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For an integer program, a k-cut is a cutting plane generated by the Gomory
mixed integer procedure from a row of the LP tableau after multiplying it by
a positive integer k. With this terminology, Gomory mixed integer cuts are
just 1-cuts. In this paper, we compare the k-cuts (k > 2) with Gomory mixed
integer cuts. In particular, we prove in the pure case that with exactly 50%
probability the k-cuts perform better variable-wise than the Gomory mixed
integer cuts, and vice versa. Some computational experiments on knapsack
problems are reported to illustrate this property.

(Integer Programming; LP Tableau; Gomory Mized Integer Cut; K -cut)

1. Introduction
In the late fifties and early sixties, Gomory introduced two kinds of general
cutting planes, fractional cuts and mixed integer cuts [9, 10, 11], for solving
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integer programming problems. Later on, extensive work was done on the
properties of Gomory cuts and the convergence of Gomory cutting plane
methods [3, 5, 7, 8, 14, 22, 23]. The potential of Gomory cuts in computation
was also explored [20, 21]. The advantage of Gomory cuts within a branch-
and-cut framework was computationally shown in [2].

Glover [8] proposed to linearly combine the original equations from the
linear programing tableau with Gomory cuts. The combination allows two
free parameters to be fixed. Glover discussed how to specify the parame-
ter values so that the resulting cuts “not only limit the feasible set more
restrictively than the method of integer form, but satisfy other criteria as
well”.

In a series of papers [12, 15, 16, 18] in the late sixties and early seventies,
Gomory and Johnson showed how to generate cutting planes from subaddi-
tive functions and the group problem. Recent talks have been given on this
subject [13]. Cutting plane generation from subadditive functions is a gen-
eral framework. The k-cuts in this paper can be viewed as a particular case
of this framework; the subadditive functions for k-cuts are the simplest ones
among the possible subadditive functions. Nevertheless, it is interesting to
study this particular case, because it comes from a familiar and very natural
operation.

In a section of their book [7] Garfinkel and Nemhauser discuss the pos-
sibility of obtaining stronger cuts than the Gomory fractional cuts by first
multiplying a tableau row by a nonzero factor before generating the fractional
cut. The potential multipliers could be integral or non-integral numbers. For
integral multipliers, the larger the fractional part of the right-hand-side of the
resulting tableau row, the stronger the resulting cut becomes in most of the
cases. For non-integral multipliers, the situation turns out to be complicated.

Dawande and Pulleyblank [6] considered the cone formed at the LP opti-
mum by the normals of the tight constraints at the optimum. The direction
vector (the normal to the cut hyperplane) of the Gomory fractional cut lies
in this cone. The direction vector is integral. In general, there are several
integral vectors in the cone. After multiplying the tableau rows by inte-
gral multipliers, precisely which integral vectors in the cone are the direction
vectors of the cuts? Dawande and Pulleyblank have done some work on
characterizing these directions in order to better understand the Gomory
fractional cuts from a geometrical point of view.

Ginliik and Pochet [17] described a simple cutting-plane algorithm that
uses a “mixing procedure” to generate valid inequalities. First, they generate
10 base inequalities from each tableau row by multiplying the row with the
multipliers § =1,2,3,4,5 and 6 = —1, -2, —3, —4, —5. And then they apply



their “strengthening procedure” to the collection of the base inequalities to
obtain cuts and improve the relaxation bound for general integer programs.

In this paper we focus on a variation of Gomory mixed integer cuts for
pure integer programs. Rather than generating Gomory mixed integer cuts
from the LP tableau rows directly, we first multiply the tableau rows by an
integer k£ and then generate the cuts from the new rows according to the
Gomory mixed integer procedure. We call them k-cuts in this paper. A
comparison of k-cuts (k > 2) with the usual Gomory mixed integer cuts
k = 1) is given in Section 3. It is proved in the pure case that with exactly
50% probability the k-cuts perform variable-wise better than the Gomory
mixed integer cuts. These k-cuts provide a variety of cuts different from
Gomory mixed integer cuts and can cut off the relaxation set from different
angles. Computational results on knapsack problems are given in Section 4
to illustrate that the k-cuts have the same power as Gomory mixed integer
cuts in terms of improving the relaxation bound. If we impose all the k-cuts
(1 < k < M) as constraints, we see empirically that they are effective as
a whole in restricting the feasible set of the LP relaxation of the knapsack
problem when M becomes larger. Surprisingly, the same does not appear to
be true for integer programs with many constraints, as illustrated at the end
of Section 4. An extension of k-cuts to mixed integer programs is discussed
in the last section.

