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Consider the context of selecting an optimal system from among a finite set of competing systems, based
on a “stochastic” objective function and subject to multiple “stochastic” constraints. In this context, we char-

acterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false
selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution
is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed.
We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for
implementation. Various numerical examples demonstrate how the proposed allocation differs from competing
algorithms.
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1. Introduction
The simulation-optimization (SO) problem is a non-
linear optimization problem where the objective and
constraint functions, defined on a set of candidate
solutions or “systems,” are observable only through
consistent estimators. The consistent estimators can
be defined implicitly through a stochastic simulation
model—a formulation that affords virtually any level
of complexity. Due to this generality, the SO problem
has received much attention from both researchers
and practitioners in the last decade. Variations of the
SO problem are readily applicable in such diverse
contexts as vehicular transportation networks, quality
control, telecommunication systems, and health care.
See Andradóttir (2006), Spall (2003), and Ólafsson and
Kim (2002) for overviews and entry points into this
literature, and Pasupathy and Henderson (2006, 2011)
for a collection of contributed SO problems.

SO’s large number of variations stem primarily
from differences in the nature of the feasible set
and constraints. Among SO’s variations, the uncon-
strained SO problem on finite sets has arguably seen
the most development. Appearing broadly as rank-
ing and selection (R&S), the currently available solu-
tion methods are reliable and have stable digital
implementations (Kim and Nelson 2006). In contrast,
the constrained version of the problem, SO on finite
sets having “stochastic” constraints, has seen far less

development, despite its usefulness in the context of
multiple performance measures.

To explore the constrained SO variation in more
detail, consider the following setting. Suppose there
exist multiple performance measures defined on a
finite set of systems, one of which is primary and
called the objective function, while the others are
secondary and called the constraint functions. Sup-
pose further that the objective and constraint func-
tion values are estimable for any given system using
a stochastic simulation, and that the quality of the
objective and constraint function estimators is depen-
dent on the simulation effort expended. The con-
strained SO problem is then to identify the system
having the best objective function value from among
those systems whose constraint values cross a pre-
specified threshold, using only the simulation out-
put. The efficiency of a solution to this problem,
which we define in rigorous terms later in the paper,
is measured in terms of the total simulation effort
expended.

The broad objective of our work is to character-
ize the nature of optimal sampling plans when solv-
ing the constrained SO problem on finite sets. Such
characterization is extremely useful in that it facili-
tates the construction of asymptotically optimal algo-
rithms. The specific questions we ask along the way
are twofold.
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Table 1 Categorization of Research in the Area of Simulation Optimization on Finite Sets by the Nature of the Result, the Required Distributional
Assumption, and the Presence of an Objective or Constraints

Result Req’d Optimization: Feasibility: Constrained optimization:
Time Dist’n objective(s) only constraint(s) only objective(s) and constraint(s)

Finite Normal R&S (e.g., Kim and Nelson 2006) Batur and Kim (2010) Andradóttir and Kim (2010)
Infinite Normal OCBA (e.g., Chen et al. 2000) Application of general solutiona OCBA-CO (Lee et al. 2011)
Infinite General Glynn and Juneja (2004) Szechtman and Yücesan (2008) This work

Note. This table provides example references for each category.
aProblems in the infinite-normal row are also solved as applications of solutions in the infinite-general row.

Question 1. Let an algorithm for solving the con-
strained SO problem estimate the objective and
constraint functions by allocating a portion of an
available simulation budget to each competing sys-
tem. Suppose further that this algorithm returns to the
user that system having the best estimated objective
function among the estimated-feasible systems. As the
simulation budget increases, the probability that such
an algorithm returns any system other than the truly
best system decays to zero. Can the asymptotic behav-
ior of this probability of false selection be character-
ized? Specifically, can its rate of decay be deduced as
a function of the sampling proportions allocated to
the various systems?

Question 2. Given a satisfactory answer to Ques-
tion 1, can a method be devised to identify the sam-
pling proportion that maximizes the rate of decay of
the probability of false selection?

This work answers both of the above questions in
the affirmative. Relying on large-deviation principles
and generalizing prior work in the context of uncon-
strained systems by Glynn and Juneja (2004), we fully
characterize the probabilistic decay behavior of the
false selection event as a function of the budget allo-
cations. We then use this characterization to formulate
a mathematical program whose solution is the allo-
cation that maximizes the rate of probabilistic decay.
Since the constructed mathematical program is a con-
cave maximization problem, identifying the asymp-
totically optimal solution is easy, at least in contexts
where the underlying distributional family of the sim-
ulation estimator is known or assumed.

1.1. This Work in Context
Prior research on selecting the best system in the
unconstrained context falls broadly under one of two
categories:

—finite-time stopping procedures, which typically
require a normality assumption and provide finite-
time guarantees on, for example, the expected
opportunity cost (e.g., Branke et al. 2007) or, more tra-
ditionally, the probability of false selection (see, e.g.,
Kim and Nelson 2006, for an overview of R&S proce-
dures), and

—asymptotically efficient procedures, such as optimal
computing budget allocation (OCBA) (e.g., Chen et al.

2000) which provides an approximately optimal sam-
ple allocation under the assumption of normality, and
procedures that use a large-deviations (LD) approach
(e.g., Glynn and Juneja 2004), to provide an asymp-
totically optimal sample allocation in the context of
general light-tailed distributions.

Corresponding research in the constrained con-
text is taking an analogous route. As illustrated in
Table 1, Andradóttir and Kim (2010) provide finite-
time guarantees on the probability of false selec-
tion for stochastically constrained SO problems and
parallels traditional R&S work. Similarly, recent work
by Lee et al. (2011) provide an asymptotically effi-
cient procedure to solve stochastically constrained SO
problems that parallels the previous OCBA work in
the unconstrained context. Our work, which appears
in the bottom right-hand cell of Table 1, provides
an asymptotically efficient procedure that completely
generalizes previous LD work in ordinal optimization
by Glynn and Juneja (2004) and in feasibility determi-
nation by Szechtman and Yücesan (2008).

1.2. Problem Statement
Consider a finite set i = 1121 0 0 0 1 r of systems, each
with an unknown objective value hi ∈� and unknown
constraint values gij ∈ �, j = 1121 0 0 0 1 s, and i =

1121 0 0 0 1 r . Given constants �j ∈ �, j = 1121 0 0 0 1 s,
we wish to select the system with the lowest objective
value hi, subject to the constraints gij ≤ �j . That is, we
consider

Problem P2 Find arg min
i=1121 0001 r

hi

s.t. gij ≤ �j1 for all j = 1121 0 0 0 1 s1

where hi and gij are expectations, estimates of hi

and gij are observed together through simulation as
sample means, and a unique solution to Problem P is
assumed to exist.

Let Á = 4�11�21 0 0 0 1�r 5 be a vector denoting the
proportion of the total sampling budget given to
each system, so that

∑r
i=1 �i = 1 and �i ≥ 0 for all

i = 1121 0 0 0 1 r . Furthermore, let the system having
the smallest estimated objective value among the
estimated-feasible systems be selected as the esti-
mated solution to Problem P . Then we ask, what vec-
tor of proportions Á maximizes the rate of decay of
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the probability that this procedure returns a subopti-
mal solution to Problem P?

2. Contributions
This paper addresses the question of identifying the
“best” among a finite set of systems in the presence
of multiple “stochastic” performance measures, one
of which is used as an objective function and the rest
as constraints. This question is a crucial generaliza-
tion of the work on unconstrained simulation opti-
mization on finite sets by Glynn and Juneja (2004). We
contribute the following.

Contribution 1. We present the first complete char-
acterization of the optimal sampling plan for con-
strained SO on finite sets when the performance
measures can be observed as simulation output. Rely-
ing on an LD framework, we derive the probability
law for erroneously obtaining a suboptimal solution
as a function of the sampling plan. We show that the
optimal sampling plan can be identified as the solu-
tion to a concave maximization problem.

Contribution 2. We present a consistent estimator
and a corresponding algorithm to estimate the optimal
sampling plan. The algorithm is easy to implement in
contexts where the underlying distributions govern-
ing the performance measures are known or assumed.
The normal context is particularly relevant since a sub-
stantial portion of the literature in the unconstrained
context makes a normality assumption. In the absence
of such distributional knowledge or assumption, the
proposed framework inspires an algorithm derived
through an approximation to the rate function, e.g.,
using Taylor’s Theorem (Rudin 1976, p. 110).

Contribution 3. For the specific context involving
performance measures constructed using normal ran-
dom variables, we use numerical examples to demon-
strate where and to what extent our only competitor
in the normal context, OCBA-CO, is suboptimal.
There currently appear to be no competitors to the
proposed framework for more general contexts.

3. Preliminaries
In this section, we define notation, conventions, and
key assumptions used in the paper.

3.1. Notation and Conventions
Let i ≤ r and j ≤ s be notational shorthand for
i = 1121 0 0 0 1 r and j = 1121 0 0 0 1 s, respectively. Let the
feasible system with the lowest objective value be
system 1. We partition the set of r systems into the
following four mutually exclusive and collectively
exhaustive subsets.

