Tsitsiklis 1996, Sutton and Barto 1998, Bertsekas 2005,
Busoniu et al. 2010, Szepesvári 2010, Powell 2011).
The statistical estimation of policies has also been
widely studied in the reinforcement learning com-
munity, often using the term “actor-critic” methods
(Sutton and Barto 1998, Peters and Schaal 2008). Such
methods are popular in computer science for dis-
crete action spaces and in control theory for low-
dimensional but unconstrained control problems. Our
method is designed for higher dimensional con-
strained optimization problems.

In general, the constraints of the problem induce a
class of admissible policies that is not ideal for the
purpose of doing regression. Typically, with vector-
valued decisions it may be best to use a smooth class
of functions that is less likely to overfit the deci-
sions from the scenario tree, although ultimately the
recourse decisions must satisfy the constraints exactly.
These aspects are reconciled in our work by adding
a corrective step to the PFA that consists of solving a
constrained optimization problem for finding a solu-
tion that minimizes the deviation from the decision
predicted by a less constrained statistical model.

We note that some authors have also proposed
to derive a policy from a scenario tree by apply-
ing to a new scenario the decision optimized for the
closest scenario in the tree (Thénié and Vial 2008,
Küchler and Vigerske 2010); their strategy could be
viewed as a form of apprenticeship learning by near-
est neighbor regression (Abbeel and Ng 2004, Syed
et al. 2008, Coates et al. 2008). However, the use of
machine learning along with a valid model selec-
tion procedure is quite new in the context of stochas-
tic programming, whereas the need for methods able
to discover automatically good decision rules had
been recognized as an important research direction
for addressing complex multistage stochastic pro-
gramming problems (Mulvey and Kim 2011) and for
bounding approximation errors (Shapiro 2003).

The machine learning approach makes it possible
to quickly perform out-of-sample evaluations of the
policy function approximations created using each
scenario tree. The result is that it is now practical

to compute safe statistical guarantees when using a
scenario-tree approximation scheme.

Building on this ability, we propose to revisit the
fundamental problem of generating the scenario tree
from which a first-stage decision to be implemented is
optimized. We are particularly interested in working
with trees that have a sparse branching structure for
representing uncertainty over a long planning horizon
using a limited number of scenarios. Optimization
over long planning horizons is especially relevant for
exploiting a resource in limited quantity such as water
in a reservoir, or an electricity swing option, when the
price of the resource is stochastic. Small trees are also
a pragmatic choice when the number of scenarios is
very limited by the complexity and dimension of the
problem, for instance in stochastic unit commitment
problems for electricity generation scheduling.

In this paper, we consider a randomized algorithm
for generating small scenario trees over long hori-
zons that uses a branching process for generating
the branching structure. We illustrate the solution
approach on a set of problems over a long planning
horizon. A small fraction of the PFAs learned from
the random scenario trees turn out to perform very
well in out-of-sample simulations. We need not ask
more from the scenario-tree generation algorithm, in
sharp contrast with solutions approaches based on the
optimization of a single scenario tree.

Our approach to scenario-tree generation can be
seen as an extension of the stochastic approximation
method (SAA; Shapiro et al. 2009), where in addi-
tion to drawing scenarios randomly, the branching
structure of the tree is also drawn randomly. How-
ever, because the detection of good structures is left
to the out-of-sample validation, the way of think-
ing about the scenario trees is radically changed: in
our solution approach, the best-case behavior of the
scenario-tree generation algorithm can be exploited.
Our approach could be contrasted to other solu-
tion schemes based on multiple trees (possibly each
reduced to one scenario) used inside averaging or
aggregation procedures (Mak et al. 1999, Nesterov
and Vial 2008), perhaps most notably in Rockafellar
and Wets (1991), which inspired the title of this paper.

Our paper makes the following contributions. We
introduce the hybrid policy structure along with a
model selection procedure for selecting a best policy
function approximation, given a scenario-tree solu-
tion and the specification of the probability distribu-
tions and constraints of the true problem. This idea
was originally presented in Defourny et al. (2009),
where complexity estimates were given (but without
working algorithms). We identify statistical models
amenable to fast simulation in the context of convex
multistage stochastic programming problems so as to
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be able to quickly generate and simulate feasible deci-
sions on a large test sample. We conduct numerical
tests on a multistage stochastic problem to assess the
sensitivity of the approach to various choices and its
benefit in terms of running time for obtaining a solu-
tion with a statistical performance guarantee. We pro-
pose a novel way to view the problem of constructing
the scenario trees that has the potential to scale better
with the number of decision stages without impos-
ing stringent conditions on the problem structure, the
probability distributions, or a class of decision rules.
We report successful numerical experiments obtained
with this technique.

The remainder of this paper is organized as follows.
Section 2 explains the solution approach. Section 3
formalizes the description and gives algorithmic
procedures for its implementation. Section 4 investi-
gates the method numerically on a test problem. Sec-
tion 5 describes the proposed application of machine
learning techniques to scenario-tree selection and
reports numerical results; §6 concludes.

2. Principle
Let us explain the principle of our solution approach
on a stylized example. Consider decision stages num-
bered from t = 1 to t = T with T large, say T = 50.
Assume that the decision at stage t is given by
a function xt4 · 5 of the history �6t7 = 4�11 �21 0 0 0 1 �t5
of a random process �11 0 0 0 1 �T , where by conven-
tion �1 is deterministic. Suppose for concreteness that
�t for t ≥ 2 follows the standard normal distribu-
tion and that xt4 · 5 must be valued in the inter-
val 60117. We can write the multistage problem as
P2 minƐ f 4x11 �21x24�62751 0 0 0 1 �T 1xT 4�6T 755, assuming
that one observes �t and then takes decision xt4�6t75;
the minimization is over x1 and the functions xt4 · 5.
By convention f 4 · 5 = +� if xt4�6t75 6∈ 60117 for any t.
Let us denote by v̄ the optimal value of the problem,
assumed to be finite.

Assume first that a scenario tree T is given to us.
Each node j of the tree represents a particular infor-
mation state hj = 4�11 0 0 0 1 �tj 5, where tj is the stage
index determined by the depth of node j . Transi-
tion probabilities are associated to the arcs between
successor nodes. Each leaf node k of the tree deter-
mines, by its path from the root node, a particular
scenario �k = 4�11 �

k
21 0 0 0 1 �

k
T 5. The probability of the

scenario, written pk, is obtained by multiplying the
transition probabilities of the arcs of the path. Thus,
the probability of reaching an information state hj is
the sum of the probabilities pk of the scenarios pass-
ing through that node. Note that most nodes can have
only one successor node because otherwise the num-
ber of scenarios would be an astronomical number on
this problem with so many stages.

