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We consider reliable facility location models in which facilities are subject to unexpected failures and cus-

tomers may be re-assigned to facilities other than their regular facilities. The objective is to minimize the 

total expected costs in normal and failure scenarios. We allow facilities to have different failure rates and do 

not limit the number of facilities that might be assigned to a customer. Lower bounds for Reliable Unca-

pacitated Fixed-charge Location Problem (RUFLP) are derived and used to introduce a class of efficient 

algorithms for solving the RUFLP problem. 

1. Introduction 

Consider a supply network design problem in which the facilities, once opened, are subject 

to unexpected failures, and its customers may have to be served by facilities further than 

their preferred locations. Such situations are commonly seen in practice, where the facility 

failures may be originated from natural disasters, labor actions, or terrorist attacks. This 

brings up the need to design and operate reliable supply chains that are resilient to all 

sorts of disruptions. 

Risk of failure at each facility is specified by an individual and independent failure 

probability inherent to that facility. To hedge against failures within a supply network, 

each customer is assigned to multiple facilities, ordered by levels. The lowest level facility 

assigned to a customer is the primary facility to serve that customer so long as it has not 

failed and remains operational. A higher level facility assigned to a customer works as a 

backup facility and serves that customer only if all facilities at lower levels have failed. At 

1 

mailto:shen@ieor.berkeley.edu
mailto:tingting@ieor.berkeley.edu
mailto:raboolia@csusm.edu


2 

the rare occasion in which all facilities assigned to a customer have failed, a penalty cost is 

incurred. The penalty cost can be taken as lost sales, loss of goodwill, or the cost to serve 

the customer at a competitor’s facility. 

In this paper, we study the reliable version of the uncapacitated fixed-charge location 

problem (UF LP ), but our model can be easily extended to address other facility location 

problems. Here, the objective is to minimize the sum of fixed location costs, the expected 

transportation costs (at all levels), and the expected penalty costs. This problem will be 

referred to as the reliable uncapacitated fixed-charge location problem (RUF LP ). 

When compared with cost minimizing supply network design, the reliable facility net-

works, in general, tend to require more facilities for backup solutions. While adding facilities 

increases the system’s overall fixed cost, it helps to hedge against the excessive transporta-

tion and penalty costs in case of failures within the network. 

Note that our problem should not be confused with the “k-level facility location prob-

lem”, where each customer must be served by a sequence of k different kinds of facilities 

located in k levels of hierarchy (see Sahin and Sural (2007)). 

Our work is related to the emerging literature of facility location under uncertainty. Some 

of the earlier literature focuses on demand uncertainty, motivated by facility congestion 

in emergency service systems. This includes Daskin (1982, 1983), Batta et al. (1989), Ball 

and Lin (1993) among others. Also see Daskin et al. (1988) for a survey of covering models 

under demand uncertainty. 

Snyder and Daskin (2005) studied the facility reliability issues with a different motiva-

tion, where uncertainty comes from the supply side, or more specifically, the disastrous 

facility disruptions. In Snyder and Daskin (2005), the reliability models of UF LP and the 

P-median problem were introduced and a multi-objective formulation was used to demon-

strate trade off between the cost and reliability. Assuming that all facilities have identical 

failure probability, the authors formulated the problem as a linear mixed integer program, 

and employed Lagrangian relaxation for efficient solutions. The uniform failure probabil-

ity assumption is also taken in other related papers on disruption management, including 

Snyder and Daskin (2006) and Lim et al. (2009). 

Facility location in context of facility failure has also been studied in the ”fault-tolerant 

facility location problem” literature. In this problem, to hedge against facility failures, each 

demand point is supposed to be assigned to a certain number of distinct facilities, but unlike 
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RUF LP, the expected transportation cost for the network is independent from the risk of 

failure in each facility. There are many papers in ”fault-tolerant facility location problem” 

literature, which offer approximate solution approaches. These include Guha et al. (2003), 

Byrka et al. (2010), Swamy and Shmoys (2003), Yan and Chrobak (2011), and Chechik 

and Peleg (2010) among others. Facility location in the context of incurring a penalty cost 

when a customer is not served has also been studied in the ”facility location problem with 

outliers”. See Charikar et al. (2001) for approximate approaches for this problem. 

Most recently, Z.-J.M.Shen et al. (2011), Berman et al. (2007), Cui et al. (2010) relax 

the assumption of identical failure probabilities. Z.-J.M.Shen et al. (2011) formulated the 

reliable UF LP problem as a nonlinear mixed integer program and provided several heuris-

tic solution algorithms. Berman et al. (2007) focused on asymptotic properties of the 

optimal solutions, along with heuristic algorithms with bounds on the worst-case perfor-

mance. Cui et al. (2010) is the first to provide exact solutions for the RUF LP problem 

with site-dependent failure probabilities, in which the problem is formulated as a linear 

mixed integer program and solved using Lagrangian relaxation. Lagrangian relaxation was 

originally proposed for the UF LP by Geoffrion (1974) and for the P-median problem by 

Cornuejols et al. (1977). The Lagrangian relaxation algorithm in Cui et al. (2010) is effi-

cient when the maximum number of facilities assigned to a customer is relatively small. 

However, for a large number of facilities assigned to a customer, the Lagrangian process 

fails to solve even moderate sized problem instances within a reasonable time frame. 

