
An Efficient Approach for Solving Reliable Facility
Location Models

Robert Aboolian
College of Business Administration, California State University San Marcos, San Marcos, California 92096,

raboolia@csusm.edu

Tingting Cui
Department of Industrial Engineering and Operations Research, University of California Berkeley, Berkeley, CA 94720,

tingting@ieor.berkeley.edu

Zuo-Jun Max Shen
Department of Industrial Engineering and Operations Research, University of California Berkeley, Berkeley, CA 94720,

shen@ieor.berkeley.edu

We consider reliable facility location models in which facilities are subject to unexpected failures and cus-

tomers may be re-assigned to facilities other than their regular facilities. The objective is to minimize the

total expected costs in normal and failure scenarios. We allow facilities to have different failure rates and do

not limit the number of facilities that might be assigned to a customer. Lower bounds for Reliable Unca-

pacitated Fixed-charge Location Problem (RUFLP) are derived and used to introduce a class of efficient

algorithms for solving the RUFLP problem.

1. Introduction

Consider a supply network design problem in which the facilities, once opened, are subject

to unexpected failures, and its customers may have to be served by facilities further than

their preferred locations. Such situations are commonly seen in practice, where the facility

failures may be originated from natural disasters, labor actions, or terrorist attacks. This

brings up the need to design and operate reliable supply chains that are resilient to all

sorts of disruptions.

Risk of failure at each facility is specified by an individual and independent failure

probability inherent to that facility. To hedge against failures within a supply network,

each customer is assigned to multiple facilities, ordered by levels. The lowest level facility

assigned to a customer is the primary facility to serve that customer so long as it has not

failed and remains operational. A higher level facility assigned to a customer works as a

backup facility and serves that customer only if all facilities at lower levels have failed. At

1

mailto:shen@ieor.berkeley.edu
mailto:tingting@ieor.berkeley.edu
mailto:raboolia@csusm.edu

2

the rare occasion in which all facilities assigned to a customer have failed, a penalty cost is

incurred. The penalty cost can be taken as lost sales, loss of goodwill, or the cost to serve

the customer at a competitor’s facility.

In this paper, we study the reliable version of the uncapacitated fixed-charge location

problem (UF LP), but our model can be easily extended to address other facility location

problems. Here, the objective is to minimize the sum of fixed location costs, the expected

transportation costs (at all levels), and the expected penalty costs. This problem will be

referred to as the reliable uncapacitated fixed-charge location problem (RUF LP).

When compared with cost minimizing supply network design, the reliable facility net-

works, in general, tend to require more facilities for backup solutions. While adding facilities

increases the system’s overall fixed cost, it helps to hedge against the excessive transporta-

tion and penalty costs in case of failures within the network.

Note that our problem should not be confused with the “k-level facility location prob-

lem”, where each customer must be served by a sequence of k different kinds of facilities

located in k levels of hierarchy (see Sahin and Sural (2007)).

Our work is related to the emerging literature of facility location under uncertainty. Some

of the earlier literature focuses on demand uncertainty, motivated by facility congestion

in emergency service systems. This includes Daskin (1982, 1983), Batta et al. (1989), Ball

and Lin (1993) among others. Also see Daskin et al. (1988) for a survey of covering models

under demand uncertainty.

Snyder and Daskin (2005) studied the facility reliability issues with a different motiva-

tion, where uncertainty comes from the supply side, or more specifically, the disastrous

facility disruptions. In Snyder and Daskin (2005), the reliability models of UF LP and the

P-median problem were introduced and a multi-objective formulation was used to demon-

strate trade off between the cost and reliability. Assuming that all facilities have identical

failure probability, the authors formulated the problem as a linear mixed integer program,

and employed Lagrangian relaxation for efficient solutions. The uniform failure probabil-

ity assumption is also taken in other related papers on disruption management, including

Snyder and Daskin (2006) and Lim et al. (2009).

Facility location in context of facility failure has also been studied in the ”fault-tolerant

facility location problem” literature. In this problem, to hedge against facility failures, each

demand point is supposed to be assigned to a certain number of distinct facilities, but unlike

3

RUF LP, the expected transportation cost for the network is independent from the risk of

failure in each facility. There are many papers in ”fault-tolerant facility location problem”

literature, which offer approximate solution approaches. These include Guha et al. (2003),

Byrka et al. (2010), Swamy and Shmoys (2003), Yan and Chrobak (2011), and Chechik

and Peleg (2010) among others. Facility location in the context of incurring a penalty cost

when a customer is not served has also been studied in the ”facility location problem with

outliers”. See Charikar et al. (2001) for approximate approaches for this problem.

Most recently, Z.-J.M.Shen et al. (2011), Berman et al. (2007), Cui et al. (2010) relax

the assumption of identical failure probabilities. Z.-J.M.Shen et al. (2011) formulated the

reliable UF LP problem as a nonlinear mixed integer program and provided several heuris-

tic solution algorithms. Berman et al. (2007) focused on asymptotic properties of the

optimal solutions, along with heuristic algorithms with bounds on the worst-case perfor-

mance. Cui et al. (2010) is the first to provide exact solutions for the RUF LP problem

with site-dependent failure probabilities, in which the problem is formulated as a linear

mixed integer program and solved using Lagrangian relaxation. Lagrangian relaxation was

originally proposed for the UF LP by Geoffrion (1974) and for the P-median problem by

Cornuejols et al. (1977). The Lagrangian relaxation algorithm in Cui et al. (2010) is effi-

cient when the maximum number of facilities assigned to a customer is relatively small.

However, for a large number of facilities assigned to a customer, the Lagrangian process

fails to solve even moderate sized problem instances within a reasonable time frame.