1 2= arg mini8hi2 gij ≤ �j for all j ≤ s} is the unique
best feasible system;

â 2= 8i2 gij ≤ �j for all j ≤ s, i 6= 1} is the set of subop-
timal feasible systems;

³b 2= 8i2 h1 ≥ hi and gij >�j for at least one j ≤ s} is the
set of infeasible systems that have better (lower)
objective values than system 1; and

³w 2= 8i2 h1 < hi and gij > �j for at least one j ≤ s}
is the set of infeasible systems that have worse
(higher) objective values than system 1.

The partitioning of the suboptimal systems into the
sets â , ³b, and ³w implies that to be falsely selected as
the best feasible system, systems in â must experience
a large deviation in the estimated objective value,
systems in ³b must experience a large deviation in
estimated constraints, and systems in ³w must expe-
rience a large deviation in estimated objective and
constraint values. This partitioning is strategic and
facilitates analyzing the behavior of the false selection
probability.

We use the following notation to distinguish
between constraints on which the system is classified
as feasible or infeasible.

£i
F 2= 8j2 gij ≤ �j9 is the set of constraints satisfied by

system i; and
£i

I 2= 8j2 gij >�j9 is the set of constraints not satisfied
by system i.

We interpret the minimum over the empty set as infin-
ity (see, e.g., Dembo and Zeitouni 1998, p. 127), and
we likewise interpret the union over the empty set
as an event having probability zero. We interpret the
intersection over the empty set as the certain event,
that is, an event having probability one. Also, we say
that a sequence of sets ¡m converges to the set ¡,
denoted ¡m →¡, if for large enough m, the symmet-
ric difference 4¡m ∩¡c5∪ 4¡∩¡c

m5 is the empty set.
To aid readability, we adopt the following nota-

tional convention throughout: lower-case letters
denote fixed values; upper-case letters denote ran-
dom variables; upper-case Greek or script letters
denote fixed sets; estimated (random) quantities are
accompanied by a “hat,” e.g., Ĥ1 estimates the fixed
value h1; optimal values have an asterisk, e.g., x∗; vec-
tors appear in bold type, e.g., Á.

3.2. Assumptions
To estimate the unknown quantities hi and gij , we
assume we may obtain replicates of the random vari-
ables 4Hi1Gi11 0 0 0 1Gis5 from each system. We also
assume the following.

Assumption 1. (1) The random variables 4Hi1Gi11
0 0 0 1Gis5 are mutually independent for all i ≤ r , and
(2) for any particular system i, the random variables Hi,
Gi11 0 0 0 1Gis are mutually independent.

While it is possible to relax Assumption 1, we have
chosen not to do so in the interest of minimizing dis-
traction from the main thrust of the paper. A dis-
cussion of the independence Assumption 1(2) and its
relaxation is provided in §8.
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Let H̄i4n5 = 1
n

∑n
k=1 Hik and Ḡij4n5 = 1

n

∑n
k=1 Gijk. We

define Ĥi ≡ H̄i4�in5 and Ĝij ≡ Ḡij4�in5 as shorthand
for the estimators of hi and gij after scaling the sam-
ple size by �i > 0, the proportion of the total sample
n that is allocated to system i. We ignore issues due
to the stipulation that �in is an integer. Let å

4n5
Hi
4�5 =

logE6e�H̄i4n57 and å
4n5
Gij
4�5 = logE6e�Ḡij 4n57 be the cumu-

lant generating functions of H̄i4n5 and Ḡij4n5, respec-
tively. Let the effective domain of a function f 4 · 5
be denoted ¤f = 8x2 f 4x5 < �9, and its interior ¤�

f .
Let f ′4x5 denote the derivative of f with respect to
the argument x. We make the following assumption,
which is standard in LD contexts (see, e.g., Dembo
and Zeitouni 1998).

Assumption 2. For each system i ≤ r and constraint
j ≤ s,

(1) the limits åHi
4�5= limn→�

1
n
å

4n5
Hi
4n�5 and åGij

4�5=

limn→�
1
n
å

4n5
Gij
4n�5 exist as extended real numbers for all �;

(2) the origin belongs to the interior of ¤åHi
and ¤åGij

,
that is, 0 ∈¤�

åHi
and 0 ∈¤�

åGij
;

(3) åHi
4�5 and åGij

4�5 are strictly convex and C� on
¤�

åHi
and ¤�

åGij
, respectively;

(4) åHi
4�5 and åGij

4�5 are steep (e.g., for any sequence
8�n9 ∈ ¤åHi

that converges to a boundary point of ¤åHi
,

limn→� �å′
Hi
4�n5� = �).

The postulates of Assumption 2 imply that
H̄i4n5→ hi wp1 and Ḡij4n5 → gij wp1 (see Buck-
lew 2003, Remark 3.2.1). Furthermore, Assumption 2
ensures that, by the Gärtner-Ellis theorem (Dembo
and Zeitouni 1998, p. 44), the probability measures
governing H̄i4n5 and Ḡij4n5 satisfy the large devia-
tions principle (LDP) with good rate functions Ii4x5=

sup�∈�8�x − åHi
4�59 and Jij4y5 = sup�∈�8�y − åGij

4�59,
respectively. Assumption 2(3) is stronger than what
is needed for the Gärtner-Ellis theorem to hold.
However, we require åHi

4�5 and åGij
4�5 to be strictly

convex and C� on the interiors of their respective
domains so that Ii4x5 and Jij4y5 are strictly con-
vex and C� for x ∈ ¦�

Hi
= int8å′

Hi
4�52 � ∈ ¤�

åHi
9 and

y ∈ ¦�
Gij

= int8å′
Gij
4�52 � ∈ ¤�

åGij
9, respectively. The

postulates of Assumption 2 hold if each replicate of
Hi and Gij is an independent and identically dis-
tributed (iid) copy from a distribution with moment-
generating function defined everywhere.

Let h` = arg mini8hi9 and let hu = arg maxi8hi9. We
further assume:

Assumption 3. (1) the interval 6h`1hu7 ⊂
⋂r

i=1 ¦
�
Hi

,
and (2) �j ∈

⋂r
i=1 ¦

�
Gij

for all j ≤ s.

Assumption 3 ensures that there is nonzero proba-
bility of a false selection event. As in Glynn and Juneja

(2004), Assumption 3(1) ensures that Ĥi may take any
value in the interval 6h`1hu7 and that P4Ĥi ≤ Ĥ15 > 0
for 2 ≤ i ≤ r . Assumption 3(2) likewise ensures there
is a nonzero probability that each system will be
deemed feasible or infeasible on any of its constraints;
particularly, it ensures that P4

⋂

j∈£i
I
Ĝij ≤ �j5 > 0 for

i ∈ ³b ∪³w and P4Ĝ1j > �j5 > 0 for all j ≤ s. Assump-
tion 3 is easy to satisfy in practice. For example, any of
the commonly encountered light-tailed distributions
with overlapping support satisfy Assumption 3(1).

To ensure that each system is distinguishable from
the quantity on which its potential false evaluation as
the “best” system depends, and to ensure that the sets
of systems may be correctly estimated wp1, we make
the following assumption.

Assumption 4. No system has the same objective value
as system 1, and no system lies exactly on a constraint;
that is, h1 6= hi for all i = 21 0 0 0 1 r and gij 6= �j for all
i ≤ r1 j ≤ s.

Since distinguishing two values that are the same
through simulation requires infinite sample, this
assumption is relatively standard for optimal alloca-
tion literature—Glynn and Juneja (2004), Szechtman
and Yücesan (2008), and Lee et al. (2011) also require
assumptions of this type.

4. Rate Function of Probability
of False Selection

The false selection (FS) event is when the actual best
feasible system, system 1, is not the estimated best
feasible system. More specifically, FS is the event that
system 1 is incorrectly estimated infeasible on any of
its constraints, or that system 1 is estimated feasible
on all of its constraints but another system, also esti-
mated feasible on all of its constraints, has the best
estimated-objective value. Since system 1 is truly fea-
sible, the event that no systems are estimated feasible
is considered a false selection event. Therefore,

P8F S9 = P

{

system 1
estimated
infeasible

︷ ︸︸ ︷

s
⋃

j=1

Ĝ1j >�j

}

+ P

{

system 1 estimated feasible and other
estimated-feasible system(s) “beat” system 1

︷ ︸︸ ︷

r
⋃

i=2

[

4Ĥi ≤ Ĥ1
︸ ︷︷ ︸

system i
“beats”

system 1

5∩

( s
⋂

j=1

Ĝij ≤ �j

︸ ︷︷ ︸

system i
estimated
feasible

)

∩

( s
⋂

j=1

Ĝ1j ≤ �j

︸ ︷︷ ︸

system 1
estimated
feasible

)]}

= P8F S19+ P

{ r
⋃

i=2

F Si

}

0 (1)
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Bounds on the P8F S9 are

P8F S19+ max
2≤i≤r

P8F Si9≤ P8F S9≤ r4P8F S19+ max
2≤i≤r

P8F Si950

By Propositions A.1 and A.2 (available as supplemental
material at http://dx.doi.org/10.1287/ijoc.1120.0519),
assuming the relevant limits exist,

− lim
n→�

1
n

logP8F S9 = min
(

− lim
n→�

1
n

logP8F S191

min
2≤i≤r

(

− lim
n→�

1
n

logP8F Si9
))

0 (2)

Therefore the rate function of P8F S9 is governed by
the slowest of (i) the rate of decay of P8F S19, where
P8F S19 is the probability that system 1 is estimated
infeasible, and (ii) the slowest across infeasible and
suboptimal systems of the rate of decay of P8F Si9,
where P8F Si9 is the probability that system 1 is esti-
mated feasible but “beaten” in objective value by
another estimated-feasible system i. In the follow-
ing Theorems 1 and 2, we individually derive the
rate functions for P8F S19 and P8F Si9 appearing in
Equation (1).