Our paper can be taken as an extension of Cui et al. (2010), where we do not limit the 

number of facilities assigned to a customer. Using a novel approach, which is combination of 

neighborhood search and cutting plane process, our algorithm outperforms Cui et al. (2010) 

in both execution time and solution quality, especially when large number of facilities are 

allowed to be assigned to a customer. Our algorithm can also work as a heuristic, which 

can solve extremely large problem instances. 

Local search heuristics have been used to solve facility location problems (e.g. see Ghosh 

(2003) and Aboolian et al. (2009a)), but even though they are proven to be very efficient 

in terms of computation time and solution quality, they fail to guarantee the exactness of 

the solution. In this paper, we integrate a local search method with a cutting plane process 

to find the optimal solution for RUF LP in a very efficient manner. A similar cutting 

plane process were previously used in Aboolian et al. (2008), Aboolian et al. (2009b) and 
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Aboolian et al. (2010), but to the best of our knowledge, this is the first paper to use a 

combination of a neighborhood search and a cutting plane process to solve a non-linear 

integer program, and we believe that this exact solution approach is quite novel. We also 

believe that this approach can be applied to many other facility location problems which 

can be modeled as non-linear integer programs. 

The remainder of the paper is organized as follows. We introduce the formulation of the 

RUF LP in Section 2, and describe solution algorithms for RUF LP in Section 3. Section 

3.1 introduces a linear reformulation that provides a lower bound, Section 3.2 proposes an 

approximate solution, and Section 3.3 discusses an exact algorithm. We then discuss our 

numerical experiment design and computational results in Section 4. Finally we provide 

concluding remarks in Section 5. 

2. Formulation 

Let N(|N | = n) be the set of customer demand aggregation points and M(|M | = m) be 

the set of candidate locations for the facilities. We denote demand rate at node i as λi for 

each i ∈ N , the fixed cost to locate a facility at node j as fj for each j ∈ M . Let cij be the 

shipping cost of one unit of demand from a facility located at node j to the customers at 

node i. We model facility disruptions as independent events, happening at location j ∈ M 

with probability 0 ≤ qj < 1. We will use S ⊂ M to denote the set of facilities selected. If a 

facility is located at site j, we call it facility j ∈ S. 

To hedge against disruption risk, each customer can be assigned and served by any 

open facility. A penalty cost φi is incurred for each unit of unmet demand due to facility 

failures, which can be taken as the lost of good will, or the cost to serve the customers at 

a competitor’s facility. Although each customer can be assigned and served at any open 

facility, it makes no sense to serve a customer at a facility where its unit shipping cost is 

higher than the penalty cost. Let S[i] = {k | φi ≥ cik, k ∈ S} and si = |S[i]|. Define i[r, S] 

∈ S (r = 1, 2, .., si) to be the facility in S that serves customers at i ∈ N at level r. Define 

Ci(S) to be the expected sum of shipping cost and lost sales cost of one unit of demand 

to customers at i ∈ N. Then, it can be verified that 

� � siX r−1Y ! � � siY ! 
Ci(S) = 1 − qi[1,S] ci,i[1,S] + qi[t,S] 1 − qi[r,S] ci,i[r,S] + qi[t,S] φi. (1) 

r=2 t=1 t=1 
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Define F (S) to be the total fixed location and shipping cost given location set S, such 

that X X 
F (S) = fj + λiCi(S). 

j∈S i∈N 

(2) 

The Reliable Uncapacitated Fixed-charge Location problem (RUF LP ) is formulated 

as: 

min{F (S)}. 
S⊆M 

Define M [i] = {j | φi > cij , j ∈ M} to be the set of facilities in M whose unit shipping 

cost to customers at i ∈ N is lower than the unit lost sales cost φi. Let mi = |M [i]|. To 

include the unit lost sales cost φi in the cost calculations, we use a ”dummy” facility, 

denoted by J , that has a fixed cost fJ = 0, a failure probability qJ = 0 and a transportation 

cost ciJ = φi for customer i ∈ N . A ”level-r” assignment for a customer i ∈ N will serve 

her if and only if all of her assigned facilities at levels 1, ..., r − 1 have failed. To capture 

the possibility of failure for all regular facilities, at the optimal solution, customer i ∈ N at 

the last level must be assigned to the dummy facility J. Denote xj to be a binary variable 

which is one if we open a facility at j and zero otherwise. Denote yijr to be a binary 

variable which is one if facility j is assigned to customers at i at level r and zero otherwise. 

Finally, let Pijryijr be the probability that facility j serves customers i at level r given her 

other assigned facilities at levels 0 to r − 1. Note that Pij1yij1, the probability that facility 

j serves customer i at level 1, is just the probability that j remains open, so Pij1 = 1 − qj . P P qk For 2 ≤ r ≤ mi + 1, we have Pij2 = (1 − qj ) k∈M [i] qkyi,k,1 = (1 − qj ) k∈M [i] 1−qk 
Pi,k,1yi,k,1, P P P qk Pij3 = (1 − qj ) qkyi,k,1 qkyi,l,2 = (1 − qj ) Pi,k,2yi,k,2, and continuing k∈M [i] l∈M [i] k∈M [i] 1−qk P 

the same pattern, we obtain Pijr = (1 − qj ) 
qk Pi,k,r−1yi,k,r−1. Given the above k∈M [i] 1−qk 

definitions the reliable uncapacitated facility location problem RUF LP can be rewritten 

as: 

mi+1 X X X X 
(RUFLP) Minimize Z = fj xj + λicij Pijryijr (3) 

j∈M i∈N j∈M [i]∪{J} r=1 



Pij1 = 1 − qj ∀i ∈ N, j ∈ M [i] ∪{J}, (7) X qk 
Pijr = (1 − qj ) Pi,k,r−1yi,k,r−1 (8) 

