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A Linear-Programming Approximation of
AC Power Flows
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Abstract—Linear active-power-only DC power flow approx-
imations are pervasive in the planning and control of power
systems. However, these approximations fail to capture reactive
power and voltage magnitudes, both of which are necessary in
many applications to ensure voltage stability and AC power
flow feasibility. This paper proposes linear-programming models
(the LPAC models) that incorporate reactive power and voltage
magnitudes in a linear power flow approximation. The LPAC
models are built on a convex approximation of the cosine terms
in the AC equations, as well as Taylor approximations of the
remaining nonlinear terms. Experimental comparisons with AC
solutions on a variety of standard IEEE and MATPOWER
benchmarks show that the LPAC models produce accurate
values for active and reactive power, phase angles, and voltage
magnitudes. The potential benefits of the LPAC models are
illustrated on two “proof-of-concept” studies in power restoration
and capacitor placement.

Index Terms—DC power flow, AC power flow, LP power flow,
linear relaxation, power system analysis, capacitor placement,
power system restoration

NOMENCLATURE

Ĩ AC Current
Ṽ = v + iθ AC voltage
S̃ = p+ iq AC power
Z̃ = r + ix Line impedance
Ỹ = g + ib Line admittance
Ỹ b = gy + iby Y-Bus element
Ỹ c = gc + ibc Line charge
Ỹ s = gs + ibs Bus shunt
T̃ = t+ is Transformer parameters
Ṽ = |Ṽ |∠θ◦ Polar form

S̃n AC Power at bus n
S̃nm AC Power on a line from n to m
PN Power network
N Set of buses in a power network
L Set of lines in a power network
G Set of voltage controlled buses
s Slack Bus
|Ṽ h| Hot-Start voltage magnitude
|Ṽ t| Target voltage magnitude
φ Voltage magnitude change
∆ Absolute difference
δ Percent difference
x̂ Approximation of x
x Upper bound of x
x Lower bound of x
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I. INTRODUCTION

OPTIMIZATION technology is widely used in modern
power systems [1] and has resulted in millions of dollars

in savings annually [2]. But the increasing role of demand
response, the integration of renewable sources of energy,
and the desire for more automation in fault detection and
recovery pose new challenges for the planning and control of
electrical power systems [3]. Power grids now need to operate
in more stochastic environments and under varying operating
conditions, while still ensuring system reliability and security.

Optimization of power systems encompasses a broad spec-
trum of problem domains, including optimal power flow [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], LMP-base
market calculations [15], [16], [17], transmission switching
[18], [19], [20], real-time security-constrained dispatch [21],
[22], day-ahead security-constrained unit commitment [23],
[24], [25], distribution network configuration [26], [27], capac-
itor placement [28], [29], [30], expansion planning [31], [32],
[33], [34], [35], [36], [37], [38], [39], vulnerability analysis
[40], [41], [42], [43], [44], and power system restoration [45],
[46] to name a few. Some of these use active power only,
while others consider both active and reactive power.

Restricting attention to active power is often appealing
computationally as the nonlinear AC power flow equations
can then be approximated by a set of linear equations that
define the so-called Linearized DC (LDC) model. Under
normal operating conditions and with some adjustment for
line losses, the LDC model produces a reasonably accurate
approximation of the AC power flow equations for active
power [47]. Moreover, the LDC model can be embedded in
Mixed-Integer Programming (MIP) models for a variety of
optimization applications in power system operations. This is
particularly attractive as the computational efficiency of Linear
Programming (LP) and MIP solvers has significantly improved
over the last two decades [48].

However, the LDC model does not capture reactive power
and hence cannot be used for applications such as capacitor
placement and voltage stability to name only two. Moreover,
the accuracy of the LDC model outside normal operating
conditions is an open point of discussion (e.g., [15], [47], [49],
[50], [51]). This in turn raises concerns for other applications
such transmission planning, vulnerability analysis, and power
restoration, which may return infeasible or suboptimal solu-
tions when the LDC model is used to approximate the AC
power flow equations. As a result, these applications often
turn to nonlinear programming techniques [8], [13], [14],
[17], iterative heuristics and decomposition [11], [12], [36],
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[42], model relaxation [7], [28], tabu search [30], and genetic
algorithms [29], [34] to ensure feasibility. These techniques
often require extensive tuning for each problem domain,
may consume significant computational resources, and cannot
guarantee global optimality.

This paper aims at bridging the gap between the LDC model
and the AC power flow equations. It presents linear programs
to approximate the AC power flow equations. These linear
programs, called the LPAC models, are based on two ideas:

1) They reason both on the voltage phase angles and the
voltage magnitudes, which are coupled through equa-
tions for active and reactive power;

2) They use a piecewise linear approximation of the cosine
term in the power flow equations and Taylor series for
approximating the remaining nonlinear terms.

The LPAC models have been evaluated experimentally over
a number of standard benchmarks under normal operating
conditions and various contingencies. Experimental compar-
isons with AC solutions on standard IEEE and MatPower
benchmarks shows that the LPAC models are highly accurate
for active and reactive power, phase angles, and voltage mag-
nitudes. Moreover, the LPAC models can be integrated in MIP
models for applications reasoning about reactive power (e.g.,
capacitor placement) or topological changes (e.g., transmission
planning, vulnerability analysis, and power restoration).

This rest of this paper presents a rigorous and systematic
derivation of the LPAC models, experimental results about
their accuracy, and its application to power restoration and
capacitor placement. Section II reviews the AC power flow
equations. Section III derives the LPAC models and Section
IV presents the experimental results on its accuracy. Sec-
tion V presents the “proof-of-concept” experiments in power
restoration and capacitor placement to demonstrate potential
applications of the LPAC models. Section VI discusses related
work and Section VII concludes the paper.

II. REVIEW OF AC POWER FLOW

The steady state AC power for bus n is given by

S̃n =

n 6=m∑
m

ṼnṼ
∗
n Ỹ
∗
nm − ṼnṼ ∗mỸ ∗nm. (1)

This equation is not symmetric. From the perspective of bus
n, the power flow on a line to bus n is

ṼnṼ
∗
n Ỹ
∗
nm − ṼnṼ ∗mỸ ∗nm

while, from the perspective of bus m, it is

ṼmṼ
∗
mỸ
∗
mn − ṼmṼ ∗n Ỹ ∗mn.

In general, S̃nm 6= S̃mn.

A. The Traditional Representation

The AC power flow definition is typically expanded in terms
of real numbers only. By representing power in rectangular

form, the real (pn) and imaginary (qn) terms become

n 6=m∑
m

|Ṽn|2gnm − |Ṽn||Ṽm|(gnm cos(θ◦n−θ◦m)+bnm sin(θ◦n−θ◦m))

n 6=m∑
m

−|Ṽn|2bnm− |Ṽn||Ṽm|(gnm sin(θ◦n−θ◦m)−bnm cos(θ◦n−θ◦m))

The Y-Bus Matrix: The formulation can be simplified further
by using a Y-Bus Matrix, i.e., a precomputed lookup table
that allows the power flow at each bus to be written as a
summation of 2n terms instead a summation of 3(n−1) terms.
Observe that, in the power flow equations (1), the first term
ṼnṼ

∗
n Ỹ
∗
nm is a special case of the second term −ṼnṼ ∗mỸ ∗nm

with −Ṽm = Ṽn. We can eliminate this special case by

1) extending the summation to include n terms, i.e.,
∑n 6=m

m

becomes
∑

m;
2) defining the Y-Bus admittance Ỹ b

nm as

Ỹ b
nn =

n6=m∑
m

Ỹnm

Ỹ b
nm =−Ỹnm

Given the Y-Bus, the power flow equations (1) can be rewritten
as a single summation

S̃n =
∑
m

ṼnṼ
∗
mỸ

b
nm (2)

giving us the popular formulation of active and reactive power:

pn =
∑
m

|Ṽn||Ṽm|(gynm cos(θ◦n−θ◦m)+bynm sin(θ◦n−θ◦m)) (3)

qn =
∑
m

|Ṽn||Ṽm|(gynm sin(θ◦n−θ◦m)−bynm cos(θ◦n−θ◦m)) (4)