On the scenario tree, we can formulate a math pro-
gram where optimization variables are associated to
the nodes of the tree. For each scenario k, we associate
optimization variables xk

11 0 0 0 1 x
k
T to the nodes on the

path from the root to the leaf k, and we enforce identity
among the optimization variables that share a com-
mon node in the tree (nonanticipativity constraints).
We solve P4T52 min

∑

k p
kf 4xk

11 �
k
21x

k
21 0 0 0 1 �

k
T 1x

k
T 5 sub-

ject to the nonanticipativity constraints. Let v4T5 and
x∗

14T5 denote its optimal value and optimal first-stage
decision given the tree.

At this stage, the regret of implementing x∗
14T5,

that is,

min
x11x24 · 51 0001 xT 4 · 5

Ɛ f 4x11 �21x24�62751 0 0 0 1 �T 1xT 4�6T 755− v̄

subject to x1 = x∗

14T51

is unknown: the tree represents the distribution of
�t given �6t−17 by a single realization at most of the
nodes, so the regret depends on the value of the
stochastic solution for the subproblem at each node.

Still, an optimal solution to the problem formu-
lated on the scenario tree provides examples of input-
output pairs 4�k

6t71x
k
t 5. By machine learning, we can

infer (learn) a statistical model for each mapping
xt4 · 5. In §3, the idea is generalized to vector-valued
decisions and convex feasibility sets by building one
model per coordinate and restoring the structure of
the vector by solving a small math program. For
simplicity here, we illustrate the idea in the scalar
case and with parametric regression. By a set of
points in the input-output space �t × 60117, we can
fit a constant-valued function, a linear function, a
quadratic function, and so forth (Figure 1); feasibil-
ity can be ensured by squashing back the output of
xt4 · 5 to 60117. We can build statistical models x̂t4 · 5
for xt4 · 5 and define a policy function approximation
� = 4�11 0 0 0 1�T 5 for making decisions from stage 1
to T , where �1 is set to x∗

14T5, and �t has values
�t4�6t75 = squash60117x̂t4�6t75. Among a set of policies
�� , where � indexes the model, we cannot know in
advance the model that works best for the true prob-
lem. However, we can sample N new independent
scenarios 4�11 �

n
2 1 0 0 0 1 �

n
T 5 according to the true distri-

butions (in this example, standard normal distribu-
tions) and guarantee, if N is sufficiently large, that

v̄ ≤ min
�

{

1
N

N
∑

n=1

f 4�11 �
n
2 1�

�
2 4�11 �

n
2 51 0 0 0 1 �

n
T 1

��
T 4�11 �

n
2 1 0 0 0 1 �

n
T 55+O4N−1/25

}

1

where the right-hand side is simple to evaluate
because of the nature of the models ��

t (the O4N−1/25
term is a standard error term detailed in §3.7).
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At this stage, we have not modified the first-stage
solution x∗

14T5 given the tree T. The next step, which
allows us to convert the tree evaluation method to
a search method for x1, is to have the whole pro-
cess repeated for a large number of different trees,
where each tree has potentially a different first-stage
decision. Given an algorithm A that maps a vector
of parameters �m

A to a scenario tree Tm, we can gen-
erate M trees by selecting or sampling �m

A and from
each tree Tm learn models �m1� from the solution to
P4Tm5. Using a large sample of N scenarios, we can
guarantee, if N is sufficiently large, that

v̄ ≤ min
m1�

{

1
N

N
∑

n=1

f 4�m
1 1 �

n
2 1�

m1�
2 4�11 �

n
2 51 0 0 0 1 �

n
T 1

�m1�
T 4�11 �

n
2 1 0 0 0 1 �

n
T 55+O4N−1/25

}

0

We can then implement the decision �m
1 of the tree

that attains the minimum or even use the best model
�m1� over the whole horizon. Note that an unbiased
estimate of the expected value of the selected model
�m1� on the true problem is obtained by simulating
the model again on a new independent test sample of
scenarios.

For trees over a large planning horizon, we propose
in §5.2 to consider algorithms A capable of generating
different branching structures given a target number
of scenarios so as to keep the complexity of P4Tm5
under control while obtaining diversity in the trees.

In the remainder of the paper, we formalize this
approach using nonparametric statistical models and
develop methods for dealing with vector-valued deci-
sions and feasibility constraints. A first set of numer-
ical experiments compares the bounds obtained with
the machine learning approach to the ideal bound
computed by solving a multistage program at each
stage for each out-of-sample scenario (on a problem
over four stages). A second set of numerical exper-
iments evaluates the approach on a problem over
50 stages, in combination with a simple implemen-
tation of A based on a branching process that mod-
ifies its branching probabilities to control the total
expected number of scenarios.

As a last remark, we note that the optimal values
v4Tm5 of the programs P4Tm5 are a poor indicator
of the relative true quality of the corresponding first-
stage decisions �m

1 . Our solution approach does not
use v4Tm5 and in fact would still be valid with trees
constructed by tweaking the true distributions. For
instance, one may want to artificially inflate the prob-
abilities of extreme events when constructing the sce-
nario trees and then evaluate the resulting policies on
the true distributions.

3. Mathematical Formalization
This section formalizes the supervised learning
approach proposed in this paper. After summarizing
the notations in §3.1, §3.2 states the generic form of
the multistage stochastic program under considera-
tion. Section 3.3 gives the generic form of a scenario-
tree approximation. Section 3.4 describes the data sets
extracted from an optimal solution to the scenario-
tree approximation. Section 3.5 describes a Gaussian
process regression method that infers from the data
sets a statistical model of the mapping from informa-
tion states to recourse decisions. Section 3.6 describes
the optimization-based method that exploits the sta-
tistical model to output a feasible decision at each
stage, given the current information state. Section 3.7
describes the simulation-based procedure for select-
ing a best statistical model in combination with the
feasibility restoration procedure.

3.1. Notation
We follow conventions proposed in Shapiro et al.
(2009, Equation (3.3)), where the random process
starts with a random variable �1 that has a single triv-
ial value.

t: stage index, running from 1 to T .
a>b: inner product between two column vectors a,

b of same dimension.
�t : random vector observed just before taking the

decision at stage t; �1 is deterministic.
�6t7 = 4�11 0 0 0 1 �t5: the random vectors up to stage t,

that is, the history of the random process available
at stage t. Shorthand for �6t12 t27 = 6�>

t1
1 0 0 0 1 �>

t2
7> with

t1 = 1 and t2 = t.
x1, x24 · 5, …, xT 4 · 5: decision policy from stage 1 to

T , where the value of xt in �nt is uniquely determined
by the realization of �6t7. For definiteness, the domain
of xt must include the support of �6t7.
f14 · 51 0 0 0 1 fT 4 · 5: convex cost functions, where ft4 · 5

depends on xt and (if t ≥ 2) �t .
X11X24 · 51 0 0 0 1XT 4 · 5: set-valued mappings to con-

vex feasibility sets, in the sense that xt4�6t75 must be
valued in Xt4xt−14�6t−1751 �t5. A mapping Xt4 · 5 can
also be expressed using another convenient represen-
tation of the information state at time t.