1 − qk 
k∈M [i] 
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miX 
s.t. yijr ≤ xj ∀i ∈ N, j ∈ M [i], 

r=1 

(4) 

mi+1X 
yiJr = 1 ∀i ∈ N, (5) 

r=1 
r−1 X X 

yijr + yiJg = 1 ∀i ∈ N, 1 ≤ r ≤ mi +1, (6)
j∈M [i]∪{J} g=1 

 

∀i ∈ N, j ∈ M [i] ∪{J}, 2 ≤ r ≤ mi +1, 

xj , yijr ∈ {0, 1} ∀i ∈ N, j ∈ M [i] ∪{J}, 1 ≤ r ≤ mi +1. (9) 

The objective function (3) is the sum of the expected transportation costs and the fixed 

costs. Constraints (4) ensure that customers are only assigned to the open facilities, while 

constraints (5) enforce each customer has to be assigned to the dummy facility at a certain 

level. Constraints (6) require that for each customer i and each level r, either i is assigned 

to a facility at level r or it is assigned to the dummy facility J at certain level g < r (taking P r−1 = 0 if r = 1). Constraints (7) and (8) are the ”transitional probability” equations. g=1 yiJg 

Note that constraints (6) imply that yi,k,r−1 can equal to 1 for at most one k = J , which 

guarantees the correctness of the transitional probabilities. 

Note that RUF LP is a nonlinear mixed integer program which is large-scale in nature. 

To efficiently solve this problem Cui et al. (2010) proposed a linearized formulation and 

solved it using Lagrangian relaxation. The difference between our model and the model 

developed in Cui et al. (2010) is that in Cui et al. (2010) it is assumed that each customer 

can be assigned and served by up to R ≥ 1 facilities, while in our model R, the maximum 

number of facilities assigned to a customer, is not limited to a certain fixed value and 

customers are able to be assigned at all open facilities with a shipping cost less than the 

penalty cost, which in fact makes the model more realistic. When R is fixed the above 

model can be rewritten by replacing min{R, mi} in place of mi for i ∈ N. 

Here we develop a solution approach which finds an optimal solution more efficiently 

regardless of whether R is fixed or not. To do this we first simplify the customer assignment 

assumption such that customers are assigned to open facilities level by level in an increasing 



⎪
⎪
⎪ r−1Q ⎨ ( q[t])(1 − qj ) j ∈ M, 

t=1 Qjr = ⎪ r−1Q ⎩ q[t] j = J. 
t=1 
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order of shipping cost. This might not be the optimal customer assignment, but later we 

show that even with this assumption our solution approach is frequently able to come up 

with better solutions and with less amount of time compared to the Lagrangian relaxation 

algorithm developed in Cui et al. (2010). We also develop an efficient approximate approach 

which is capable of solving large problem instances. 

3. Algorithms for RUF LP 

Theexact and the approximate solution approaches developed in this Section are based on 

obtaining efficient lower and upper bounds for RUF LP . In Section 3.1, we develop a mixed 

integer program called RMIP , whose optimal objective function value provides a lower 

bound for RUF LP . In Section 3.2, we present a heuristic which is based on a neighborhood 

search over the location set from the solution to RMIP . The exact approach presented in 

3.3 is based on successive lower and upper bound improvements for RUF LP . 

3.1. A Lower Bound for RUF LP 

Let q[1] ≤ q[2] ≤ ... ≤ q[m−1] ≤ q[m] be an ordering of failure probabilities in M . Define ⎧ 

Note that Qjr is an optimistic version of Pijr ∀i ∈ N and in the following result, we 

demonstrate that Qjr is a lower bound for Pijr ∀i ∈ N. 

Lemma 1. Consider a location set S ⊆ M, and for i ∈ N, denote S[i] = {k | φi ≥ cik, k ∈ 

S} and si = |S[i]|. We have Qjr ≤ Pijr ∀i ∈ N, j ∈ S ∪{J}, 1 ≤ r ≤ si +1. 

Proof: Let q[1] ≤ q[2] ≤ ... ≤ q[si−1] ≤ q[si] and q[1] ≤ q[2] ≤ ... ≤ q[m−1] ≤ q[m] be an ordering 

of failure probabilities in S and M, respectively. Then by definition, we have q[t] ≤ q[t] for 
r−1 r−1 Q Q 

i ∈ N, t = 1, 2, ..., si, which results in q[t] ≤ q[t] for i ∈ N, r = 1, 2, .., si + 1. Recall 
t=1 t=1 

the definition of i[r, S] ∈ S (1 ≤ r ≤ si + 1) as the facility in S that serves customers at 
r−1 r−1 Q Q 

i ∈ N at level r. Then, by definition, we have q[t] ≤ qi[t,S] for i ∈ N, r = 1, 2, .., si +1. 
t=1 t=1 

r−1 r−1 Q Q 
Therefore, we conclude q[t] ≤ qi[t,S] for i ∈ N, r = 1, 2, .., si +1. We note that, for i ∈ N, 

t=1 t=1 
r = si + 1 (j = J). This is enough to prove QJ(si+1) ≤ PiJ(si+1) and for i ∈ N, 1 ≤ r ≤ si ( 

r−1 r−1 Q Q 
j = i[r, S]), we multiply each side of the inequity q[t] ≤ qi[t,S] by (1 − qj ), to obtain 

t=1 t=1 
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r−1 r−1 Q Q 
(1 − qj ) q[t] ≤ (1 − qj ) qi[t,S]. Therefore, Qjr ≤ Pijr ∀i ∈ N, j ∈ S, 1 ≤ r ≤ si. Thus, the 

t=1 t=1 
proof is complete. 