2. Gomory mixed integer cuts and k-cuts
In this section, we start with the definition and properties of k-cuts, and we
give two examples. Finally, we introduce a graphic tool that is helpful when
we compare the cuts in the next section.

Consider the pure integer program (IP)

Min cz
s.t. Az =0,
SIS

where A is a rational matrix, and ¢ and b are rational vectors.

After solving the LP relaxation of (IP), we have the following basic solu-
tion

T; = G0 + EjeJ Ezij(—xij) for alli € I, (1)

where I and J denote the sets of basic and non-basic variables.

Write a;; = LC_LZ']'J + fij (Z €l and j € J) and a; = Lc_lioJ + fio (Z € I)
Assume f;y > 0 for some . The Gomory fractional cut (GFC) from that LP
tableau row is



s fijTi = fio- (2)
The Gomory mized integer cut (GMIC) from the LP tableau row is:

Yietis<tio) Fid®i + T2 Xietiys i) (1 = Fig) 25 > fio- (3)

Rather than directly generating the GMIC from the LP tableau row, we
could first multiply both sides of the row by some nonzero integer k # 1
and then apply the Gomory mixed integer procedure as above to obtain the
corresponding inequality:

E(ﬁﬂjﬁfio) fij-Tj + l—ij%o Z(j=fij>fw)(1 o fij)xj > fio, (4)

where fio = @io — @] > 0, fij = @i — @] > 0 (j € J), o = kayo and
ai; = kai; (j € J). We call the inequality in (4) a k-cut generated from the
LP tableau row.

LEMMA 1. The k-cut is a valid inequality for (IP).

PROOF. Multiplying both sides of the LP tableau row by a nonzero
integer k # 0, we have kx; = @i + X jcs Gi(—i;). Replacing kz; by a new
integer variable xj, we get x; = @i + X ;e Gi(—i;), which is an equation
similar to (1). The standard derivation of GMIC applied to this equation
shows that (4) is valid for IP. O

LEMMA 2. The k-cut is equivalent to the (—k)-cut.
PROOF. 1t is sufficient to show that the GMIC is equivalent to the (—1)-
cut. The GMIC from the LP tableau row is shown in (3), which is
fio
> fuzi+ Y forj+ i Y (= fijz; > fo
(4:fij<fio) (4:fij=Fio) 0 (j:£i5> fio)

After multiplying —1 to the tableau row, the fractional parts of the coeffi-
cients in the new row are just 1 — f;; and 1 — f;. Therefore, the (—1)-cut
is

1-fi
Y. A=fiyzi+ X (- fo)z;+ 7, Y fygi 21— fa
(4:£i5> fio) (4:fij=Fi0) 0 (j:fi;<fo)

We now see that there exists just a positive factor 1—{’%0 between the GMIC
and the (—1)-cut. O

Now let us try to get some sense of the variety and efficiency of the k-cuts
by analyzing two small examples.



EXAMPLE 1 (general integer case)
Consider the following integer programming problem:
Max 10x + 13y

s.t. 10z + 14y < 43,
x, YE L.

It is equivalent to the following IP after introducing an integer slack z:

Min y+ 2
st. z+1.4y+ 0.1z = 4.3,
x, Y, 2 € L.

Obviously, the equality  + 1.4y + 0.1z = 4.3 is a row of the corresponding
optimal LP tableau. The LP optimum is (z,y,2) = (4.3,0,0).

All the possible k-cuts generated from this tableau row are summarized
in the following table and Figure 1.

GMIC and 9-cut | 2y +22>6
2-cut and 8-cut 3y+22>6
3-cut and 7-cut 2u+322>9
4-cut and 6-cut 2+ 32 >4
5-cut z>1

A picture of these k-cuts in the (y, z)-plane clearly shows that all the
k-cuts (2 < k < 8) either dominate the GMIC or are incomparable with the
GMIC in this example. These k-cuts effectively shrink the feasible region of
the LP relaxation by cutting off different parts. Worth mentioning is that
the 3-cut is a facet to the convex hull of the feasible integer points in the
(y, z)-plane. Together with the valid inequalities 14y + z < 43 and y > 0,
it gives a complete facet description of the convex hull of the feasible (y, 2)
integer points.