3.2. True Problem
The multistage stochastic program under considera-
tion is called the true problem. The true problem is
written in abstract form as

min
x11x24 · 51 0001 xT 4 · 5

Ɛ6f14x15+ f24x24�62751 �25+ · · ·

+ fT 4xT 4�6T 751 �T 57

subject to x1 ∈X11 xt4�6t75 ∈Xt4xt−14�6t−1751 �t51

t = 21 0 0 0 1 T 0

(1)

We also keep in mind Theorem 2.4 in Heitsch and
Römisch (2011), which establishes assumptions for
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Figure 1 Possible Models (Dashed Lines) for the Recourse Function xt 4 · 5 at t = 3
Notes. A data set of history-decision pairs is extracted from a scenario tree where the nodal decisions have been optimized. Illustration with parametric
regression: three models of different complexity are shown, built from the same pairs 4�k6t71 x

k
t 5 for deriving candidate PFAs at t = 3.

ensuring that perturbations of the �-optimal solution
sets of a program such as (1) remains bounded under
small perturbations of the distributions for �6t7. A sim-
ple particular case of the theorem works with the fol-
lowing assumptions:

1. The multistage stochastic program is linear, with

f14x15=c>

1 x11

ft4xt4�6t751�t5=ct4�t5
>xt4�6t751

X1 =8x1 ∈X12 A110x1 =�191

Xt4xt−14�6t−1751�t5=8xt ∈Xt2 At10xt+At11xt−1 =�t4�t591

for some fixed vectors c1, �1, some vector-valued ct ,
�t for t≥2 depending affinely on �t , some nonempty,
bounded, fixed sets Xt , and some fixed matrices At10
for t≥1 and At11 for t≥2.

2. �t and xt4�6t75 have finite second moments.
3. Heitsch and Römisch (2011) also specify a

perturbation-robust version of the relatively complete
recourse assumption. Under small bounded perturba-
tions of the conditional distributions for �t given �6t−17,
it must still be the case that the relatively complete
recourse assumption holds.

4. Heitsch and Römisch (2011) also give a
perturbation-robust version of assumptions ensuring
that the optimal value of perturbed problems is finite
and attained.

3.3. Approximation of the True Problem
The scenario-tree approximation for (1) is written in
abstract form as

min
xk11x

k
21 0001 x

k
T

K
∑

k=1

pk6f14x
k
15+ f24x

k
21 �

k
2 5+ · · · + fT 4x

k
T 1 �

k
T 57

subject to xk
1 ∈X11 x

k
t ∈Xt4x

k
t−11 �

k
t 51

t = 21 0 0 0 1 T 1 k = 11 0 0 0 1K1

xk
t = x`

t for all k1 `
such that �k

6t7 = �`
6t71 t = 11 0 0 0 1 T 0

(2)

Here xk
11 0 0 0 1 x

k
T denote decision vectors relative to sce-

nario k for k = 11 0 0 0 1K, �k
6t7 is the history of random

vectors up to stage t for scenario k, pk is the probabil-
ity of scenario k with

∑K
k=1 p

k = 1, and the additional
constraints are the nonanticipativity constraints.

The discrepancy between the optimal value, solu-
tion set of (2) and the optimal value, solution set
of (1) depends on the number K of scenarios, the
branching structure of the tree, and the values pk, �k

6T 7.
Conditions for the epiconvergence of (2) to (1) (con-
vergence of the optimal value and the optimal set
for the first-stage decision) are studied in Pennanen
(2005), building on the work of many others.

3.4. Extraction of State-Decision Pairs
Let us define data sets of state-decision pairs extracted
from an optimal solution to (2):

Dt = 84�k
6t71x

k∗
t 59Kk=11 t = 11 0 0 0 1 T 0 (3)

Here xk∗
1 1 0 0 0 1 xk∗

T denote the optimized decisions rel-
ative to scenario k, given the tree. The data set D1
is trivial because it always contains the same pair
4�11x

∗
15 representing the optimal first-stage decision

given the tree. The data set DT contains distinct pairs.
The data sets Dt for t = 21 0 0 0 1 T − 1 have some dupli-
cate entries resulting from the branching structure of
the tree, assuming all necessary nonanticipativity con-
straints have been formulated and (2) has been solved
to optimality.

We let �Dt� ≤K denote the number of distinct pairs
in Dt .

Clearly, the pairs in the data sets are not inde-
pendent, identically distributed (i.i.d.) samples from
a fixed but unknown distribution because the deci-
sions xk

t are optimized jointly given the tree. Also, the
decisions xk∗

t are not necessarily optimal for the true
problem.
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Depending on the machine learning strategy, it can
be beneficial to represent the information state and
decision by minimal representations or, quite the
opposite, to expand the representation so as to express
additional features.

3.5. Inference of the Statistical Model for
Making Decisions

Several statistical models are possible, but in the
present context we find it particularly attractive
to consider nonparametric models. We work with
Gaussian processes (O’Hagan 1978, Rasmussen and
Williams 2006). Gaussian process regression can be
viewed as a Bayesian approach where one starts with
a prior distribution over functions, which is then
updated to a posterior distribution using observations
of the value of some unknown but fixed function eval-
uated at different points.

A random function �t4 · 5 with values yt = �t4�6t75,
where we assume momentarily yt ∈ �, follows a
Gaussian process GP4m4�6t751C

�4�6t71 �
′

6t755, where m4 · 5
is the mean function and C�4·1 ·5 is the covariance
function (with hyperparameters �), if for any finite
n and any fixed �1

6t71 0 0 0 1 �
n
6t7, the vector 6y1

t 1 0 0 0 1 y
n
t 7

>

with yi
t = �t4�

i
6t75 follows a multivariate normal

N4�1è5 with �i = m4�i
6t75 and èij = C�4�i

6t71 �
j

6t75.
A function C�4·1 ·5 is an admissible covariance func-
tion if the matrix è is always positive semidefinite.
The prior distribution on �t4 · 5 is determined mainly
by the choice of C�4·1 ·5. Common covariance func-
tions have been listed in Table 1, along with examples
of realizations of functions following a Gaussian pro-
cess with the corresponding covariance function for
some fixed hyperparameter. We use a scalar �6t7 for
being able to make two-dimensional plots.

As the number of observations grows, the func-
tions drawn from the posterior would progressively

Table 1 Some Commonly Used Covariance Functions

Samples
Name Expressiona of C�4�6t71 �

′

6t75 �t 4 · 5∼ GP

Linear z>Diag4�5z ′ where � � 0

Gaussian exp
(

−
r 2

2�2

)

where � > 0

Matérn 3/2
(

1 +

√
3r
�

)

exp
(

−

√
3r
�

)

4� > 05

Matérn 5/2
(

1 +

√
5r
�

+
5r 2

3�2

)

exp
(

−

√
5r
�

)

Neural
network

2
�

sin−1
(

2z>äz ′

√

41 + 2z>äz541 + 2z ′>äz ′5

)

where ä is positive definite horiz. axis: �6t7 ∈�

aWhere r = ��6t7 − � ′

6t7�, z = 61 �>

6t77
>, z ′ = 61 � ′>

6t7 7
>.