B. An Alternate Representation

The Y-Bus formulation is concise but makes it difficult to
reason about the power flow equations. This paper uses the
more explicit equations which can be presented as bus and
line equations as follows:

pn =

n 6=m∑
m

pnm (5)

qn =

n 6=m∑
m

qnm (6)

pnm = |Ṽn|2gnm − |Ṽn||Ṽm|gnm cos(θ◦n − θ◦m)

−|Ṽn||Ṽm|bnm sin(θ◦n − θ◦m) (7)

qnm =−|Ṽn|2bnm + |Ṽn||Ṽm|bnm cos(θ◦n − θ◦m)

−|Ṽn||Ṽm|gnm sin(θ◦n − θ◦m) (8)

Once again, 7 and 8 are asymmetric and the line admittance
values Ỹ have not been modified.
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C. Extensions for Practical Power Networks

In the above derivation, each line is a conductor with an
impedance Z̃. The formulation can be extended to line charg-
ing and other components such as transformers and bus shunts,
which are present in nearly all AC system benchmarks. We
show how to model these extensions in the Y-Bus formulation
for simplicity.

Line Charging: A line connecting buses n and m may
have a predefined line charge Ỹ c. Steady state AC models
typically assume that a line charge is evenly distributed across
the line and hence it is resonable to assign equal portions of
its charge to both sides of the line. This is incorporated in the
Y-Bus matrix as follows:

Ỹ b′

nn = Ỹ b
nn + Ỹ c

nm/2,

Ỹ b′

mm = Ỹ b
mm + Ỹ c

nm/2.

Transformers: A transformer connecting bus n to bus
m can be modeled as a line with modifications to the Y-Bus
matrix. The properties of the transformer are captured by a
complex number T̃nm = |T̃ |∠s◦, where |T̃ | is the tap ratio
from n to m and s◦ is the phase shift. It is worth noting
that the direction of a transformer-line is very important to
model the tap ratio and phase shift properly. A transformer is
modeled in the Y-Bus matrix as follows:

Ỹ b′

nn = Ỹ b
nn − Ỹnm + Ỹnm/|T̃nm|2,

Ỹ b′

nm = Ỹnm/T̃
∗
nm,

Ỹ b′

mn = Ỹmn/T̃nm.

If a line charge exists, it must be applied before the transformer
calculation, i.e.,

Ỹ b′

nn = Ỹ b
nn − Ỹnm + (Ỹnm + Ỹ c

nm/2)/|T̃nm|2

Bus Shunts: A bus n may have a shunt element which is
modeled as a fixed admittance to ground with a value of Ỹ s.
In the Y-Bus matrix, we have

Ỹ b′

nn = Ỹ b
nn + Ỹ s

n

Unlike line charging, this extension is not affected by trans-
formers, since it applies to a bus and not a line.

D. The Linearized DC Power Flow

Many variants of the Linearized DC (LDC) model exist
[52], [53], [54], [55]. A comprehensive review of all these
variants is outside the scope of this work but an in-depth
discussion can be found in [47]. For brevity, we only review
the simplest and most popular variant of the LDC, which is
derived from the AC equations through a series of approxi-
mations justified by operational considerations under normal
operating conditions. In particular, the LDC assumes that (1)
the susceptance is large relative to the conductance |g| � |b|;
(2) the phase angle difference is small enough to ensure
sin(θ◦n − θ◦m) ≈ θ◦n − θ◦m; and (3) the voltage magnitudes
|Ṽ | are close to 1.0 and do not vary significantly. Under these
assumptions, Equations (7) and (8) reduce to

pnm = −bnm(θ◦n − θ◦m) (9)

This simple linear formulation has been used in many frame-
works for decision support in power systems [15], [18], [31],
[41], [45], [46]. This traditional model is used as the baseline
in the experimental results.

III. LINEAR-PROGRAMMING APPROXIMATIONS

This section presents linear-programming approximations
of the AC power flow equations. To understand the approxi-
mations, it is important to distinguish between hot-start and
cold-start contexts [47]. In hot-start contexts, a solved AC
base-point solution is available and hence the model has at its
disposal additional information such as voltage magnitudes.
In cold start contexts, no such solved AC base-point solution
is available and it can be ”maddeningly difficult” [15] to
obtain one by simulation of the network. Hot-start models are
well-suited for applications in which the network topology is
relatively stable, e.g., in LMP-base market calculations, op-
timal line switching, distribution configuration, and real-time
security constrained economic dispatch. Cold-start models are
used when no operational network is available, e.g., in long-
term planning studies. We also introduce the concept of warm-
start contexts, in which the model has at its disposal target
voltages (e.g., from normal operating conditions) but an actual
solution may not exist for these targets. Warm-start models
are particularly useful for power restoration applications in
which the goal is to return to normal operating conditions as
quickly as possible. This section presents the hot-start, warm-
start, and cold-start models in stepwise refinements. It also
discusses how models can be generalized to include generation
and load shedding, remove the slack bus, impose constraints
on voltages and reactive power, and capacity constraints on
the lines, all which are fundamental for many applications.

A. AC Power Flow Behavior

Before presenting the models, it is useful to review the
behavior of AC power flows, which is the main driver in
the derivation. The high-level behavior of power systems is
often characterized by two rules of thumb in the literature: (1)
phase angles are the primary factor in determining the flow
active power; (2) differences in voltage magnitudes are the
primary factor in determining the flow of reactive power [56].
We examine these properties experimentally.

The experiments make two basic assumptions: (1) In the
per unit system, voltages do not vary far from a magnitude of
1.0 and angle of 0.0; (2) The magnitude of a line conductance
is much smaller than the magnitude of the susceptance, i.e.,
|g| � |b|. We can then explore the bounds of the power flow
equations (7) and (8), when the voltages are in the following
bounds: |Ṽn| = 1.0, |Ṽm| ∈ (1.2, 0.8), θ◦n−θ◦m ∈ (−π/6, π/6).
These bounds are intentionally generous so that the power flow
behavior within and outside normal operating conditions may
be illustrated.

Figure 1 presents the contour of the active power (left)
and reactive power (right) equations for a line 〈n,m〉 under
these assumptions when Ỹnm = 0.2 − i1. The contour lines
indicate significant changes in power flow. Consider first the
active power plot (left). For a fixed voltage, varying the phase
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Fig. 1. Power Flow Contour of Active (left) and Reactive (right) Power with
g = 0.2 and b = −1.

angle difference induces significant changes in active power
as many lines are crossed. In contrast, for a fixed phase angle
difference, varying the voltage has limited impact on the active
power, since few lines are crossed. Hence, the plot indicates
that phase angle differences are the primary factor of active
power flow while voltage differences have only a small effect.
The situation is quite different for reactive power (right plot).
For a fixed voltage, varying the phase angle difference induces
some significant changes in reactive power as around four
lines can be crossed. But, if the phase angle difference is
fixed, varying voltage induces even more significant changes
in reactive power since as many as seven lines may now be
crossed. Hence, changes in voltages are the primary factor of
reactive power flows but the phase angle differences also have
a significant influence.

B. The Hot-Start LPAC Model

The linear-programming approximation of the AC Power
flow equations in a hot-start context is based on three ideas:

1) It uses the voltage magnitude |Ṽ h
n | from the AC base-

point solution at bus n;
2) It approximates sin(x) by x;
3) It uses a convex approximation of the cosine.1

Let ĉos(θ◦n−θ◦m) denote the convexification of cos(θ◦n−θ◦m) in
the range (−π/2, π/2), then the linear-programming approx-
imation solves the line flow constraints

p̂hnm = |Ṽ h
n |2gnm − |Ṽ h

n ||Ṽ h
m|gnmĉos(θ◦n − θ◦m)

−|Ṽ h
n ||Ṽ h

m|bnm(θ◦n − θ◦m) (10)

q̂hnm =−|Ṽ h
n |2bnm + |Ṽ h

n ||Ṽ h
m|bnmĉos(θ◦n − θ◦m)

−|Ṽ h
n ||Ṽ h

m|gnm(θ◦n − θ◦m) (11)

The details of the convexification are given in Appendix A.
The hot-start model, presented in Model 1, is a linear program
that replaces the AC power equations by Equations 10 and 11
and thus captures an approximation of reactive power in a
linear formulation.

