
This article was downloaded by: [202.161.58.88] On: 09 November 2014, At: 22:09
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Statistical Database Auditing Without Query Denial Threat
Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, Yingjiu Li

To cite this article:
Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, Yingjiu Li (2014) Statistical Database Auditing Without Query Denial Threat.
INFORMS Journal on Computing

Published online in Articles in Advance 22 Sep 2014

. http://dx.doi.org/10.1287/ijoc.2014.0607

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2014, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.2014.0607
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS Journal on Computing
Articles in Advance, pp. 1–15
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.2014.0607

© 2014 INFORMS

Statistical Database Auditing Without
Query Denial Threat

Haibing Lu
Leavey School of Business, Santa Clara University, Santa Clara, California 95053, hlu@scu.edu

Jaideep Vaidya, Vijayalakshmi Atluri
Rutgers University, Newark, New Jersey 07102
{jsvaidya@rbs.rutgers.edu, atluri@rutgers.edu}

Yingjiu Li
School of Information Systems, Singapore Management University, 178902 Singapore, yjli@scu.edu.sg

Statistical database auditing is the process of checking aggregate queries that are submitted in a continuous
manner, to prevent inference disclosure. Compared to other data protection mechanisms, auditing has the

features of flexibility and maximum information. Auditing is typically accomplished by examining responses to
past queries to determine whether a new query can be answered. It has been recognized that query denials release
information and can cause data disclosure. This paper proposes an auditing mechanism that is free of query denial
threat and applicable to mixed types of aggregate queries, including sum, max, min, deviation, etc. The core ideas
are (i) deriving the complete information leakage from each query denial and (ii) carrying the complete leaked
information derived from past answered and denied queries to audit each new query. The information leakage
deriving problem can be formulated as a set of parametric optimization programs, and the whole auditing process
can be modeled as a series of convex optimization problems.

Keywords : statistical database; privacy; auditing; query denial; optimization
History : Accepted by Alexander Tuzhilin, (former) Area Editor for Knowledge and Data Management; received

October 2012; revised August 2013, February 2014; accepted April 2014. Published online in Articles in Advance.

1. Introduction
Information technologies have been extensively used
to collect and share personal data in areas such as
healthcare research, crime analysis, customer relation-
ship management, credit analysis, and demographics.
Although it has provided much convenience to our
work and daily lives, it has raised strong public con-
cerns about individual privacy. In the healthcare indus-
try, we have recently observed rapid transition toward
electronic medical records and data sharing. It has been
reported that more than 70 million Americans have
some portion of their medical records in electronic
format (Kaelber et al. 2008). Healthcare researchers
can even access individual Medicare and Medicaid
claims data at the website of The Center of Medicare
and Medicaid Service, a federal agency. Indeed, many
medical identity theft cases have been reported due to
electronic medical records, e.g., Agrawal and Budetti
(2012). In demographics, it was found that 87% of
the U.S. population is uniquely identified by {date of
birth, gender, postal code} from the 1990 U.S. Census
summary data (Sweeney 2002). Privacy scandals can
seriously damage a company’s reputation and credibil-
ity. In August 2006, AOL released a file containing 20
million search queries for more than 640,000 users, not

including the identities of the users, with the inten-
tion to provide data for research into online browsing
behavior. It was soon found that many users could
be easily reidentified by analyzing those seemingly
innocuous queries. This caused several lawsuits and
legal complaints against AOL.

Various protection mechanisms have been proposes
to address the data privacy concern. A conventional
approach focuses on designing statistical databases
(SDBs) and forming restrictions for accessing con-
fidential data. A SDB (Adam and Wortmann 1989)
typically refers to a database used for statistical analy-
sis purposes. An important example is the database
maintained by the U.S. Census Bureau. While a SDB
contains data at the individual record level, users are
typically only allowed to ask queries over aggregates.
This is to protect the privacy of data that may be
sensitive at the individual record level. For example, if
the record-level data include private information, such
as salary, product cost, and patient health information,
the database users should only be allowed to access
innocuous statistics over groups. With knowledge of
enough aggregate statistics, sophisticated adversaries
can infer confidential data.

Securing SDBs has been the focus of much research
since the late 1970s. To control inference from aggregate

1

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

statistics, many mechanisms have been proposes. They
include auditing queries, e.g., Chin and Özsoyoglu
(1982), Chowdhury et al. (1999), query restrictions, e.g.,
Friedman and Hoffman (1980), Nunez et al. (2007),
Dobkin et al. (1979), perturbation, e.g., Matloff (1986),
Muralidhar et al. (1999), Lee et al. (2010), Muralidhar
et al. (1995), Li and Sarkar (2006), Sarathy et al. (2002),
Li and Sarkar (2013), cell suppression, e.g., Castro
(2007), Fischetti and Salazar (2001), providing approxi-
mate answers, e.g., Kadane et al. (2006), Garfinkel et al.
(2002), anonymous data collection, e.g., Kumar et al.
(2010), and data shuffling or swapping, e.g., Muralidhar
and Sarathy (2006), Li and Sarkar (2011). A good survey
of classic inference control techniques on SDBs can
be found in Adam and Wortmann (1989). A survey
of current advancements on privacy in data publish-
ing, e.g., k-anonymity (Samarati and Sweeney 1998),
l-diversity (Machanavajjhala et al. 2006), t-closeness
(Li et al. 2007), and differential privacy (Dwork 2008),
can be found in Fung et al. (2010).

