
Fast Heuristics for the Maximum Feasible
Subsystem Problem

John W. Chinneck
Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,

Ottawa, Ontario K1S 5B6, Canada
chinneck@sce.carleton.ca

Given an infeasible set of linear constraints, finding the maximum cardinality feasible
subsystem is known as the maximum feasible subsystem problem. This problem is known

to be NP-hard, but has many practical applications. This paper presents improved heuristics
for solving the maximum feasible subsystem problem that are significantly faster than the
original, but still highly accurate.
(Linear Programming; Artificial Intelligence; Heuristic; Analysis of Algorithms)

1. Introduction
When a set of linear constraints is infeasible, it is
often useful to find the maximum cardinality fea-
sible subsystem. Finding this subsystem is known
as the maximum feasible subsystem problem (MAX FS)
(Amaldi et al. 1999). Finding the maximum feasible
subsystem can also be viewed as finding the min-
imum number of linear constraints to remove such
that the retained constraints constitute a feasible sys-
tem, which is known as the minimum unsatisfied linear
relation problem (MIN ULR) (Amaldi 1994). The two
problems have complementary objective functions.
All infeasible systems have one or more irreducible

infeasible subsystems (IISs) of constraints (Chinneck
and Dravnieks 1991). An IIS has the property that it
is itself infeasible, but any proper subsystem is feasi-
ble. Finding an IIS in a large and complex linear pro-
gram is a very useful step in the diagnostic process,
so algorithms for isolating IISs have been adopted
in most major linear-programming solvers (Chinneck
1996a, 1997). Deleting at least one of its members
eliminates an IIS, hence an infeasible set of constraints
can be rendered feasible by deleting at least one mem-
ber of every IIS it contains. Finding the smallest car-
dinality set of constraints to cover all IISs is known as
the minimum-cardinality IIS set-covering problem (MIN
IIS COVER) (Chinneck 1996b).

For the purposes of this paper, max fs, min ulr,
and min iis cover are the same problem. We will use
the terms interchangeably, usually choosing the term
that is most appropriate for the particular version of
the problem at hand.
As shown by Sankaran (1993) and Chakravarti

(1994), max fs is NP-hard, as are the identical min ulr
and min iis cover. Amaldi and Kann (1995) showed
that the problem is also NP-hard for homogeneous
systems of inequalities (both strict and nonstrict) and
binary coefficients. There are many uses for solutions
to these problems. Amaldi (1994) identifies applica-
tions including computational geometry, an applica-
tion of the closed hemisphere problem in political
science, linear numeric editing, discriminant analy-
sis, and the training of neural networks for machine
learning. Chinneck (1996b) points out applications in
analyzing infeasible linear programs to provide assis-
tance to model formulators. It may be convenient to
transform other NP-hard problems into max fs, mak-
ing the heuristic methods developed here available
for their solution.
Amaldi and others (Amaldi 1994, Amaldi and Kann

1995, Amaldi et al. 1999) have extensively analyzed
the approximability of max fs, but there has been
relatively little development of algorithms for solv-
ing the problem. Parker and Ryan (1996) describe

INFORMS Journal on Computing © 2001 INFORMS
Vol. 13, No. 3, Summer 2001 pp. 210–223

0899-1499/01/1303/0210$5.00
1526-5528 electronic ISSN

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

an exact solution to min iis cover. Each iteration of
the algorithm involves the integer-programming solu-
tion of a min iis cover subproblem over a subset of
the IISs in the whole problem. If the cover solution
at any iteration solves the entire problem, then the
algorithm halts; else a new IIS is generated, added to
the set, and a new iteration begins. The exact solution
of each integer-programming subproblem has non-
polynomial time requirements; however it is straight-
forward to convert the method to a polynomial-time
heuristic by substituting a heuristic in place of the
exact integer-programming algorithm. A further dif-
ficulty is that the method requires the conversion of
the original problem into a version that typically has
more rows than the original.
Chinneck (1996b) describes an effective polynomial-

time heuristic for min iis cover. Briefly, it operates
by deleting one constraint at a time from the origi-
nal model in a sequence of iterations that terminates
when the reduced set of constraints becomes feasible.
Each iteration has these steps: (i) assemble a list of
candidates for testing, (ii) test each candidate by solv-
ing an LP, and (iii) permanently delete the constraint
that gives the best value of the test measure.
This heuristic shows 100% accuracy over a suite

of test examples (Chinneck 1996b). However, it can
be slow on some models because of the necessity of
solving one LP for every member of the candidate
list. A speedier algorithm is desirable in many cases,
for example in recalculating classifier separating sur-
faces as new data are added. This paper presents an
improved version of the original heuristic that is sig-
nificantly faster, with only a small trade-off in accu-
racy in isolated cases in the suite of test examples. The
speed-up is due to new insights that permit a drastic
reduction in the length of the list of candidate con-
straints for removal. This in turn reduces the num-
ber of LP solutions needed, resulting in a significant
speed-up for the larger examples.
A standard problem in machine learning and data

classification is the placement of a separating sur-
face (normally a hyperplane) in such a way that it
completely separates points in one set from points in
another set. This is not normally possible with real
data, so the objective is usually to place the separat-
ing surface so as to minimize the number of incor-

rectly classified points. This latter problem is easily
transformed into a restricted version of the min iis
cover problem (Amaldi 1994, Parker 1995, Chinneck
1998). The restriction arises in that the converted con-
straint set consists entirely of inequalities: there are
no variable bounds or equality constraints. Because of
this transformation, research results from the classifi-
cation (e.g. Mangasarian 1994, Chen and Mangasarian
1996, Bennett and Bredensteiner 1997) and machine
learning (e.g. Frean, 1992) communities are of inter-
est. Methods from these fields can also be viewed as
algorithms for solving a restricted version of min iis
cover.
The remainder of this paper develops the details of

the algorithm, and presents empirical results on two
suites of test examples.