Table 2 Some Operations that Preserve Positive Semidefiniteness

Sum Ct 4�6t71 �
′

6t75= CA4�6t71 �
′

6t75+CB4�6t71 �
′

6t75

Product Ct 4�6t71 �
′

6t75= CA4�6t71 �
′

6t75 ·C
B4�6t71 �

′

6t75

Direct sum Ct 4�6t71 �
′

6t75= CA4�612� 71 �
′

612� 75+CB4�6�+12 t71 �
′

6�+12 t75

Tensor product Ct 4�6t71 �
′

6t75= CA4�612 � 71 �
′

612 � 75 ·C
B4�6�+12 t71 �

′

6�+12 t75

Warping Ct 4�6t71 �
′

6t75= CA4g4�6t751 g4�
′

6t755 where g4 · 5 is arbitrary

adopt a common shape closer to the unknown func-
tion. Apart from the linear covariance function, all the
listed basic covariance functions would permit in the
limit a concentration of the posterior on an arbitrary
continuous function on a convex compact set.

Common licit operations for combining or trans-
forming covariance functions have also been listed in
Table 2. Sophisticated covariance functions provide
more flexibility for injecting prior knowledge and for
improving the generalization of finite data sets.

When yt = �t4�t5 is vector-valued, we assume that
m4 · 5 is vector-valued with nt coordinates written
mt1 i4 · 5, i = 11 0 0 0 1nt . Given �6t7, we treat each coordi-
nate yt1 i of �t4�6t75 independently.

Posterior distributions are specified through the
mean and covariance matrix of the function values at
query points, given noisy observations of the func-
tion values at a finite number of locations. For the
purpose of writing down the update formulae given
the data set (3), we define the following shorthand
notations:

x∗

t1 i4Dt5= 6x1∗

t1 i · · ·x
�Dt �∗

t1 i 7> ∈��Dt �×11 (4)

mt1 i4Dt5= 6mt1 i4�
1
6t75 · · ·mt1 i4�

�Dt �

6t7 57> ∈��Dt �×11 (5)

C�
t 4Dt1�6t75= 6C�

t 4�
1
6t71�6t75···C

�
t 4�

�Dt �

6t7 1�6t757
>

∈��Dt �×11 (6)

C�
t 4Dt1Dt5

=













C�
t 4�

1
6t71 �

1
6t75 · · · C�

t 4�
1
6t71 �

�Dt �

6t7 5

000
000

C�
t 4�

�Dt �

6t7 1 �1
6t75 · · · C�

t 4�
�Dt �

6t7 1 �
�Dt �

6t7 5













∈��Dt �×�Dt �0 (7)

We express the samples xk∗
t in the data sets (3) as

noisy observations of some unknown but fixed func-
tion �t at the locations �k

6t7:

xk∗
t =�t4�

k
6t75+wk

t 1 (8)

where the unknown wk
t is an i.i.d. zero-mean

Gaussian noise with covariance �2
wI ∈�nt×nt , the value

of �2
w being a knob of the statistical model for xk∗

t .
The value of the unknown function �t at a new

query point �6t7 is then described probabilistically
given (3): �t1 i4�6t75 follows N4��

t1 i4�6t751å
�
t1 i4�6t755, where

��
t1 i4�6t75=mt1 i4�6t75+C�

t 4Dt1 �6t75
>6C�

t 4Dt1Dt5+�2
wI 7

−1
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· 4x∗

t1 i4Dt5−mt1 i4Dt551 (9)

å�
t1 i4�6t75=C�

t 4�6t71 �6t75−C�
t 4Dt1 �6t75

>

· 6C�
t 4Dt1Dt5+�2

wI 7
−1C�

t 4Dt1 �6t751 (10)

with I denoting the identity matrix in ��Dt �×�Dt �.
We can give to �t in (8) the interpretation of an

unknown but fixed near-optimal policy at stage t for
the true problem. If we had an infinite number of
samples and branchings in the scenario tree, then
the infinite number of optimal nodal decisions would
tend to the optimal decisions for the true problem
by epiconvergence of the scenario-tree problem to the
true problem (Pennanen 2005). Then, from the regres-
sion on that infinite number of samples, the distri-
bution over the functions �t would concentrate on a
function that would represent a near-optimal recourse
function at stage t, provided that the covariance func-
tion is flexible enough.

With a finite scenario tree, the target decisions xk∗
t

are biased, and the locations �k
6t7 do not fully cover

the input space. We can mitigate these effects by aug-
menting the noise variance and by choosing different
hyperparameters for the covariance function.

If we want to replicate closely the decisions opti-
mal for (2), a small noise variance �2

w should be cho-
sen that will simply act as a numerical regularizer
in the inversion of the matrix C�

t 4Dt1Dt5. If we have
some confidence in the prior and some mistrust in the
approximation of (1) by (2), a larger noise variance
could be chosen. A larger noise variance reduces the
weight of the updates made to the decisions mt1 i4�6t75
determined by the prior.

For the mean functions, it is common in the
machine learning literature to set mt ≡ 0. Another
option would be to first solve a deterministic approx-
imation of the stochastic program (1), typically the
multistage problem on a single scenario; extract the
optimized decisions xt ; and set mt ≡ xt . Update for-
mulae also exist where mt is replaced by a few
parametric functions endowed with a noninformative
prior (O’Hagan 1978).

The choice of the covariance functions C�
t (along

with their hyperparameters �) affects the “regular-
ity” of the decision policies that are generated from
the updated distribution. Optimal policies for the true
problem may not be smooth or continuous functions
of �6t7, but usually (with mean functions set to 0) it
is not possible to obtain discontinuous functions from
Gaussian processes.

Perturbation analysis for optimization suggests,
however, that near-optimal solution sets can exhibit
a smoother behavior than the optimal solution sets.
For instance, the optimal solution to arg maxx∈6−1117 �x
is sign4�51 which is discontinuous, but if we approx-
imate sign4�5 by the smooth function tanh43�5, we

obtain a solution of relative accuracy 10%; with
tanh430�5 the relative accuracy is 1% (we compute
relative accuracies by evaluating numerically R4r5 =

max�≥0 �41 − tanh4r�55, which gives the worst-case
regret for a fixed r).

In the present paper, the choice of the covariance
functions and hyperparameters is incorporated to a
general model selection procedure based on the sim-
ulation of the decision policy on the true problem
(see §3.7).

3.6. Inference of a Feasible Decision Policy
In a Bayesian framework, the estimate of the decision
xt4�6t75 ∈�nt is not described by a single vector, but by
a predictive distribution.

We define in this section simple selection pro-
cedures that will output a single feasible decision
x̃t4�6t75.