If we consider the following IP instead of the above one

Min y+ =z
s.t. x4+ 0.4y +0.12 =5.3,
z, Yy, z€ Z+7

then all the k-cuts generated from the new optimum LP tableau row are the
same as above. However, in this case the 3-cut and the 5-cut, together with
4y+2z < 53 and y > 0, give a complete facet description of the corresponding
convex hull of the feasible (y, z) integer points. O
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5-cut

3-cut and 7-cut

M and 6-cut
|

0 1 2 3 4 z

Figure 1: k-cuts in (y, z)-plane for Example 1

EXAMPLE 2 (0-1 case)

Consider the following 0-1 programming problem:

Max z + 22
s.t. 10.’1)1 + 2;32 S 1]_,
221 + 10xy < 11,
r1 <1, 23 <1,

Ty, T2 € Z_|_.

After introducing two integer slacks w and z, we get the equivalent IP:

Max x1 + 2
s.t. 10z +2x9 +w = 11,
2x1 + 10xy + 2 = 11,
ry <1, 22 <1,
Ty, To W, 2 € L.
The GMICs generated from the optimum LP tableau rows :1:1+%w—41—82 =
% andxz—j—gw—i-%z: % are

72z + 120z, < 132,



+ 10z < 11
1

9-cut GMIC

GMIC

1 2z <11
9-cut @1+ 222 <

Figure 2: 9-cuts vs GMIC in (z1, z2)-plane for Example 2

Their respective boundary lines pass through the points “(1,1) and (%, 1)”
and “(1, %) and (3,1)” and they intersect at the point (33, 3¢) in the (21, z2)-

space.
The 9-cuts generated from those two LP tableau rows are

r1 + 229 < 2,
201 + 1o < 2.

The corresponding boundary lines pass through the points “(1,1) and (0,1)”
and “(1,0) and (3,1)” respectively and intersect at (2, 2).

We see that these two 9-cuts respectively dominate the corresponding
GMICs. In fact, together with the non-negativity constraints on z; and z,,
these two 9-cuts give a complete description of the elementary closure of the

LP relaxation under the lift-and-project cuts. O

3. Comparing GMICs with k-cuts

In this section we are going to discuss the relation between Gomory mixed
integer cuts and k-cuts in pure integer programs. The relation builds upon
the following definition.

DEFINITION 1. Let az > 8 and &z > B be two cuts for (IP), where
a,a € R}, >0 and 8 >0. The cut ax > (3 is equally strong on x; as the
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cut ax > B, if a;/B = &;/B. The cut ax > 3 is stronger on z; than the cut
az > B, if aj/B < a;/B. The cut ax > B is strictly stronger on x; than the
cut ax > B, if a; /B < a;/B. O

Obviously, if the cut az > 3 is stronger on z; than the cut az > 3 for
all 1 < j < n, then the cut ax > f is stronger than the cut az > /3, or in
other words, az >  dominates az > 5.

Let 2o = @o — X ;e a;¢; be an LP tableau row, where a; = |a;] + f;,
Gy = |Go] + fo and 0 < fo < 1. Let X ,c;;x; > [ represent any of the
three cuts generated from this tableau row: GFC as described in (2), GMIC
as described in (3) and the k-cut as described in (4). Then a; > 0 (j € J)
and 8 > 0. Given 0 < fy < 1, o;/f is in each case only a function of
fj- Actually, the function a;/f for GFC is a linear function starting from
origin, the function for GMIC can be plotted as a two-slope figure, and the
function for a k-cut (k > 2) is a piecewise linear function with a regular zig-
zag feature. For instance, when f; = 0.15, the corresponding functions for
GFC and GMIC are plotted in Figure 3. The function «;/3 corresponding to
the 5-cut when fy = 0.15 is shown in Figure 4. This kind of picture allows to
compare two inequalities by plotting the two functions and checking where
one curve is below the other.
*i/P GFC

l,

GMIC

1 1 1
0 015 05 1 £

Figure 3: o/ as a function of f; for GFC and GMIC



a;/B
l |-
5-cut
for
fo =0.15
| |
0 0.15 05 1 5

Figure 4: /8 as a function of f; for a 5-cut

«;/B GFC

| 5-cut

NGMIC

0 015 05 1 %5

Figure 5: /8 as a function of f; for GFC, GMIC and 5-cut



Figure 5 illustrates the relation among the functions «; /5 for GFC, GMIC
and a 5-cut when fo = 0.15. Since k = 5 and fo = 0.15, we have k < [ ].
We can observe from the figure: (1) The GFC, GMIC and the 5-cut are
equally strong on z; if 0 < f; < fo; (2) The GMIC and the 5-cut are strictly
stronger on z; than GFC if f, < f; < 1; (3) The GMIC is strictly stronger
on z; than the 5-cut in some of the sub-intervals of (fo, 1), while in the rest,
except a few isolated points, 5-cut is strictly stronger on z; than GMIC.