First let us consider the rate function for P8F S19,
the probability that system 1 is declared infeasible on
any of its constraints. Theorem 1 establishes the rate
function of P8F S19 as the rate function corresponding
to the constraint that is most likely to qualify system 1
as infeasible.

Theorem 1. The rate function for P8F S19 is

− lim
n→�

1
n

logP8F S19= min
j∈£1

F

�1J1j4�j50

Proof. We find the following upper and lower
bounds for P8F S19:

max
j∈£1

F

P8Ĝ1j >�j9≤ P

{ s
⋃

j=1

Ĝ1j >�j

}

≤ smax
j∈£1

F

P8Ĝ1j >�j90

It follows from Proposition A.2 (see online supple-
ment) that

lim
n→�

1
n

log max
j∈£1

F

P8Ĝ1j >�j9= max
j∈£1

F

lim
n→�

1
n

logP8Ĝ1j >�j90

By Assumption 2 and the Gärtner-Ellis theorem, an
analysis similar to that of Szechtman and Yücesan
(2008) yields

lim
n→�

1
n

logP8F S19=max
j∈£1

F

lim
n→�

1
n

logP8Ĝ1j >�j9

= − min
j∈£1

F

�j J1j4�j50 �

Now consider P8F Si9. Since system 1 can be beaten
in objective value by worse feasible systems 4i ∈ â5,

better infeasible systems 4i ∈ ³b5, or worse infeasible
systems 4i ∈ ³w5, we strategically consider the rate
functions for the probability that system 1 is beaten by
a system in â1³b, or ³w separately. Theorem 2 states
the rate function of P8F Si9.

Theorem 2. The rate function for P8F Si9 is given by

− lim
n→�

1
n

logP8F Si9

=































inf
x
4�1I14x5+�iIi4x551 i ∈ â1

�i

∑

j∈£i
I

Jij4�j51 i ∈ ³b1

inf
x
4�1I14x5+�iIi4x55+�i

∑

j∈£i
I

Jij4�j51 i ∈ ³w0

Proof. From Equation (1), assuming the relevant
limits exist,

lim
n→�

1
n

logP8F Si9

= lim
n→�

1
n

logP

{

4Ĥi ≤ Ĥ15∩

( s
⋂

j=1

Ĝij ≤ �j

)

∩

( s
⋂

j=1

Ĝ1j ≤ �j

)}

= lim
n→�

1
n

logP8Ĥi ≤ Ĥ19+
s
∑

j=1

lim
n→�

1
n

logP8Ĝij ≤ �j9

+ lim
n→�

1
n

logP

{ s
⋂

j=1

Ĝ1j ≤ �j

}

(3)

= lim
n→�

1
n

logP8Ĥi ≤Ĥ19+
∑

j∈£i
I

lim
n→�

1
n

logP8Ĝij ≤�j91 (4)

where Equation (3) holds by Assumption 1, and Equa-
tion (4) holds since the probability that system 1 is
estimated feasible and the probability that system i is
estimated feasible on constraints j ∈ £i

F tend to one.
The result follows by considering the systems by their
classification as elements of â , ³b, or ³w and noting
the probabilities that tend to one. The result for sys-
tems i ∈ â follows directly from Glynn and Juneja
(2004). For systems i ∈ ³b ∪ ³w, as in Szechtman and
Yücesan (2008), under Assumption 2 one can show
that for any system i not satisfying constraint j ∈£i

I ,
the rate function for the probability that system i
is incorrectly estimated feasible on constraint j is
− limn→�

1
n

logP8Ĝij ≤ �j9 = �iJij4�j5 for all j ∈ £i
I , and

the result follows. �
In Theorem 2, the rate function of P8F Si9 is deter-

mined by whether the competing system i is truly fea-
sible and worse 4i ∈ â5, infeasible and better 4i ∈ ³b5,
or infeasible and worse (i ∈ ³w). However systems in
â1³b, and ³w must overcome different obstacles to be
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declared the best feasible system. Since systems in â
are truly feasible, they must overcome one obstacle:
optimality. The rate function for systems in â is thus
identical to the unconstrained optimization case pre-
sented in Glynn and Juneja (2004) and is determined
by the system in â best at “pretending” to be optimal.
Systems in ³b are truly better than system 1, but are
infeasible. They also have one obstacle to overcome
to be selected as best: feasibility. The rate function for
systems in ³b is thus determined by the system in
³b which is best at “pretending” to be feasible. Since
an infeasible system in ³b must falsely be declared
feasible on all of its infeasible constraints, the rate
functions for the infeasible constraints simply add
up inside the overall rate function for each system
in ³b. Systems in ³w are worse and infeasible, so two
obstacles must be overcome: optimality and feasibil-
ity. The rate function for systems in ³w is thus deter-
mined by the system that is best at “pretending” to be
optimal and feasible, and there are two terms added
in the rate function corresponding to optimality and
feasibility.

We now combine the results for P8F S19 and P8F Si9
to derive the rate function for P8F S9. Recalling from
Equation (2) that the rate function of the P8F S9 is
given by the minimum of the rate functions for P8F S19
and P8F Si9 for all 2 ≤ i ≤ r yields Theorem 3.

Theorem 3. The rate function for the probability of
false selection, that is, the probability that we return to the
user a system other than system 1 is given by

− lim
n→�

1
n

logP8F S9= min

(

system 1
estimated
infeasible

︷ ︸︸ ︷

min
j∈£1

F

�1J1j4�j51

min
i∈â

(

inf
x
4�1I14x5+�iIi4x55

)

︸ ︷︷ ︸

system 1 beaten by
feasible and worse system

1min
i∈³b

�i

∑

j∈£i
I

Jij4�j5

︸ ︷︷ ︸

system 1 beaten
by infeasible and

better system

1

min
i∈³w

(

inf
x
4�1I14x5+�iIi4x55+�i

∑

j∈£i
I

Jij4�j5

)

︸ ︷︷ ︸

system 1 beaten by
infeasible and worse system

)

.

Theorem 3 asserts that the overall rate function of
the probability of false selection is determined by the
most likely false selection event.

5. Optimal Allocation Strategy
In this section, we derive an optimal allocation strat-
egy that asymptotically minimizes the probability
of false selection. From Theorem 3, an asymptot-
ically optimal allocation strategy will result from

maximizing the rate at which P8F S9 tends to zero as
a function of Á. Thus we wish to allocate the �i’s to
solve the following optimization problem:

max min
(

min
j∈£1

F

�1J1j4�j51min
i∈â

(

inf
x

(

�1I14x5+�iIi4x5
)

)

1

min
i∈³b

�i

∑

j∈£i
I

Jij4�j51

min
i∈³w

(

inf
x

(

�1I14x5+�iIi4x5
)

+�i

∑

j∈£i
I

Jij4�j5

))

(5)

s.t.
r
∑

i=1

�i = 11 �i ≥ 0 for all i ≤ r0

By Glynn and Juneja (2006), infx4�1I14x5+�iIi4x55 is a
concave, C� function of �1 and �i. Likewise, the lin-
ear functions �1J1j4�j5 and �i

∑

j∈£i
I
Jij4�j5 and the sum

infx4�1I14x5+�iIi4x55+�i

∑

j∈£i
I
Ji4�j5 are also concave,

C� functions of �1 and �i. Since the minimum
of concave functions is also concave, the problem
in (5) is a concave maximization problem. Equiv-
alently, we may rewrite the problem in (5) as
the following Problem Q, where we let x4�11�i5 =

arg infx4�1I14x5+�iIi4x55. As Glynn and Juneja (2006)
demonstrate, for �1 > 0 and �i > 0, x4�11�i5 is a C�

function of �1 and �i.

Problem Q2

max z

s.t.