A complete linear program for this formulation is presented
in Model 1. The inputs to the model are: (1) A power network
PN = 〈N,L,G, s〉, where N is the set of buses, L is the set
of lines, G is the set of voltage-controlled generators, s is

1The domain of the cosine should not exceed the range (−π/2, π/2) to
ensure convexity. This range is generous for AC power flows.

Model 1 The Hot-Start LPAC Model.
Inputs:
PN = 〈N,L,G, s〉 - the power network
|Ṽ h| - voltage magnitudes from a base-point solution
cs - cosine approximation segment count

Variables:
θ◦n ∈ (−∞,∞) - phase angle on bus n (radians)
ĉosnm ∈ (0, 1) - Approximation of cos(θ◦n − θ◦m)

Maximize:∑
〈n,m〉∈L

ĉosnm (M1.1)

gSubject to:
θ◦s = 0 (M1.2)

pn =

n 6=m∑
m∈N

p̂hnm ∀n ∈ N n 6= s (M1.3)

qn =

n 6=m∑
m∈N

q̂hnm ∀n ∈ N n 6= s n 6∈ G (M1.4)

∀〈n,m〉, 〈m,n〉 ∈ L
p̂hnm= |Ṽ h

n |2gnm−|Ṽ h
n ||Ṽ h

m|(gnmĉosnm + bnm(θ◦n − θ◦m)) (M1.5)
q̂hnm=−|Ṽ h

n |2bnm−|Ṽ h
n ||Ṽ h

m|(gnm(θ◦n − θ◦m)− bnmĉosnm) (M1.6)
PWL〈COS〉(ĉosnm, (θ◦n − θ◦m),−π/3, π/3, cs) (M1.7)

the slack bus; (2) the voltage magnitudes |V h| for the buses
and (3) the number of segments cs for approximating the
cosine function. The objective (M1.1) maximizes the cosine
approximation to make it as close as possible to the true
cosine value. Constraints (M1.2) model the slack bus, which
has a fixed phase angle. Constraints (M1.3) and (M1.4) model
KCL on the buses. Like in AC power flow models, the KCL
constraints are not enforced on the slack bus for both active
and reactive power and on voltage-controlled generators for
reactive power. Constraints (M1.5) and (M1.6) capture the
approximate line flows from Equations (10) and (11). Finally,
Constraints (M1.7) define a system of inequalities capturing
the piecewise-linear approximation of the cosine terms in the
domain (−π/3, π/3) using cs line segments for each line in
the power network.

To our knowledge, this hot-start model is the first linear
formulation that captures the cosine contribution to reactive
power. However, fixing the voltage magnitudes, |Ṽ h|, in the
power flow equations may be too restrictive in many applica-
tions. In the remaining sections, we remove this restriction.

C. The Warm-Start LPAC Model

This section derives the warm-start LPAC model, i.e., a
Linear-Programming model of the AC power flow equations
for the warm-start context. The warm-start context assumes
that some target voltages |Ṽ t| are available for all buses except
voltage-controlled generators whose voltage magnitudes |Ṽ g|
are known. The network must operate close (e.g., ±0.1 Volts
p.u.) to these target voltages, since otherwise the hardware
may be damaged or voltages may collapse.

The warm-start LPAC model is based on two key ideas:
1) The active power approximation is the same as in the

hot-start model, with the target voltages replacing the
voltages in the base-point solution;

2) The reactive power approximation reasons about voltage
magnitudes, since changes in voltages are the primary
factor of reactive power flows.
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To derive the reactive power approximation in the warm-start
LPAC model, let φ be the difference between the target voltage
and the true value, i.e.,

|Ṽ | = |Ṽ t|+ φ.

Substituting in Equation 8, we obtain

qnm =−(|Ṽ t
n|2 + 2|Ṽ t

n|φn + φ2
n)bnm −

(|Ṽ t
n||Ṽ t

m|+ |Ṽ t
n|φm + |Ṽ t

m|φn + φnφm)

(gnm sin(θ◦n − θ◦m)− bnm cos(θ◦n − θ◦m)) (12)

We can divide this expression into two parts

qnm = qtnm + q∆
nm (13)

where qtnm is Equation 8 with |Ṽ | = |Ṽ t| and q∆
nm captures

the remaining terms, i.e.,

q∆
nm =−(2|Ṽ t

n|φn + φ2
n)bnm −

(|Ṽ t
n|φm + |Ṽ t

m|φn + φnφm)

(gnm sin(θ◦n − θ◦m)− bnm cos(θ◦n − θ◦m)) (14)

Equation 13 is equivalent to Equation 8 and must be linearized
to obtain the LPAC model.

The qtnm part has target voltages and may thus be approx-
imated like q̂hnm. The q∆

nm is more challenging as it contains
nonlinear and non-convex terms such as φnφm cos(θ◦n − θ◦m).
We approximate q∆

nm using the linear terms of the Taylor series
of q∆

nm at φn = 0, φm = 0, θ◦n − θ◦m = 0 to obtain

q̂∆
nm =−(2|Ṽ t

n|φn)bnm + (|Ṽ t
n|φm + |Ṽ t

m|φn)bnm (15)

or, equivalently,

q̂∆
nm =−|Ṽ t

n|bnm(φn − φm)− (|Ṽ t
n| − |Ṽ t

m|)bnmφn (16)

A complete linear program for this formulation is presented in
Model 2. The inputs to the model are similar to Model 1, with
hot start voltages |Ṽ h| replaced by target voltages |Ṽ t|. The
objective (M2.1) maximizes the cosine approximation to make
it as close as possible to the true cosine value. Constraints
(M2.2) model the slack bus, which has a fixed voltage and
phase angle. Constraints (M2.3) capture the voltage-controlled
generators which, by definition, do not vary from their voltage
target |V t|. Constraints (M2.4) and (M2.5) model KCL on
the buses, as well as the effects of voltage change presented
in Equation (16). Like in AC power flow models, the KCL
constraints are not enforced on the slack bus for both active
and reactive power and on voltage-controlled generators for
reactive power. Constraints (M2.6) and (M2.7) capture the
approximate line flows from Equations (10) and (11). Con-
straints (M2.8) model the effects of voltage change presented
in Equation (16). Finally, Constraints (M2.9) define a system
of inequalities capturing the piecewise-linear approximation
of the cosine terms in the domain (−π/3, π/3) using cs line
segments for each line in the power network.