The observation from the example in Figure 5 can be extended to any
0< fo<05andk < LLOJ The comparison is summarized in Table 1, where
we use the numbers 1, 2 and 3 to rank the strength of GFC, GMIC and k-cut
on z; in a decreasing order.

It is easy to sum up from Table 1 the total length of the sub-intervals
where the k-cut is strictly stronger on x; than the GMIC. This length is equal
to % This exactly equals the total length of the sub-intervals where the
GMIC is strictly stronger on z; than the k-cut.

| f; value [ k-cut | GMIC | GFC |

[OafO] 1 1 1
(an %) . 1 2
4% + fol T+ 1 1

el G+, T+ fo] 2 1 3
l<i<k-1 E+fo 5 +5 )| 2 1
(3 + fo, ) 4 + ’“,;1:1]”0 1 1 1
(25 + Bg fo, 5) 1 2

Table 1: comparison among cuts when 0 < fp < 0.5 and 1 <k < [%J

THEOREM 1. Let zy = @y — X jcs a;x; be a LP tableau row, where
a; = |aj] + f;, Go = |Go]| + fo and 0 < fo < 0.5. Then we have

(i) When1 <k < L%J, the k-cut generated from the row is stronger than
the GFC generated from the row.

(ii) Assume that f; is uniformly distributed in [0,1). When 2 < k < L%J,
the probability that the k-cut generated from the row is strictly stronger on
x; than the GMIC generated from the row 1is 1_2f°, which s equal to the
probability that the GMIC generated from the row s strictly stronger on z;

than the k-cut generated from the row. a
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When we compare the k-cuts (2 < k < [%J) as a group with the GMIC,
we have the following result.

THEOREM 2. Assume that ﬁ < fo < % for some integer K > 2
and that f; is uniformly distributed in [0,1). The probability that some k-
cut generated from the row (2 < k < K ) is strictly stronger on x; than the
GMIC generated from the row 1is iﬁéﬂz, while the probability that the
GMIC generated from the row is strictly stronger on x; than all the k-cuts
generated from the row (2 < k < K ) is 1o

PROOF. From Table 1 we see that the GMIC and the k-cut (2 < k£ < K)
are equally strong on z; when 0 < f; < fj.

Table 1 shows that the 2-cut is strictly stronger on x; than the GMIC
when fy < f; < % In the case of £k = 2 and 7 = 1, the 2-cut is strictly
stronger on z; than the GMIC when 1 < f; < 1o,

Let 3 < p < K. In the case of k = p and ¢ = p — 2, the p-cut is strictly
stronger on z; than the GMIC when %@ < f; < ’%1, while in the case of
k = p and i = p— 1 the p-cut is strictly stronger on z; than the GMIC when

7%1 < f; < ’%HO. So the p-cut is strictly stronger on z; than the GMIC
—24 —14
when ppflfo < fj < Bt

P
If we put together all the intervals (fo,3), [3,1£2) and (’%Jrlf", ’%”0)
(3 < p < K), we see that, for any given value of f; € (f, K;I?Lm) except on

K — 2 isolated points ’%”0 (2 <p < K —1), there must exist some k-cut
(2 < k < K) such that the k-cut is strictly stronger on z; than the GMIC.
The length of the interval (fo, £—%t) is (Kfliglffo).

It is not difficult to see in the case of k =pandi=p—-1 (2 <p < K)
that the GMIC is strictly stronger on z; than the p-cut when f; € (’%”0, 1).
Therefore, the GMIC is strictly stronger on z; than all the k-cuts (2 <k <
K) when f; € (5=kt£,1). The length of the interval (51t 1) is Lo, O

Now let us compare the GMIC with a k-cut in the case kfy > 1.