Under the Gaussian process model, the density of
the predictive distribution is the density of a multi-
variate Gaussian with mean ��

t 4�6t75 = 6��
t114�6t751 0 0 0 1

��
t1nt

4�6t757
> and covariance matrix å�

t 4�6t75 = diag
4å�

t114�6t751 0 0 0 1å
�
t1nt

4�6t755, using (9), (10).
We can select a single feasible decision x̃t4�6t75 to be

implemented by maximizing the log-likelihood of the
density, subject to feasibility constraints:

x̃t4�6t75= arg min
xt

4xt −��
t 4�6t755

>6å�
t 4�6t757

−1

· 4xt −��
t 4�6t755

subject to xt ∈Xt4x̃t−14�6t−1751 �t50

(11)

The program (11) is essentially the implementa-
tion of a projection operator on the feasibility set
Xt4x̃t−14�6t−1751 �t5, applied to the conditional mean
��
t 4�6t75: see Figure 2.
Solving (11) after having evaluated ��

t 4�6t75,
6å�

t 4�6t757
−1 induces a feasible decision policy.

Another, faster option is first to select the mean
��
t 4�6t75 and then to correct it with some fast heuris-

tic for restoring its feasibility. The heuristic could
itself have a small number of parameters �heur.
The heuristic can be interpreted as being a part of
the decision maker’s prior on near-optimal decision
policies.

�t
�

Xt

(xt –�t
�)  [Λt

�]–1(xt–�t
�) = �*

~

⊥

xt

Figure 2 Restoring the Feasibility of a Prediction ��t for xt ∈ Xt by
Solving (11), Where �∗ Denotes the Corresponding Optimal
Value
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3.7. Model Selection
Ultimately, a decision policy should be selected
not for its ability to explain the decisions of the
scenario-tree approximation, but for its ability to out-
put decisions leading to the best possible expected
performance on the true problem.

The performance of any feasible policy �̃ =

4�̃11 0 0 0 1 �̃T 5 is actually the value of �̃ for the true
multistage problem, written v4�̃5. It can be estimated
by Monte Carlo simulation over a large test sample of
i.i.d. scenarios �#j = 4�

#j
1 1 0 0 0 1 �

#j
T 5, 1 ≤ j ≤ N , indepen-

dent of the scenarios of the scenario tree. The estima-
tor of v4�̃5 on the test sample TS = 8�#j9Nj=1 is a sample
average approximation (SAA) estimator:

vTS4�̃5 =
1
N

N
∑

j=1

[

f14�̃15+ f24�̃24�
#j
62751 �

#j
2 5

+ · · · + fT 4�̃T 4�
#j
6T 751 �

#j
T 5
]

0 (12)

If v4�̃5 is finite, the estimate (12) is an unbiased esti-
mator of the value of �̃ on the true problem, by the
strong law of large numbers. Moreover, if the objec-
tive of the true problem under the policy �̃ has a finite
second moment, by the central limit theorem (12) is
approximately normally distributed, with a variance
that can be estimated by

�̂24vTS4�̃55 =
1
N

(

1
N − 1

N
∑

j=1

6f14�̃15

+ · · · + fT 4�̃T 4�
#j
6T 751 �

#j
T 5− vTS4�̃572

)

0

Hence, one can guarantee with an approximate level
of confidence 41 −�5 that

v4�̃5≤ vTS4�̃5+ z�/2�̂4v
TS4�̃55 (13)

with z�/2 =ê−141−�/25 and ê−1 denoting the inverse
cumulative distribution function of the standard nor-
mal distribution (Shapiro et al. 2009).

The right-hand side of (13) is a statistical perfor-
mance guarantee on the true problem. Ranking differ-
ent policies derived from different priors is possible
on the basis of (13), although more efficient ranking
and selection techniques could be employed to elim-
inate bad policies more rapidly (we are thankful to
Alexander Shapiro for this suggestion).

4. Numerical Test
We investigate the proposed methodology numeri-
cally according to three main factors of variation in its
implementation: (i) the size of the scenario tree used
for approximating the true problem, relative to the
size that should be used to solve the multistage prob-
lem accurately; (ii) the choice of the covariance func-
tion of the Gaussian processes that determines how

the decisions extracted from the scenario tree are gen-
eralized to new information states; and (iii) the choice
of the feasibility restoration procedure, which plays a
role if the predicted decisions are not feasible.

The decision policies derived from these experi-
ments are evaluated according to two criteria: (i) the
quality of the decision policy, relative to the best per-
formance attainable for the true problem and (ii) the
computational complexity of simulating the policy.

The experiments are implemented in Matlab and
the programs are solved with cvx (Grant and Boyd
2008, 2009).

4.1. Test Problem
In the spirit of a stylized application presented in
Shapiro et al. (2009, §1.3.3), we consider a four-stage
assembly product problem:

min
q11

q24 · 51Y24 · 51
q34 · 51Y34 · 51

q44 · 5

Ɛ

[

c>

1 q1 +

4
∑

t=2

c>

t qt4�6t75

]

subject to q1 ∈X1 = 8q1 ∈�122 q11 i ≥ 091

4q24�62751Y24�62755 ∈X24q15

=

{

4q21Y25 ∈�8 ×�12×82

A21 ijq21 j ≤ Y21 ij1
∑

j

Y21 ij ≤ q11 i1

q21 i1Y21 ij ≥ 0
}

1

4q34�63751Y34�63755 ∈X34q24�62755

=

{

4q31Y35 ∈�5 ×�8×52

A31 ijq31 j ≤ Y31 ij1
∑

j

Y31 ij ≤ q21 i4�62751

q31 i1Y31 ij ≥ 0
}

1

q44�6475 ∈X44q34�63751 �6475

=
{

q4 ∈�52 q41 i ≤ max801 b>
i �6479

def
= �i4�64751 0 ≤ q41 i ≤ q31 i4�6375

}

1

(14)

with �1 ≡ 1, and �21 �31 �4 i.i.d. random variables each
following the standard normal distribution. The prob-
lem data are given in the appendix.

In this resource allocation problem, �2 and
�3 represent observable factors that contribute to
demands �i4�6475 revealed at the last stage, for various
end products i. The decisions qt1 j represent quantities
of a component j to be produced at stage t, by assem-
bling components produced at the previous stage. The
decisions Yt1 ij , arranged in a matrix, represent the
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quantity of component i (produced at stage t−1) allo-
cated to the production of component j (produced at
stage t), where the minimal quantity of i per unit of j
is specified by At1 ij ≥ 0. The cost coefficients ct have
nonnegative components at stages 1–3 but are nega-
tive at stage 4, for representing revenue drawn from
selling quantities of end products at most equal to the
demand or inventory levels.