Model 2 The Warm-Start LPAC Model.
Inputs:
PN = 〈N,L,G, s〉 - the power network
|Ṽ t| - target voltage magnitudes
cs - cosine approximation segment count

Variables:
θ◦n ∈ (−∞,∞) - phase angle on bus n (radians)
φn ∈ (−|V t|,∞) - voltage change on bus n (Volts p.u.)
ĉosnm ∈ (0, 1) - Approximation of cos(θ◦n − θ◦m)

Maximize:∑
〈n,m〉∈L

ĉosnm (M2.1)

Subject to:
θ◦s = 0, φs = 0 (M2.2)
φi = 0 ∀i ∈ G (M2.3)

pn =

n 6=m∑
m∈N

p̂tnm ∀n ∈ N n 6= s (M2.4)

qn =

n 6=m∑
m∈N

q̂tnm + q̂∆
nm ∀n ∈ N n 6= s n 6∈ G (M2.5)

∀〈n,m〉, 〈m,n〉 ∈ L
p̂tnm= |Ṽ t

n|2gnm−|Ṽ t
n||Ṽ t

m|(gnmĉosnm + bnm(θ◦n − θ◦m)) (M2.6)
q̂tnm=−|Ṽ t

n|2bnm−|Ṽ t
n||Ṽ t

m|(gnm(θ◦n − θ◦m)− bnmĉosnm) (M2.7)
q̂∆
nm = −|Ṽ t

n|bnm(φn − φm)− (|Ṽ t
n| − |Ṽ t

m|)bnmφn (M2.8)
PWL〈COS〉(ĉosnm, (θ◦n − θ◦m),−π/3, π/3, cs) (M2.9)

D. The Cold-Start LPAC Model

We now conclude by presenting the cold-start LPAC model.
In a cold-start context, no target voltages are available and
voltage magnitudes are approximated by 1.0, except for
voltage-controlled generators whose voltages are given by |Ṽ g

n |
(n ∈ G). The cold-start LPAC model is then derived from the
warm-start LPAC model by fixing |Ṽ t

i | = 1 for all i ∈ N .
Equation (16) then reduces to

q̂∆
nm =−bnm(φn − φm) (17)

Figure 3 presents the cold-start LPAC model, which is very
close to the warm-start model. Note that Constraints (M3.3)
use φi to fix the voltage magnitudes of generators.

E. Extensions to the LPAC Model

The LPAC models can be used to solve the AC power flow
equations approximately in a variety of contexts. This section
reviews how to generalize the LPAC models for applications
in disaster management, reactive voltage support, transmission
planning, and vulnerability analysis. The extensions are illus-
trated on the warm-start model but can be similarly applied to
the cold-start model.

Generators: The LPAC model can easily be generalized
to include ranges for generators: Simply remove the generator
from G and place operating limits on the p and q variables
for that bus. In this formulation, voltage-controlled generators
can also be accommodated by fixing φn to zero at bus n.

Removing the Slack Bus: By necessity, AC solvers use a
slack bus to ensure the flow balance in the network when the
total power consumption is not known a priori (e.g., due to line
losses). As a consequence, the LPAC model depicted in Figure
2 also uses a slack bus so that the AC and LPAC models can
be accurately compared in our experimental results. However,
it is important to emphasize that the LPAC model does not
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Model 3 The Cold-Start LPAC Model.
Inputs:
PN = 〈N,L,G, s〉 - the power network
cs - cosine approximation segment count

Variables:
θ◦n ∈ (−∞,∞) - phase angle on bus n (radians)
φn ∈ (−|V t|,∞) - voltage change on bus n (Volts p.u.)
ĉosnm ∈ (0, 1) - Approximation of cos(θ◦n − θ◦m)

Maximize:∑
〈n,m〉∈L

ĉosnm (M3.1)

Subject to:
θ◦s = 0, φs = |Ṽ g

s | − 1.0 (M3.2)
φi = |Ṽ g

i | − 1.0 ∀i ∈ G (M3.3)

pn =

n 6=m∑
m∈N

p̂tnm ∀n ∈ N n 6= s (M3.4)

qn =

n 6=m∑
m∈N

q̂tnm + q̂∆
nm ∀n ∈ N n 6= s n 6∈ G (M3.5)

∀〈n,m〉, 〈m,n〉 ∈ L
p̂tnm=gnm−gnmĉosnm − bnm(θ◦n − θ◦m) (M3.6)
q̂tnm=−bnm−gnm(θ◦n − θ◦m) + bnmĉosnm (M3.7)
q̂∆
nm = −bnm(φn − φm) (M3.8)

PWL〈COS〉(ĉosnm, (θ◦n − θ◦m),−π/3, π/3, cs) (M3.9)

need a slack bus and the only reason to include a slack bus in
this model is to allow for meaningful comparisons between the
LPAC and AC models. As discussed above, the LPAC model
can easily include a range for each generator, thus removing
the need for a slack bus.

Load Shedding: For applications in power restoration
(e.g., [45], [46], [51]), the LPAC model can also integrate load
shedding: Simply transform the loads into decision variables
with an upper bound and maximize the load served. The cosine
maximization should also be included in the objective but with
a smaller weight. Section V-A reports experimental results on
such a power restoration model.

Modeling Additional Constraints: In practice, feasibility
constraints may exist on the acceptable voltage range, the
reactive injection of a generator, or line flow capacities.
Because Model 2 is a linear program, it can incorporate such
constraints. For instance, constraint

|V | ≤ |V t
n|+ φn ∀n ∈ N

ensures that voltages are above a certain limit |V |, constraint

n6=m∑
m∈N

q̂tnm + q̂∆
nm ≤ qn ∀n ∈ G

limits the maximum reactive injection bounds at bus n to qn.
Finally, let |Snm| be the maximum apparent power on a line
from bus n to bus m. Then, constraint

(p̂tnm)2 + (q̂tnm + q̂∆
nm)2 ≤ |Snm|

2

ensures that line flows are feasible in the LPAC model. The
quadratic functions can be approximated by piecewise-linear
constrains (e.g., [50]).

IV. ACCURACY OF THE LPAC MODEL

This section evaluates the accuracy of the LPAC models
by comparing them to an ideal nonlinear AC power flow.2

It includes a detailed analysis of the model accuracy (Sec-
tion IV-A) and an investigation of alternative approximations
(Section IV-B). The experiments were performed on nine
traditional power-system benchmarks which come from the
IEEE test systems [57] and MATPOWER [58]. The AC power
flow equations were solved with a Newton-Raphson solver
which was validated using MATPOWER. The LPAC models
use 20 line segments in the cosine approximation and all
of the models solved in less than 1 second on a 2.5 GHz
Intel processor. The results also include a modified version of
the IEEEdd17 benchmark, called IEEEdd17m. The original
IEEEdd17 has the slack bus connected to the network by
a transformer with |T̃ | = 1.05. The nonlinear behavior of
transformers induces some loss of accuracy in the LPAC model
and, because this error occurs at the slack bus in IEEEdd17, it
affects all buses in the network. IEEEdd17m resolves this issue
by setting |T̃ | = 1.00 and the slack bus voltage to 1.05. As
the results indicate, this equivalent formulation is significantly
better for the LPAC model.

A. Accuracy of The LPAC Models

This section reports empirical evaluations of the LDC and
LPAC models in cold-start and warm-start contexts. It reports
aggregate statistics for active power (Table I), bus phase angles
(Table II), reactive power (Table III), and voltage magnitudes
(Table IV). Data for the LDC model is necessarily omitted
from Tables III and IV as reactive power and voltages are not
captured by that model. In each table, two aggregate values
are presented: Correlation (corr) and absolute error (∆). The
units of the absolute error are presented in the headings. Both
average (µ) and worst-case (max) values are presented. The
worst case can often be misleading: For example a very large
value may actually be a very small relative quantity. For this
reason, the tables show the relative error (δ) of the value
selected by the max operator using the arg-max operator. The
relative error is a percentage and is unit-less.

Table I indicates uniform improvements in active power
flows, especially in the largest benchmarks IEEE118,
IEEEdd17, and MP300. Significant errors are not uncommon
for the linearized DC model on large benchmarks [47] and are
primarily caused by a lack of line losses. Due to its asymmet-
rical power flow equations and the cosine approximation, the
LPAC model captures line losses.

Table II presents the aggregate statistics on bus phase angles.
These results show significant improvements in accuracy es-
pecially on larger benchmarks. The correlations are somewhat
lower than active power, but phase angles are quite challenging
from a numerical accuracy standpoint.

Table III presents the aggregate statistics on line reactive
power flows. They indicate that reactive power flows are gen-
erally accurate and highly precise in warm-start contexts. To
highlight the model accuracy in cold-start contexts, the reactive

2For consistency, the LPAC models are extended to include line charging,
bus shunts, and transformers, as discussed in Section II-C.
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TABLE I
ACCURACY OF THE LPAC MODEL: ACTIVE POWER FLOWS.