�1J1j4�j5≥z1 j ∈£1
F 1

�1I14x4�11�i55+�iIi4x4�11�i55≥z1 i∈â1

�i

∑

j∈£i
I

Jij4�j5≥z1 i∈³b1

�1I14x4�11�i55+�iIi4x4�11�i55+�i

∑

j∈£i
I

Jij4�j5≥z1 i∈³w1

r
∑

i=1

�i =11 �i ≥0 for all i≤r0

Slater’s Condition (see, e.g., Boyd and Vandenberghe
2004, p. 226) holds for Problem Q; that is, there exists
a point Á in the relative interior of the feasible set such
that the inequality constraints hold strictly. For exam-
ple, such a point is z = 0, �i = 1/r for all i ≤ r . Since
Problem Q is concave with differentiable objective
function and constraints and Slater’s condition holds,
the Karush-Kuhn Tucker (KKT) conditions are nec-
essary and sufficient for global optimality (see, e.g.,
Boyd and Vandenberghe 2004).

From the KKT conditions on Problem Q, we define
Problem Q∗ by replacing the inequality constraints
corresponding to systems in â , ³b, and ³w with equal-
ity constraints, and forcing each �i to be strictly
greater than zero.
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Problem Q∗2

max z

s.t.

�1J1j4�j5≥z1 j ∈£1
F 1

�1I14x4�11�i55+�iIi4x4�11�i55=z1 i∈â1

�i

∑

j∈£i
I

Jij4�j5=z1 i∈³b1

�1I14x4�11�i55+�iIi4x4�11�i55+�i

∑

j∈£i
I

Jij4�j5=z1 i∈³w1

r
∑

i=1

�i =11 �i>0 for all i≤r0

Proposition 1 below states the equivalence of Prob-
lems Q and Q∗.

Proposition 1. Problems Q and Q∗ are equivalent;
that is, a solution Á∗ = 4�∗

11�
∗
21 0 0 0 1�

∗
r 5 is optimal for

Problem Q if and only if Á∗ is optimal for Problem Q∗.

Proof. We argue that the forward and backward
assertions of the theorem hold if a point satisfying
the KKT conditions of Problem Q is feasible for Prob-
lem Q∗. We then complete the proof by showing that
any point satisfying the KKT conditions of Problem Q
is indeed feasible for Problem Q∗.

(⇒) Since the feasible region of Problem Q∗ is a
subset of that of Problem Q, then if an optimal solu-
tion to Problem Q is feasible to Problem Q∗, it must be
optimal for Problem Q∗. Since the KKT conditions are
necessary and sufficient for optimality in Problem Q,
if a point satisfying the KKT conditions of Problem Q
must be feasible for Problem Q∗, the result holds.

(⇐) Suppose Á∗ is optimal for Problem Q∗ and
Á̌∗ = 4�̌∗

11 �̌
∗
21 0 0 0 1 �̌

∗
r 5 is optimal for Problem Q, where

Á∗ 6= Á̌∗. Since the KKT conditions are necessary and
sufficient for optimality in Problem Q, Á̌∗ satisfies
the KKT conditions of Problem Q. Since the objective
functions for Problems Q and Q∗ are identical and
the feasible region for Problem Q∗ is a subset of that
of Problem Q, then Á̌∗ must not be feasible for Prob-
lem Q∗. Therefore if a point satisfying the KKT condi-
tions of Problem Q must be feasible for Problem Q∗,
we have a contradiction and the result holds.

We now show that a point satisfying the KKT con-
ditions of Problem Q must be feasible for Problem Q∗.
First, note that for �i = 1/r , i ≤ r , we have z > 0 in
Problem Q. Therefore �i = 0 for some i ∈ 819 ∪ ³b is
suboptimal since z= 0. Now consider �i = 0 for some
i ∈ â ∪ ³w. In this case, the constraints for i ∈ â ∪ ³w

reduce to �1 infx I14x5 = �1I14h15 = 0, and hence z= 0.
Therefore in Problem Q, we must have �∗

i > 0 for
all i ≤ r .

Let � and Ë= 4�1
j ≥ 01�i ≥ 02 j ∈ £1

F 1 i = 21 0 0 0 1 r5 be
dual variables for Problem Q. Since x4�11�i5 solves

�1I
′
14x5 + �iI

′
i 4x5 = 0, then as in Glynn and Juneja

(2004),

¡

¡�1
4�1I14x4�11�i55+�iIi4x4�11�i555

= I14x4�11�i55 > 01

¡

¡�i

4�1I14x4�11�i55+�iIi4x4�11�i555

= Ii4x4�11�i55 > 00

(6)

Then we have the following stationarity conditions,

∑

j∈£1
F

�1
j +

r
∑

i=2

�i = 11 (7)

∑

j∈£1
F

�1
j J1j4�j5+

∑

i∈â∪³w

�iI14x4�
∗

11�
∗

i 55= �1 (8)

�iIi4x4�
∗

11�
∗

i 55= �1 i ∈ â1 (9)

�i

∑

j∈£i
I

Jij4�j5= �1 i ∈ ³b1 (10)

�i

[

Ii4x4�
∗

11�
∗

i 55+
∑

j∈£i
I

Jij4�j5

]

= �1 i ∈ ³w1 (11)

and the complementary slackness conditions,

�1
j 6�

∗

1J1j4�j5− z7= 01 j ∈£1
F 1 (12)

�i6�
∗

1I14x4�
∗

11�
∗

i 55+�∗

i Ii4x4�
∗

11�
∗

i 55−z7=01 i∈â1 (13)

�i

[

�∗

i

∑

j∈£i
I

Jij4�j5− z

]

= 01 i ∈ ³b1 (14)

�i

[

�∗

1I14x4�
∗

11�
∗

i 55+�∗

i Ii4x4�
∗

11�
∗

i 55

+�∗

i

∑

j∈£i
I

Jij4�j5− z

]

= 01 i ∈ ³w0 (15)

Suppose �i = 0 for some i ∈ â ∪³b ∪³w. Since �i > 0 for
all i ≤ r , the rate functions in Equations (9) and (11)
are strictly greater than zero. By assumption, the
rate functions Jij4�j5 in (10) are also strictly greater
than zero. Thus � = 01�i = 0 for all i ∈ â ∪ ³b ∪ ³w,
and

∑

j∈£1
F
�1
j = 1. Therefore at least one �1

j > 0. Then
in Equation (8), it must hold that for �1

j > 0, the
corresponding J1j4�j5= 0. However we have a contra-
diction since by assumption, J1j4�j5 > 0 for all j ∈ £1

F .
Therefore �i > 0 for all i ∈ â ∪ ³b ∪ ³w. Since �i > 0
in Equations (13)–(15), then complementary slackness
implies each of these constraints is binding. Therefore
a solution satisfying the KKT conditions of Problem Q
must satisfy the equality constraints corresponding to
i ∈ â ∪³b ∪³w in Problem Q∗. �

Since the objective of the problem in (5) is a con-
tinuous function of Á on a compact set, an optimal
solution Á∗ to Problem Q∗ exists. Let the optimal
value at Á∗ be denoted z∗. Proposition 2 states that Á∗

is unique (see online supplement, §B for a proof).
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Proposition 2. The optimal solution Á∗ to Prob-
lem Q∗ is unique.

The structure of Problem Q∗ lends intuition to the
structure of the optimal allocation, as noted in the
following steps: (i) Solve a relaxation of Problem Q∗

without the feasibility constraint for system 1. Let this
problem be called Problem Q̃∗, and let z̃∗ be the opti-
mal value at the optimal solution Á̃∗ = 4�̃∗

11 0 0 0 1 �̃
∗
r 5

to Problem Q̃∗. (ii) Check if the feasibility constraint
for system 1 is satisfied by the solution Á̃∗. If the
feasibility constraint is satisfied, Á̃∗ is the optimal
solution for Problem Q∗. Otherwise, (iii) force the fea-
sibility constraint to be binding. The steps (i), (ii), and
(iii) are equivalent to solving one of two systems of
nonlinear equations, as identified by the KKT condi-
tions of Problems Q∗ and Q̃∗. Theorem 4 asserts this
result formally, where we note that Problem Q̃∗ also
has a unique optimal solution by a proof similar to
that of Proposition 2.

Theorem 4. Let the set of suboptimal feasible systems
â be nonempty, and define Problem Q̃∗ as Problem Q∗ but
with the inequality constraints relaxed. Let 4Á∗1 z∗5 and
4Á̃∗1 z̃∗5 denote the unique optimal solution and optimal
value pairs for Problems Q∗ and Q̃∗, respectively. Consider
the conditions

C00
r
∑

i=1

�i = 11 Á> 01 and

z= �1I14x4�11�i55+�iIi4x4�11�i55= �k

∑

j∈£k
I

Jkj4�j5

= �1I14x4�11�`55+�`

[

I`4x4�11�`55+
∑

j∈£l
I

J`j4�j5

]

1

for all i ∈ â1k ∈ ³b1 ` ∈ ³w1

C10
∑

i∈â

I14x4�11�i55

Ii4x4�11�i55
+
∑

i∈³w

I14x4�11�i55

Ii4x4�11�i55+
∑

j∈£i
I
Jij4�j5

=11

C20 min
j∈£1

F

�1J1j4�j5= z0

Then (i) Á̃∗ solves C0 and C1 and minj∈£1
F
�̃∗

1J1j4�j5 ≥ z̃∗

if and only if Á̃∗ = Á∗; and (ii) Á∗ solves C0 and C2
and minj∈£1

F
�̃∗

1J1j4�j5 < z̃∗ if and only if Á∗ 6= Á̃∗.