In Figure 6 (fy = 0.375) and Figure 7 (fo = 0.875), we can respectively
observe the relation between the functions «;/f of the GMIC and the 4-
cut. We have [kfo] = [4 x 0.375] = [1.5] = 2 < 4 = k in Figure 6 and
[kfo] = [4 x 0.875] = [3.5] =4 = k in Figure 7. In fact, these two figures
effectively represent all the possible combinations of k£ and f; when kf; > 1.
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oj/B

GMic || et

[ Y [

V |
0 025 0.375 0.5 0.75 1 fj

Figure 6: GMIC and 4-cut when fy = 0.375

a;/B

4ot/ | P oMl

} LY \\r" | | Ll
0 0.25 0.5 0.75 0.875 1 fj

Figure 7: GMIC and 4-cut when f, = 0.875
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| f; value | k-cut | GMIC |
) . (%a %fo) 1 2
o (%’ fO - % %fO 1 1
(%’%]a (%anfO_%] 2 1
0<i<i-1 o (o~ 3 ik fol 2 1
fo— &b it it 1 1
(fo— %% Gﬁ?zﬂ] - >
141705 g
(4 fo) 1 2
(= f L1
(f()a% 1 2
T GEee I
| G ST = T L
(va_ ) (%sz'i‘z%, 0 ;’t] 2 1
k .k _ _ll;z k—z—ll f—l
l+1§7/§k 1 o (fO % ’k—l—1f0+k—l—1) 2 1
(fo— Lt oot B 1 1
e+ 275 2 1 2
Table 2: comparison between k-cut and GMIC when
O<l<kfo<l+1<k
| f; value | k-cut | GMIC |
(%a ﬁfO) 1 2
PN R S SN S B
il —=fo, fo— " — 2 1
0<i<h-—2 (I;” == ﬁf] 2 1
- k—i—1 i—|—1] ‘ z+k1f’ k=2 1 1
(fO - Tk 'k & JO
. (%fo, % 1 2
(*¢ fo) 1 2
(54 1] Jo 1 1
(fO)l] 1 1

Table 3: comparison between k-cut and GMIC when
O<l<kfo<l+1=k

The observations in Figure 6 and Figure 7 can be quantitatively summa-
rized in Table 2 and Table 3 respectively in the general cases 0 <[ < kfy <
l+1<kand 0<!l<kfy <l+1=k for some integer [. Again we use
the numbers 1 and 2 in the tables to rank the strength of the cuts on z;
in a decreasing order. Note that the case listed as f; = 1 in Table 2 and
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Table 3 corresponds to the actual case f; = 0. Now Theorem 3 follows from
observing the figures and tables.

THEOREM 3. Assume that f; is uniformly distributed in [0,1). Let
k> [%1 and kfo be non-integral.

(i) If k > [kfo], then the probability that the k-cut generated from the
tableau row s strictly stronger on x; than the GMIC generated from the row

;, which is equal to the probability that the GMIC generated from the row
1s strictly stronger on x; than the k-cut generated from the row.

(i) If k = [kfo]|, then the probability that the k-cut generated from the
tableau row s strictly stronger on x; than the GMIC generated from the row
18 f", which s equal to the probability that the GMIC generated from the row
1s strictly stronger on x; than the k-cut generated from the row. a

In the following, we compare the GMIC to a group of k-cuts when f, > %

THEOREM 4. Assume fo > % and ¢ < mfy < ¢+ 1 for some integer
q > 1 and integer m > 2. Then

(i) When f; € (0, ffl] the GMIC is strictly stronger on z; than any k-cut
(2 <k<m).

(ii) When f; € ( +1,f0] there exists some k-cut (2 < k < m) such
that the k-cut is stronger on w] than the GMIC, and the “strictly stronger”
property holds for all f; € ( oD fo] except a finite number of isolated points.

(ii) If fo > 3, then the 2-cut and the GMIC are equally strong on z;
when f; € [fo,1). If fo = %, then the 3-cut us strictly stronger on x; than the
GMIC when f; € (5,3).

PROOF. (i) In the case of i = 0 in Table 2 and Table 3, the GMIC is
strictly stronger on z; than any k-cut (2 < k < m) when f; € (0, q+1]

(ii) Let k' be the largest integer between 2 and m such that [k'fy] = &'
First, let us look at Table 2 for the comparison, where we only consider the
integer value of k in [k’ + 1, m]. We decrease the value of k from m to k' + 1
in a way to ensure that the integer | decreases one at a time. Each time
when [ has a lower value, we choose ¢ = 0 and 1 to identify two sub-intervals,
in which the k-cut is strictly stronger on x; than the GMIC. If we connect
together all these sub-intervals, then we get an interval (;%, E,{O—l] From how
we construct this interval, we know that, when f; € (;%, E'fE_J’ there exists
some k-cut (k' + 1 < k < m) such that the k-cut is stronger on z; than
the GMIC, and the “strictly stronger” property holds for all f; € ( fol, k,fol
except a few isolated points.