Benchmark Active Power (MW)
Corr µ(∆) max(∆) δ(arg-max(∆))

The LDC Model
ieee14 0.9994 1.392 10.64 6.783
mp24 0.9989 5.659 19.7 23.65
ieee30 0.9993 1.046 13.1 7.562
mp30 0.9993 0.2964 2.108 19.36
mp39 0.9995 7.341 43.64 6.527
ieee57 0.9989 1.494 8.216 8.055

ieee118 0.9963 3.984 56.3 44.74
ieeedd17 0.9972 4.933 201.3 13.84

ieeedd17m 0.9975 4.779 191.1 13.23
mp300 0.9910 11.09 418.5 90.02

The LPAC-Cold Model
ieee14 0.9989 1.636 5.787 13.13
mp24 0.9999 1.884 6.159 2.933
ieee30 0.9998 0.5475 2.213 2.523
mp30 0.9995 0.2396 1.641 15.07
mp39 1.0000 2.142 8.043 3.288
ieee57 0.9995 0.9235 4.674 9.728

ieee118 1.0000 0.622 3.708 2.038
ieeedd17 0.9999 1.827 30.38 2.088

ieeedd17m 0.9999 1.475 20.21 1.399
mp300 0.9998 2.455 18 8.675

The LPAC-Warm Model
ieee14 1.0000 0.1689 1.588 1.012
mp24 1.0000 0.6621 2.041 1.01
ieee30 1.0000 0.1847 2.433 1.405
mp30 0.9999 0.1052 0.705 6.474
mp39 1.0000 1.557 11.58 1.731
ieee57 1.0000 0.2229 2.013 1.973

ieee118 0.9999 0.4386 7.376 5.862
ieeedd17 1.0000 0.58 22.5 1.547

ieeedd17m 1.0000 0.5725 21.73 1.504
mp300 0.9999 1.195 52.84 11.37
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Fig. 2. Reactive Power Flow Correlation for the LPAC Model on IEEEdd17m
(left) and MP300 (right) in a cold-start context.

flow correlation for the two worst benchmarks, IEEEdd17m
and MP300, is presented in Figure 2.

Table IV presents the aggregate statistics on bus voltage
magnitudes. These results indicate that voltage magnitudes are
very accurate on small benchmarks, but the accuracy reduces
with the size of the network. The warm-start context brings a
significant increase in accuracy in larger benchmarks. To illus-
trate the quality of these solutions in cold-start contexts, the
voltage magnitude correlation for the two worst benchmarks,
i.e., IEEEdd17m and MP300, is presented in Figure 3. The
increase in voltage errors is related to the distance from a load
point to the nearest generator. The linearized voltage model
incurs some small error on each line. As the voltage changes

TABLE II
ACCURACY OF THE LPAC MODEL: PHASE ANGLES.

Benchmark Phase Angle (rad)
Corr µ(∆) max(∆) δ(arg-max(∆))

The LDC Model
ieee14 0.9993 0.02487 0.04258 15.22
mp24 0.9997 0.01334 0.02037 15.23
ieee30 0.9981 0.02831 0.04733 16.45
mp30 0.9800 0.005658 0.01607 30.27
mp39 0.9951 0.0283 0.05813 85.56
ieee57 0.9898 0.02244 0.05958 24.1

ieee118 0.9904 0.03452 0.09026 88.41
ieeedd17 0.9892 0.115 0.1395 16.09

ieeedd17m 0.9920 0.0461 0.06924 41.88
mp300 0.9752 0.3103 0.4244 975.7

The LPAC-Cold Model
ieee14 0.9971 0.004525 0.01241 5
mp24 0.9999 0.003539 0.008947 6.922
ieee30 0.9965 0.007268 0.02413 8.386
mp30 0.9782 0.006236 0.01804 33.99
mp39 0.9989 0.006268 0.02314 34.06
ieee57 0.9894 0.0179 0.05467 22.11

ieee118 0.9994 0.003225 0.01354 9.633
ieeedd17 0.9981 0.03648 0.05165 5.958

ieeedd17m 0.9990 0.007207 0.02682 4.522
mp300 0.9984 0.01458 0.08086 38.49

The LPAC-Warm Model
ieee14 1.0000 0.001448 0.001829 0.6914
mp24 1.0000 0.001337 0.002203 2.156
ieee30 1.0000 0.002345 0.002819 0.9629
mp30 0.9998 0.001298 0.001774 4.775
mp39 0.9999 0.005315 0.006241 4.273
ieee57 1.0000 0.002711 0.00357 1.776

ieee118 0.9999 0.005958 0.008366 2.526
ieeedd17 0.9999 0.01492 0.01719 2.419

ieeedd17m 0.9999 0.008443 0.01059 2.33
mp300 0.9997 0.03842 0.04502 18.51
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Fig. 3. Voltage magnitude correlation for Model LPAC on IEEEdd17m (left)
and MP300 (right) in a cold-start context.

over many lines, these small errors accumulate. By comparing
the percentage of voltage-controlled generator buses in each
benchmark |G|/|N | (Table V) to accuracy in Table IV, the
IEEE57 and IEEEdd17 benchmarks indicate that that a low
percentage is a reasonable indicator of the voltage accuracy in
the cold-start context.

B. Alternative Linear Models

The formulation of the LPAC models explicitly removes two
core assumptions of the traditional LDC model:

1) Although cos(θ◦n − θ◦m) maybe very close to 1, those
small deviations are important.
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TABLE III
ACCURACY OF THE LPAC MODEL: REACTIVE POWER FLOWS.

Benchmark Reactive Power (MVar)
Corr µ(∆) max(∆) δ(arg-max(∆))

The LPAC-Cold Model
ieee14 0.9948 0.7459 2.561 14.92
mp24 0.9992 1.505 5.245 9.309
ieee30 0.997 0.4962 1.902 23.36
mp30 0.9991 0.3135 0.8925 3.886
mp39 0.9973 3.898 15.15 18.25
ieee57 0.9991 0.5316 2.98 3.973

ieee118 0.9991 0.7676 6.248 8.561
ieeedd17 0.9789 3.989 48.65 40.58

ieeedd17m 0.9927 2.415 34.18 12.36
mp300 0.9981 3.85 62.32 17.98

The LPAC-Warm Model
ieee14 0.9895 0.8689 3.167 43.89
mp24 0.9992 1.505 5.245 9.309
ieee30 0.9975 0.3455 1.607 7.62
mp30 0.9991 0.3135 0.8925 3.886
mp39 0.9971 4.03 15.75 18.98
ieee57 0.9995 0.3853 1.46 5.67

ieee118 0.9992 0.6326 6.109 6.808
ieeedd17 0.9791 3.985 48.37 40.34

ieeedd17m 0.9927 2.409 33.96 12.28
mp300 0.9943 3.584 162 45.05

TABLE IV
ACCURACY OF THE LPAC MODEL: VOLTAGE MAGNITUDES.

Benchmark Voltage Magnitude (Volts p.u.)
Corr µ(∆) max(∆) δ(arg-max(∆))

The LPAC-Cold Model
ieee14 0.9828 0.003524 0.01304 1.236
mp24 0.9983 0.000676 0.003244 0.3362
ieee30 0.9908 0.002445 0.01098 1.098
mp30 0.9884 0.002186 0.009453 0.9723
mp39 0.9992 0.0007521 0.002446 0.2313
ieee57 0.9726 0.01038 0.03353 3.587
ieee118 0.9989 0.000717 0.00476 0.4926

ieeedd17 0.9651 0.01376 0.03345 3.424
ieeedd17m 0.9815 0.00647 0.01579 1.659

mp300 0.9948 0.002361 0.01552 1.656
The LPAC-Warm Model

ieee14 0.9998 0.0005479 0.001173 0.1111
mp24 0.9996 0.000542 0.002214 0.2294
ieee30 0.9994 0.001426 0.002508 0.25
mp30 1.0000 0.0003884 0.000707 0.073
mp39 0.9983 0.00154 0.003545 0.3524
ieee57 0.9987 0.002138 0.005515 0.59
ieee118 0.9999 0.0001961 0.001303 0.1344

ieeedd17 0.9858 0.01204 0.02597 2.796
ieeedd17m 0.9760 0.009819 0.02037 2.067

mp300 0.9967 0.002477 0.01403 1.52

2) Although |g| � |b|, the conductance contributes signifi-
cantly to the phase angles and voltage magnitudes.