2. Algorithms
A brief review of the original algorithm from
Chinneck (1996b) is needed. Recall that a linear
program can be elasticized by adding appropriate
nonnegative elastic variables, analogous to artificial
variables in an ordinary phase 1 formulation (Brown
and Graves 1975). In a standard elastic program only the
row constraints are elasticized. In a full elastic program,
all constraints are elasticized, including both rows and
column bounds. As indicated below, rows are elasti-
cized by adding nonnegative elastic variables ei, and
columns are elasticized by adding nonnegative elastic
variables ej .

nonelastic row elastic row

�jaijxj ≥ bi �jaijxj + ei ≥ bi
�jaijxj ≤ bi �jaijxj − ei ≤ bi
�jaijxj = bi �jaijxj + e′j − e′′j = bi

nonelastic variable bound elastic variable bound

xj ≥ lj xj + ej ≥ lj
xj ≤ uj xj − ej ≤ uj

The associated elastic objective function seeks to
minimize the sum of the elastic variables. An elasti-
cized set of constraints cannot itself be infeasible, but
it does provide information about any infeasibility in
the original non-elastic model. The elastic objective-
function value expresses the sum of the constraint

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 211

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

violations in the original model, called the sum of the
infeasibilities (sinf). If sinf equals zero, then the orig-
inal model is feasible. Each nonzero elastic variable
indicates a violated constraint in the original model;
this number of infeasibilities (ninf) is another measure
of the infeasibility of the original model. The max fs
problem (or min ulr or min iis cover problems) is
then a problem of minimizing ninf, rather than min-
imizing sinf.
The original algorithm relies on a series of observa-

tions. The most important of these is Observation 3
(Chinneck 1996b): The elimination of a constraint that is
a member of a minimum-cardinality IIS set cover should
reduce sinf more than the elimination of a constraint
that is not a member of a minimum-cardinality IIS set
cover. This is true because a member of a minimum-
cardinality IIS set cover will normally remove more
than one IIS when there are multiple interacting IISs
in the model.
Due to Observation 3, the heart of the original

algorithm is testing constraints by removing them
temporarily to determine the amount of reduction in
sinf that is obtained. Observation 4 (Chinneck 1996b)
helps to reduce the number of constraints that must
be tested: Constraints to which the elastic objective func-
tion is not sensitive do not reduce sinf when removed from
the model. Hence constraints to which the elastic objec-
tive function is not sensitive can be excluded from the
list of candidates to test. (Operationally, a constraint
is “sensitive” if the associated variable has a nonzero
reduced cost.)
Observation 1 (Chinneck 1996b) shows that the

original phase 1 procedure that signals infeasibility of
the constraint set, regardless of the algorithm used,
provides an upper bound on the cardinality of the
min iis cover: Upon termination of the solver phase 1,
the number of violated constraints is an upper limit on
the cardinality of the IIS set cover, and the set of vio-
lated constraints is an IIS set cover. This information can
be used to halt the more advanced algorithms when
the cardinality of the cover that they are isolating
exceeds that of the cover already found by the phase 1
procedure. Finally, Observation 2 (Chinneck 1996b)
provides a convenient early exit for the algorithm in
simple cases: If the phase 1 procedure reports a single

violated constraint, then that violated constraint consti-
tutes a minimum cardinality IIS set cover.
See Chinneck (1996b) for detailed discussions of

Observations 1–4.
A slightly revised version of the original algorithm,

here designated as Algorithm 1, is given in Figure 1.
Algorithm 1 can use any variant of an elastic program.
Chinneck (1996b) identifies four such variants, includ-
ing the standard and full elastic programs, the sim-
ple textbook phase 1, and the MINOS-style phase 1
(MINOS seeks to reduce ninf, and terminates when
it recognizes that feasibility cannot be achieved; sinf
is not necessarily minimized upon termination; see
Wolfe 1965). The original implementation uses a stan-
dard elastic program. In the variants of Algorithm 1
developed later, it will be advantageous to use full
elastic programs.

2.1. New Algorithms
The speed of Algorithm 1 is largely determined by
two elements: (i) the time required for the initial
determination of infeasibility via the solver phase
1 procedure, and (ii) the length of the list of can-
didates in CandidateSet, i.e. the list of constraints
to which the elastic objective function is sensitive.
There is little that can be done to shorten the time
needed to determine infeasibility in the first instance.
In this paper, we devise ways of increasing the speed
of Algorithm 1 by shortening the list of candidates;
objective-function sensitivity is no longer a sufficient
criterion for admission to CandidateSet.
Because Algorithm 1 is extremely effective, we

would like any modifications to it to delete the same
constraints, and in the same order. Ideally, we would
like to identify directly the correct constraint for
removal at each iteration, and place only that single
constraint on the list of candidates in CandidateSet. It
turns out that we can use the evaluations developed
in the next two observations to assess each potential
candidate quickly without solving an LP. Then only a
short list of the most promising candidates is added to
CandidateSet for testing via LP solution. Very often,
the first constraint on the list is indeed the correct
constraint for removal.

Observation 5. For constraints that are violated in the
original model, a good predictor of the magnitude of the

212 INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Figure 1 Original Algorithm 1 for min iis cover (Chinneck 1996b)

drop in sinf that will be obtained by deleting the constraint
is given by the product (constraint violation) × |(con-
straint sensitivity)|.

When converted to a full elastic program, “con-
straint violation” in the original model is given by
the value of the elastic variable associated with a
constraint. If there are two elastic variables associ-
ated with a constraint, as for equality and range con-
straints, then the constraint violation is the maximum
value of the two elastic variables. “Constraint sensi-
tivity” refers to the reduced cost of the variable asso-
ciated with the constraint. The absolute value of the
constraint sensitivity is used because the sign, deter-
mined by the constraint sense (≤
≥
=), is irrelevant
since all violations are relaxations of the constraint,
regardless of constraint sense.