Proof. Let us simplify the KKT equations for Prob-
lem Q as follows. Since we found that �i > 0 for all
i ∈ â ∪³b ∪³w in the proof of Proposition 1, it follows
that � > 0. Dividing (8) by � and appropriately sub-
stituting in values from Equations (9)–(11), we find

∑

j∈£1
F
�1
j J1j4�j5

�
+
∑

i∈â

I14x4�
∗
11�

∗
i 55

Ii4x4�
∗
11�

∗
i 55

+
∑

i∈³w

I14x4�
∗
11�

∗
i 55

Ii4x4�
∗
11�

∗
i 55+

∑

j∈£i
I
Jij4�j5

= 10 (16)

By logic similar to that given in the proof of
Proposition 1 and the simplification provided in (16),
omitting terms with �1

j in Equation (16) yields con-
dition C1 as a KKT condition for Problem Q̃∗.
Taken together, C0 and C1 create a fully-specified
system of equations that form the KKT conditions for
Problem Q̃∗. A solution Á is thus optimal to Prob-
lem Q̃∗ if and only if it solves C0 and C1. Let ¤4Q∗5
and ¤4Q̃∗5 denote the feasible regions of Problems Q∗

and Q̃∗, respectively.

Proof of Claim (i). (⇒) Suppose Á̃∗ solves C0 and
C1, and minj∈£1

F
�̃∗

1J1j4�j5 ≥ z̃∗. Then Á̃∗ ∈ ¤4Q∗5. Since
the objective functions of Problems Q∗ and Q̃∗ are
identical, and ¤4Q∗5 ⊂ ¤4Q̃∗5, we know that z∗ ≤ z̃∗.
Therefore Á̃∗ ∈ ¤4Q∗5 implies Á̃∗ is an optimal solu-
tion to Problem Q∗, and by the uniqueness of the opti-
mal solution, Á̃∗ =Á∗.

(⇐) Now suppose Á̃∗ = Á∗. Since Á̃∗ is the opti-
mal solution to Problem Q̃∗, then Á̃∗ solves C0
and C1. Furthermore, since Á∗ is the optimal solu-
tion to Problem Q, Á∗ = Á̃∗ ∈ ¤4Q∗5. Therefore
minj∈£1

F
�̃∗

1J1j4�j5≥ z̃∗.

Proof of Claim (ii). (⇒) Let us suppose that Á∗

solves C0 and C2, and minj∈£1
F
�̃∗

1J1j4�j5 < z̃∗. Then Á̃∗ y

¤4Q∗5, and therefore Á̃∗ 6=Á∗.
(⇐) By prior arguments, C0 holds for Á∗ and Á̃∗.

Now suppose Á∗ 6= Á̃∗, which implies Á̃∗ y ¤4Q∗5.
Then it must be the case that minj∈£1

F
�̃∗

1J1j4�j5 < z̃∗.
Furthermore, since Á̃∗ uniquely solves C0 and C1,
Á∗ 6= Á̃∗ implies that C1 does not hold for Á∗. There-
fore when solving Problem Q, it must be the case that
�1
j > 0 for at least one j ∈ £1

F in Equation (16). By the
complementary slackness condition in Equation (12),
minj∈£1

F
�∗

1J1j4�j5= z∗, and hence C2 holds for Á∗. �
Theorem 4 implies that, since a solution to Prob-

lem Q∗ always exists, an optimal solution to Prob-
lem Q can be obtained as the solution to one of the
two sets of nonlinear equations C0 and C1 or C0
and C2. We state the procedure implicit in Theorem 4
as Algorithm 1.

Algorithm 1 (Conceptual algorithm to solve for Á∗)
1. Solve the nonlinear system C0, C1 to obtain Á̃∗

and z̃∗;
2. if minj �̃

∗
1J1j4�j5≥ z̃∗, then

3. return Á∗ = Á̃∗.
4. else
5. Solve the nonlinear system C0, C2 to obtain Á∗.
6. return Á∗;
7. end if.

An underlying assumption in Theorem 4 is that
there is at least one system in â . In the event that
â is empty, conditions C0 and C1 may not form a
fully specified system of equations (e.g., â and ³w are
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Table 2 Means and Variances for Example 1

System i hi � 2
hi

gi � 2
gi

1 0 100 g1 ∈ 6−105105 100
2 200 100 −100 100
3 200 100 −200 100

empty), or may not have a solution. In such a case,
C0 and C2 provide the optimal allocation. When the
sets ³b and ³w are empty but â is nonempty, The-
orem 4 reduces to the results of Glynn and Juneja
(2004).

To illustrate the proposed conceptual algorithm, we
present Example 1 for the case in which the underly-
ing random variables are iid replicates from a normal
distribution.

Example 1. Suppose we have r = 3 systems and
only one constraint, where the Hi’s are iid
normal4hi1�

2
hi
5 random variables and the Gi’s are iid

normal4gi1�
2
gi
5 random variables for all i ≤ r . The rel-

evant rate functions for the normal case are

min
j∈£1

F

�1J1j4�j5= min
j∈£1

F

�14�j − g1j5
2

2�2
g1j

1 i ∈ 8191

�1I14x4�11�i55+�iIi4x4�11�i55=
4h1 −hi5

2

24�2
h1
/�1 +�2

hi
/�i5

1

i ∈ â1

�i

∑

j∈£i
I

Jij4�j5= �i

∑

j∈£i
I

4�j − gij5
2

2�2
gij

1 i ∈ ³b1 and

�1I14x4�11�i55+�iIi4x4�11�i55+�i

∑

j∈£i
I

Jij4�j5

=
4h1 −hi5

2

24�2
h1
/�1 +�2

hi
/�i5

+�i

∑

j∈£i
I

4�j − gij5
2

2�2
gij

for i ∈ ³w. Taking partial derivatives with respect to
�i, we find

¡

¡�1

[

�1I14x4�11�i55+�iIi4x4�11�i55
]

= I14x4�11�i55=
4�2

h1
/�2

154h1 −hi5
2

24�2
h1
/�1 +�2

hi
/�i5

2
1

¡

¡�i

[

�1I14x4�11�i55+�iIi4x4�11�i55
]

= Ii4x4�11�i55=
4�2

hi
/�2

i 54h1 −hi5
2

24�2
h1
/�1 +�2

hi
/�i5

2
0

Let � = 0, and let the mean and variance of each objec-
tive and constraint be as in Table 2.

Note that â = 82139 and ³b = ³w = �. Since the allo-
cation to systems in â is based on their “scaled dis-
tance” from system 1, and systems 2 and 3 are equal
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Figure 1 Graph of g1 vs. Allocation for the Systems in Example 1
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Figure 2 Graph of g1 vs. Rate of Decay of P 8FS9 for Example 1

in this respect, we expect that they will receive equal
allocation. To demonstrate the effect of the constraint
g1 on the allocation to system 1, we vary g1 in the
interval 6−105105. Solving for the optimal allocation
as a function of g1 yields the allocations in Figure 1
and the rate z∗ in Figure 2.

From Figure 1, we deduce that as g1 becomes far-
ther from � = 0, system 1 requires a smaller por-
tion of the sample to determine its feasibility. For
values of g1 smaller than −102872, the feasibility
of system 1 is no longer binding in this exam-
ple since the rate function of the feasibility of sys-
tem 1 is sufficiently large. Therefore the optimal
allocation as a function of g1 does not change for
g1 <−102872. Likewise, in Figure 2, the rate of decay
of P8F S9, z∗, grows as a function of g1 until the point
g1 = −102872. For g1 <−102873, the rate remains con-
stant at z∗ = 003431. �

6. Consistency and Implementation
In practice, the rate functions in Algorithm 1 are
unavailable and must be estimated. Therefore with a
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view toward implementation, we address consistency
of estimators in this section. Specifically, we first
show that the important sets, 8191 â1³b1³w1£

i
F , and

£i
I , can be estimated consistently; that is, they can

be identified correctly as simulation effort tends to
infinity. Next, we demonstrate that the optimal allo-
cation estimator, identified by using estimated rate
functions in Algorithm 1, is a consistent estimator
of the true optimal allocation Á∗. These generic con-
sistency results inspire the sequential algorithm pre-
sented in §6.2. All proofs for this section appear in the
online supplement, §C.