This section investigates three variants of the cold-start LPAC
model that reintegrate some of the assumptions of the LDC
model. The new models are: (1) the LPAC-C model where only
the cosine approximation is used and g = 0; (2) the LPAC-G
model where only the g value is used and cos(x) = 1; (3)
the LPAC-CG model where cos(x) = 1 and g = 0. Tables
VI and VII present the cumulative absolute error between the
proposed linear formulations and the true nonlinear solutions.
Many metrics may be of interest but these results focus on
line voltage drop Ṽn − Ṽm and bus power S̃n. These were
selected because they are robust to errors which accumulate
as power flows through the network. The results highlight

TABLE V
PERCENTAGE OF VOLTAGE-CONTROLLED BUSES IN THE BENCHMARKS.

ieee14 mp24 ieee30 mp30 mp39
35.7% 45.8% 20.0% 20.0% 30.8%
ieee57 ieee118 ieeedd17 mp300
12.3% 45.8% 7.4% 24.7%

TABLE VI
ACCURACY COMPARISON OF VARIOUS LINEAR MODELS (PART I).

Model Cumulative Absolute Error
<(Ṽn−Ṽm) =(Ṽn−Ṽm) pn qn

ieee14
LDC 0.3839 0.166 13.39 118.4

LPAC-A-GC 0.1561 0.1296 13.39 140.7
LPAC-A-G 0.1221 0.1229 13.39 120.7
LPAC-A-C 0.1277 0.1262 8.843 53.24

LPAC 0.1008 0.1234 1.783 11.43
mp24

LDC 0.448 0.1434 53.22 792.4
LPAC-A-GC 0.3676 0.1289 53.22 546.2
LPAC-A-G 0.2309 0.1332 53.22 314.3
LPAC-A-C 0.2417 0.116 53.12 476.2

LPAC 0.03411 0.0828 6.94 64.12
ieee30

LDC 0.5429 0.2934 17.55 169.9
LPAC-A-GC 0.1607 0.2377 17.55 173.8
LPAC-A-G 0.1284 0.2268 17.55 147.7
LPAC-A-C 0.1587 0.1638 15.99 66.28

LPAC 0.1305 0.1476 2.9 16.72
mp30

LDC 0.4341 0.1728 2.444 181
LPAC-A-GC 0.166 0.1584 2.444 20.78
LPAC-A-G 0.1616 0.1581 2.444 17.96
LPAC-A-C 0.06886 0.1454 2.444 9.387

LPAC 0.07338 0.1456 1.736 6.76
mp39

LDC 0.5634 0.1997 43.64 2816
LPAC-A-GC 0.2449 0.2105 43.64 950.3
LPAC-A-G 0.1418 0.1958 43.64 284.1
LPAC-A-C 0.1896 0.1868 37.65 947.9

LPAC 0.04462 0.1337 0.4745 93.31

two interesting points. First, all linear models tend to bring
improvements over a traditional LDC model. Second, although
integrating either the g value or the cosine term brings some
small improvement independently, together they make signifi-
cant improvements in accuracy. Additionally a comparison of
Table VI and Table VII reveals that the benefits of the new
linear models are more pronounced as the network increases.

V. CASE STUDIES

This section describes two case studies to evaluate the
potential of the LPAC models: Power restoration and capacitor
placement. The goal is not to present comprehensive solutions
for these two complex problems, but to provide preliminary
evidence that the LPAC models may be useful in striking a
good compromise between efficiency and accuracy for such
applications. This section should be viewed as presenting a
“proof-of-concept” that the LPAC models may be valuable
for certain classes of applications where the LDC model is
not accurate enough and existing approaches are too time
consuming or suboptimal.
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TABLE VII
ACCURACY COMPARISON OF VARIOUS LINEAR MODELS (PART II).

Model Cumulative Absolute Error
<(Ṽn−Ṽm) =(Ṽn−Ṽm) pn qn

ieee57
LDC 1.343 0.6803 27.9 529.1

LPAC-A-GC 0.4158 0.5489 27.9 264
LPAC-A-G 0.3238 0.5311 27.9 264.1
LPAC-A-C 0.3773 0.4153 24.43 113.8

LPAC 0.3647 0.3854 4.736 26.35
ieee118

LDC 3.083 1.239 132.7 2152
LPAC-A-GC 0.7298 0.9944 132.7 1364
LPAC-A-G 0.6502 0.9929 132.7 1194
LPAC-A-C 0.4417 0.8553 104.3 750

LPAC 0.2625 0.5252 0.7279 142.1
ieeedd17

LDC 4.144 3.263 201.3 3857
LPAC-A-GC 5.783 4.881 201.3 2719
LPAC-A-G 4.169 3.242 201.3 616.4
LPAC-A-C 4.162 3.48 200.5 2660

LPAC 1.135 1.019 30.38 362.1
ieeedd17m

LDC 3.798 1.972 191.1 3353
LPAC-A-GC 5.152 3.219 191.1 2210
LPAC-A-G 3.302 2.111 191.1 389.4
LPAC-A-C 3.31 2.118 190.4 2146

LPAC 0.49 0.6324 20.21 223.7
mp300

LDC 13.76 4.689 418.5 14240
LPAC-A-GC 11.2 5.324 418.5 5595
LPAC-A-G 9.831 5.171 418.5 1648
LPAC-A-C 7.855 4.403 348.5 5434

LPAC 0.8699 1.378 9.703 976.4

A. Power Restoration

After a significant disruption due to, say, a natural disaster,
large sections of the power network need to be re-energized. To
understand the effects of restoration actions, power engineers
must simulate the network behaviour under various courses of
action. However, the network is far from its normal operating
state, which makes it extremely challenging to solve the AC
power flow equations. In fact, the task of finding an AC
solution without a reasonable starting point has been regarded
as ”maddeningly difficult” [15]. The LPAC model studied
here has the benefit of providing starting values for all the
variables in the AC power flow problem, unlike the traditional
LDC which only provides active power values. Furthermore,
the LPAC model has the additional advantage of supporting
bounds on reactive generation and voltage magnitudes and
such constraints are critical for providing feasible solutions
to the AC power flow. This section illustrates these benefits.

Before presenting the power-restoration model, it is impor-
tant to mention the key aspect of this application. When the
power system undergoes significant damages, load shedding
must occur. The LDC and LPAC models must be embedded
in a restoration model that maximizes the served load given
operational constraints such as the generation limits. These
load values indicate the maximum amount of power that can be
dispatched while ensuring system stability. Model 4 presents
a linear program based on the warm-start LPAC model which,
given limits on active power generation pg and the desired
active and reactive loads pl, ql at each bus, determines the

Model 4 A LP for Maximizing Desired Load.
Inputs:

pgn - maximum active injection for bus n
pln - desired active load at bus n
qln - desired reactive load at bus n
Inputs from Model 2 (The Warm-Start LPAC Model)

Variables:
pgn ∈ (0, pgn) - active generation at bus n
qgn ∈ (−∞,∞) - reactive generation at bus n
ln ∈ (0, 1) - percentage of load served at bus n
Variables from Model 2 (The Warm-Start LPAC Model)

Maximize:∑
n∈N

ln (M4.1)

Subject to:
pn = −plnln + pgn ∀n ∈ N (M4.2)
qn = −qlnln + qgn ∀n ∈ N (M4.3)
qgn = 0 ∀n ∈ N \G (M4.4)

qn =

n 6=m∑
m∈N

q̂tnm + q̂∆
nm ∀n ∈ G (M4.5)

Constraints from Model 2 (The Warm-Start LPAC Model)

maximum amount of load that can be dispatched. The model
assumes that the loads can be shed continuously and that the
active and reactive parts of the load should maintain the same
power factor. The objective function (M4.1) maximizes the
percentage of served load. Constraints (M4.2) and (M4.3) set
the active and reactive injection at bus n appropriately based
on the decision variables for load shedding and generation
dispatch. Constraint (M4.4) ensures that reactive generation
only occurs at generator buses and Constraint (M4.5) now
defines qn for generator buses as well.