Having a nonzero elastic variable in the elasticized
model is equivalent to changing the right-hand-side
value of the constraint in the original model. Thus
the product in Observation 5, obtained from the elas-
tic version of the model, is the same as operating
on the original model to estimate the change in the
objective value caused by relaxing the right hand side
by the amount given by the nonzero elastic variable.
As shown in elementary texts on simple sensitivity
analysis, this is a perfectly accurate estimator of the
change in sinf, provided that the basis in the origi-
nal model does not change. Of course, the basis in the
original model does change when an active constraint
is deleted, so Observation 5 provides an underesti-
mate of the change in sinf. However, the estimator
is frequently very accurate, as shown empirically in
Table 3 in Section 4.1.

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 213

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Observation 5 suggests a revision to Algorithm 1.
In Steps 1 and 2 of Algorithm 1, instead of setting
HoldSet = �constraints to which the elastic objective
function is sensitive�, find HoldSet as follows:
1. Select the violated constraints, and arrange them

in order from largest to smallest value of the product
(constraint violation) × |(constraint sensitivity)|.
2. Fill HoldSet with the top k elements of the

ordered list (or all of the elements of the list if there
are fewer than k).
We will refer to this variant as Algorithm 2(k), where
k refers to the length of the candidate list. Empiri-
cal results using this algorithm are presented in the
next section. Note that a list length of 1 is frequently
successful.
Because we wish to estimate the effect of every con-

straint via the product in Observation 5, Algorithm 2
requires the use of a fully elastic version of the orig-
inal model (i.e. variable bounds must be elasticized
as well as rows). This is straightforward in solver
implementations that already permit literal constraint
violations (by violating the bounds on the variable
associated with the constraint) during their Phase 1
procedure, but it may require the explicit addition of
elastic variables in other solver implementations.
Concentrating solely on the violated constraints is

often successful because the elastic objective function
is itself trying to minimize sinf, hence it tends to vio-
late the constraints that most reduce sinf. However,
in some cases with numerous infeasibilities, it may be
possible to obtain a larger drop in sinf by deleting a
constraint that is not currently violated. Observation 6
describes an indicator for identifying unviolated con-
straints that are good candidates for deletion.

Observation 6. For constraints that are not violated in
the original model, a good predictor of the relative magni-
tude of the drop in sinf that will be obtained by deleting
the constraint is given by |(constraint sensitivity)|.

Observation 6 provides a way of ordering the
set of unviolated constraints for use in a candidate
list. Unlike the product described in Observation 5,
Observation 6 does not provide a direct estimate
of the size of the drop in sinf expected when the
constraint is deleted, only the relative size (i.e. a

constraint with a larger |sensitivity| is expected to
provide a larger drop in sinf).
Observations 5 and 6 can be combined to provide

another variant of Algorithm 1. In Steps 1 and 2 of
Algorithm 1, instead of setting HoldSet = �constraints
to which the elastic objective function is sensitive�,
find HoldSet as follows:
1. Select the violated constraints, and arrange them

in order from largest to smallest value of the product
(constraint violation) × |(constraint sensitivity)|.
2. Fill HoldSet with the top k elements of the

ordered list (or all of the elements of the list if there
are fewer than k).
3. Select the unviolated constraints to which the

elastic objective function is sensitive, and arrange
them in order from largest to smallest |(constraint
sensitivity)|.
4. Add the top k elements of this ordered list to the

bottom of HoldSet (or all of the elements of the list if
there are fewer than k).
We will refer to this variant as Algorithm 3(k), where k
refers to the length of each of the two lists. Note that
a list length of k implies the solution of up to 2k LPs
to identify the successful candidate.
We can also improve on Algorithm 1 by taking bet-

ter advantage of Observation 1 to provide a safety exit
when the more advanced algorithms perform poorly.
Because the cardinality of the IIS cover provided by
the phase 1 procedure is already known, any sub-
sequently applied algorithm can be halted when its
cover cardinality exceeds the cardinality of the IIS
cover already provided by the phase 1 procedure.
Further, more than one phase 1 procedure would

probably be applied in a practical implementa-
tion because the solver-native phase 1 procedure
is unlikely to be a full elastic sinf minimization.
The implementation would normally proceed as fol-
lows:
1. Native phase 1 method detects infeasibility and

records the ninf and IIS cover.
2. Convert to full elastic version of model.
3. Minimize sinf in fully elastic model (using an

advanced start provided by the native phase 1 solu-
tion) and record the ninf and IIS cover.

214 INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Figure 2 Algorithm 4 for min iis cover

Between the two methods, the smaller ninf would
act as a stopping condition for any more advanced
algorithm.
Algorithm 4 (Figure 2) combines all of these

observations into a generic framework. The possi-

ble selection criteria for inclusion in HoldSet include
(i) phase 1 objective function sensitivity (as in
Algorithm 1), (ii) high values of the product for
violated constraints (as in Algorithm 2), or (iii)
both high values of the product for violated con-

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 215

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

straints and high phase 1 constraint sensitivities (as
in Algorithm 3).

2.2. Polynomial Time Behavior
Algorithm 1 has polynomial time complexity
(Chinneck 1996b). Algorithms 2 and 3 improve this
complexity by limiting the number of LPs that must
be solved to find each removed constraint. Consider
a set of linear constraints having p members, which
could be rows or variable bounds. At worst, you may
need to remove p− 1 constraints to achieve feasibil-
ity. In this worst case, the number of LP solutions
required would be upper bounded as follows:
• Algorithm 2�k� would require at most k�p−1� LP

solutions,
• Algorithm 3�k� would require at most 2k�p− 1�

LP solutions.
Given that linear programs can be solved in poly-

nomial time (Karmarkar 1984), this upper bound is
also polynomial. The algorithms achieve very good
performance in practice, as shown in Section 4.