The size of the test problem has been fit to
the numerical experiments to be conducted. For
benchmarking, we simulate pure multistage stochas-
tic programming decision processes that work by
instantiating and solving a new version of (14) at each
decision stage, over the remaining horizon, with the
previous decisions fixed at their implemented value.
Obtaining the benchmark values takes many hours of
computation on a single processor (§4.4), but the sim-
ulations could run easily in parallel once the common
first-stage decision has been computed.

The numerical parameters of the test problem (see
appendix) have been chosen by selecting, among ran-
domly generated sets of parameters, a set of param-
eters that “maximizes” the value of the multistage
model. The value of the multistage model (Huang
and Ahmed 2009) is the difference (in absolute value)
between the optimal value of the multistage model
(14) and the optimal value of the corresponding two-
stage model, where q2, Y2, and q3, Y3 in (14) are incor-
porated to the first stage and q44�6475 is chosen at the
second stage with �647 revealed at once. The two-stage
model does not exploit the opportunity of adapt-
ing the production plan to intermediate observations
available before the demand is fully revealed.

4.2. Studied Variants in the Learned Policies
The policy function approximation to be learned
is made of two components, the statistical model
(Gaussian processes) and the feasibility restoration
procedure. This section describes the variants that we
have considered for the tests.

4.2.1. Covariance Functions. We report results
obtained with covariance functions of the form

C�
t 4�

k
6t71 �

`
6t75

= exp
{

−

[ t
∑

�=1

4g4�k
� 5− g4�`

� 55
2

]/

42�25

}

(15)

for two choices of the function g4 · 52 �→� (the warp-
ing transform in Table 2). In the first variant, g4 · 5
is reduced to the identity function. Hence (15) is a
Gaussian covariance function with bandwidth � > 0.
In the second variant, g4 · 5=ê4 · 5, the cumulative dis-
tribution function of the standard normal distribution.
Doing so allows us to emulate the effect of a non-
constant bandwidth.

4.2.2. Feasibility Restoration. Feasible decisions
are generated by completing the Gaussian process
model by the generic projection method (11). The pro-
gram (11) has no parameter to tune.

We also study the behavior of a feasibility restora-
tion heuristic well adapted to the test problem. The
heuristic depends on some priority order over the coor-
dinates j of the vectors qt1 j in (14). It consists in creat-
ing inventory variables si and initializing them to the
values qt−11 i for all i, then trying to reach the quan-
tities ��

t1 j of the Gaussian model by consuming the
products i in the needed proportions. Namely,

For all i, set si = qt−11 i.

For all j considered sequentially according to a
prespecified order �t ,
define q̄t1j = mini8si/At1 ij 2 At1 ij > 093
set qt1 j = min8��

t1 j1 q̄t1 j93
and for all i, replace si by si −At1 ijqt1 j 0

(16)

The priority orders �t are viewed as the parameters
of the heuristic. We generate the priority orders ran-
domly by sampling in the space of permutations.

4.3. Scenario-Tree Approximations
In this section we describe how the scenario trees
are built and how the shrinking-horizon proce-
dure for out-of-sample validation is implemented.
The shrinking-horizon procedure is the benchmark
against which the learned policies will be compared.

4.3.1. Method for Constructing the Scenario
Trees. We considered scenario trees with a uniform
branching factor b. We used an optimal quantization
approach for choosing the b discrete values for �t
and assigning to them probability masses (Pages and
Printems 2003). In a nutshell, this approach works
by selecting values �

4i5
t that minimize the quadratic

distortion

D248�
4i5
t 9bi=15= Ɛ�t

{

min
1≤i≤b

��
4i5
t − �t�

2
}

1

and then evaluates probabilities p4i5 by integrating the
density of the distribution of �t over the cells of the
Voronoi partition induced by the points �

4i5
t .

A scenario tree on T stages has bT−1 scenar-
ios (exponential growth). By solving scenario-tree
approximations on trees with increasing branching
factors, we determined that the test problem could
be solved to a reasonable accuracy with a branching
factor b = 10 (Figure 3). The solving time grows expo-
nentially with b.

4.3.2. Value of the Multistage Model. The opti-
mal value of the multistage model is about −375 (cor-
responding to a net profit); see Figure 3. This value
should be compared with the optimal value of the
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Figure 3 (Left) Convergence of the Optimal Value of the Approximation of (14) Based on a Scenario Tree of Branching Factor b. (Right) Time for
Solving the Corresponding Programs

two-stage model. Our estimate for it is −260. The
value of the multistage model over the two-stage
model is thus in theory an expected profit increase of
about 45%.

We recall that according to Birge and Louveaux
(1997), there does not seem to be a structural property
in multistage models that would guarantee a large
value over their deterministic or two-stage counter-
part; the value is very dependent on the numerical
parameters.

4.4. Computational Results for the
Benchmark Policies

We generate a test sample of N = 101000 i.i.d. scenar-
ios �#j that we use for estimating the value of any
policy �̃. Given a policy �̃, we simulate it on each
scenario �#j and then estimate its value by (12).

Let �ref1 b be the policy such that: �ref1 b
1 is set

to the solution q1 of the program already solved
given b (Figure 3); �ref1 b

4 has values given by q41 i4�
#j
6475=

min8q31 i4�
#j
63751�i4�

#j
64759 with q31 i4�

#j
6375 from �ref1 b

3 ; and
�ref1 b

t 4�
#j
6t75 for t = 2, 3 is set to the stage-t solution of a

new scenario-tree approximation of (14), given �
#j
6t7 and

�ref1 b
1 1 0 0 0 1�ref1 b

t−1 4�
#j
6t−175, where the new tree approxi-

mates �t+11 0 0 0 1 �T given �
#j
6t7 by the method described

in §4.3.1 with branching factor b but with branchings
only beyond stage t (because �6t7 = �

#j
6t7 is known).

To investigate the effect of the size of the scenario
tree on the policy, we have tested policies �ref1 b using
b = 3, 5, 7. The result of these simulations is pre-
sented in Figure 4 for the performance of the policies
(curve “Benchmark”) and in Table 3 for the computa-
tion time on a single processor (row “Benchmark”).

4.5. Computational Results for Learned Policies
We have reported on Figure 4 the results of simula-
tions on the 10,000 scenarios for three variants:

1. GP-1: covariance function (15) with g4z5= z, fea-
sibility restoration procedure (11).

2. GP-2: covariance function (15) with g4z5 = ê4z5,
feasibility restoration procedure (11).

3. GP-3: covariance function (15) with g4z5 = ê4z5,
feasibility restoration procedure (16).
Each variant was tested on the three data sets col-
lecting the history-decision pairs for t = 2, 3 from a
scenario tree with branching factor b = 3, 5, 7 (prob-
lems of Figure 3). For t = 1 we use the optimal
decision q1 given b, and for t = 4 we use q41 i4�

#j
6475 =

min8q31 i4�
#j
63751�i4�

#j
64759. The determination of the best

hyperparameters for each variant was made by direct
search, treating each value for the hyperparameters as
a possible model for the decision policy.