6.1. Generic Consistency Results
To simplify notation, let each system be allo-
cated m samples, where we explicitly denote the
dependence of the estimators on m in this section.
Suppose we have at our disposal consistent estima-
tors Îmi 4x51 Ĵ

m
ij 4y5, i ≤ r , j ≤ s, of the corresponding

rate functions Ii4x5, Jij4y5, i ≤ r , j ≤ s. Such consis-
tent estimators are easy to construct when the distri-
butional families underlying the true rate functions
Ii4x5, Jij4y5, i ≤ r , j ≤ s, are known or assumed. For
example, suppose Hik, k = 1121 0 0 0 1m, are simula-
tion observations of the objective function of the
ith system, assumed to be resulting from a normal
distribution with unknown mean hi and unknown
variance �2

hi
. The obvious consistent estimator for the

rate function Ii4x5 = 4x − hi5
2/42�2

hi
5 is then Îmi 4x5 =

4x−Ĥi5
2/42�̂2

i 5, where Ĥi and �̂hi
are the sample mean

and sample standard deviation of Hik1 k = 1121 0 0 0 1m,
respectively. In the more general case where the distri-
butional family is unknown or not assumed, the rate
function may be estimated as the Legendre-Fenchel
transform (see, e.g., Dembo and Zeitouni 1998, p. 26)
of the cumulant generating function estimator

Îmi 4x5= sup
�

4�x− å̂m
Hi
4�551 (17)

where å̂m
Hi
4�5 = log

(

1
m

∑m
k=1 exp4�Hik5

)

. In what fol-
lows, to preserve generality, our discussion pertains
to estimators of the type displayed in (17). By argu-
ments analogous to those in Glynn and Juneja (2004),
the estimator in (17) is consistent.

Let 4Ĥi4m51Ĝi14m51 0 0 0 1Ĝis4m55=
(

1
m

∑m
k=1Hik1

1
m

∑m
k=1Gi1k1

0 0 0 1 1
m

∑m
k=1 Gisk

)

denote the estimators of 4hi1gi11
0 0 0 1 gis5. We define the following notation for estima-
tors of all relevant sets for systems i ≤ r .

1̂4m5 2= arg mini8Ĥi4m52 Ĝij4m5 ≤ �j for all j ≤ s} is
the estimated best feasible system;

â̂ 4m5 2= 8i2 Ĝij4m5 ≤ �j for all j ≤ s, i 6= 1̂4m5} is
the estimated set of suboptimal feasible
systems;

³̂b4m5 2= 8i2 Ĥ1̂4m54m5 ≥ Ĥi4m5 and Ĝij4m5 > �j for
some j ≤ s} is the estimated set of infeasible,
better systems;

³̂w4m5 2= 8i2 Ĥ1̂4m54m5 < Ĥi4m5 and Ĝij4m5 > �j for
some j ≤ s} is the estimated set of infeasible,
worse systems;

£̂i
F 4m5 2= 8j2 Ĝij4m5 ≤ �j9 is the set of constraints on

which system i is estimated feasible;
£̂i

I 4m5 2= 8j2 Ĝij4m5 > �j9 is the set of constraints on
which system i is estimated infeasible.

Since Assumption 2 implies Ĥi4m5 → hi wp1 and
Ĝij4m5→ gij wp1 for all i ≤ r and j ≤ s, and the num-
bers of systems and constraints are finite, all esti-
mated sets converge to their true counterparts wp1
as m → �. (See §3.1 for a rigorous definition of the
convergence of sets.) Proposition 3 formally states this
result.

Proposition 3. Under Assumption 2, 1̂4m5 → sys-
tem 1, â̂ 4m5 → â , ³̂b4m5 → ³b, ³̂w4m5 → ³w, £̂i

F 4m5 →

£i
F , and £̂i

I 4m5→£i
I wp1 as m→ �.

Let Á̂∗4m5 denote the estimator of the optimal
allocation vector Á∗ obtained by replacing the rate
functions Ii4x5, Jij4x5, i ≤ r , j ≤ s, appearing in
conditions C0, C1, and C2 with their corresponding
estimators Îmi 4x5, Ĵ

m
ij 4x5, i ≤ r , j ≤ s, obtained through

sampling, and then using Algorithm 1. Since the
search space 8Á2

∑r
i=1 �i = 11�i ≥ 0 for all i ≤ r9 is a

compact set, and the estimated (consistent) rate func-
tions can be shown to converge uniformly over the
search space, it is no surprise that Á̂∗4m5 converges to
the optimal allocation vector Á∗ as m→ � wp1. The-
orem 5 formally asserts this result, where the proof
is a direct application of results in the stochastic root-
finding literature (see, e.g., Pasupathy and Kim 2011,
Theorem 5.7). Before stating Theorem 5, we state two
lemmas.

Lemma 1. Suppose Assumption 3 holds. Then there
exists � > 0 such that Îmi 4x5→ Ii4x5 as m→ � uniformly
in x ∈ 6h` − �1hu + �7 wp1, for all i ∈ 819∪ â ∪³w.

Lemma 2. Let the system of equations C0 and C1 be
denoted f14Á5= 0, and let the system of equations C0 and
C2 be denoted by f24Á5 = 0, where f1 and f2 are vector-
valued functions with compact support

∑r
i=1 �i = 1, Á≥ 0.

Let the estimators F̂ m
1 4Á5 and F̂ m

2 4Á5 be the same set of
equations as f14Á5 and f24Á5, respectively, except with
all unknown rate functions replaced by their correspond-
ing estimators. If Assumption 3 holds, then the functional
sequences F̂ m

1 4Á5 → f14Á5 and F̂ m
2 4Á5 → f24Á5 uniformly

in Á as m→ � wp1.

Theorem 5. Let the postulates of Lemma 2 hold, and
assume â is nonempty. Then the empirical estimate of the
optimal allocation is consistent; that is, Á̂∗4m5 → Á∗ as
m→ � wp1.

In addition to the consistency of Á̂∗4m5, one may
ask what minimum sample size guarantees that
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P8�Á̂∗4m5 − Á∗� ≤ �9 ≥ 1 − � for given �1� > 0. While
results of this sort are widely available, they tend
to be overly conservative and of limited value from
the standpoint of implementation (Pasupathy and
Kim 2011).

6.2. A Sequential Algorithm for Implementation
We conclude this section with a sequential algorithm
that naturally stems from the conceptual algorithm
outlined in §5 and the consistent estimator discussed
in the previous section. Algorithm 2 formally outlines
this procedure, where n denotes the total simulation
budget and ni denotes the total sample expended at
system i.

Algorithm 2 (Sequential algorithm for implementa-
tion)
Require: Number of pilot samples �0 > 0; number of

samples between allocation vector updates
�> 0; and a minimum-sample vector
Å= 8�11 0 0 0 1 �r9 > 0.

1: Initialize: collect �0 samples from each system
i ≤ r .

2: Set n= r�0, ni = �0. {Initialize total simulation
effort and effort for each system.}

3: Update the sample means Ĥi, Ĝij , estimated sets
1̂4n5, â̂ 4n5, ³̂b4n5, ³̂w4n5, and rate function
estimators Î

ni
i 4x5, Ĵ niij 4�j5, for all i ≤ r1 j ≤ s.

4: if no systems are estimated feasible, then
5: Set Á̂∗4n5= 41/r11/r1 0 0 0 11/r5.
6: else
7: Solve the system C0, C1 using rate function

estimators to obtain ˆ̃Á∗4n5 and ˆ̃z∗4n5.
8: if minj

ˆ̃�∗

1̂
4n5Ĵ

n1̂

1̂j
4�j5≥ ˆ̃z∗4n5, then

9: Á̂∗4n5= ˆ̃Á∗4n5.
10: else
11: Solve the system C0, C2 using rate function

estimators to obtain Á̂∗4n5.
12: end if
13: end if
14: Collect one sample at each of the systems

Xk, k = 1121 0 0 0 1 �, where the Xk’s are iid random
variates having probability mass function Á̂∗4n5
on support 81121 0 0 0 1 r9, and update nXk

= nXk
+ 1.

15: Set n= n+ � and update
Á̄n = 8�̄11n1 0 0 0 1 �̄r1n9= 8n1/n1n2/n1 0 0 0 1nr/n9.

16: if Á̄n > Å, then
17: Set �+ = 0.
18: else
19: Collect one sample from each system in the

set of systems receiving insufficient sample
©n = 8i2 �̄i1n < �i9.

20: Update ni = ni + 1 for all i ∈ ©n. Set �+ = �©n�.
21: end if
22: Set n= n+ �+ and go to step 3.

The essential idea in Algorithm 2 is straightfor-
ward. At the end of each iteration, the optimal allo-
cation vector is estimated using the estimated rate
functions constructed using samples obtained from
the various systems. Systems are chosen for sampling
in the subsequent iteration by using the estimated
optimal allocation vector as the sampling distribution.
Since Á∗ > 0, the sequential algorithm should sam-
ple from each system infinitely often. To ensure sys-
tems with small allocations continue to be sampled,
we assume knowledge of an “indifference zone” vec-
tor Å > 0 such that if the actual proportion of sam-
ple expended at each system in Algorithm 2, defined
as Á̄n = 8n1/n1n2/n1 0 0 0 1nr/n9, falls below Å, we sam-
ple once from each system receiving insufficient sam-
ple. All elements of Å should be “small” relative
to 1/r .