By replacing Pijr with fixed failure probabilities Qjr ∀i ∈ N, j ∈ M [i] ∪ {J}, 1 ≤ r ≤ 

mi +1 in RUF LP will result the following mixed integer program which we call RMIP : 

mi+1 X X X X 
Minimize Z = fj xj + λicij Qjryijr 

j∈M i∈N j∈M [i]∪{J} r=1 

s.t.(4) − (6) 

xj , yijr ∈ {0, 1} ∀i ∈ N, j ∈ M [i] ∪{J}, 1 ≤ r ≤ mi +1. 

(RMIP) 

∗ ∗ ∗ ∗ Theorem 1. Define (x ) and ZRMIP (x ) to be the optimal solu-RMIP , yRMIP RMIP , yRMIP 

tion and the optimal value of the objective function of RMIP, respectively. Also let 
∗ ∗ ∗ ∗ (x ) be the optimal solution and the optimal RUF LP , yRUF LP ) and ZRUF LP (xRUF LP , yRUF LP 

value of the objective function of RUF LP, respectively. ZRMIP (x ∗ ∗ ) is a lower RMIP , yRMIP 

∗ ∗ ), i.e. bound for ZRUF LP (xRUF LP , yRUF LP 

∗ ∗ ∗ ∗ ). (10) ZRMIP (xRMIP , yRMIP ) ≤ ZRUF LP (xRUF LP , yRUF LP 

Proof: We note that by construction, (x ∗ ∗ )−the optimal solution of RUF LP, RUF LP , yRUF LP 

is a feasible solution for RMIP and from Lemma 1, we obtain ZRMIP (x ∗ ∗ ) ≤ RUF LP , yRUF LP 

∗ ∗ ∗ ∗ ). Also since (x ) is the optimal solution of RMIP, ZRUF LP (xRUF LP , yRUFLP RMIP , yRMIP 

∗ ∗ ∗ ∗ we have ). Therefore, we conclude ZRMIP (xRMIP , yRMIP ) ≤ ZRMIP (xRUF LP , yRUF LP 

∗ ∗ ∗ ∗ ), which completes the proof. ZRMIP (xRMIP , yRMIP ) ≤ ZRUF LP (xRUF LP , yRUF LP 

We note that RMIP is equivalent to its relaxation without the integrality constraints 

on y. This will make it easier to solve RMIP . 

3.2. An Approximate Approach for RUF LP 

We note that for R = 1 and ϕi =+∞ ∀i ∈ N, RUFLP reduces to classical uncapacitated 

facility location problem (UF LP ). Since UF LP is NP-hard, RUF LP is NP-hard as well. 

Thus, it is difficult to obtain good solutions for large size instances of RUF LP within a 

limited time frame. This fact motivates research on approximate approaches. The heuristic 

presented below is based on the solution to RMIP . Given Theorem 1, the objective value 

of the solution to RMIP provides a lower bound for RUF LP . We note that any feasible 



9 

location vector x including the one produced by solving RMIP generates a feasible solu-

tion to RUF LP. This is achieved by first defining the assignment vector y(x) using the 

assumption that customers are assigned to open facilities level by level in an increasing 

order of shipping cost. Then, the resulting value of ZRUF LP (x , y(x)) provides an upper 

bound for RUF LP. 

Denote Sx as the set of facility locations, which are open given location vector x. To 

find an improved upper bound, the heuristic uses a descent approach in a neighborhood 

search for Sx−the location set produced by solving RMIP . For each location set in the 

neighborhood we find its corresponding sum of shipping and fixed costs assuming customers 

are assigned to open facilities at Sx level by level in an increasing order of shipping cost. 

The neighborhood of a location set Sx and the descent approach is defined as follows. 

Nk(S), the distance-k neighborhood of S ⊆ M, is defined as 

Nk(S) = {S0 ⊆ M : |S − S 0| + |S 0 − S| ≤ k}; 

i.e. S 0 is in the distance-k neighborhood of S if the number of non-overlapping elements in 

the two sets does not exceed k. 

Once the neighborhood is well defined, the descent algorithm is straightforward: use 

the solution to RMIP as a starting subset Sx; evaluate the change in the value of the 

objective function for all the subsets in the neighborhood; if an improved subset exists in 

the neighborhood, move the search to the best vector in the neighborhood. Repeat the 

process with the new subset until no improved vector exists in the neighborhood. The last 

subset is the solution. Denote Sx, the set of facility locations under vector x, as the solution 

subset to the descent approach, and y(x) as the assignment vector where customers are 

assigned to open facilities at Sx level by level in an increasing order of shipping cost. The 

resulting value of the objective function ZRUF LP (x , y(x)) is our new upper bound and 

the solution to the descent approach x and y(x) is the solution to our heuristic. 

3.3. An Exact Approach for RUF LP 

The exact approach presented below is based on successive improvements on lower and 

upper bounds on RUF LP . In this approach, we first find initial lower and upper bounds 

for RUF LP by solving the heuristic proposed in Section 3.2. In the next step, we find an 

improved lower bound by solving an improved RMIP. An improved RMIP is RMIP with 
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additional cuts which exclude the pre-examined location vectors from the feasible region 

(at the first step RMIP is solved without any cuts). After finding an improved lower 

bound, the location set produced by solving the improved RMIP is used as a starting 

location set in a neighborhood search to find an improved upper bound using the descent 

approach explained in Section 3.2. 