Since it reasons about reactive power and voltage magni-
tudes, Model 4 can be further enhanced to impose bounds on
these values. As we will show, such bounds are often critical
to obtain high-quality solutions in power restoration contexts.
If a reactive generation bound qg is supplied, this model can
be extended by adding the constraint,

qgn ≤ q
g
n ∀n ∈ N.

Voltage magnitude limits can also be incorporated. Given
upper and lower voltage limits |Ṽ | and |Ṽ |, the constraint

|Ṽ | ≤ 1.0 + φn ≤ |Ṽ | ∀n ∈ N.

may be used to enforce bounds on voltage magnitudes. The
experimental results study the benefits of the LPAC model,
suitably enhanced to capture these extensions, for power
restoration. They compare a variety of linear models including
the LDC model, the LPAC model, and enhancements of the
LPAC model with additional constraints on reactive power and
voltage magnitudes.

Table VIII studies the applicability of various linear power
models for network restoration on the IEEE30 benchmark.
1000 line outage cases were randomly sampled from each
of the N −3, N −4, N −5, . . . , N −20 contingencies. Each
contingency is solved with a linear power model (e.g., the
LDC model or the LPAC model), whose solution is used as
a starting point for the AC model. The performance metric
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TABLE VIII
POWER RESTORATION: ACHIEVING AC FEASIBILITY FROM DIFFERENT

MODELS.

Scenario LDC LPAC LPAC-R LPAC-R-V
N−3 998 999 1000 1000
N−4 999 1000 1000 1000
N−5 987 994 1000 1000
N−6 507 594 903 1000
N−7 738 856 973 974
N−8 949 996 1000 1000
N−9 847 932 1000 1000
N−10 219 452 992 999
N−11 726 972 1000 997
N−12 491 779 998 999
N−13 444 617 983 991
N−14 545 637 998 1000
N−15 1000 1000 1000 1000
N−16 989 1000 1000 1000
N−17 1000 1000 1000 1000
N−18 969 1000 1000 1000
N−19 999 1000 1000 1000
N−20 1000 1000 1000 1000

TABLE IX
POWER RESTORATION: AVERAGE LOAD SHEDDING (% OF TOTAL ACTIVE

POWER).

Scenario LDC LPAC LPAC-R LPAC-R-V
N−3 3.23 6.193 15.94 15.99
N−4 2.827 3.55 9.183 9.278
N−5 0.9562 2.204 8.027 8.082
N−6 5.805 6.149 9.287 9.921
N−7 1.506 5.709 19.43 19.46
N−8 13.78 18.54 27.37 27.39
N−9 15.92 24.27 42.76 42.78
N−10 29.23 24.02 32.09 32.25
N−11 25.18 25.24 42.62 42.63
N−12 36.35 28.25 38.03 38.82
N−13 40.1 32.56 38.3 38.66
N−14 39.98 36.9 40.45 40.67
N−15 81.91 81.92 81.92 81.92
N−16 86.21 86.31 86.32 86.32
N−17 89.89 89.89 89.89 89.89
N−18 88.26 88.3 88.32 88.32
N−19 85.9 86.13 86.13 86.13
N−20 86.2 86.37 86.38 86.38

is the number of cases where the AC solver converges, as a
good linear model should yield a feasible generation dispatch
with a good starting point for the AC solver. To understand the
importance of various network constraints, four linear models
are studied: the traditional LDC model; the LPAC model; the
LPAC model with constraints on reactive generation (LPAC-
R); and the LPAC with constraints on reactive generation and
voltage limits (LPAC-R-V). The number of solved models for
each of the contingency classes is presented in Table VIII.
The results indicate that a traditional LDC model is overly
optimistic and often produces power dispatches that do not
lead to feasible AC power flows (the N−10 and N−13 are
particularly striking). However, each refinement of the LPAC
model solves more contingencies. The LPAC-R-V model is
very reliable and is able to produce feasible dispatches in
all contingencies except 40 . This means that the LPAC-R-
V model solves 99.76% of the 17,000 contingencies studied.
Table IX depicts the load shed by the various models. For large
contingencies, the LPAC-R-V model not only provides good
starting points for an AC solver but its load shedding is only

slightly larger than the (overly optimistic) LDC model. These
results provide compelling evidence of the benefits of the
LPAC model for applications dealing with situations outside
the normal operating conditions. In addition, Model 4 can
replace the LDC model in power restoration applications (e.g.,
[45], [46]) that are using MIP models to minimize the size of
a blackout over time.

B. The Capacitor Placement Problem

The Capacitor Placement Problem (CPP) is a well-studied
application [28], [29], [30] and many variants of the problem
exist. This section uses a simple version of the problem to
demonstrate how the LPAC model can be used as a building
block inside a MIP solver for decision-support applications.

Informally speaking, the CPP consists of placing capacitors
throughout a power network to improve voltage stability. The
version studied here aims at placing as few capacitors as
possible throughout the network, while meeting a lower bound
|Ṽ | on the voltages and satisfying a capacitor injection limit qc

and reactive generation limits qgn (n ∈ G). Model 5 presents a
CPP model based on the cold-start LPAC model. For each bus
n, the additional decision variables are the amount of reactive
support added by the capacitor qcn and a variable cn indicating
whether a capacitor was used.

The objective function (M5.1) minimizes the number of
capacitors. Constraints (M5.2) ensure the voltages do not
drop below the desired limit and do not exceed the preferred
operating condition of 1.05 Volts p.u. Constraints (M5.3) link
the capacitor injection variables with the indicator variables, a
standard technique in MIP models. Constraints (M5.4) ensures
each generator n ∈ G does not exceed its reactive generation
limit qgn. and constraints (M5.5) defines the reactive power for
generators. Lastly, Constraints (M5.6) redefines the reactive
power equation to inject the capacitor contribution qc. The
remainder of the model is the same as Model 3 (the cold-start
LPAC model).

The CPP model was tested on a modified version of
the IEEE57 benchmark. All of the IEEE benchmarks have
sufficient reactive support in their normal state. To make an
interesting capacitor placement problem, the transformer tap
ratios are set to 1.0 and existing synchronous condensers are
removed. This modified benchmark (IEEE57-C) has signif-
icant voltage problems with several bus voltages dropping
below 0.9. By design, a solution to Model 5 satisfies all of the
desired constraints. However, Model 5 is based on the LPAC
model and is only an approximation of the AC power flow. To
understand the true value of Model 5, we solve the resulting
solution network with an AC solver and measure how much
the constraints are violated. Table X presents the results of
Model 5 on benchmark IEEE57-C with qc = 30 and various
thresholds |Ṽ |. The table presents the following quantities:
The minimum desired voltage |Ṽ |; The worst violation of
the voltage lower-bound min(|Ṽ |); The worst violation of the
voltage upper bound max(|Ṽ |); The worst violation of reactive
injection upper bound max(qn); The number of capacitors
placed

∑
cn; and the runtime of the MIP to prove the optimal

placement solution. The table indicates that the CPP model is
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Model 5 A MIP for the Capacitor Placement Problem.
Inputs:

qgn - injection bound for generator n
qc - capacitor injection bound
|Ṽ | - minimum desired voltage magnitude
Inputs from Model 3 (The Cold-Start LPAC Model)

Variables:
qcn ∈ (0, qc) - capacitor reactive injection
cn ∈ {0, 1} - capacitor placement indicator
Variables from Model 3 (The Cold-Start LPAC Model)

Minimize:∑
n∈N

cn (M5.1)

Subject to:
|Ṽ | ≤ 1.0 + φn ≤ 1.05 ∀n ∈ N (M5.2)
qcn ≤Mcn (M5.3)
qn ≤ qgn ∀n ∈ G (M5.4)

qn =

n6=m∑
m∈N

q̂tnm + q̂∆
nm ∀n ∈ G (M5.5)

qn − qcn =

n6=m∑
m∈N

q̂tnm + q̂∆
nm ∀n ∈ N : n 6= s ∧ n 6∈ G (M5.6)

Constraints from Model 3 (The Cold-Start LPAC Model) except (M3.5)

TABLE X
CAPACITOR PLACEMENT: EFFECTS OF |Ṽ | ON IEEE57-C, qc = 30 MVAR

|Ṽ | min(|Ṽ |) max(|Ṽ |) max(qn)
∑
cn Time (sec.)