In a context where the distributional family under-
lying the simulation observations is known or
assumed, the rate function estimators should be esti-
mated in step 3 accordingly—by simply estimating
the distributional parameters appearing within the
expression for the rate function. Also, Algorithm 2
provides flexibility on how often the optimal allo-
cation vector is re-estimated through the algorithm
parameter �. The choice of the parameter � will
depend on the particular problem, and specifically, on
how expensive the simulation execution is relative to
solving the nonlinear systems in steps 7 and 11. Lastly,
Algorithm 2 relies on fully sequential and simultane-
ous observation of the objective and constraint func-
tions. Deviation from these assumptions renders the
present context inapplicable.

7. Numerical Examples
To illustrate the proposed allocation, we present the
following numerical examples. First, we compare our
proposed optimal allocation to the OCBA-CO alloca-
tion presented by Lee et al. (2011) under a normality
assumption. In this comparison, we use the actual rate
functions governing the simulation estimators since
our primary objective is to highlight the theoretical
differences between the proposed allocation and that
of OCBA-CO. While both methods handle multiple
constraints, we use the one-constraint case for ease of
exposition. Then we present results of the implemen-
tation of the sequential estimator outlined in Algo-
rithm 2 when the underlying random variables follow
a normal distribution.

7.1. Comparison with OCBA-CO
Lee et al. (2011) describe an OCBA framework for sim-
ulation budget allocation in the context of constrained
SO on finite sets under the assumption of normal-
ity. The work by Lee et al. (2011) is the only other
asymptotic sample allocation result for constrained
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simulation optimization on finite sets in the literature.
Lee et al. (2011) divide the suboptimal systems into a
“feasibility dominance” set and an “optimality domi-
nance” set, defined as

³F : the feasibility dominance set, ³F = 8i2 P8Ĝi ≥ �9
< P8Ĥ1 > Ĥi91 i 6= 19, and

³O : the optimality dominance set, ³O =8i2 P8Ĝi ≥�9
≥P8Ĥ1>Ĥi91 i 6=19.

The assumption that �1 � �i∈³O
, along with an

approximation to the probability of correct selec-
tion, allows Lee et al. (2011) to write their proposed
allocation as

�i

�k

=
44h1 −hk5/�hk

52	k∈³O + 44� − gk5/�gk
52	k∈³F

44h1 −hi5/�hi
52	i∈³O + 44� − gi5/�gi

52	i∈³F
for all i1 k = 21 0 0 0 1 r1 (18)

where 	 denotes the indicator variable. In OCBA-CO,
only one term in each of the numerator and denomi-
nator of the right-hand side of Equation (18) is active
at a time. This artifact of the set definitions and the
approximations used in OCBA-CO may lead to sub-
optimal allocations for infeasible and worse systems.
The following two examples are designed to highlight
the theoretical differences between OCBA-CO and the
proposed allocation.

Example 2. Suppose there are two systems and one
constraint, with each 4Hi1Gi5 iid normally distributed.
Let the means and variances be as given in Table 3,
and let � = 0.

Note the following features of this example: (i) since
system 2 belongs to ³O for large enough n and g2 ∈

4011097, the OCBA-CO allocation to system 2 does not
depend on g2; (ii) for all values of g2, system 2 is an
element of ³w, and hence the proposed allocation will
change as a function of g2; (iii) system 1 is decidedly
feasible (g1 = −10 and �g1

= 1) and does not require
much sample for detecting its feasibility. Solving for
the optimal allocation as a function of g2 yields the
allocations displayed in Figure 3 and the overall rate
of decay of P8F S9 displayed in Figure 4. From the pro-
posed optimal allocation in Figure 3, the allocation
to system 2 should not remain constant as a function
of g2. In fact, for certain values of g2, we give nearly
all of the sample to system 2. �

Example 3. We retain the two systems from Exam-
ple 2, except we fix g2 = 106 and vary �2

h1
in the inter-

val 6002147 to explore the allocation to system 1 as a

Table 3 Means and Variances for Example 2

System i hi � 2
hi

gi � 2
gi

1 0 200 −1000 100
2 200 100 g2 ∈ 4011097 100

Proposed
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Figure 3 Graph of g2 vs. Allocation for the Systems in Example 2
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Figure 4 Graph of g2 vs. Rate of Decay of P 8FS9 for the Systems in
Example 2

function of �h1
. Solving for the optimal allocation as

a function of �2
h1

yields the allocations displayed in
Figure 5 and the achieved rate of decay of P8F S9 dis-
played in Figure 6.

From Figure 5, the proposed allocation to system 1
increases slightly at first, and then decreases to a very
low, steady allocation from approximately �2

h1
= 105

onwards. The steady allocation occurs because we
require only a minimal sample size allocated to sys-
tem 1 to determine its feasibility. However, as a result
of the �1 � �i assumption, the OCBA-CO alloca-
tion constantly increases as �2

h1
increases. In Figure 6,

while the proposed allocation achieves a rate of decay
that remains constant as �2

h1
increases beyond approx-

imately �2
h1

= 105, the rate of decay of P8F S9 for the
OCBA-CO allocation continues to decrease as a func-
tion of �2

h1
. In this scenario, the OCBA-CO alloca-

tion does not exploit the fact that when optimality
is difficult to determine based on the objective,
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Figure 6 Graph of � 2
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vs. Rate of Decay of P 8FS9 for the Systems in
Example 3

a more efficient allocation can be achieved based on
feasibility. �

7.2. Implementation of the Sequential Algorithm
We now present two examples of the implementation
of the sequential Algorithm 2. In the first example, we
calculate 500 sample paths of the sequential algorithm
for one Problem P (see §1.2) to show the variability in
convergence across sample paths. In the second, we
calculate one sample path of the sequential algorithm
for each of 500 Problems P to show variability in con-
vergence across problem instances.

Example 4 (Normal: 500 Sample Paths of One
Problem P ). Suppose that for each system i and
constraint j , we may obtain iid replicates of the
random variables Hi and Gij , where Hi has dis-
tribution normal(hi1�

2
hi
5 and Gij has distribution

normal(gij1�
2
gij

). We use the sequential Algorithm 2
to solve the Problem P for five systems in the pres-
ence of two constraints, �1 = �2 = 0, using algorithm

Table 4 Means for Example 4, z∗ = 001113

Set �∗

i hi gi1 gi2

³b 003526 −200127 007946 −008223
System 1 001835 −103651 −103272 −102408
³w 003407 −003887 003792 004194
³w 001078 −003909 −001299 102115
â 000154 205915 −009288 −104952

parameters of initial sample size �0 = 20, sample size
between estimated optimal allocation updates �= 20,
and minimum-sample parameter �i = 10−6 for all i ≤ r .
Randomly generated means for the five systems are
given in Table 4, where �2

hi
= �2

gi1
= �2

gi2
= 1 for all

i ≤ r , j ≤ s.
Figure 7 displays the 90th, 75th, 50th, 25th, and

10th sample percentiles of the optimality gap in the
rate of decay of the P8F S9 of the sampling algorithm,
z∗ − z4Á̄n5, calculated across 500 sample paths. Since
z∗ is the fixed optimal rate of decay of the P8F S9
for the Problem P specified in Table 4, the optimal-
ity gap is necessarily positive. Figure 7 also displays
the optimality gap for equal allocation, which remains
fixed across all n. As expected, the optimality gap for
Algorithm 2 appears to converge to near zero, with
90 percent of sample paths achieving a faster rate of
decay of P8F S9 than equal allocation by sample size
n= 300. �

Example 5 (Normal: One Sample Path of Each
of 500 Problems P ). Now suppose we have 500 ran-
domly generated problems like the one presented in
Example 4. For one sample path of each of these 500
problems, we calculate the sample quantiles of the
optimality gap. This example is intended to provide
support for the robustness of the convergence across
different problem scenarios.

We retain the values of the algorithm parameters
�0, �, and Å from the previous example, and let the
constraints �1 = �2 = 0. Each Problem P was created
by uniformly and independently generating objective
values hi, i ≤ 5, in the interval 6−3137. To ensure the
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Figure 7 Sample Distribution of the Optimality Gap for Example 4
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Figure 8 Sample Distribution of the Optimality Gap for Example 5

existence of system 1 and nonempty â , two of the
five systems had both of their constraint values gij ,
j ≤ 2, independently and uniformly generated in the
interval 6−3107, which is the feasible region. The con-
straint values gij , j ≤ 2, for all other systems were
generated in the interval 6−3137. As in the previous
example, all variances equal one. To ensure numer-
ically distinguishable systems and constraints in the
context of the scaling of these problems, we ensured
�h1 −hi�> 0005 and �gij −�j �> 0005 for all i ≤ 51 j ≤ 2.