To complete this step, for each starting location set used in the descent approach we 

introduce a cut to RMIP to exclude all of the feasible location vectors which are in its 

neighborhood and have already been examined. Denote Sxb to be a starting location set in 

the descent approach, then the following constraint will ensure that all location vectors in 

the neighborhood of xb (and have already been examined) are infeasible: X X 
xj − xj ≤ |Sxb| − k − 1. 

j∈Sxb j∈M−Sxb 

(11) 

We note that (11) does not make any location vector infeasible unless they are in the 

neighborhood of xb. The addition of this cut to the improved RMIP will help to improve 

the lower bound in the next steps. 

The procedure continues until the gap between the current lower bound and upper bound 

is within a precision level so that it is evident that the unexamined location sets are unable 

to improve the current upper bound. 

Now consider Problem RMIP (l) as follows: 

mi+1 X X X X 
MinimizeZRMIP (l) = fj xj + λicij Pjryijr 

j∈M i∈N j∈M [i]∪{J} r=1 

s.t.(4) − (6) X X 
xj − xj ≤ |S| − k − 1, 

j∈S j∈M\S 

∀S ∈ ARMIP (t), t = 1, 2, .., l − 1, (12) 

xj ∈ {0, 1} ∀ j ∈ M. (13) 

Here ARMIP (t) is the set of all starting subsets in the descent approach, which starts the 

search using the location set found from the solution of RMIP (t − 1). Denote x ∗ 
RMIP (t) 

as the optimal location vector for RMIP (t), and Sx ∗ as the set of facility locations, 
RM IP (t) 

which are open given location vector xRMIP 
∗ 

(t). Note that to solve RMIP (l), we need to 
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solve RMIP (t) for t = 1, 2, .., l − 1. Note that RMIP (1) does not include constraint (12) 

and is the original RMIP by definition. Also note that constraints (12) exclude all of the 

location vectors that have already been examined without excluding unexamined location 

vectors. 

Denote x(t) to be the location vector solution to the descent approach, which starts its 

search from location set Sx ∗ . Denote y(x(t)) to be the customer assignment vector, 
RM IP (t) 

where customers are assigned to open facilities in x(t) level by level in an increasing order 

of shipping cost. Denote ZRUF LP (x(t) , y(x(t))) as the objective function value of RUF LP 

given x(t) , y(x(t)). Then UB(t) = min{UB(t−1),ZRUF LP (x(t) , y(x(t)))} is the improved 

upper bound after solving RMIP (t) and performing descent approach which starts the 

search from location set Sx ∗ . It is easy to verify that UB(t) is non-increasing in t. 
RMIP (t) 

Denote LB(t) = Z∗ as the improved lower bound after solving RMIP (t), where RMIP (t) 

Z∗ is the optimal value of the objective function in RMIP (t). From the formulation RMIP (t) 

of RMIP (l), we have that LB(t) is non-decreasing in t. 

Assume a specified precision level � ≥ 0, then the search and cut algorithm is described 

as follows: 

The Search and Cut Algorithm 

Step 0: Set l = 1, Sx ∗ = {}, Lower Bound = 0 and Upper Bound = ∞. 

Step 1: Solve RMIP (l). If a feasible solution exists then find x ∗ −the optimal loca-RMIP (l) 

tion solution vector in RMIP (l), Sx ∗ −the set of facility locations under vector 
RM IP (l) 

x ∗ y(x ∗ )−the customer assignment vector, where customers are assigned to RMIP (l), RMIP (l) 

open facilities in x ∗ level by level in an increasing order of shipping cost, Z∗ −the RMIP (l) RMIP (l) 

value of the objective function in RMIP (l), and set Lower Bound(l) = Z∗ and RMIP (l) 

proceed to Step 2. Else go to Step 5. 

Step 2: If Lower Bound(l) > Lower Bound, let Lower Bound = Lower Bound(l). 

If Upper Bound−Lower Bound < �, go to Step 5. Otherwise, go to step 3. 
Lower Bound 

Step 3: Perform the descent approach which starts the search from location set Sx ∗ 
RM IP (l) 

and find ARMIP (l)−the set of all the starting subsets in the descent approach; x(l), 

y(x(l))−the location and customer assignment solution vectors of the best found solu-

tion; Sx(l)−the set of facility locations under vector x(l); and their corresponding objective 

function value ZRUF LP (x(l) , y(x(l))). Set Upper Bound(l) =ZRUF LP (x(l) , y(x(l))). 
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Step 4: If Upper Bound(l) < Upper Bound, then Upper Bound = Upper Bound(l), x ∗ = 

x(l), y(x ∗) = y(x(l)) and Sx ∗ = Sx(l). Set l = l +1 and go to Step 1. 

Step 5: Stop. The solution to Search and Cut Algorithm is as follows: The location set is 

Sx ∗ , location vector is x ∗ , customer assignment vector is y(x ∗), and the objective function 

value Z∗ = Upper Bound. 

The algorithm terminates in either Step 1 when all potential location vectors have been 

examined or Step 5 when the gap between the current upper and lower bound falls below 

the specified precision level. It is obvious that the algorithm terminates in a finite number of 

steps. Note that since Lower Bound(l)= Z∗ 
RMIP (l), then Lower Bound(l) in the algorithm 

is non-decreasing in l. Since at iteration l, Upper Bound represents the value of the best-

found feasible solution, and Lower Bound is a valid lower bound on all unexamined location 

vectors, when � = 0 the algorithm is guaranteed to find the optimal solution for RUF LP 

in finite number of steps. 