Now let us compare the k-cuts with GMIC in Table 3, assuming that the

integer value of k is taken in [2, k']. Similarly as how we identify and connect
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the sub-intervals above, we decrease the value of k once a time, meanwhile
the value of [ decreases once a time as well. Each time we choose ¢ = 0 and
1 to figure out two sub-intervals, in which the k-cut is strictly stronger on
z; than the GMIC. Connecting together all these sub-intervals, we obtain
an interval (%, %] Also we see in Table 3 that 2-cut is strictly stronger on
z; than the GMIC when f; € (3, fo). Therefore, when f; € (%,fo], there
exists some k-cut (2 < k < k') such that the k-cut is stronger on z; than the
GMIC, and the “strictly stronger” property holds for all f; € (/,:—?, fo] except
a few isolated points.

(iii) In the case of fo > 3, Table 3 tells us that the 2-cut and the GMIC
are equally strong on z; when f; € [fo,1).

In the case of f = %, the 3-cut is strictly stronger on z; than the GMIC
when f; € (3,3), which can be seen if we look at the case of k = 3, =1
and ¢ = 2 in Table 2. O

4. Computational results
In this section, we test computationally how the k-cuts compare to GMIC for
0-1 and bounded knapsack problems and for integer programs with multiple
constraints.

The knapsack problems have the following form:

Max Z_?:l p;ix;
st Yi o wiz <,
0 <z; <b; and integer, 1 < j <mn,

where p;, w; and c are positive numbers and b; is a positive integer. The 0-1
knapsack problems have b; =1 for all 1 < j < n.

For the 0-1 knapsack problems, we generate both p; and w; randomly
uniformly in [1,1000] and ¢ = 0.5 3°7_; w;, following Martello and Toth [19].
When we generate the bounded knapsack problems, p; and w; are set to be
uniformly random in [1,1000], the values b; are uniformly random in [5,10],
and c is set to 0.53°7_; bjw;. The number n of variables ranges from 10 to
10000, which represents the size of the problem.

In Table 4 and Table 5, we compare the gap closed after adding one k-cut
to the LP relaxation of the knapsack problems, where k ranges from 1 to
5. The percentage figures in the tables represent the gap between the LP
optimum and the IP optimum closed by adding the k-cuts. The asterisks
‘*’ in the upper right corner of some percentage values indicate those values
that are the largest among all the percentage values in their row. These two
tables show that, for both the 0-1 and the bounded cases, each k-cut has
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the same chance of being the best cut, over all values of k. The GMICs
do not show any extraordinary advantage over other k-cuts. This fact is in
accordance with the results in Theorem 1 and Theorem 3 in Section 3.

Problem Number of | gap closed | gap closed | gap closed | gap closed | gap closed
set variables by 1-cut by 2-cut by 3-cut by 4-cut by 5-cut
problem 1 10 76.31% 100.00%* 56.79% 92.22% 32.39%
problem 2 10 93.71%* 56.88% 29.82% 17.64% 6.18%
problem 3 100 5.94% 23.46%* 8.32% 3.50% 3.33%
problem 4 100 30.29%* 14.87% 15.66% 28.72% 23.21%
problem 5 1000 12.25% 6.06% 5.20% 25.74% 32.18%*
problem 6 1000 13.15% 14.19%* 9.51% 0.22% 5.20%
problem 7 5000 40.74% 56.48%* 34.26% 46.30% 55.56%
problem 8 5000 9.01% 9.91% 8.11% 13.51%* 11.711%
problem 9 10000 2.94% 4.41% 29.41%* 5.88% 5.88%
problem 10 10000 7.22% 21.65% 8.25% 7.22% 27.84%*

Table 4: individual k-cuts in 0-1 knapsack problems

Problem Number of | gap closed | gap closed | gap closed | gap closed | gap closed
set variables by 1-cut by 2-cut by 3-cut by 4-cut by 5-cut
problem 1 10 84.30% 70.17% 100.00%* 60.92% 52.18%
problem 2 10 19.73% 34.12%* 21.51% 32.19% 6.48%
problem 3 100 13.94% 13.94% 21.91% 29.51% 61.08*
problem 4 100 55.67%* 49.90% 27.29% 42.70% 43.18%
problem 5 1000 18.49%* 18.49%* 18.01% 18.49%* 18.49%*
problem 6 1000 8.74%* 4.11% 2.57% 1.80% 3.34%
problem 7 5000 8.26% 18.18% 14.05% 22.31%* 14.88%
problem 8 5000 1.42% 0.71% 14.18%* 0.71% 0.71%
problem 9 10000 9.19% 5.95% 5.41% 6.49% 11.89%*
problem 10 10000 2.68% 11.41%* 4.03% 8.05% 2.01%