3. Implementation Notes
Several algorithms in five implementations are dis-
cussed in Section 4. Notes on the five implementations
are provided here.
MINOS(IIS) is a version of MINOS 5.4 (Murtagh

and Saunders 1993) modified for the analysis of
infeasible linear programs (Chinneck 1994, 1996a,
1997), and is available at http://www.sce.carleton.
ca/faculty/chinneck/minosiis.html. Among several
methods of analyzing infeasible LPs, it includes an
implementation of Algorithm 1. MINOS(IIS) first car-
ries out a standard MINOS phase 1 procedure and
reports the ninf found by this procedure. If necessary,
the members of the cover found by the phase 1 proce-
dure can be returned. If ninf is greater than 1, then a
standard elastic program is set up and Algorithm 1 is
carried out. Results in Section 4.2 are produced using
a 400 MHz Pentium-III machine under Windows NT.
CLIIS is a program for data classification (Chinneck

1998). It also uses a modified version of MINOS 5.4
to implement Algorithm 1 as well as Algorithm 2(1).
Both algorithms use a standard elastic program, but
for the classification problem this is equivalent to

a full elastic program because of the lack of variable
bounds in the converted data sets. Results in Sec-
tion 4.1 are produced using a 200 MHz Pentium Pro
machine under Windows NT.
FEC, created for the purposes of this paper, imple-

ments both Algorithms 2 and 3 at user-controlled
list lengths. It is again a modification of MINOS 5.4.
Algorithms 2 and 3 require full elasticization of the
model, and this is achieved in the FEC prototype by
converting all variable bounds to elasticized row con-
straints, thereby freeing all of the variables. This is
necessary because the built-in MINOS phase 1 proce-
dure does not necessarily terminate at the minimum
value of sinf. The larger number of rows in the con-
verted LP slows the solution. For this reason, com-
parisons between FEC and the other programs are
best made on the basis of the number of LPs solved,
rather than by comparing clock times. The inefficient
FEC prototype suffices for the purposes of this paper
by permitting an analysis of the relative efficiency
of Algorithms 2 and 3, but a full production imple-
mentation would instead use an approach that does
not expand the number of rows in the LP. Results in
Section 4 are produced using a 400 MHz Pentium-III
machine under Windows NT.
The first full elastic solution completed by FEC is

equivalent to a sinf-minimizing full elastic phase 1
procedure. The ninf at this stage is given by the num-
ber of constraints (both rows and column bounds)
having nonzero elastic variables. If necessary, these
cover members can be reported by FEC. In Section
4.2, the ninf results returned by the MINOS phase 1
procedure and the full elastic phase 1 are compared.
MISMIN is an implementation of a parametric pro-

gramming algorithm for minimizing the number of
misclassified points during classification (Bennett and
Bredensteiner 1997). LP subproblems are solved by
CPLEX (1994). Empirical results provided by Bennett
and Bredensteiner (1997) show that MISMIN is among
the best programs available for minimizing misclassi-
fication errors, hence it is a good standard for compar-
ison. Results in Section 4.1, provided by the MISMIN
authors, were produced using a 200 MHz Pentium
machine under Windows 95.
Parker and Ryan (1996) provided results for the

general LP test suite using their exact branch-and-

216 INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

bound algorithm for solving min iis cover for general
LPs. Their method is not comparable to the oth-
ers on the basis of speed because of its inherent
non-polynomial algorithm, but the exact results are
valuable. Their implementation uses OSL to solve the
integer-programming subproblems.

4. Empirical Results
We carry out experiments on two collections of exam-
ples, one collection arising from data-classification
problems, and the other arising from the analysis of
general infeasible LPs. Classification problems do not
involve variable bounds or equality constraints, in
contrast to general infeasible LP problems. However,
some classification problems have very large min iis
cover cardinalities, which make them interesting for
analysis of the sort described here.

4.1. Classification Problems
The usual classification problem is to separate com-
pletely points of one type (e.g. type 0) from points
of another type (e.g. type 1) by placing a separating
surface (e.g. a hyperplane) in the n-dimensional space
of attributes or features. Since complete separation is
not usually possible, the minimum-misclassification
cardinality problem is then to determine the small-
est number of points to delete such that the remain-
ing points can be completely separated by a single
separating surface. As shown by Amaldi (1994) and
also by Parker (1995), this problem is easily trans-
formed into min iis cover. The conversion proceeds
as follows:
Given: a training set of I data points �i = 1 · · · I�
in J dimensions (j = 1 · · · J), in which the value of
attribute j for point i is denoted by dij , and the class
of each point is known (either Type 0 or Type 1).
Define a set of linear constraints as follows (one
constraint for each data point):
• for points of Type 0� �jdijwj ≤w0 −�

• for points of Type 1� �jdijwj ≥w0 +�

where � is a small positive constant. Note that the
variables are the unrestricted wj , where j = 0 · · · J ,
while the dij are known constants.
If the data are completely separable by a single

hyperplane, then any solution to the LP resulting

from the conversion will yield a set of values for
the wj , which then defines the separating hyperplane
�jdijwj = w0. If the data cannot be completely sep-
arated by a single hyperplane, then the LP result-
ing from the conversion will necessarily be infeasible.
Finding a solution to the min iis cover problem in
this infeasible LP then also solves the classification
problem of finding the smallest number of points to
remove such that the remaining points are completely
separable by a single hyperplane. Because the points
removed will be incorrectly classified by the result-
ing hyperplane, this constitutes a method of finding a
hyperplane that misclassifies the smallest number of
points, an important goal in classification research.
Table 1 provides information about nine frequently

analyzed binary classification problems taken from
the publicly available UCI Repository of Machine
Learning Databases (Blake and Merz 1998), a common
source of classification test data. “Net points” is the
number of data instances remaining after incomplete
tuples are removed.
Table 2 compares the results obtained when three

different algorithms are applied to these data sets:
• Algorithm 1 as implemented in CLIIS.
• Algorithm 2(1) (i.e. choosing only the violated

constraint having the maximum product as the single
candidate each time) as implemented in CLIIS.
• MISMIN (Bennett and Bredensteiner 1997).

For a direct comparison, all algorithms are applied
to the entire data set (i.e. there is no separation into
training and testing sets). The best results in terms
of both accuracy (%acc.) and time (secs) are shown in
boldface.