4. Computational Results 

We tested our exact and heuristic algorithms on two different types of data. The exact 

algorithm is tested on four data sets with 50, 75, 100, and 150 nodes. These data sets 

are based on 1990 census data, with each node representing one of the 50, 75, 100 or 150 

largest cities in the US. Demands λi are set to the city population divided by 104 , while 

the fixed cost fj is set to the median home value in the city. The transportation cost cij 

is calculated using cij = dij , where dij is the great circle distance between node i and j. 

We note that the great circle distance between two nodes is the shortest distance of those 

nodes on the surface of a sphere. 

In all four data sets, the set of facilities M is equal to the set of customers N (each 

demand point is a potential facility site). Penalty cost φi is set to 10,000 for each customer, 

and the failure probabilities qj are calculated using qj = β +0.1αe−dj /400 , where β = 0.01, 

and dj is the great cycle distance (in miles) between node j and New Orleans, LA. For each 

data set, we fix α = 1.0, and vary the maximum assignment level R from 3 to 10; then set at 

R = m. We also fix R = 4 and vary α from 1.05 to 1.45 at 0.05 increment. The search-and-

cut procedure is executed to a precision of � = 0.005, or up to 3600 seconds in CPU time in 

the exact algorithm, and executed for a single iteration in the heuristic algorithm. For each 

“real” test instance, we report the computational times of three different search-and-cut 
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algorithms, based on distance-k neighborhood, where k ∈ {1, 2, 3}. As a comparison to our 

exact algorithm, we also test the Lagrangian Relaxation algorithm of Cui et al. (2010). To 

simplify presentation, from now on we will refer the Lagrangian Relaxation algorithm of 

Cui et al. (2010) as the “LR method”. 

The heuristic algorithm, which is the approximate approach described in Section 3.2, is 

based on distance-2 neighborhood (k = 2) and in order to show its efficiency, it is tested on 

a larger problem instances than the ones used for the exact approach. These instances are 

based on data sets with dense networks with up to 600 nodes given in Beasley (1990). The 

transportation cost cij is calculated using cij = dij , where dij is the shortest path distance 

between node i and j. Demands and fixed costs are randomly generated from uniform 

distributions between 10 and 110, and between 1,000 and 11,000, respectively. Penalty cost 

is set to be 1,000 for each customer, and failure probabilities are randomly generated from 

a uniform distribution between 0.01 and 0.11. 

Our algorithms are coded in C++ and tested using an Intel Pentium 4 3.20GHz pro-

cessor with 1.0 GB RAM under Linux and CPLEX package, version 10 was used to solve 

RIMP (l). Full set of test results are available from the authors. The test results for the 

exact algorithm are summarized in Tables 1 - 4. The first three columns in Tables 1 - 4 

provide the values of the parameter settings. The next four columns provide information 

about the solution quality: the upper bound and the gap between the lower bound and the 

upper bound for Search and Cut Algorithm and LR method. The last four columns provide 

information about computational time of three different Search-and-Cut algorithms, based 

on distance-k neighborhood k ∈ {1, 2, 3} and LR method. We note that the solution quality 

of all three Search-and-Cut algorithms remains the same that is why we only report one 

upper bound and gap for search-and-cut algorithm. The first nine rows in Tables 1 - 4 test 

the effect of maximum assignment level R, on the solution quality and computational time 

of the exact methods and the last nine rows test the effect of α, on the solution quality 

and computational time of the exact methods. 

The following conclusions can be drawn from Tables 1-4: 

1- The exact approach (Search and Cut Algorithm) was able to solve most of the 

instances, except a few larger instances. 

2- In all cases where the Search and Cut Algorithm could not find the solution within 

the 3600 seconds limit, the solution found by the algorithm still outperforms the solution 

found by the method used in LR method. 
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3- In all cases (except one) where both algorithms found the solution, the Search and 

Cut Algorithm outperforms the LR method in computational time. 

3-1- For instances with 50 nodes the Search and Cut Algorithm, based on distance-3 

neighborhood on average found the solution almost 15 times faster than LR method. 

3-2- For instances with 75 nodes the Search and Cut Algorithm, based on distance-3 

neighborhood on average found the solution almost 19 times faster than LR method. 

3-3- For instances with 100 and 150 nodes the LR method could not find any 

solution, while Search and Cut Algorithm, based on distance-3 neighborhood failed to find 

the solution in only four instances. 

4- The LR method fails to find any solution when problem size is large (100 and 150 

nodes instances) or when maximum assignment level R is large. 

5- The computational time for the Search and Cut Algorithm seems to have a low 

sensitivity to the maximum assignment level R, while it is sensitive to α, such that an 

increase of 25% in α on average will increase the computational time of the Search and 

Cut Algorithm by almost 400%. 

6- The computational time for the LR method is sensitive to α and is very sensitive to 

the maximum assignment level R. 

7- Although the Search and Cut Algorithm, based on distance-3 neighborhood is on 

average almost 30% faster than the Search and Cut Algorithm, based on distance-2 neigh-

borhood, it fails to outperform when problem size is large (150 nodes instances) and α = 1. 

8- The computational time for the Search and Cut Algorithm increases exponentially as 

the number of nodes increases. 

From the computational experiments we conclude that the Search and Cut Algorithm 

outperforms LR method in computational time and solution quality. 