Our paper can be taken as an extension of Cui et al. (2010), where we do not limit the

number of facilities assigned to a customer. Using a novel approach, which is combination of

neighborhood search and cutting plane process, our algorithm outperforms Cui et al. (2010)

in both execution time and solution quality, especially when large number of facilities are

allowed to be assigned to a customer. Our algorithm can also work as a heuristic, which

can solve extremely large problem instances.

Local search heuristics have been used to solve facility location problems (e.g. see Ghosh

(2003) and Aboolian et al. (2009a)), but even though they are proven to be very efficient

in terms of computation time and solution quality, they fail to guarantee the exactness of

the solution. In this paper, we integrate a local search method with a cutting plane process

to find the optimal solution for RUF LP in a very efficient manner. A similar cutting

plane process were previously used in Aboolian et al. (2008), Aboolian et al. (2009b) and

4

Aboolian et al. (2010), but to the best of our knowledge, this is the first paper to use a

combination of a neighborhood search and a cutting plane process to solve a non-linear

integer program, and we believe that this exact solution approach is quite novel. We also

believe that this approach can be applied to many other facility location problems which

can be modeled as non-linear integer programs.

The remainder of the paper is organized as follows. We introduce the formulation of the

RUF LP in Section 2, and describe solution algorithms for RUF LP in Section 3. Section

3.1 introduces a linear reformulation that provides a lower bound, Section 3.2 proposes an

approximate solution, and Section 3.3 discusses an exact algorithm. We then discuss our

numerical experiment design and computational results in Section 4. Finally we provide

concluding remarks in Section 5.

2. Formulation

Let N(|N | = n) be the set of customer demand aggregation points and M(|M | = m) be

the set of candidate locations for the facilities. We denote demand rate at node i as λi for

each i ∈ N , the fixed cost to locate a facility at node j as fj for each j ∈ M . Let cij be the

shipping cost of one unit of demand from a facility located at node j to the customers at

node i. We model facility disruptions as independent events, happening at location j ∈ M

with probability 0 ≤ qj < 1. We will use S ⊂ M to denote the set of facilities selected. If a

facility is located at site j, we call it facility j ∈ S.

To hedge against disruption risk, each customer can be assigned and served by any

open facility. A penalty cost φi is incurred for each unit of unmet demand due to facility

failures, which can be taken as the lost of good will, or the cost to serve the customers at

a competitor’s facility. Although each customer can be assigned and served at any open

facility, it makes no sense to serve a customer at a facility where its unit shipping cost is

higher than the penalty cost. Let S[i] = {k | φi ≥ cik, k ∈ S} and si = |S[i]|. Define i[r, S]

∈ S (r = 1, 2, .., si) to be the facility in S that serves customers at i ∈ N at level r. Define

Ci(S) to be the expected sum of shipping cost and lost sales cost of one unit of demand

to customers at i ∈ N. Then, it can be verified that

� � siX r−1Y ! � � siY !
Ci(S) = 1 − qi[1,S] ci,i[1,S] + qi[t,S] 1 − qi[r,S] ci,i[r,S] + qi[t,S] φi. (1)

r=2 t=1 t=1

5

Define F (S) to be the total fixed location and shipping cost given location set S, such

that X X
F (S) = fj + λiCi(S).

j∈S i∈N

(2)

The Reliable Uncapacitated Fixed-charge Location problem (RUF LP) is formulated

as:

min{F (S)}.
S⊆M

Define M [i] = {j | φi > cij , j ∈ M} to be the set of facilities in M whose unit shipping

cost to customers at i ∈ N is lower than the unit lost sales cost φi. Let mi = |M [i]|. To

include the unit lost sales cost φi in the cost calculations, we use a ”dummy” facility,

denoted by J , that has a fixed cost fJ = 0, a failure probability qJ = 0 and a transportation

cost ciJ = φi for customer i ∈ N . A ”level-r” assignment for a customer i ∈ N will serve

her if and only if all of her assigned facilities at levels 1, ..., r − 1 have failed. To capture

the possibility of failure for all regular facilities, at the optimal solution, customer i ∈ N at

the last level must be assigned to the dummy facility J. Denote xj to be a binary variable

which is one if we open a facility at j and zero otherwise. Denote yijr to be a binary

variable which is one if facility j is assigned to customers at i at level r and zero otherwise.

Finally, let Pijryijr be the probability that facility j serves customers i at level r given her

other assigned facilities at levels 0 to r − 1. Note that Pij1yij1, the probability that facility

j serves customer i at level 1, is just the probability that j remains open, so Pij1 = 1 − qj . P P qk For 2 ≤ r ≤ mi + 1, we have Pij2 = (1 − qj) k∈M [i] qkyi,k,1 = (1 − qj) k∈M [i] 1−qk
Pi,k,1yi,k,1, P P P qk Pij3 = (1 − qj) qkyi,k,1 qkyi,l,2 = (1 − qj) Pi,k,2yi,k,2, and continuing k∈M [i] l∈M [i] k∈M [i] 1−qk P

the same pattern, we obtain Pijr = (1 − qj)
qk Pi,k,r−1yi,k,r−1. Given the above k∈M [i] 1−qk

definitions the reliable uncapacitated facility location problem RUF LP can be rewritten

as:

mi+1 X X X X
(RUFLP) Minimize Z = fj xj + λicij Pijryijr (3)

j∈M i∈N j∈M [i]∪{J} r=1

Pij1 = 1 − qj ∀i ∈ N, j ∈ M [i] ∪{J}, (7) X qk
Pijr = (1 − qj) Pi,k,r−1yi,k,r−1 (8)

1 − qk
k∈M [i]

6

miX
s.t. yijr ≤ xj ∀i ∈ N, j ∈ M [i],

r=1

(4)

mi+1X
yiJr = 1 ∀i ∈ N, (5)

r=1
r−1 X X

yijr + yiJg = 1 ∀i ∈ N, 1 ≤ r ≤ mi +1, (6)
j∈M [i]∪{J} g=1

∀i ∈ N, j ∈ M [i] ∪{J}, 2 ≤ r ≤ mi +1,

xj , yijr ∈ {0, 1} ∀i ∈ N, j ∈ M [i] ∪{J}, 1 ≤ r ≤ mi +1. (9)

The objective function (3) is the sum of the expected transportation costs and the fixed

costs. Constraints (4) ensure that customers are only assigned to the open facilities, while

constraints (5) enforce each customer has to be assigned to the dummy facility at a certain

level. Constraints (6) require that for each customer i and each level r, either i is assigned

to a facility at level r or it is assigned to the dummy facility J at certain level g < r (taking P r−1 = 0 if r = 1). Constraints (7) and (8) are the ”transitional probability” equations. g=1 yiJg

Note that constraints (6) imply that yi,k,r−1 can equal to 1 for at most one k = J , which

guarantees the correctness of the transitional probabilities.