Figure 8 shows the 90th, 75th, and 50th sample per-
centiles of the optimality gap, z∗ − z4Á̄n5, as a func-
tion of sample size n for equal allocation and for the
sequential Algorithm 2. The sample paths appear to
converge across a variety of problems. �

Preliminary results with regard to implementation
in the context of Bernoulli random variables indicates
that, at least for the random problems we tested, there
is a large initial variance in the optimality gap of
Algorithm 2 across sample paths. This finding is con-
sistent with that of Broadie et al. (2007), who find
that a modified version of the algorithm provided in
Glynn and Juneja (2004) is highly sensitive to initial
sample size in the context of exponential random vari-
ables. We suspect that this sensitivity occurs because
for some problem instances, even small error in esti-
mating Á∗ yields a highly suboptimal true rate of con-
vergence due to a steep gradient of the rate function.
Further investigation of this phenomenon is a topic of
future research.

8. Remarks on the Independence
Assumption

Throughout this paper, we have assumed inde-
pendence of the objective and constraint function
estimators obtained from the simulation. This sce-
nario naturally arises in the context of a single nor-
mally distributed performance measure where the
mean is the objective and the variance is used as a

constraint. Additional examples appear in Lee et al.
(2010), where independence between the performance
measures is assumed in the context of multiobjective
models. However, we acknowledge that such scenar-
ios are relatively uncommon. In this section, we pro-
vide a relaxation of the independence assumption and
a discussion of the scope of our results.

8.1. Asymptotic Independence
To see that the independence assumption, Assump-
tion 1(2), may be relaxed, note that we require inde-
pendence only to analyze the rate function of P8F Si9
in §4. Under Assumption 1,

P8F Si9=P8Ĥi ≤Ĥ19
s
∏

j=1

P8Ĝij ≤�j9
s
∏

j=1

P8Ĝ1j ≤�j91 (19)

which directly results in the rate function for the
P8F Si9 presented in Equation (3) and the final result
in Theorem 2. However, to arrive at the rate function
presented in Theorem 2, we do not actually require
(19). We require only that

lim
n→�

1
n

logP8F Si9

= lim
n→�

1
n

logP8Ĥi ≤ Ĥ19+
s
∑

j=1

lim
n→�

1
n

logP8Ĝij ≤ �j9

+ lim
n→�

1
n

logP

{ s
⋂

j=1

Ĝ1j ≤ �j

}

0

Thus, in the limit, we require the random variables to
behave as if they were independent.

Toward mitigating the stringency of the indepen-
dence assumption, we define a less-stringent type
of independence which we call asymptotic inde-
pendence. For a sequence of events An and Bn,
define cn = P8An ∩Bn9/4P8An9P8Bn95, where P8An9 > 0,
P8Bn9 > 0 for all n. Then by definition P8An ∩Bn9 =

cnP8An9P8Bn91 and supposing all relevant limits exist,

lim
n→�

1
n

logP8An ∩Bn9

= lim
n→�

1
n

log cn + lim
n→�

1
n

logP8An9+ lim
n→�

1
n

logP8Bn90

From this argument, the conditions for asymp-
totic independence become clear: we require that
limn→�

1
n

log cn = 00 The following definition states
this requirement formally and can easily be extended
to consider more than two events.

Definition 1. Let An and Bn be events such that
P8An9>0 and P8Bn9>0 for all n, P8An9→0, and P8Bn9
→0 or P8Bn9→1. Then An and Bn exhibit asymptotic in-
dependence if

lim
n→�

1
n

log6P8An∩Bn9/4P8An9P8Bn957=00

To the best of our knowledge, this type of indepen-
dence has not been explicitly defined in the setting
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of sample means. However, similar concepts exist
in the context of extreme values (see, e.g., Resnick
2008, p. 290ff). The following example explores one
type of asymptotic independence for bivariate normal
distributions.

Example 6. For k = 11 0 0 0 1n, let 4Xk1Yk5 be iid
copies from a bivariate normal distribution with mean
40105, variances equal to 1, and correlation ��� < 1.
Then for X̄ =

1
n

∑n
k=1 Xk and Ȳ =

1
n

∑n
k=1 Yk, consider

P8X̄ > a9 and P8Ȳ > b9 for some a > 0 and b < 0, where
a1 b <� and �≥ 0. Since � is nonnegative, P84X̄ > a5∩
4Ȳ > b59 ≥ P8X̄ > a9P8Ȳ > b9, and therefore cn ≥ 1. Let
b < 0. Then P8Ȳ > b9→ 1, and since

cn =
P84X̄ > a5∩ 4Ȳ > b59

P8X̄ > a9
︸ ︷︷ ︸

≤1

1

P8Ȳ > b9
︸ ︷︷ ︸

→1

1

lim sup cn ≤ 1. Since cn ≥ 1 and lim sup cn ≤ 1, then
limn→� cn = 1 and limn→�

1
n

log cn = 0. �
From this analysis, we may deduce that for the

two events An and Bn, negative correlation results in
cn ≤ 1, which increases the rate function over what is
observed in the independent case. Likewise, positive
correlation results in cn ≥ 1 which decreases the rate
function below what is observed in the independent
case. The interaction between correlation and the rate
function becomes more complex as we consider more
than two events, as in the case of P8F Si9 with multiple
constraints. In the next section, we discuss the scope
of these results when the asymptotic independence
assumption is not satisfied.

8.2. Scope of Results
One may ask, how do the results derived in this paper
apply to contexts in which independence between
objective and constraint function estimators cannot be
guaranteed? To obtain useful results on sampling in
the context of our problem statement, we argue that
one must assume (i) the objective and constraint func-
tion estimators are independent, (ii) the nature of the
distributions underlying the estimators are known, or
(iii) the number of systems tends to infinity. While
theoretically valuable, a characterization of the opti-
mal allocation without such assumptions would have
limited practical value due to its abstract nature and
issues regarding implementation. As such, sampling
frameworks derived under one of these assumptions
should be seen as an approximate guide to simulation
allocation obtained through the analysis of an imper-
fect but tractable model.

This paper relies on (i) to make the first strides
on the question of efficient sampling within stochasti-
cally constrained SO on finite sets. Ongoing research
is focused on (ii) and (iii), that is, deriving analo-
gous results by making a distributional assumption

5 systems with 1 constraint

Correlation (�i = � for all systems i)
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Figure 9 Sample Quantiles of the Optimality Gap as a Function of
Correlation Using the True Optimal Allocation Under the
Assumption of Bivariate Normality from Hunter et al. (2011)

and by sending the number of systems to infinity.
While it is difficult to make statements on the effect
of correlation under the general terms of this paper,
work on (ii) appearing in Hunter (2011) and Hunter
et al. (2011) indicates that, under the assumption of
bivariate normality, dependence indeed affects the
optimal allocation policy. However, the effect of corre-
lation may be “small enough” to matter little during
implementation. As evidence, we present Figure 9 to
show the effect of correlation in the bivariate normal
case. In this figure, let z4Á∗5 denote the true optimal
rate of decay with correlation under the assump-
tion of bivariate normality. For 100-five-system, one-
constraint Problems P , generated in a manner similar
to the systems in Example 5, Figure 9 shows the sam-
ple quantiles of the true optimality gap for the inde-
pendent model as a function of correlation. The 50th
sample quantile of the optimality gap of equal alloca-
tion is also shown. For simplicity, at each correlation
value, all systems in a randomly generated Problem P
have the same correlation between the objective and
constraint function.

We present these preliminary results to demonstrate
that, even when correlation is present, using the inde-
pendent model may still result in significant gains
over equal allocation. Further analysis of the effect
of correlation on the optimal allocation is beyond the
scope of this paper.

9. Summary and Concluding Remarks
The constrained SO problem on finite sets is an
important SO variation about which little is cur-
rently known. Questions surrounding the relationship
between sampling and error-probability decay, sam-
pling rates to ensure optimal convergence to the cor-
rect solution, and minimum sample size rules that
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probabilistically guarantee attainment of the correct
solution remain largely unexplored. Following recent
work by Glynn and Juneja (2004) and Szechtman and
Yücesan (2008), we take the first steps toward answer-
ing these questions.

To identify the relationship between sampling and
error-probability decay, we divide the competing sys-
tems into four sets. Such strategic division facilitates
expressing the rate function of the probability of false
selection as the minimum of rate functions over these
four sets. Finding the optimal sampling allocation
then reduces to solving one of two nonlinear systems
of equations.

We re-emphasize a point relating to implementa-
tion. In settings where the underlying distributions
of the simulation observations is known or assumed,
the rate function estimators used within the sequential
algorithm should reflect the rate function of the known
or assumed distributions, in contrast to estimating
the rate functions generically through the Legendre-
Fenchel transform. In settings where the underly-
ing distribution is not known or assumed, estimating
the underlying rate function using a Taylor’s series
approximation up to a few terms might prove a viable
alternative.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.1120.0519.
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