Table 1 Classification Data Sets

Data Set Net Points Number of Features

breast cancer 683 9
bupa 345 6
glass (type 2 vs. others) 214 9
ionosphere 351 34
iris (versicolor vs. others) 150 4
iris (virginica vs. others) 150 4
new thyroid (normal vs. others) 215 5
pima 768 8
wpbc 194 32

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 217

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Table 2 Three Algorithms for Classification

Original Alg. 1 Algorithm 2(1) MISMIN

Data set % acc. secs % acc. secs % acc. secs

breast cancer 98�4 17 98�4 4�3 98�2 0�7
bupa 75�1 159 75�9 1�3 73�9 0�6
glass (type 2 vs. others) 81�8 38 78�5 0�6 76�6 0�6
ionosphere 98�3 44 98�3 5�4 98�3 2�6
iris (versicolor vs. others) 83�3 5 83�3 0�2 82�0 0�3
iris (virginica vs. others) 99�3 0�4 99�3 0�1 99�3 0�3
new thyroid (normal vs. 94�9 3 94�9 0�3 93�5 0�3

others)
pima 80�6 1434 80�2 7�2 80�5 1�5
wpbc 96�9 17 96�9 1�2 91�2 1�5

average: 89�8 216�2 89�5 2�3 88�2 0�9

Because MISMIN is among the best of the avail-
able programs for minimizing the number of classi-
fication errors in classification problems, it is a good
standard for comparison. Bennett and Bredensteiner
(1997) show that MISMIN performs favorably against
such other well-known programs as OC1 (Murthy
et al. 1994) and CSADT (Heath et al. 1993).
Table 2 shows that, for classification problems,

Algorithm 1 is the most accurate, but also the slowest,
while MISMIN is the fastest. Algorithm 2(1) provides
a major speed-up over Algorithm 1 (several orders of
magnitude in some cases), yielding times comparable
to those for MISMIN (and sometimes faster). More
significant, however, is that it does this with very lit-
tle loss of accuracy.
An important difference between the approach

taken in Algorithms 1 and 2 as opposed to many other
methods is that Algorithms 1 and 2 remove points
from the data sets one at a time instead of all at
once as in other methods. This raises the possibility of
“guiding” the removal process as it is underway. For
example, if the classification accuracy of Type 0 points
is lower than that of Type 1 points, then the removal
process could be coerced to prevent the removal (and
hence misclassification) of more Type 0 points until
the classification accuracies are balanced. This idea is
under active study at the moment.
Table 3 presents an in-depth assessment of the

accuracy of the maximum-product heuristic estimator
for the �sinf expected when a violated constraint is

Table 3 Accuracy of the Maximum-Product Predictor
of �sinf

(Predicted �sinf)/ pima: bupa: % of Total
(Actual �sinf) No. of cases No. of Cases Cases

0.99 or above 82 23 45
0.98 27 18 19
0.97 14 9 10
0.96 10 11 9
0.95 4 6 4
0.94 2 3 2
0.93 1 2 1
0.92 3 1 2
0.91 2 1 1
0.90 0 2 1
less than 0.90 7 7 6

total misclassified 152 83 100%

deleted. Results are presented for the two data sets
that take significantly longer to solve using the orig-
inal Algorithm 1: pima and bupa. For each constraint
removed by Algorithm 2(1), the predicted �sinf is
compared to the actual �sinf experienced when the
constraint is actually deleted. Table 3 shows that the
maximum-product heuristic is remarkably accurate in
predicting �sinf: it is over 95% accurate in 87% of the
cases examined, and over 90% accurate in 94% of the
cases examined.
The high accuracies shown in Table 3 are partly

due to the tightly constrained classification data sets.
The algorithms delete constraints one by one, and as
each constraint is deleted, the current approximate
separating hyperplane (given by the phase 1 solu-
tion) shifts to a new position. When you need to
delete 152 constraints to achieve feasibility as in the
pima problem, then the deletion of a single individ-
ual constraint does not usually shift the position of
the current approximate separating hyperplane very
much. However, as you near the termination of the
algorithm, there are fewer conflicting constraints, and
the removal of a single constraint may permit a large
movement of the approximate separating hyperplane.
For this reason, the largest errors in prediction accu-
racy in Table 3 all occur very near the end of the list
of constraint removals.

218 INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

4.2. General Infeasible Linear Programs
A set of 29 infeasible LP models is available in the
Netlib library at http://www.netlib.org/lp/infeas/.
The model characteristics are summarized in Table 4.
The MINOS phase 1 procedure examines both sinf

and ninf, and terminates when it decides that ninf
cannot be further reduced (Wolfe 1965). This can
be quite effective in finding small values of ninf:
the MINOS phase 1 procedure reports a single vio-
lated constraint for 14 of the 29 models: bgetam, box1,
ceria3d, cplex2, ex72a, ex73a, forest6, galenet, gosh, klein1,
pang, pilot4i, qual, vol1 (Chinneck 1996b). Step 1 of all
algorithms then reports this single violated constraint
as the IIS set cover, and of course this is the minimum-
cardinality cover (Observation 2). This prevalence of
single-member IIS set covers arises because a number

Table 4 Characteristics of the
Netlib Infeasible LPs

Model Rows Cols Nonzeroes

bgdbg1 349 407 1485
bgetam 401 688 2489
bgindy 2672 10116 75019
bgprtr 21 34 90
box1 232 261 912
ceria3d 3577 824 17604
chemcom 289 720 2190
cplex1 3006 3221 10664
cplex2 225 221 1059
ex72a 198 215 682
ex73a 194 211 668
forest6 67 95 270
galenet 9 8 16
gosh 3793 10733 97257
gran 2659 2520 20151
greenbea 2505 5405 35159
itest2 10 4 17
itest6 12 8 23
klein1 55 54 696
klein2 478 54 4585
klein3 995 88 12107
mondou2 313 604 1623
pang 362 460 2666
pilot4i 411 1000 5145
qual 324 464 1714
reactor 319 637 2995
refinery 324 464 1694
vol1 324 464 1714
woodinfe 36 89 209