Note that RUF LP is a nonlinear mixed integer program which is large-scale in nature.

To efficiently solve this problem Cui et al. (2010) proposed a linearized formulation and

solved it using Lagrangian relaxation. The difference between our model and the model

developed in Cui et al. (2010) is that in Cui et al. (2010) it is assumed that each customer

can be assigned and served by up to R ≥ 1 facilities, while in our model R, the maximum

number of facilities assigned to a customer, is not limited to a certain fixed value and

customers are able to be assigned at all open facilities with a shipping cost less than the

penalty cost, which in fact makes the model more realistic. When R is fixed the above

model can be rewritten by replacing min{R, mi} in place of mi for i ∈ N.

Here we develop a solution approach which finds an optimal solution more efficiently

regardless of whether R is fixed or not. To do this we first simplify the customer assignment

assumption such that customers are assigned to open facilities level by level in an increasing

⎪
⎪
⎪ r−1Q ⎨ (q[t])(1 − qj) j ∈ M,

t=1 Qjr = ⎪ r−1Q ⎩ q[t] j = J.
t=1

7

order of shipping cost. This might not be the optimal customer assignment, but later we

show that even with this assumption our solution approach is frequently able to come up

with better solutions and with less amount of time compared to the Lagrangian relaxation

algorithm developed in Cui et al. (2010). We also develop an efficient approximate approach

which is capable of solving large problem instances.

3. Algorithms for RUF LP

Theexact and the approximate solution approaches developed in this Section are based on

obtaining efficient lower and upper bounds for RUF LP . In Section 3.1, we develop a mixed

integer program called RMIP , whose optimal objective function value provides a lower

bound for RUF LP . In Section 3.2, we present a heuristic which is based on a neighborhood

search over the location set from the solution to RMIP . The exact approach presented in

3.3 is based on successive lower and upper bound improvements for RUF LP .

3.1. A Lower Bound for RUF LP

Let q[1] ≤ q[2] ≤ ... ≤ q[m−1] ≤ q[m] be an ordering of failure probabilities in M . Define ⎧

Note that Qjr is an optimistic version of Pijr ∀i ∈ N and in the following result, we

demonstrate that Qjr is a lower bound for Pijr ∀i ∈ N.

Lemma 1. Consider a location set S ⊆ M, and for i ∈ N, denote S[i] = {k | φi ≥ cik, k ∈

S} and si = |S[i]|. We have Qjr ≤ Pijr ∀i ∈ N, j ∈ S ∪{J}, 1 ≤ r ≤ si +1.

Proof: Let q[1] ≤ q[2] ≤ ... ≤ q[si−1] ≤ q[si] and q[1] ≤ q[2] ≤ ... ≤ q[m−1] ≤ q[m] be an ordering

of failure probabilities in S and M, respectively. Then by definition, we have q[t] ≤ q[t] for
r−1 r−1 Q Q

i ∈ N, t = 1, 2, ..., si, which results in q[t] ≤ q[t] for i ∈ N, r = 1, 2, .., si + 1. Recall
t=1 t=1

the definition of i[r, S] ∈ S (1 ≤ r ≤ si + 1) as the facility in S that serves customers at
r−1 r−1 Q Q

i ∈ N at level r. Then, by definition, we have q[t] ≤ qi[t,S] for i ∈ N, r = 1, 2, .., si +1.
t=1 t=1

r−1 r−1 Q Q
Therefore, we conclude q[t] ≤ qi[t,S] for i ∈ N, r = 1, 2, .., si +1. We note that, for i ∈ N,

t=1 t=1
r = si + 1 (j = J). This is enough to prove QJ(si+1) ≤ PiJ(si+1) and for i ∈ N, 1 ≤ r ≤ si (

r−1 r−1 Q Q
j = i[r, S]), we multiply each side of the inequity q[t] ≤ qi[t,S] by (1 − qj), to obtain

t=1 t=1

8

r−1 r−1 Q Q
(1 − qj) q[t] ≤ (1 − qj) qi[t,S]. Therefore, Qjr ≤ Pijr ∀i ∈ N, j ∈ S, 1 ≤ r ≤ si. Thus, the

t=1 t=1
proof is complete.

By replacing Pijr with fixed failure probabilities Qjr ∀i ∈ N, j ∈ M [i] ∪ {J}, 1 ≤ r ≤

mi +1 in RUF LP will result the following mixed integer program which we call RMIP :

mi+1 X X X X
Minimize Z = fj xj + λicij Qjryijr

j∈M i∈N j∈M [i]∪{J} r=1

s.t.(4) − (6)

xj , yijr ∈ {0, 1} ∀i ∈ N, j ∈ M [i] ∪{J}, 1 ≤ r ≤ mi +1.