0.8850 0.000000 0.0 0.0 1 1
0.9350 0.000000 0.0 0.0 3 8
0.9600 0.000000 0.0 0.0 5 156
0.9750 0.000000 0.0 0.0 6 177
0.9775 0.000000 0.0 0.0 6 139
0.9800 0.000000 0.0 0.0 6 75
0.9840 -0.000802 0.0 0.0 7 340

extremely accurate and only has minor constraint violations on
the lower bounds of the voltage values. It is important to note
that, although the CPP model can take as long as five minutes
to prove optimality3, it often finds the best solution value
within a few seconds. The voltage lower bound approaches
the value of 0.985, which is the lowest value of the voltage-
controlled generators in the benchmark. These results remain
consistent for other voltage bounds.

Once again, the CPP model indicates the benefits of the
LPAC approximation for decision-support applications that
need to reason about reactive power and voltages.

VI. RELATED WORK

Many linearizations of the AC power flow equations have
been developed [4], [6], [7], [16], [35], [39], [59]. Broadly,
they can be grouped into iterative methods [6], [16], [59] and
convex models [4], [7], [35], [39].

Iterative Methods: Iterative methods, such as the fast-
decoupled load flow [59], significantly reduce the computation
time of solving the AC equations and demonstrate sufficient
accuracy. Their disadvantage however is that they cannot be
efficiently integrated into traditional decision-support tools.
Indeed, MIP solvers require purely declarative models to
obtain lower bounds that are critical in reducing the size
of the search space. Note however that, modulo the linear

3It is of course only optimal up the quality of the LPAC approximation.

approximations, the LPAC model can be viewed as solving a
decoupled load flow globally. The key differences are:

1) Because the model forms one large linear system, all
of the steps of the decoupled load flow are effectively
solved simultaneously;

2) Because the formulation is a linear program, the values
of p and q can now be decision variables, and bounds
may be placed on the line capacities, voltage magni-
tudes, and phase angles;

3) The model may be embedded in a MIP solver for making
discrete decisions about the power system.

The second and third points represent significant advantages
over the fast-decoupled load flow and other iterative methods.

Convex Models: Although many variants of the LDC
model exist, few declarative models incorporate reactive flows
in cold-start contexts. To our knowledge, three cold-start ap-
proaches have been proposed: (1) a polynomial approximation
scheme [39], (2) a semi-definite programming relaxation [7],
and (3) a voltage-difference model [35].

The polynomial approximation has the advantage of solving
a convex relaxation of the AC power equations but the number
of variables and constraints needed to model the relaxation
”grows rapidly” [39] and only second-order terms were con-
sidered. The accuracy of this approach for general power
flows remains an open question: Reference [39] focuses on
a transmission planning application and does not quantify the
accuracy of the approximation relative to an AC power flow.

The semi-definite programming (SDP) relaxation [7] has
the great advantage that it can solve the power flow equations
precisely, without any approximation. In fact, reference [7]
demonstrated that the formulation finds the globally optimal
value to the AC optimal power flow problem on a number of
traditional benchmarks. However, recent work has shown this
does not hold on some practical examples [60]. Computation-
ally, SDP solvers are also less mature than LP solvers and their
scalability remains an open question [61]. Solvers integrating
discrete variables on top of SDP models [62] are very recent
and do not have the scientific maturity of MIP solvers [48].

The voltage-difference model [35] has a resemblance to a
model combining the equation

p̂hnm = |Ṽ h
n |2gnm − |Ṽ h

n ||Ṽ h
m|gnm − |Ṽ h

n ||Ṽ h
m|bnm(θ◦n − θ◦m)

with Equation (17). However, it makes a fundamental assump-
tion that all voltages are the same before computing the voltage
differences. In practice, voltage-controlled generators violate
this assumption. On traditional power system benchmarks, we
observed that the voltage-difference formulation had similar
accuracy to the LDC model.

VII. CONCLUSION

This paper presented linear programs to approximate the AC
power flow equations. These linear programs, called the LPAC
models, capture both the voltage phase angles and magnitudes,
which are coupled through equations for active and reactive
power. The models use a piecewise linear approximation of
the cosine term in the power flow equations. The cold-start
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Fig. 4. A Piecewise-Linear Approximation of Cosine using 7 Inequalities.

and warm-start models use a Taylor series for approximating
the remaining nonlinear terms.

The LPAC models have been evaluated experimentally over
a number of standard benchmarks under normal operating con-
ditions and under contingencies of various sizes. Experimental
comparisons with AC solutions on a variety of standard IEEE
and MatPower benchmarks shows that the LPAC models are
highly accurate for active and reactive power, phase angles,
and voltage magnitudes. The paper also presented two case
studies in power restoration and capacitor placement to provide
evidence that the cold-start and wam-start LPAC models can be
efficiently used as a building block for optimization problems
involving constraints on reactive power flow and voltage
magnitudes. As a result, the LPAC models have the potential
to broaden the success of the traditional LDC model into
new application areas and to bring increased accuracy and
reliability to current LDC applications.

There are many opportunities for further study, including the
application of the LPAC models to a number of application
areas. From an analysis standpoint, it would be interesting
to compare the LPAC models with an AC solver using a
“distributed slack bus”. Such an AC solver models the real
power systems more accurately and provides a better basis for
comparison, since the LPAC models are easily extended to
flexible load and generation at all buses.

APPENDIX A
A LINEAR PROGRAMMING APPROXIMATION OF COSINE

The convex approximation of the cosine function is imple-
mented through a piecewise linear function that produces a
linear program in the following way. The modeler selects
a desired domain (l, h)4 and a number segments s. Then s
tangent inequalities are placed on the cosine function within
the provided domain to approximate the convex region. Figure
4 illustrates the approximation approach using seven linear
inequalities. The dark black line shows the cosine function,
the dashed lines are the linear inequality constraints, and
the shaded area is the feasible region of the linear system
formed by those constraints. The inequalities are obtained from
tangents lines at various points on the function. Specifically,

4The domain should not exceed the range (−π/2, π/2) to ensure convexity.
In practice, θ◦n − θ◦m is typically very small and a narrower domain is
preferable.

PWL<COS>(xĉos, x, l, h, s)

1 post(xĉos ≥ cos(h)−cos(l)
h−l (x− l) + cos(l))

2 inc← (h− l)/(s+ 1)
3 a← l + inc
4 for i ∈ 1..s
5 do fa ← cos(a)
6 sa ← − sin(a)
7 post(xĉos ≤ sax− saa+ fa)
8 a← a+ inc

Fig. 5. Generating Evenly Spaced Piecewise-Linear Approximations.

for an x-coordinate a, the tangent line is y = − sin(a)(x−a)+
cos(a) and, within the domain of (−π/2, π/2), the inequality

y ≤ − sin(a)(x− a) + cos(a) ∀a

holds. Figure 5 gives an algorithm to generate s inequalities
evenly spaced within (l, h). In the algorithm, x is a decision
variable used as an argument of the cosine function and xĉos is
a decision variable capturing the approximate value of cos(x).
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