On the test problem we have considered, it seems
that the simple program (11) introduces a large com-
putational overhead. The simulation times of the
models GP-1 and GP-2 are only 1.5 to 6 times faster
than the benchmark method (Table 3). One possible
explanation is that the scenario-tree approximations
built on the remaining horizon have few scenarios
and thus are not really much more difficult to solve
than the myopic program (11). When we replace (11)
by the heuristic (16) in GP-3, we obtain a very impor-
tant speed-up of the simulations (Table 3) for a rela-
tively small loss of performance with respect to the
benchmark (Figure 4) and the theoretical best value
of the multistage program (Figure 3 with b = 10).

For the GP policies, the simulation times do not
vary much with b. In GP-1 and GP-2, most of the time
is spent on (11), which is independent of the size of

3 5 7
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Figure 4 Simulation of Policies on 10,000 Scenarios: Averaged Value
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Table 3 Simulation of Policies on 10,000 Scenarios: Computation
Time

CPU time (in seconds)

Policy b = 3 b = 5 b = 7

Benchmark 171000 311000 651000
GP-1 111000 111000 121000
GP-2 121000 121000 121000
GP-3 10 10 10

the data sets. In GP-3, only (9) is used; the matrix
inversions are done once, and Matlab seems to treat
the remaining matrix-vector multiplications in (9)
with a very similar speed.

From these experiments, we conclude that the most
attractive forms of learned policies for doing sim-
ulations on a large number of scenarios are those
that eliminate completely the calls to a solver, even
for solving very simple programs. Doing so can be
achieved by setting up a feasibility restoration heuris-
tic that need not be very clever because the imple-
mented decisions depend mostly on the predictions
of the Gaussian process model.

5. Application: Optimal Selection of
Scenario Trees

This section presents our solution approach to mul-
tistage problems over long horizons, based on the
selection of random scenario trees by out-of-sample
validation. An overview of the selection algorithm
and of our general methodology is given in Figure 5.
Section 5.1 makes the stylized example of §2 more
concrete. Section 5.2 presents an algorithm for gener-
ating random branching structures that turned out to
be well adapted to the problem of §5.1. Section 5.3
presents the computational study. This material is also
presented in Defourny et al. (2012). Section 5.4 con-
siders the number of random trees to sample.

5.1. Studied Problem
Consider the following problem, studied by Hilli and
Pennanen (2008) and Küchler and Vigerske (2010),

Given a multistage stochastic program over T stages:
1. Generate M random trees of approximately N scenarios.
2. Solve the M stochastic programs corresponding to the trees.
3. Create the M data sets of history-decision pairs taken from

the trees.
4. Learn N � policies per data set (by the methods of §3).
5. Simulate the M ·N � policies on a test sample of N ′ i.i.d.

scenarios
6. Select the best policy and the corresponding “best” tree.

[7.] Ideally: Improve the hyperparameters of the tree generation
algorithm.

Figure 5 Optimal Selection of Scenario Trees: Algorithm and
Methodology

where � is a risk-aversion parameter and � a budget
parameter:

min
x14 · 51 0001 xT 4 · 5

�−1 logƐ

{

exp
{

−�
T
∑

t=1

�txt4�6t75

}}

subject to xt4�6t75 ∈Xt4x14�61751 0 0 0 1 xt−14�6t−17551

t = 11 0 0 0 1 T 1

Xt4x14�61751 0 0 0 1 xt−14�6t−1755

=

{

xt ∈�2
t−1
∑

�=1

x�4�6�75+xt ≤�1 0≤xt ≤1
}

0

(17)

Here �11 0 0 0 1 �T corresponds to a price process cen-
tered on a strike price � so that a positive revenue is
obtained at stage t if �t > 0 and xt4�6t75 > 0. The pro-
cess is driven by a geometric Brownian motion and
can be described by the following equations:

�t = st −�1 st = st−1 exp8��t −�2/29

with s0 = �1 (18)

where �2 = 0007, � = 1, and �11 0 0 0 1 �t are i.i.d. from
the standard normal distribution. (Because �1 is truly
stochastic, the problem is over T recourse stages. We
could introduce a trivial constant first-stage decision
x0 = 0 associated to �0 ≡ s0 −�= 0, so strictly speaking
the multistage model is over T + 1 stages with t = 0
corresponding to the first stage.)

When � tends to 0, the program (17) becomes linear,
and for this case an optimal policy is the simple bang-
bang policy: xt = 1 if �t > 0, and t > T − �; xt = 0
otherwise.

Our goal is to solve (17) on T = 52 for various
values of � and �. On long horizons, it is out of
the question to consider scenario trees with uniform
branching factors (with b = 2 we have already 252 =

405 · 1015 scenarios).
Interestingly, the decisions optimal for scenario-tree

approximations of (17) turn out to be very dependent
on the branching structure of the tree. When a branch-
ing is missing in one scenario of the tree, a determin-
istic vision of the future is induced for that scenario
from the stage of the missing branching to the stage
where a branching is finally encountered. This will
not hurt if the value of the multistage model on this
part of the scenario and onward is negligible, but we
cannot know that in advance (that is, prior to having
computed an optimal policy that solves (17) or at least
having determined its structure).

There does not seem to be much advantage in
devoting computational resources to an optimization
of the branching structure of the tree because at the
end of the day we would still be unable to estimate
how realistic the optimal value of the approxima-
tion is with respect to the true optimal value or with
respect to a binary tree of 252 scenarios.
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Motivated by these considerations, we propose to
generate branching structures purely randomly. The
approach makes sense only if we can estimate the
value of the approximation for the true problem with-
out an optimistic bias. This is in turn possible by sim-
ulating a decision policy learned from the solution
to the scenario-tree approximation. With a learning
and simulation procedure that is fast enough, we can
score several scenario trees and thus in essence imple-
ment a Monte Carlo search algorithm in the high-
dimensional space of branching structures.

5.2. Random Generation of Branching Structures
Based on various numerical experiments for solving
(17), the algorithm described in Figure 6 has been
found to work well for generating, with a sufficient
probability, branching structures leading ultimately to
good decision policies.

The algorithm produces branching structures lead-
ing to trees having approximately N scenarios in the
following sense. Assume that the number �T−1 of
existing nodes at depth T −1 is large. From each node,
create one or two successor nodes randomly (refer
to step 3 in Figure 6). By the independence of the
random variables Zj that determine the creation of
one or two successor nodes, and by the weak law of
large numbers, the created random number of nodes
at depth T is approximately equal to

�T = �T−142 · rt−1 + 1 · 41 − rt−155= �T−141 + rt−15

= �T−141 + 41/�T−154N − 15/T 5= �T−1 + 4N − 15/T 0

Iterating this recursion yields �T = �0 + T 4N − 15/
T =N . To establish the result, we have neglected that
when �t−1 is small, the random value of �t condition-
ally to �t−1 should not be approximated by the con-
ditional mean of �t , as done in the recursive formula.
The error affects mostly the first depth levels of the
tree under development. We have found, by generat-
ing random trees and estimating the expectation and
variance of the number of leafs, that the error had a
small effect in practice.