(RMIP)

∗ ∗ ∗ ∗ Theorem 1. Define (x) and ZRMIP (x) to be the optimal solu-RMIP , yRMIP RMIP , yRMIP

tion and the optimal value of the objective function of RMIP, respectively. Also let
∗ ∗ ∗ ∗ (x) be the optimal solution and the optimal RUF LP , yRUF LP) and ZRUF LP (xRUF LP , yRUF LP

value of the objective function of RUF LP, respectively. ZRMIP (x ∗ ∗) is a lower RMIP , yRMIP

∗ ∗), i.e. bound for ZRUF LP (xRUF LP , yRUF LP

∗ ∗ ∗ ∗). (10) ZRMIP (xRMIP , yRMIP) ≤ ZRUF LP (xRUF LP , yRUF LP

Proof: We note that by construction, (x ∗ ∗)−the optimal solution of RUF LP, RUF LP , yRUF LP

is a feasible solution for RMIP and from Lemma 1, we obtain ZRMIP (x ∗ ∗) ≤ RUF LP , yRUF LP

∗ ∗ ∗ ∗). Also since (x) is the optimal solution of RMIP, ZRUF LP (xRUF LP , yRUFLP RMIP , yRMIP

∗ ∗ ∗ ∗ we have). Therefore, we conclude ZRMIP (xRMIP , yRMIP) ≤ ZRMIP (xRUF LP , yRUF LP

∗ ∗ ∗ ∗), which completes the proof. ZRMIP (xRMIP , yRMIP) ≤ ZRUF LP (xRUF LP , yRUF LP

We note that RMIP is equivalent to its relaxation without the integrality constraints

on y. This will make it easier to solve RMIP .

3.2. An Approximate Approach for RUF LP

We note that for R = 1 and ϕi =+∞ ∀i ∈ N, RUFLP reduces to classical uncapacitated

facility location problem (UF LP). Since UF LP is NP-hard, RUF LP is NP-hard as well.

Thus, it is difficult to obtain good solutions for large size instances of RUF LP within a

limited time frame. This fact motivates research on approximate approaches. The heuristic

presented below is based on the solution to RMIP . Given Theorem 1, the objective value

of the solution to RMIP provides a lower bound for RUF LP . We note that any feasible

9

location vector x including the one produced by solving RMIP generates a feasible solu-

tion to RUF LP. This is achieved by first defining the assignment vector y(x) using the

assumption that customers are assigned to open facilities level by level in an increasing

order of shipping cost. Then, the resulting value of ZRUF LP (x , y(x)) provides an upper

bound for RUF LP.

Denote Sx as the set of facility locations, which are open given location vector x. To

find an improved upper bound, the heuristic uses a descent approach in a neighborhood

search for Sx−the location set produced by solving RMIP . For each location set in the

neighborhood we find its corresponding sum of shipping and fixed costs assuming customers

are assigned to open facilities at Sx level by level in an increasing order of shipping cost.

The neighborhood of a location set Sx and the descent approach is defined as follows.

Nk(S), the distance-k neighborhood of S ⊆ M, is defined as

Nk(S) = {S0 ⊆ M : |S − S 0| + |S 0 − S| ≤ k};

i.e. S 0 is in the distance-k neighborhood of S if the number of non-overlapping elements in

the two sets does not exceed k.

Once the neighborhood is well defined, the descent algorithm is straightforward: use

the solution to RMIP as a starting subset Sx; evaluate the change in the value of the

objective function for all the subsets in the neighborhood; if an improved subset exists in

the neighborhood, move the search to the best vector in the neighborhood. Repeat the

process with the new subset until no improved vector exists in the neighborhood. The last

subset is the solution. Denote Sx, the set of facility locations under vector x, as the solution

subset to the descent approach, and y(x) as the assignment vector where customers are

assigned to open facilities at Sx level by level in an increasing order of shipping cost. The

resulting value of the objective function ZRUF LP (x , y(x)) is our new upper bound and

the solution to the descent approach x and y(x) is the solution to our heuristic.

3.3. An Exact Approach for RUF LP

The exact approach presented below is based on successive improvements on lower and

upper bounds on RUF LP . In this approach, we first find initial lower and upper bounds

for RUF LP by solving the heuristic proposed in Section 3.2. In the next step, we find an

improved lower bound by solving an improved RMIP. An improved RMIP is RMIP with

10

additional cuts which exclude the pre-examined location vectors from the feasible region

(at the first step RMIP is solved without any cuts). After finding an improved lower

bound, the location set produced by solving the improved RMIP is used as a starting

location set in a neighborhood search to find an improved upper bound using the descent

approach explained in Section 3.2.

To complete this step, for each starting location set used in the descent approach we

introduce a cut to RMIP to exclude all of the feasible location vectors which are in its

neighborhood and have already been examined. Denote Sxb to be a starting location set in

the descent approach, then the following constraint will ensure that all location vectors in

the neighborhood of xb (and have already been examined) are infeasible: X X
xj − xj ≤ |Sxb| − k − 1.

j∈Sxb j∈M−Sxb

(11)

We note that (11) does not make any location vector infeasible unless they are in the

neighborhood of xb. The addition of this cut to the improved RMIP will help to improve

the lower bound in the next steps.

The procedure continues until the gap between the current lower bound and upper bound

is within a precision level so that it is evident that the unexamined location sets are unable

to improve the current upper bound.

Now consider Problem RMIP (l) as follows:

mi+1 X X X X
MinimizeZRMIP (l) = fj xj + λicij Pjryijr

j∈M i∈N j∈M [i]∪{J} r=1

s.t.(4) − (6) X X
xj − xj ≤ |S| − k − 1,

j∈S j∈M\S

∀S ∈ ARMIP (t), t = 1, 2, .., l − 1, (12)

xj ∈ {0, 1} ∀ j ∈ M. (13)

Here ARMIP (t) is the set of all starting subsets in the descent approach, which starts the

search using the location set found from the solution of RMIP (t − 1). Denote x ∗
RMIP (t)

as the optimal location vector for RMIP (t), and Sx ∗ as the set of facility locations,
RM IP (t)

which are open given location vector xRMIP
∗

(t). Note that to solve RMIP (l), we need to

11

solve RMIP (t) for t = 1, 2, .., l − 1. Note that RMIP (1) does not include constraint (12)

and is the original RMIP by definition. Also note that constraints (12) exclude all of the

location vectors that have already been examined without excluding unexamined location

vectors.