Table 5: individual k-cuts in bounded knapsack problems

Problem Number of | gap closed gap closed gap closed
set variables by 1-cut by [1,10]-cuts | by [1,50]-cuts

problem 1 10 53.98% 92.57% 100%

problem 2 10 94.05% 100% 100%

problem 3 50 19.19% 37.58% 40.24%
problem 4 50 8.11 % 35.01% 35.64%
problem 5 100 30.78% 77.04% 86.18%
problem 6 100 53.09% 100% 100%

problem 7 500 18.39% 25.06% 52.18%
problem 8 500 16.39% 49.76% 55.06%
problem 9 1000 6.79% 43.82% 54.58%
problem 10 1000 92.16% 100% 100%

problem 11 5000 15.77% 45.00% 57.31%
problem 12 5000 15.27% 39.69% 74.05%
problem 13 10000 3.70% 17.78% 24.44%
problem 14 10000 6.35% 14.81% 23.28%

Table 6: accumulated k-cuts in 0-1 knapsack problems
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Problem Number of | gap closed gap closed gap closed
set variables by 1-cut by [1,10]-cuts | by [1,50]-cuts
problem 1 10 66.95% 100% 100%
problem 2 10 74.29% 100% 100%
problem 3 50 41.87% 64.95% 77.30%
problem 4 50 6.45% 66.51% 70.99%
problem 5 100 39.62% 66.00% 69.04%
problem 6 100 20.38% 58.16% 94.71%
problem 7 500 15.25% 43.17% 71.29%
problem 8 500 2.22% 2.22% 66.37%
problem 9 1000 6.30% 20.82% 39.45%
problem 10 1000 6.46% 39.38% 81.88%
problem 11 5000 8.62% 17.24% 25.00%
problem 12 5000 11.56% 37.41% 41.50%
problem 13 10000 2.80% 6.54% 17.76%
problem 14 10000 1.67% 16.67% 36.67%

Table 7: accumulated k-cuts in bounded knapsack problems

Problems with | Number of | gap closed gap closed gap closed
500 0-1 var. constraints by 1-cut | by [1,10]-cuts | by [1,50]-cuts
problem 1 5 constr. 12.53% 15.56% 15.62%
problem 2 10 constr. 1.13% 2.27% 2.57%
problem 3 50 constr. 4.04% 4.16% 4.16%
problem 4 100 constr. 2.32% 2.32% 2.32%

probelms with | Number of | gap closed gap closed gap closed
500 bd var. constraints by 1-cut | by [1,10]-cuts | by [1,50]-cuts
problem 5 5 constr. 2.42% 5.33% 5.46%
problem 6 10 constr. 5.09% 5.09% 5.09%
problem 7 50 constr. 0.75% 0.79% 0.79%
problem 8 100 constr. 1.88% 1.92% 1.92%

Table 8: accumulated k-cuts in integer programming problems

In Table 6 and Table 7, we compare the cuts cumulatively: the third
column corresponds to the case of just adding the GMIC, the next column
corresponds to adding all the k-cuts with 1 < k£ < 10, and the last column
corresponds to adding all the k-cuts with 1 < k& < 50. The data imply that
adding several k-cuts can close the gap effectively and works better than any
single k-cut. In some cases, the improvement is very significant. The results
in Theorem 2 and Theorem 4 are partly reflected in these tables.

In Table 8 we consider applying k-cuts to the 0-1 and bounded integer
programming problems with more than one constraint. Each problem has
500 variables and from 5 to 100 constraints. The objective function and each
constraint are randomly generated as in the problems in Tables 4-7. We
generate k-cuts from all the rows of the tableau in which the basic variable
has a fractional value. The results of Table 8 show that the effect of the
k-cuts tails off dramatically as the number of constraints increases. This
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is rather disappointing. Even more disappointing is the observation that
adding groups of k-cuts provides only marginal improvements over adding
the GMICs alone. We do not have any good theoretical explanation for this.