Given N (desired approximate total number of scenarios):
1. Create a root node (depth 0). Set t = 0.
2. Set �t to the number of nodes at depth t.

Set rt = 41/�t54N − 15/T .
3. For each node j of depth t:

Draw Zj uniformly in the interval 60117.
If Zj ≤ rt , append 2 children nodes to node j

(binary branching).
If Zj > rt , append 1 child node to node j

(no branching).
4. If t < T − 1, increment t and go to step 2.

Otherwise, return the branching structure.

Figure 6 Random Generation of Scenario-Tree Branching Structures

5.3. Computational Results
We have considered three sets of 25 scenario trees
generated randomly over the horizon T = 52: the first
set with N = T , the second set with N = 5T , and the
third set with N = 25T . The random structures are
generated by the algorithm described in Figure 6. The
scenarios use values of �t generated randomly accord-
ing to (18).

The inference of policies from the history-decision
pairs of a tree starts by transforming the history �6t7 to
a more compact representation for the learning algo-
rithm. We use a change of functions xt4 · 5= min811�−
∑t−1

�=1 x�4· · · 59yt4 · 5 and we learn the functions yt4 · 5
instead of xt4 · 5. Feasibility is ensured whenever the
learned models ŷt4 · 5 have values in 60117. These con-
ditions are enforced at the level of the regression, so
that the feasibility restoration step is bypassed (in fact,
the change of functions plays its role). For details, see
Defourny (2010).

The computational results are summarized in
Table 4 for the accuracy (the best values are indicated
in bold) and in Table 5 for the overall computational
complexity of the approach that involves generating
the 25 random trees, solving them, and simulating 5
candidate policies per tree on 10,000 new scenarios.
The reported times are relative to a Matlab implemen-
tation, run on a single processor, but the nature of
our randomized approach makes it very easy to paral-
lelize. As a simple benchmark, we use the bang-bang
policy, which is optimal for the risk-neutral case �= 0
(but far from optimal when �> 0).

It is somewhat surprising to see that multiplying
the number of scenarios by 25 does not translate
to significantly better results, as shown by compar-
ing the column N = 52 to the column N = 11300 in
Table 4. Note, however, that the results with N = 52
are obtained for a particular tree of the set of 25. Most
of the time, the results on trees with N = 52 are poor.
Also, having 52 scenarios or 1,300 in the tree is equally

Table 4 Value of the Best Policies Found for Instances of (17) with
T = 52

Problem Simulation on 10,000 new scenarios: Average value

Best learned policies, for 3 tree sizes

� � Benchmark N = 52 N = 260 N = 11300

0 2 − 0040 −0034 −0032 −0039
6 −1019 −1007 −1003 −1018

20 −3064 Op
tim

al

−3059 −3050 −3050







0.25 2 −0034 −0032 −0031 −0033
6 −0075 −0078 −0078 −0080

20 −1046 −1089 −1093 −1091
1 2 −0022 −0025 −0022 −0024

6 −0037 −0053 −0053 −0054
20 −0057 −0096 −0098 −0096































Su
bo

pt
im

al
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Table 5 Computation Times

Problem Total CPU time (in seconds)

� � N = 52 N = 260 N = 11300

0 2 415 551 11282
6 435 590 11690

20 465 666 11783
0.25 2 460 780 21955

6 504 11002 41702
20 524 11084 51144

1 2 485 986 41425
6 524 11095 51312

20 543 11234 61613

terribly small compared to the exponential number
required to solve the program on T = 52 accurately.

5.4. On the Required Number of
Random Scenario Trees

Finally, we note that if there exists a randomized algo-
rithm able to generate with probability pg > 0 a tree
from which a “good” decision policy can be learned
(we discuss the sense of “good” below), then the
number M of trees that have to be generated inde-
pendently for ensuring with probability � that at least
one of them is “good” is equal to

M4�5=

⌈

log41 − �5

log41 − pg5

⌉

0 (19)

For instance, if the randomized algorithm generates
a good tree with probability 0.01, we need a set of
300 random trees to obtain a good one with probabil-
ity 0.95.

The sense of “good” can be made precise in sev-
eral ways: by defining an aspiration level with respect
to a lower bound on the true value of the multistage
program, obtained for instance with the techniques
of Mak et al. (1999); by defining an aspiration level
with respect to a benchmark solution that the deci-
sion maker tries to improve; or by defining aspiration
levels with respect to risk measures aside from the
expectation.

Indeed, it is possible to compare policies on the
basis of the empirical distribution of their cumulated
cost on a large test sample of independent scenarios.

6. Conclusions
This paper has presented an approach for infer-
ring decision policies (decision rules) from the
solution of scenario-tree approximations to multistage
stochastic programs. Precise choices for implement-
ing the approach have been presented in a Bayesian
framework, leading to a nonparametric approach
based on Gaussian processes. The sensitivity of the
approach has been investigated on a particular prob-
lem through computational experiments.

The inference of decision policies could be a useful
tool to calibrate scenario-tree generation algorithms.
This line of research has been followed by developing
a solution strategy that works by generating scenario
trees randomly and then ranking them using the best
policy that can be inferred from their solution. Fur-
ther work could be useful for identifying randomized
algorithms likely to generate good scenario trees. If
these algorithms exist, a solution strategy based on
them could fully leverage the computing power of
current supercomputer architectures.

Appendix. Numerical Parameters
The value of the numerical parameters in the test problem
(14) are given here.

c1 = 60025 10363 008093 007284 0025 00535 0025 0025

0025 004484 0025 00257>

c2 = 6205 205 205 205 13022 205 30904 2057>

c3 = 630255 205 205 80418 2057>

c4 = −621087 98016 31099 10 107>

b1 = 61309 90708 2014 40127>

b2 = 612086 90901 60435 704467>

b3 = 618021 70889 302 206797>

b4 = 610014 40387 90601 403997>

b5 = 617021 40983 70266 903347>

A2 =

































































004572 0 40048 0 0 0 008243 11037

0 0 007674 005473 003776 0 0 0

004794 0 004861 10223 0 10475 0 0

0 0 0 0 005114 003139 0 0

0 12029 10378 0 003748 004554 0 0

007878 0 00293 10721 0 0 0 0

10504 004696 00248 0 001852 0 003486 0

0 10204 0 007598 00452 0 0 0

0 0 002515 003753 006249 0 10248 0

10545 0 0 0 0 0 002732 0

0 0 0 006597 0 20525 0 0

0 0 10595 0 0 1051 10041 009847

































































A3 =







































0 10223 006367 0 0

0 0 0 10111 0

0 0 004579 0 0

0 001693 006589 0 0

005085 20643 0 0 0

004017 0 0 0 0

0 007852 85048 0 0

0 0 0 00806 005825







































0
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