Denote x(t) to be the location vector solution to the descent approach, which starts its

search from location set Sx ∗ . Denote y(x(t)) to be the customer assignment vector,
RM IP (t)

where customers are assigned to open facilities in x(t) level by level in an increasing order

of shipping cost. Denote ZRUF LP (x(t) , y(x(t))) as the objective function value of RUF LP

given x(t) , y(x(t)). Then UB(t) = min{UB(t−1),ZRUF LP (x(t) , y(x(t)))} is the improved

upper bound after solving RMIP (t) and performing descent approach which starts the

search from location set Sx ∗ . It is easy to verify that UB(t) is non-increasing in t.
RMIP (t)

Denote LB(t) = Z∗ as the improved lower bound after solving RMIP (t), where RMIP (t)

Z∗ is the optimal value of the objective function in RMIP (t). From the formulation RMIP (t)

of RMIP (l), we have that LB(t) is non-decreasing in t.

Assume a specified precision level � ≥ 0, then the search and cut algorithm is described

as follows:

The Search and Cut Algorithm

Step 0: Set l = 1, Sx ∗ = {}, Lower Bound = 0 and Upper Bound = ∞.

Step 1: Solve RMIP (l). If a feasible solution exists then find x ∗ −the optimal loca-RMIP (l)

tion solution vector in RMIP (l), Sx ∗ −the set of facility locations under vector
RM IP (l)

x ∗ y(x ∗)−the customer assignment vector, where customers are assigned to RMIP (l), RMIP (l)

open facilities in x ∗ level by level in an increasing order of shipping cost, Z∗ −the RMIP (l) RMIP (l)

value of the objective function in RMIP (l), and set Lower Bound(l) = Z∗ and RMIP (l)

proceed to Step 2. Else go to Step 5.

Step 2: If Lower Bound(l) > Lower Bound, let Lower Bound = Lower Bound(l).

If Upper Bound−Lower Bound < �, go to Step 5. Otherwise, go to step 3.
Lower Bound

Step 3: Perform the descent approach which starts the search from location set Sx ∗
RM IP (l)

and find ARMIP (l)−the set of all the starting subsets in the descent approach; x(l),

y(x(l))−the location and customer assignment solution vectors of the best found solu-

tion; Sx(l)−the set of facility locations under vector x(l); and their corresponding objective

function value ZRUF LP (x(l) , y(x(l))). Set Upper Bound(l) =ZRUF LP (x(l) , y(x(l))).

12

Step 4: If Upper Bound(l) < Upper Bound, then Upper Bound = Upper Bound(l), x ∗ =

x(l), y(x ∗) = y(x(l)) and Sx ∗ = Sx(l). Set l = l +1 and go to Step 1.

Step 5: Stop. The solution to Search and Cut Algorithm is as follows: The location set is

Sx ∗ , location vector is x ∗ , customer assignment vector is y(x ∗), and the objective function

value Z∗ = Upper Bound.

The algorithm terminates in either Step 1 when all potential location vectors have been

examined or Step 5 when the gap between the current upper and lower bound falls below

the specified precision level. It is obvious that the algorithm terminates in a finite number of

steps. Note that since Lower Bound(l)= Z∗
RMIP (l), then Lower Bound(l) in the algorithm

is non-decreasing in l. Since at iteration l, Upper Bound represents the value of the best-

found feasible solution, and Lower Bound is a valid lower bound on all unexamined location

vectors, when � = 0 the algorithm is guaranteed to find the optimal solution for RUF LP

in finite number of steps.

4. Computational Results

We tested our exact and heuristic algorithms on two different types of data. The exact

algorithm is tested on four data sets with 50, 75, 100, and 150 nodes. These data sets

are based on 1990 census data, with each node representing one of the 50, 75, 100 or 150

largest cities in the US. Demands λi are set to the city population divided by 104 , while

the fixed cost fj is set to the median home value in the city. The transportation cost cij

is calculated using cij = dij , where dij is the great circle distance between node i and j.

We note that the great circle distance between two nodes is the shortest distance of those

nodes on the surface of a sphere.

In all four data sets, the set of facilities M is equal to the set of customers N (each

demand point is a potential facility site). Penalty cost φi is set to 10,000 for each customer,

and the failure probabilities qj are calculated using qj = β +0.1αe−dj /400 , where β = 0.01,

and dj is the great cycle distance (in miles) between node j and New Orleans, LA. For each

data set, we fix α = 1.0, and vary the maximum assignment level R from 3 to 10; then set at

R = m. We also fix R = 4 and vary α from 1.05 to 1.45 at 0.05 increment. The search-and-

cut procedure is executed to a precision of � = 0.005, or up to 3600 seconds in CPU time in

the exact algorithm, and executed for a single iteration in the heuristic algorithm. For each

“real” test instance, we report the computational times of three different search-and-cut

13

algorithms, based on distance-k neighborhood, where k ∈ {1, 2, 3}. As a comparison to our

exact algorithm, we also test the Lagrangian Relaxation algorithm of Cui et al. (2010). To

simplify presentation, from now on we will refer the Lagrangian Relaxation algorithm of

Cui et al. (2010) as the “LR method”.

The heuristic algorithm, which is the approximate approach described in Section 3.2, is

based on distance-2 neighborhood (k = 2) and in order to show its efficiency, it is tested on

a larger problem instances than the ones used for the exact approach. These instances are

based on data sets with dense networks with up to 600 nodes given in Beasley (1990). The

transportation cost cij is calculated using cij = dij , where dij is the shortest path distance

between node i and j. Demands and fixed costs are randomly generated from uniform

distributions between 10 and 110, and between 1,000 and 11,000, respectively. Penalty cost

is set to be 1,000 for each customer, and failure probabilities are randomly generated from

a uniform distribution between 0.01 and 0.11.