of the models were feasible LPs into which a single
infeasibility was manually introduced.
We will concentrate on 14 of the remaining 15 more

difficult models. Parker and Ryan (1996) have pro-
vided exact solutions for these 14 models using their
integer-programming method, so there is a basis for
measuring the quality of the solutions returned by
the fast heuristics. The remaining model (gran) causes
numerical difficulties for all of the implementations,
including Parker and Ryan’s, and is omitted. The min-
imum cover cardinalities are shown in boldface in
Table 5.
We will look at several algorithms:
• the MINOS phase 1 procedure applied to the

non-elastic model,
• the first solution of the full elastic version of the

model (basically a full elastic phase 1),
• Algorithm 1 applied to the standard elastic ver-

sion of the model,
• Algorithm 2(1) applied to the full elastic version

of the model,
• Algorithm 2(7) applied to the full elastic version

of the model,
• Algorithm 3(1) applied to the full elastic version

of the model,
• Algorithm 3(7) applied to the full elastic version

of the model.
Algorithm 4 is constructed by combining the phase 1
methods and the selection criteria from one of the
latter 5 algorithms. Examining each of these ele-
ments individually will show how best to construct
Algorithm 4.
The list length for Algorithms 2 and 3 can be

set as desired. Shorter lists are faster, but longer
lists are more accurate. With a sufficiently long list,
Algorithm 3 is equivalent to Algorithm 1. Experi-
mentation with different relatively short lists showed
that a length of 7, particularly for Algorithm 3, is
quite effective. Results with list lengths of 1 and 7 for
Algorithms 2 and 3 are given in Table 5.
Table 5 separates the time required for the phase 1

method from the time required for the remainder of
the algorithm. Hence the total computation time, from
problem input through output of the IIS cover, is
roughly the sum of the phase 1 time and the time
listed with the algorithm in Table 5. For example, the

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 219

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Table 5 Comparison of Algorithms on Difficult General LP Problems

MINOS Full Elastic
Phase 1 Algorithm 1 ph. 1 Algorithm 2(1) Algorithm 2(7) Algorithm 3(1) Algorithm 3(7)

Model NINF Secs NINF Secs LPs NINF NINF Secs LPs NINF Secs LPs NINF Secs Lps NINF Secs LPs

A
bgprtr 2 0.0 1 0.1 1 1 1 0�0 0 1 0�0 0 1 0.0 0 1 0.0 0
itest2 2 0.0 2 0.0 7 2 2 0�0 1 2 0�0 2 2 0.0 2 2 0.0 6
mondou2 3 0.0 3 1.5 384 8 7 0�0 6 5 0�4 25 6 0.1 11 5 0.5 53
reactor 3 0.1 1 0.3 25 1 1 0�0 0 1 0�0 0 1 0.0 0 1 0.0 0
woodinfe 2 0.0 2 0.0 47 2 2 0�0 1 2 0�0 2 2 0.0 2 2 0.0 4

B
bgdbg1 22 0.1 12 3.4 645 13 12 0�1 11 12 0�4 65 12 0.2 22 12 0.8 142
bgindy 14 12.1 1 2.3 1 2 1 0�1 1 1 0�1 1 1 0.1 1 1 0.1 1
chemcom 11 0.2 1 0.1 2 14 1 0�0 1 1 0�1 1 1 0.0 1 1 0.0 1
greenbea 3 34.8 2 50.8 404 6 2 7�2 1 2 25�3 6 2 12.2 2 2 25.4 13

C
itest6 3 0.0 2 0.0 10 5 4 0�0 4 2 0�0 7 4 0.0 7 2 0.0 8
klein3 6 3.1 1 17.2 53 23 9 1�6 9 1 4�0 7 4 1.4 8 1 4.0 7

D
cplex1 211 9.7 1 13.0 213 211 211 5�9 210 211 54�9 1455 4 5.5 8 1 5.1 9
klein2 3 0.7 1 1.3 17 5 3 0�1 2 3 0�8 7 2 0.4 4 1 1.1 11

E
refinery 2 0.2 1 1.1 36 7 3 0�0 2 3 0�1 9 3 0.0 4 2 0.1 18

min NINF 3 14 4 8 10 8 12
avg. NINF 20.5 2.2 21.4 18.5 17.6 3.2 2.4
avg. secs. 4.4 6.5 1�1 6�2 1.4 2.7
avg. LPs 131�8 17.8 113�4 5�1 19�5

Note: Times not directly comparable between Algorithm 1 vs. Algorithms 2 and 3.

total time for Algorithm 1 is approximately the sum of
the time for the MINOS phase 1 and the time listed for
Algorithm 1 (total time averages 10.9 seconds). Times
are not given for the “full elastic phase 1 ninf” pro-
cedure, as this is expected to be provided by a two-
stage process: the solvers native phase 1 followed by
a full elastic phase 1 with an advanced start provided
by the solver native phase 1 solution.
Computation times in Table 5 are not directly com-

parable between Algorithm 1 on the one hand and
Algorithms 2 and 3 on the other hand due to imple-
mentation details, as explained in Section 3. However,
Table 2 gives a sense of the magnitude of the speed-
up when using Algorithm 2(1) versus Algorithm 1:
Algorithm 2(1) requires about two orders of magni-
tude less time than is required for Algorithm 1.