The test results for the heuristic algorithm are summarized in Table 5. The first two 

columns in Table 5 provide the instance number and number of nodes in each instance. 

The next three columns provide information about the solution quality: the upper and 

lower bounds and the gap between the lower bound and the upper bound found by the 

heuristic. The last column provide information about computational time by the heuristic. 

As can be seen from Table 5, the heuristic algorithm proposed in Section 3.2 is able to 

solve extremely large problems of up to 600 nodes in a reasonable amount of time and 

solution quality. 
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Table 1 Performance of Exact Algorithms- 50 Nodes 
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time 
50 
50 
50 
50 
50 
50 
50 
50 
50 

50 
50 
50 
50 
50 
50 
50 
50 
50 

3 
4 
5 
6 
7 
8 
9 
10 
50 

4 
4 
4 
4 
4 
4 
4 
4 
4 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1.05 
1.1 
1.15 
1.2 
1.25 
1.3 
1.35 
1.4 
1.45 

1,021,060 
1,020,540 
1,020,520 
1,020,520 
1,020,520 
1,020,520 
1,020,520 
1,020,520 
1,020,520 

1,021,410 
1,022,280 
1,023,160 
1,024,030 
1,024,910 
1,025,790 
1,026,670 
1,027,540 
1,028,370 

0.46% 
0.39% 
0.35% 
0.39% 
0.41% 
0.39% 
0.39% 
0.39% 
0.39% 

0.50% 
0.48% 
0.48% 
0.49% 
0.48% 
0.48% 
0.49% 
0.47% 
0.47% 

1,020,980 
1,020,540 
1,020,520 
1,020,520 
1,020,520 
1,020,520 
1,020,520 
1,020,520 

-

1,023,590 
1,026,650 
1,029,710 
1,032,640 
1,035,590 
1,038,550 
1,041,520 
1,044,510 
1,047,510 

0.48% 
0.50% 
0.41% 
0.43% 
0.45% 
0.49% 
0.44% 
0.48% 

-

0.48% 
0.46% 
0.47% 
0.49% 
0.49% 
0.49% 
0.47% 
0.46% 
0.50% 

14 
26 
28 
38 
40 
44 
43 
47 
56 

30 
39 
56 
90 
115 
174 
194 
240 
290 

9 
16 
16 
26 
27 
34 
33 
31 
38 

16 
18 
20 
30 
36 
47 
51 
61 
77 

6 
14 
12 
16 
15 
25 
20 
20 
26 

14 
14 
15 
22 
27 
34 
35 
41 
40 

23 
54 
84 
180 
273 
626 
908 
1250 
-

67 
121 
136 
133 
256 
208 
488 
313 
474 

Table 2 Performance of Exact Algorithms- 75 Nodes 
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time 
75 3 1 1,149,130 0.34% 1,149,070 0.48% 27 17 28 195 
75 4 1 1,148,590 0.46% 1,148,590 0.49% 38 26 26 273 
75 5 1 1,148,580 0.46% 1,148,580 0.47% 52 29 35 382 
75 6 1 1,148,580 0.46% 1,148,580 0.42% 95 53 52 540 
75 7 1 1,148,580 0.49% 1,148,580 0.41% 101 73 67 708 
75 8 1 1,148,580 0.46% 1,148,580 0.39% 124 89 67 2098 
75 9 1 1,148,580 0.46% 1,148,580 0.42% 134 81 74 2382 
75 10 1 1,148,580 0.46% 1,148,580 0.44% 135 81 76 2444 
75 75 1 1,148,580 0.46% - - 177 100 95 -

75 4 1.05 1,149,600 0.45% 1,152,670 0.49% 48 31 35 229 
75 4 1.1 1,150,600 0.47% 1,156,310 0.50% 60 31 35 254 
75 4 1.15 1,151,610 0.48% 1,160,000 0.49% 78 39 40 366 
75 4 1.2 1,152,610 0.50% 1,163,720 0.50% 107 52 40 621 
75 4 1.25 1,153,620 0.50% 1,167,500 0.50% 138 68 50 824 
75 4 1.3 1,154,630 0.44% 1,171,320 0.50% 181 84 56 974 
75 4 1.35 1,155,640 0.49% 1,175,190 0.50% 223 99 73 1518 
75 4 1.4 1,156,660 0.47% 1,179,110 0.50% 322 128 91 1915 
75 4 1.45 1,157,670 0.49% 1,183,090 0.50% 437 147 105 2216 
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Table 3 Performance of Exact Algorithms- 100 Nodes 
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time 
100 3 1 1,254,080 0.48% 1,253,910 0.87% 393 194 255 3612 
100 4 1 1,253,010 0.49% 1,253,010 0.76% 1662 488 358 3672 
100 5 1 1,252,990 0.49% 1,252,990 0.72% 1968 655 547 3707 
100 6 1 1,252,990 0.49% 1,254,560 1.74% 3568 1103 691 3621 
100 7 1 1,252,990 0.49% 1,252,990 1.20% 3631 1142 671 3745 
100 8 1 1,252,990 0.49% 1,253,460 3.28% 3658 1315 717 3785 
100 9 1 1,252,990 0.49% 1,254,310 5.54% 3643 1265 849 3660 
100 10 1 1,252,990 0.49% 1,253,460 3.31% 3662 1261 885 3740 
100 100 1 1,252,990 0.49% - - 3656 1476 1066 -