Our algorithms are coded in C++ and tested using an Intel Pentium 4 3.20GHz pro-

cessor with 1.0 GB RAM under Linux and CPLEX package, version 10 was used to solve

RIMP (l). Full set of test results are available from the authors. The test results for the

exact algorithm are summarized in Tables 1 - 4. The first three columns in Tables 1 - 4

provide the values of the parameter settings. The next four columns provide information

about the solution quality: the upper bound and the gap between the lower bound and the

upper bound for Search and Cut Algorithm and LR method. The last four columns provide

information about computational time of three different Search-and-Cut algorithms, based

on distance-k neighborhood k ∈ {1, 2, 3} and LR method. We note that the solution quality

of all three Search-and-Cut algorithms remains the same that is why we only report one

upper bound and gap for search-and-cut algorithm. The first nine rows in Tables 1 - 4 test

the effect of maximum assignment level R, on the solution quality and computational time

of the exact methods and the last nine rows test the effect of α, on the solution quality

and computational time of the exact methods.

The following conclusions can be drawn from Tables 1-4:

1- The exact approach (Search and Cut Algorithm) was able to solve most of the

instances, except a few larger instances.

2- In all cases where the Search and Cut Algorithm could not find the solution within

the 3600 seconds limit, the solution found by the algorithm still outperforms the solution

found by the method used in LR method.

14

3- In all cases (except one) where both algorithms found the solution, the Search and

Cut Algorithm outperforms the LR method in computational time.

3-1- For instances with 50 nodes the Search and Cut Algorithm, based on distance-3

neighborhood on average found the solution almost 15 times faster than LR method.

3-2- For instances with 75 nodes the Search and Cut Algorithm, based on distance-3

neighborhood on average found the solution almost 19 times faster than LR method.

3-3- For instances with 100 and 150 nodes the LR method could not find any

solution, while Search and Cut Algorithm, based on distance-3 neighborhood failed to find

the solution in only four instances.

4- The LR method fails to find any solution when problem size is large (100 and 150

nodes instances) or when maximum assignment level R is large.

5- The computational time for the Search and Cut Algorithm seems to have a low

sensitivity to the maximum assignment level R, while it is sensitive to α, such that an

increase of 25% in α on average will increase the computational time of the Search and

Cut Algorithm by almost 400%.

6- The computational time for the LR method is sensitive to α and is very sensitive to

the maximum assignment level R.

7- Although the Search and Cut Algorithm, based on distance-3 neighborhood is on

average almost 30% faster than the Search and Cut Algorithm, based on distance-2 neigh-

borhood, it fails to outperform when problem size is large (150 nodes instances) and α = 1.

8- The computational time for the Search and Cut Algorithm increases exponentially as

the number of nodes increases.

From the computational experiments we conclude that the Search and Cut Algorithm

outperforms LR method in computational time and solution quality.

The test results for the heuristic algorithm are summarized in Table 5. The first two

columns in Table 5 provide the instance number and number of nodes in each instance.

The next three columns provide information about the solution quality: the upper and

lower bounds and the gap between the lower bound and the upper bound found by the

heuristic. The last column provide information about computational time by the heuristic.

As can be seen from Table 5, the heuristic algorithm proposed in Section 3.2 is able to

solve extremely large problems of up to 600 nodes in a reasonable amount of time and

solution quality.

15

Table 1 Performance of Exact Algorithms- 50 Nodes
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time
50
50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
50
50

3
4
5
6
7
8
9
10
50

4
4
4
4
4
4
4
4
4

1
1
1
1
1
1
1
1
1

1.05
1.1
1.15
1.2
1.25
1.3
1.35
1.4
1.45

1,021,060
1,020,540
1,020,520
1,020,520
1,020,520
1,020,520
1,020,520
1,020,520
1,020,520

1,021,410
1,022,280
1,023,160
1,024,030
1,024,910
1,025,790
1,026,670
1,027,540
1,028,370

0.46%
0.39%
0.35%
0.39%
0.41%
0.39%
0.39%
0.39%
0.39%

0.50%
0.48%
0.48%
0.49%
0.48%
0.48%
0.49%
0.47%
0.47%

1,020,980
1,020,540
1,020,520
1,020,520
1,020,520
1,020,520
1,020,520
1,020,520

-

1,023,590
1,026,650
1,029,710
1,032,640
1,035,590
1,038,550
1,041,520
1,044,510
1,047,510

0.48%
0.50%
0.41%
0.43%
0.45%
0.49%
0.44%
0.48%

-

0.48%
0.46%
0.47%
0.49%
0.49%
0.49%
0.47%
0.46%
0.50%

14
26
28
38
40
44
43
47
56

30
39
56
90
115
174
194
240
290

9
16
16
26
27
34
33
31
38

16
18
20
30
36
47
51
61
77

6
14
12
16
15
25
20
20
26

14
14
15
22
27
34
35
41
40

23
54
84
180
273
626
908
1250
-

67
121
136
133
256
208
488
313
474

Table 2 Performance of Exact Algorithms- 75 Nodes
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time
75 3 1 1,149,130 0.34% 1,149,070 0.48% 27 17 28 195
75 4 1 1,148,590 0.46% 1,148,590 0.49% 38 26 26 273
75 5 1 1,148,580 0.46% 1,148,580 0.47% 52 29 35 382
75 6 1 1,148,580 0.46% 1,148,580 0.42% 95 53 52 540
75 7 1 1,148,580 0.49% 1,148,580 0.41% 101 73 67 708
75 8 1 1,148,580 0.46% 1,148,580 0.39% 124 89 67 2098
75 9 1 1,148,580 0.46% 1,148,580 0.42% 134 81 74 2382
75 10 1 1,148,580 0.46% 1,148,580 0.44% 135 81 76 2444
75 75 1 1,148,580 0.46% - - 177 100 95 -