Observations about expected speed can be made
based on the number of LP solutions required by each
method. As expected, Algorithm 1 requires the most
LP solutions on average (131.8) while Algorithm 3(1)
requires the fewest (5.1). These average results are
somewhat skewed by cplex1. In 12 of the 14 models,
Algorithm 2(1) requires the smallest number of LPs.
Algorithms 2(1) and 3(1) are both very quick in com-
parison to Algorithm 1.
It is most instructive to concentrate on the models

that require the most LPs for Algorithm 1 to solve.
Let us look in detail at the 4 models that require more
than 100 LPs for solution by Algorithm 1. Table 6
shows the ratio of the number of LPs needed by
the new algorithms to the number of LPs needed
by Algorithm 1 for these 4 models. Solutions that
achieve a true min iis cover are shown in bold-

220 INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Table 6 Ratio of LPs Solved Compared to
Algorithm 1

model Alg. 2(1) Alg. 2(7) Alg. 3(1) Alg. 3(7)

bgdbg1 0�02 0�10 0�03 0�22
cplex1 0�99 6�80 0�04 0�04
greenbea 0�00 0�01 0�00 0�03
mondou2 0�02 0�07 0�03 0�14

average 0�26 1�75 0�03 0�11

face. In 14 of the 16 solutions, the new algorithms
require only a small fraction of the effort needed by
Algorithm 1 (the exception is Algorithm 2 operating
on cplex1), and are reasonably accurate. The selection
criteria of Algorithm 3(7) used in the Algorithm 4
framework will achieve a min iis cover in all of these
cases. Table 6 shows that the new algorithms achieve
significant speed improvements for the hardest prob-
lems, in most cases.
Accuracy of the new algorithms is not perfect.

Algorithm 2 does poorly on cplex1, in terms of both
accuracy and speed. Ignoring cplex1 gives Algorithm
2(1) an average of 3.0 LPs (instead of 17.8), and
Algorithm 2(7) an average of 10.2 LPs (instead of
113.4). A corollary observation is that a change of
algorithms can have a dramatic impact on accuracy
for a particular model. Algorithms 1 and 3(7) are the
only ones able to achieve the true min iis cover for
cplex1.
The results in Table 5 are broken down into five

groups. The five models in Group A are those whose
min iis cover is found by one or both of the two
phase 1 procedures applied. In fact, the MINOS phase
1 is the only procedure to find a min iis cover
for mondou2. Because of this, in the framework of
Algorithm 4, a true min iis cover will be found for
all five models in Group A in conjunction with any
of the versions of Algorithms 2 and 3. This argues for
the inclusion of the MINOS-style phase 1 procedure
in Algorithm 4, as does the excellent performance of
the MINOS phase 1 on the other 14 models for which
it found a single-member IIS cover.
The four models in Group B of Table 5 are those

whose min iis cover is found by all of the new
algorithms, including the fast short-list versions. The

reduction in the number of LPs solved by the new
algorithms versus Algorithm 1 is very dramatic for
bgdbg1 and greenbea. This underlines the effectiveness
of the new algorithms.
The two models in Group C of Table 5 are those that

require a longer list length to find a min iis cover.
Each of the four new algorithms requires almost the
same small number of LPs to arrive at a solution, but
the quality of the results returned by Algorithms 2(7)
and 3(7) is much better. This argues for the longer list
lengths in Algorithms 2 and 3.
The 2 models in Group D of Table 5 benefit from

the application of Algorithm 3. Even with a list length
of 1, the cplex1 model shows a cover cardinality of 4
using Algorithm 3 versus a cover cardinality of 211
using Algorithm 2. Algorithm 3(7) finds the true min
iis cover in both cases. This argues for the use of the
selection criteria of Algorithm 3 in the framework of
Algorithm 4.
Finally, a min iis cover is not found using any

heuristic method for the single model in Group E of
Table 5. However, the best result, provided by both
the MINOS phase 1 and by Algorithm 3(7), is very
close to the optimum at only 1 greater than the true
minimum cardinality.
The results obtainable via Algorithm 4 can be esti-

mated from Table 5. Algorithm 4 coupled with any
of the selection criteria in Algorithms 2(1), 2(7), 3(1),
or 3(7) will find a min iis cover for all models in
groups A and B. The safety exit provided by the phase
1 solutions will trigger in the following cases, saving
the solution of a few LPs:
• mondou2 with selection criteria 2(1), 2(7), 3(1),

3(7),
• itest2 with selection criteria 2(1) and 3(1),
• klein3 with selection criteria 2(1),
• refinery with selection criteria 2(1), 2(7), and 3(1).

This argues for the use of the Algorithm 4 framework.
These empirical results indicate that an effective

version of Algorithm 4 would incorporate a MINOS-
style phase 1 procedure, and would use the selection
criteria of Algorithm 3 at list length 7. This provides
a significant speedup for general LP problems with
very little loss in accuracy: it fails to find a min iis
cover only for the refinerymodel, and the error in that

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 221

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

case is just 1. This algorithm is about 7 times faster
than Algorithm 1 on average.
For maximum speed at reasonable accuracy, use

Algorithm 4 with selection criteria from Algo-
rithm 3(1). This does not give a poor result on any
of the test models. On the five models for which this
combination does not achieve a min iis cover, the
maximum distance from optimality is 3, and the aver-
age is 1.8. This algorithm is about 25 times faster than
Algorithm 1 on average, and dramatically faster on
many models.

5. Conclusions
Algorithm 4 with a MINOS-style native phase 1 pro-
cedure and the selection criteria of Algorithm 3(7) is
recommended for maximum accuracy with a good
improvement in speed. Algorithm 4 with a MINOS-
style native phase 1 and the selection criteria of
Algorithm 3(1) is recommended for maximum speed
with a slightly larger degradation in accuracy.
The recommended algorithms provide faster

heuristics for the max fs, min ulr, and min iis cover
problems, with significant speed-ups as compared to
previous heuristics, at little loss of accuracy. The main
elements of these heuristics are two methods for iden-
tifying constraints that are promising candidates for
deletion from the model: violated constraints hav-
ing a large (constraint violation)×|(constraint sensi-
tivity)| product, and nonviolated constraints to which
the elastic objective function is highly sensitive. In
fact, the maximum-product measure is remarkably
accurate at directly choosing the correct candidate for
deletion in classification problems.
As described in the Introduction, various NP-

hard problems can be transformed into max fs, min
ulr, or min iis cover. Further research may reveal
other transformations as simple and efficient as that
for the data classification problem. All such trans-
formed problems can then be attacked via the fast
polynomial-time heuristics described here.
While the recommended algorithms can be used to

analyze LP infeasibility after it has been discovered,
they can also be incorporated directly in the solver as
part of an improved phase 1 procedure whose goal is
to minimize ninf.