100 4 1.05 1,254,040 0.48% 1,256,560 0.82% 2668 738 525 3612 
100 4 1.1 1,255,060 0.46% 1,260,120 0.85% 3361 854 635 3615 
100 4 1.15 1,256,060 0.49% 1,263,280 0.87% 3630 1207 692 3664 
100 4 1.2 1,256,920 0.49% 1,267,070 0.94% 3636 1500 863 3618 
100 4 1.25 1,257,780 0.49% 1,269,310 1.12% 3632 1848 1233 3632 
100 4 1.3 1,258,640 0.48% 1,274,070 1.27% 3635 2301 1329 3749 
100 4 1.35 1,259,500 0.47% 1,275,410 1.22% 3633 3106 1607 3633 
100 4 1.4 1,260,370 0.46% 1,277,030 1.21% 3628 3633 1759 3613 
100 4 1.45 1,261,240 0.50% 1,281,280 1.38% 3635 3641 1903 3610 
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Table 4 Performance of Exact Algorithms- 150 Nodes 
Nodes R alpha SnC UB SnC Gap LR UB LR Gap SnC-1 Time SnC-2 Time SnC-3 Time LR Time 
150 3 1 1,363,780 0.48% 1,371,000 1.48% 451 215 828 3706 
150 4 1 1,362,630 0.47% 1,369,790 1.86% 1315 781 1034 4128 
150 5 1 1,362,600 0.47% - - 2265 1180 1463 -
150 6 1 1,362,600 0.47% - - 3661 2292 2041 -
150 7 1 1,362,600 0.47% - - 3620 2294 2550 -
150 8 1 1,362,600 0.47% - - 3697 2583 2696 -
150 9 1 1,362,600 0.47% - - 3608 2722 2729 -
150 10 1 1,362,600 0.47% - - 3624 2845 2904 -
150 150 1 - - - - - - - -

150 4 1.05 1,363,630 0.50% 1,368,280 1.60% 1919 1044 1109 3610 
150 4 1.1 1,364,640 0.47% 1,369,450 1.41% 2727 1328 1240 4110 
150 4 1.15 1,365,640 0.48% 1,372,880 1.62% 3671 1731 1474 4257 
150 4 1.2 1,366,650 0.49% 1,382,480 2.38% 3629 2650 1809 4076 
150 4 1.25 1,367,660 0.49% 1,385,280 2.38% 3663 3148 2422 4330 
150 4 1.3 1,368,670 0.49% 1,383,290 2.40% 3670 3629 3319 4036 
150 4 1.35 1,369,680 0.51% 1,392,260 2.97% 3673 3638 3618 4124 
150 4 1.4 1,370,690 0.59% 1,395,780 3.27% 3606 3636 3619 4754 
150 4 1.45 1,371,710 0.66% 1,400,550 4.13% 3679 3624 3621 3730 



Index Nodes LB UB Gap CPU Time 
1 100 56005 59104 0.055 1 
2 100 54119 57506 0.063 0 
3 100 57061 60381 0.058 1 
4 100 59160 62091 0.050 1 
5 100 51212 54949 0.073 1 

6 200 79185 82525 0.042 6 
7 200 82317 85734 0.042 5 
8 200 82458 85961 0.042 5 
9 200 79602 82822 0.040 5 
10 200 75862 79467 0.048 9 

11 300 99306 102391 0.031 14 
12 300 97632 101517 0.040 14 
13 300 100576 103351 0.028 21 
14 300 100142 103767 0.036 16 
15 300 97933 101408 0.035 17 

16 400 109138 112694 0.033 34 
17 400 107013 109946 0.027 231 
18 400 115546 118974 0.030 99 
19 400 111601 115729 0.037 294 
20 400 109719 113261 0.032 177 

21 500 117043 121380 0.037 238 
22 500 122883 126744 0.031 77 
23 500 124377 128559 0.034 1821 
24 500 119575 123328 0.031 351 
25 500 122169 125422 0.027 90 

26 600 130941 137923 0.053 970 
27 600 130296 137564 0.056 1602 
28 600 126871 129713 0.022 1047 
29 600 130393 134152 0.029 318 
30 600 138171 141906 0.027 279 

Table 5 Performance of Heuristic Algorithm 
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5. Conclusions 

In this paper we developed efficient exact and approximate algorithms to solve Reliable 

Facility Location models with non homogenous failure probabilities. Both approaches are 

based on finding successive lower and upper bounds. The upper bound is improved using a 

neighborhood search algorithm performed on the location set solution of RMIP , and the 

lower bound is improved by resolving RMIP with added cuts, which exclude the location 

sets examined in the neighborhood search from the feasible region. Given the computational 

results in Section 4, the exact approach is proven to outperform the Lagrangian Relaxation 

algorithm of Cui et al. (2010) in computational time and solution quality. The approximate 

algorithm developed also worked very well and was able to solve extremely large problems 

of up to 600 nodes in a reasonable amount of time and solution quality. 

Our findings also bring up new questions for future research. First, we plan to introduce 

capacity limits into the model, as opposed to the uncapaciated case in this study. Although 

when facility capacities are given parameters, the complexity of the models and the solution 

algorithms will not significantly increase, it is also possible to introduce capacity levels for 

each facility as decision variables, at a certain reservation cost, and let the system determine 

those levels. Second, only static decision rules are considered in this study, ignoring the 

duration and the frequency of the facility disruptions. Incorporating these factors into our 

model will allow us to examine optimal decision rules in a dynamic environment. Finally, we 

would explore other applications of the reliability model, especially in the field of integrated 

supply chain design. 
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