75 4 1.05 1,149,600 0.45% 1,152,670 0.49% 48 31 35 229
75 4 1.1 1,150,600 0.47% 1,156,310 0.50% 60 31 35 254
75 4 1.15 1,151,610 0.48% 1,160,000 0.49% 78 39 40 366
75 4 1.2 1,152,610 0.50% 1,163,720 0.50% 107 52 40 621
75 4 1.25 1,153,620 0.50% 1,167,500 0.50% 138 68 50 824
75 4 1.3 1,154,630 0.44% 1,171,320 0.50% 181 84 56 974
75 4 1.35 1,155,640 0.49% 1,175,190 0.50% 223 99 73 1518
75 4 1.4 1,156,660 0.47% 1,179,110 0.50% 322 128 91 1915
75 4 1.45 1,157,670 0.49% 1,183,090 0.50% 437 147 105 2216

16

Table 3 Performance of Exact Algorithms- 100 Nodes
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time
100 3 1 1,254,080 0.48% 1,253,910 0.87% 393 194 255 3612
100 4 1 1,253,010 0.49% 1,253,010 0.76% 1662 488 358 3672
100 5 1 1,252,990 0.49% 1,252,990 0.72% 1968 655 547 3707
100 6 1 1,252,990 0.49% 1,254,560 1.74% 3568 1103 691 3621
100 7 1 1,252,990 0.49% 1,252,990 1.20% 3631 1142 671 3745
100 8 1 1,252,990 0.49% 1,253,460 3.28% 3658 1315 717 3785
100 9 1 1,252,990 0.49% 1,254,310 5.54% 3643 1265 849 3660
100 10 1 1,252,990 0.49% 1,253,460 3.31% 3662 1261 885 3740
100 100 1 1,252,990 0.49% - - 3656 1476 1066 -

100 4 1.05 1,254,040 0.48% 1,256,560 0.82% 2668 738 525 3612
100 4 1.1 1,255,060 0.46% 1,260,120 0.85% 3361 854 635 3615
100 4 1.15 1,256,060 0.49% 1,263,280 0.87% 3630 1207 692 3664
100 4 1.2 1,256,920 0.49% 1,267,070 0.94% 3636 1500 863 3618
100 4 1.25 1,257,780 0.49% 1,269,310 1.12% 3632 1848 1233 3632
100 4 1.3 1,258,640 0.48% 1,274,070 1.27% 3635 2301 1329 3749
100 4 1.35 1,259,500 0.47% 1,275,410 1.22% 3633 3106 1607 3633
100 4 1.4 1,260,370 0.46% 1,277,030 1.21% 3628 3633 1759 3613
100 4 1.45 1,261,240 0.50% 1,281,280 1.38% 3635 3641 1903 3610

17

Table 4 Performance of Exact Algorithms- 150 Nodes
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time
150 3 1 1,363,780 0.48% 1,371,000 1.48% 451 215 828 3706
150 4 1 1,362,630 0.47% 1,369,790 1.86% 1315 781 1034 4128
150 5 1 1,362,600 0.47% - - 2265 1180 1463 -
150 6 1 1,362,600 0.47% - - 3661 2292 2041 -
150 7 1 1,362,600 0.47% - - 3620 2294 2550 -
150 8 1 1,362,600 0.47% - - 3697 2583 2696 -
150 9 1 1,362,600 0.47% - - 3608 2722 2729 -
150 10 1 1,362,600 0.47% - - 3624 2845 2904 -
150 150 1 - - - - - - - -

150 4 1.05 1,363,630 0.50% 1,368,280 1.60% 1919 1044 1109 3610
150 4 1.1 1,364,640 0.47% 1,369,450 1.41% 2727 1328 1240 4110
150 4 1.15 1,365,640 0.48% 1,372,880 1.62% 3671 1731 1474 4257
150 4 1.2 1,366,650 0.49% 1,382,480 2.38% 3629 2650 1809 4076
150 4 1.25 1,367,660 0.49% 1,385,280 2.38% 3663 3148 2422 4330
150 4 1.3 1,368,670 0.49% 1,383,290 2.40% 3670 3629 3319 4036
150 4 1.35 1,369,680 0.51% 1,392,260 2.97% 3673 3638 3618 4124
150 4 1.4 1,370,690 0.59% 1,395,780 3.27% 3606 3636 3619 4754
150 4 1.45 1,371,710 0.66% 1,400,550 4.13% 3679 3624 3621 3730

Index Nodes LB UB Gap CPU Time
1 100 56005 59104 0.055 1
2 100 54119 57506 0.063 0
3 100 57061 60381 0.058 1
4 100 59160 62091 0.050 1
5 100 51212 54949 0.073 1

6 200 79185 82525 0.042 6
7 200 82317 85734 0.042 5
8 200 82458 85961 0.042 5
9 200 79602 82822 0.040 5
10 200 75862 79467 0.048 9

11 300 99306 102391 0.031 14
12 300 97632 101517 0.040 14
13 300 100576 103351 0.028 21
14 300 100142 103767 0.036 16
15 300 97933 101408 0.035 17

16 400 109138 112694 0.033 34
17 400 107013 109946 0.027 231
18 400 115546 118974 0.030 99
19 400 111601 115729 0.037 294
20 400 109719 113261 0.032 177

21 500 117043 121380 0.037 238
22 500 122883 126744 0.031 77
23 500 124377 128559 0.034 1821
24 500 119575 123328 0.031 351
25 500 122169 125422 0.027 90