An interesting feature of these algorithms is that
constraints are deleted one at a time as the algorithm
proceeds, in contrast to the all-at-once nature of
some algorithms for classification (e.g. Bennett and
Bredensteiner 1997). This feature can be used to influ-
ence the solution as it proceeds. For example, if the
accuracy of one population type is less than the other
in a classification problem, then the solution process
can be influenced to favor improved accuracy of that
population as the algorithm proceeds.
Finally, these algorithms are easily adapted to the

related case of minimum-weight IIS set covering
(Parker and Ryan 1996). In this version of the prob-
lem, different weights are attached to the various con-
straints in the model, and the idea is to find the
minimum-weight set of constraints that renders the
model feasible when removed. This is accomplished
by attaching weights to the elastic variables in the
elastic objective function. These objective function
weights should be inversely related to the weights of
the associated constraints.

Acknowledgments
Thanks to Erin Bredensteiner for providing the MISMIN results in
Table 2. This research is partly sponsored by the Natural Sciences
and Engineering Research Council of Canada via a research grant
to the author.

References
Amaldi, E. 1994. From finding maximum feasible subsystems of

linear systems to feedforward neural network design. Ph.D.
thesis no. 1282, Département de Mathématiques, École Poly-
technique Fédérale de Lausanne, Switzerland.

Amaldi, E., V. Kann. 1995. The complexity and approximability of
finding maximum feasible subsystems of linear relations. The-
oretical Computer Science 147 181–210.

Amaldi, E., M. Pfetsch, L. Trotter Jr. 1999. Structural and algorith-
mic properties of the maximum feasible subsystem problem,
Proceedings of the Integer Programming and Combinatorial Opti-
mization conference (IPCO’99), Lecture Notes in Computer Science
1610, Springer–Verlag, New York, NY. 45–59.

Bennett, K. P., E. Bredensteiner. 1997. A parametric optimization
method for machine learning. INFORMS J. on Computing 9
311–318.

Blake, C. L., C. J. Merz. 1998. UCI repository of machine learn-
ing databases. Department of Information and Computer Sci-
ence, University of California, Irvine, CA. http://www.ics.uci.
edu/∼mlearn/MLRepository.html.

222 INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001

CHINNECK
Fast Heuristics for the Maximum Feasible Subsystem Problem

Brown, G., G. Graves. 1975. Elastic programming: a new approach
to large-scale mixed integer optimization. ORSA/TIMS confer-
ence, Las Vegas, NV.

Chakravarti, N. 1994. Some Results Concerning Post-Infeasibility
Analysis. Eur. J. Oper. Res 73 139–143.

Chen, C., O. L. Mangasarian. 1996. Hybrid misclassification mini-
mization. Advances in Computational Mathematics 5 127–136.

Chinneck, J. W. 1994. MINOS(IIS): infeasibility analysis using
MINOS. Computers and Operations Research 21 1–9.

Chinneck, J. W. 1996a. Computer codes for the analysis of infeasi-
ble linear programs. Journal of the Operational Research Society
47 61–72.

Chinneck, J. W. 1996b. An effective polynomial-time heuristic for
the minimum-cardinality IIS set-covering problem. Annals of
Mathematics and Artificial Intelligence 17 127–144.

Chinneck, J. W. 1997. Feasibility and viability. Advances in Sensi-
tivity Analysis and Parametric Programming, T. Gal and H. J.
Greenberg, eds., International Series in Operations Research and
Management Science 6 14-1–14-41, Kluwer Academic Publishers,
Boston, Mass.

Chinneck, J. W. 1998. Improved linear classification via LP infeasi-
bility analysis. Technical Report SCE-98-09, Department of Sys-
tems and Computer Engineering, Carleton University, Ottawa,
Canada.

Chinneck, J. W., E. W. Dravnieks. 1991. Locating minimal infeasible
constraint sets in linear programs. ORSA Journal on Computing
3 157–168.

CPLEX Optimization, Inc. 1994. Using the CPLEX callable library
and CPLEX mixed integer library, CPLEX Optimization Inc.,
Incline Village, Nevada.

Frean, M. 1992. A. “thermal” perceptron learning rule. Neural Com-
putation 4 946–957.

Heath, D., S. Kasif, S. Salzburg. 1993. Learning oblique decision
trees. Proceedings of the 13th International Conference on Artificial
Intelligence, Chambery, France, Morgan Kaufmann, San Mateo,
CA. 1002–1007.

Karmarkar, N. 1984. A new polynomial time algorithm for linear
programming. Combinatorica 4 373–395.

Mangasarian, O. 1994. Misclassification minimization. Journal of
Global Optimization 5 309–323.

Murtagh, B. A., M. A. Saunders. 1993. MINOS 5.4 user’s guide
(preliminary). Technical Report SOL 83-20R, Systems Opti-
mization Laboratory, Department of Operations Research,
Stanford University, Stanford, CA.

Murthy, S., S. Kasif, S. Salzberg. 1994. A System for induction
of oblique decision trees. J. Artificial Intelligence Research 2
1–32.

Parker, M. R. 1995. A set covering approach to infeasibility anal-
ysis of linear programming problems and related issues.
Ph.D. thesis, Dept. of Mathematics, University of Colorado at
Denver, Denver, Colorado.

Parker, M. R., J. Ryan. 1996. Finding the minimum weight IIS cover
of an infeasible system of linear inequalities. Annals of Mathe-
matics and Artificial Intelligence 17 107–126.

Sankaran, J. K. 1993. A note on resolving infeasibility in linear pro-
grams by constraint relaxation. Operations Research Letters 13
19–20.

Wolfe, P. 1965. The composite simplex algorithm. SIAM Review 7
42–54.

Accepted by W. David Kelton; received March 2000; revised November 2000; accepted January 2001.

INFORMS Journal on Computing/Vol. 13, No. 3, Summer 2001 223