Obviously, the problems with more than one constraint are more mean-
ingful from a practical point of view. However, in this case, adding the k-cuts
for all £ < 50 is not efficient as clearly illustrated in Table 8. A further in-
vestigation of k-cuts might still be interesting, especially for problems with
general integer variables, since there are not many powerful cuts available
for the general integer case. To investigate the usefulness of using k-cuts in
practice, one should solve problems to optimality, say in combination with
the branch-and-bound method. Our purpose in this section was much more
limited. We only wanted to illustrate the theorems of Section 3.

5. Extension to the mixed case
The mixed integer programming (MIP) problems have the standard form

Min cz + dy
s.t. Az + By =,
reZt ye Ry,

where A and B are rational matrices, and ¢, d and b are rational vectors.
Solving the LP relaxation of the MIP gives tableau rows of the form

Ty = Go + Xjes 8i(—5) + Xjes 9i(—V5), (5)

where fo = @g — |@o| > 0, J and S denote the sets of the non-basic integer
variables and the non-basic continuous variables.
Using the notation from Section 2, the GMIC is, in the mixed case:

Y fizi+ fo > A —=fzi+ Y gjyj—L > 9iy;i > fo- (6)

3:fi<fo 1= fo 3:f>fo 4:95>0 1= fo §:95<0

Note that the difference between the GMICs in (3) and (6) is that the cut in
(6) contains terms for the continuous variables.

Applying the same proof procedure as that for Lemma 1 shows that the
following cutting plane is valid for MIP:

S forle ¥ 0-Bme T ks X ke > b )

_F 1—f .-
3:fi<fo 0 j:f5>Fo J:9;20 0 j:9;<0

which is called the k-cut in the mized case, or the k-cut in brief.
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Comparing the cuts in (6) and (7), we can see that, in the mixed case, the
k-cut (k > 2) is weaker in the continuous variables than the GMIC. Similar to
the picture introduced in Section 3 for an integer variable, one can construct
a picture for a continuous variable y;. Let 8 = fo and a; = kg; when g; > 0,

1{”};0 kg; when g; < 0. Then the function ¢;/f is a linear function of |g;| with
nonnegative slope and the slope increases as k increases, which weakens the
cut on y;. Hence it seems logical that increasing k too much leads to bad

inequalities.

We observed in practice that k-cuts (k > 2) in the mixed case are often
not as good as the GMICs. So there exists an intrinsic difficulty in extending
the results of the pure IP case to the MIP case. One might still be able to
use them conditionally. For example, in the case where f < % and g; > 0 for
all j (or fo > % and g; <0 for all j), the results of Theorem 1 and Theorem
2 can be applied to obtain k-cuts (2 < k < [%J) (or2<k< Lﬁj) that
are as powerful as the GMIC and provide a variety of cutting planes.

The following two tables illustrate the deterioration of k-cuts in the mixed
case as k increases. In the knapsack problems, the slack variables are consid-
ered to be continuous. The corresponding GMIC and k-cuts are generated
in the forms of (6) and (7). The quality of the cuts is measured by the gap
closed after adding one cut. We can see from Table 9 and Table 10 that
the gap closed tends to decrease as k increases, which implies that the k-cut
deteriorates as k becomes larger.

problem gap closed | gap closed | gap closed gap closed gap closed
set by 1-cut by 10-cut | by 100-cut | by 1000-cut | by 10000-cut
problem 1 10.50% 13.22% 3.17% 0.87% 0.06%
problem 2 5.94% 2.47% 1.89% 0.77% 0.03%
problem 3 5.60% 0.27% 7.96% 0.27% 0.02%
problem 4 30.31% 24.19% 5.83% 0.09% 0.09%
problem 5 51.93% 16.76% 6.86% 0.55% 0.08%

Table 9: individual k-cuts in 0-1 knapsack problems

problem gap closed | gap closed | gap closed gap closed gap closed
set by 1-cut by 10-cut | by 100-cut | by 1000-cut | by 10000-cut
problem 1 39.62% 25.72% 5.32% 0.43% 0.03%
problem 2 19.69% 44.52% 11.26% 3.52% 0.38%
problem 3 11.78% 44.48% 7.58% 0.40% 0.00%
problem 4 13.02% 0.32% 2.34% 0.98% 0.06%
problem 5 42.30% 8.46% 18.93% 2.11% 0.15%

Table 10: individual k-cuts in bounded knapsack problems
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A further extension of GMIC combines several rows from the LP tableau
with integer multipliers. This idea has attracted attention recently [1, 4, 17,
24]. This topic is currently under further investigation.
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