26 600 130941 137923 0.053 970
27 600 130296 137564 0.056 1602
28 600 126871 129713 0.022 1047
29 600 130393 134152 0.029 318
30 600 138171 141906 0.027 279

Table 5 Performance of Heuristic Algorithm

18

19

5. Conclusions

In this paper we developed efficient exact and approximate algorithms to solve Reliable

Facility Location models with non homogenous failure probabilities. Both approaches are

based on finding successive lower and upper bounds. The upper bound is improved using a

neighborhood search algorithm performed on the location set solution of RMIP , and the

lower bound is improved by resolving RMIP with added cuts, which exclude the location

sets examined in the neighborhood search from the feasible region. Given the computational

results in Section 4, the exact approach is proven to outperform the Lagrangian Relaxation

algorithm of Cui et al. (2010) in computational time and solution quality. The approximate

algorithm developed also worked very well and was able to solve extremely large problems

of up to 600 nodes in a reasonable amount of time and solution quality.

Our findings also bring up new questions for future research. First, we plan to introduce

capacity limits into the model, as opposed to the uncapaciated case in this study. Although

when facility capacities are given parameters, the complexity of the models and the solution

algorithms will not significantly increase, it is also possible to introduce capacity levels for

each facility as decision variables, at a certain reservation cost, and let the system determine

those levels. Second, only static decision rules are considered in this study, ignoring the

duration and the frequency of the facility disruptions. Incorporating these factors into our

model will allow us to examine optimal decision rules in a dynamic environment. Finally, we

would explore other applications of the reliability model, especially in the field of integrated

supply chain design.

References
Aboolian, R., O. Berman, Z. Drezner. 2008. Location and allocation of service units on a congested network.

IIE Transactions 40 422–433.

Aboolian, R., O. Berman, Z. Drezner. 2009a. Multiple server center location problem. Annals of Operations

Research 167.

Aboolian, R., O. Berman, D. Krass. 2010. Profit maximizing service system design with congestion and

elastic demand. Working paper, California State university san marcos.

Aboolian, R., Y. Sun, G.J. Koehler. 2009b. A location-allocation problem for a web services provider in a

competitive market. Eur. J. Oper. Res. 194 64–77.

Ball, M.O., F.L. Lin. 1993. A reliability model applied to emergency service vehicle location. Oper. Res. 41

18–36.

20

Batta, R., J.M. Dolan, N.N. Krishnamurthy. 1989. The maximal expected covering location problem: Revis-

ited. Transportation Sci. 23 277.

Beasley, J.E. 1990. Or-library: distributing test problems by electronic mail. Journal of the Operational

Research Society 41 1069–1072.

Berman, O., D. Krass, M.B.C. Menezes. 2007. Facility reliability issues in network p-median problems:

Strategic centralization and co-location effects. Oper. Res. 55 332.

Byrka, J., A. Srinivasan, C. Swamy. 2010. Fault tolerant facility location: A randomized dependent lp-

rounding algorithm. IPCO .

Charikar, M., S. Khuller, D. Mount, G. Narasimhan. 2001. Algorithms for facility location problems with

outliers. Proceedings of Symposium on Discrete Algorithms .

Chechik, S., D. Peleg. 2010. Robust fault tolerant uncapacitated facility location. Proceedings of Symposium

on Theoretical Aspects of Computer Science .

Cornuejols, G., M. L. Fisher, G. L. Nemhauser. 1977. Location of bank accounts to optimize float: An

analytic study of exact and approximate algorithms. Management Sci. 23 789–810.

Cui, T., Y. Ouyang, Z.J. Shen. 2010. Reliable facility location under the risk of disruptions. Oper. Res. 58

998–1011.

Daskin, M.S. 1982. Application of an expected covering model to emergency medical service system design.

Decision Anal. 13 416–439.

Daskin, M.S. 1983. Maximum expected covering location model: Formulation, properties and heuristic

solution. Transportation Sci. 17 48–70.

Daskin, M.S., K. Hogan, C. ReVelle. 1988. Integration of multiple, excess, backup, and expected covering

models. Environment and Planning B 15 15–35.

Geoffrion, A.M. 1974. Lagrangean relaxation for integer programming. Mathematical Programming Study 2.

Ghosh, D. 2003. Neighborhood search heuristics for the uncapacitated facility location problem. Eur. J.

Oper. Res. 150.

Guha, S., A. Meyeson, K. Munagala. 2003. A constant factor approximation algorithm for the fault-tolerant

facility location problem. Journal of Algorithms 48 429–440.

Lim, M., M.S. Daskin, S. Chopra, A. Bassamboo. 2009. Managing risks of facility disruptions. Working

paper, northwestern university.

Sahin, G., H. Sural. 2007. A review of hierarchical facility location models. Computers and Operations

Research 34 2310–2331.

Snyder, L.V., M.S. Daskin. 2005. Reliability models for facility location: The expected failure cost case.

Transportation Sci. 39 400–416.

21

Snyder, L.V., M.S. Daskin. 2006. Stochastic p-robust location problems. IIE Transactions 38 971–985.

Swamy, C., D. B. Shmoys. 2003. Fault tolerant facility location. Proceedings of Symposium on Discrete

Algorithms .

Yan, L., M. Chrobak. 2011. Approximation algorithms for the fault-folerant facility placement problem.

Information Processing Letters 111 545–549.

Z.-J.M.Shen, L.R. Zhan, J. Zhang. 2011. The reliable facility location problem: Formulations, heuristics, and

approximation algorithms. INFORMS Journal of Computing 23 470–482.

	Structure Bookmarks
	An Eﬃcient Approach for Solving Reliable Facility Location Models
	1. Introduction
	2. Formulation
	3. Algorithms for RUF LP
	3.1. A Lower Bound for RUF LP
	3.2. An Approximate Approach for RUF LP
	3.3. An Exact Approach for RUF LP
	4. Computational Results
	5. Conclusions
	References