Clearly, not one proposes protection mechanism is
suitable for all SDBs. But among various protection
mechanisms, auditing has attracted substantial research
interests over the past three decades with its earliest
discussion dated back to the 1970s (Chin 1978, Schlorer
1975). Auditing is the continuous monitoring of the
user’s knowledge that is derived from responses to past
queries and used to determine how to respond to a
new query. As one of the better protection mechanisms,
the features of auditing are well described by Chin and
Özsoyoglu (1982) as: (i) Absolute security: By checking
the query history, auditing allows us to answer a
query only when it is secure to do so. (ii) Maximum
information: Given the query history, auditing can
provide the maximum information to users, which
includes accurate answers and as many query answers
to the user as the security permits. (iii) Flexibility: It is
flexible to use because protection can be tailored to
different sets of queries of users’ choice.

Chin and Özsoyoglu (1981) proposes the first formal
scheme for auditing. It is to deny a query when the
answer combined with past query answers can compro-
mise the database. There exist efficient implementation
algorithms. For example, to audit sum-only queries
to prevent full disclosure, by representing answered
queries and the new query with a matrix and per-
forming Gauss transform, one can quickly determine
whether answering the new query would comprise the
database. The scheme has been used for decades as a
de facto scheme for auditing, which we call conven-
tional auditing. Much of the following research focus on
various aspects of auditing, like improving algorithm
performance (Lu et al. 2009), auditing multidimensional
SDBs (Wang et al. 2003, Lu and Li 2008, Li and Lu 2008,
Wang et al. 2004), preventing interval-based inference
(Li et al. 2003), etc.

Recently, Kenthapadi et al. (2005) discovered a fun-
damental security flaw in conventional auditing. Query
denials release information too. Conventional auditing
fails to take the fact into consideration and causes
privacy disclosure in some cases. To illustrate it, we
borrow the example used in Kenthapadi et al. (2005).
A database has three variables 8x11 x21 x39 of the same
value 5 and the auditing goal is to prevent full disclo-
sure. The first query is the sum of the three variables
and answered. The second query is the maximum of the
three variables and denied because the answer implies
all three variables are 5. However, when the query is
denied, given the fact that a query is denied only if the
answer would cause full disclosure, a sophisticated
adversary can figure out that the denied answer must
be 5.

Kenthapadi et al. (2005) proposes a new scheme
called simulatable auditing. It examines a new query
solely based on past query answers without consulting
the database. A new query is denied if there exists
a database solution, which satisfies all past query
answers, and the answer to the new query would
comprise that database. Indeed, this scheme effectively
prevents the query denial threat, whereas the data
utility is significantly hurt. Suppose a database contains
all nonnegative elements. Then any sum query cannot
be answered, because if all elements are 0s, which is
a feasible database solution, then the query answer
comprises the database. Being aware of the issue,
Kenthapadi et al. (2005) further proposes a relaxed
scheme. At each auditing time, it samples a large num-
ber of feasible database solutions, which are consistent
to the past query answers. If answering a new query
does not cause privacy disclosure for the majority of the
sampled solutions, then answer the query. The scheme
has two limitations: (i) Computationally expense. It is
difficult to sample a feasible database solution that
satisfies all past query answers, while a large number
of feasible database solutions need to be generated
at each auditing time. (ii) No guarantee of security.
It is because the sampled large number of database
solutions may not include the real database. However,
their work renewed research interest in auditing.

Malvestuto and Moscarini (2006) proposes another
auditing scheme for sum-only queries that we call mod-
ified conventional auditing. The scheme adds one more
step to the conventional auditing. At each auditing
time, it firstly computes the bounds of the answer to
the new query by inspecting past answered queries.
Then it computes the bounds of each database variable
by inspecting past answered queries and the derived
bounds of the answer to the new query. As the bounds
of the answer to the new query are derived from
the past answered queries, it does not improve on
the estimation of the bounds of database variables.
Therefore the modified conventional auditing scheme

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 3

would always reach the same decisions as the conven-
tional auditing scheme, and hence is insecure. What
the two schemes ignore is that an adversary can obtain
additional knowledge from past queries.

In this paper, we study SDBs auditing on various
types of queries, including sum, max, min, and devi-
ation. We propose an auditing framework, free of
the query denial threat. We strictly comply with the
original premise of auditing: continuously monitor the
user’s knowledge that is derived from responses to
past queries and use it to determine how to respond to
a new query. But we are aware that responses include
both query answers and denials. We will propose
the first solution to derive the complete information
leakage from a query denial. We are also aware of
different natures of various query types, as sum and
deviation are of continuous nature, and max and min
possess discrete nature. The discrete nature of queries
would cause full disclosure of element values when
a query denial occurs. To eliminate the query denial
threat caused by the inherent discrete nature of max
and min queries, we employ the simulatable auditing
scheme as an auxiliary step to our general auditing
framework.

Our contributions can be summarized as: (i) We
present an auditing framework, free of the query
denial threat, for various types of queries, including
sum, max, min, and deviation. Note that deviation
queries have never been studied in the auditing setting.
(ii) We provide the first solution to derive the complete
information leaked from a query denial. (iii) We design
implementation algorithms built on existing parametric
optimization results.

2. Sum
Sum is the most common aggregate query type and
supported in all database systems. We start with
sum queries, which are also the focus of the auditing
research. We first introduce the problem setting. We
denote a SDB with n elements by 8x11 0 0 0 1 xn9, and the
prior-known bounds on elements by L ≤ X ≤ U . If
none, then L and U are −� and �, respectively. The
prior-known bounds are to reflect reality. For instance,
a person’s salary cannot be negative. We are aware
that in some cases adversaries may have more prior
information than the bounds of data values. We are also
aware that approaches like differential privacy (Dwork
2008) can be used against arbitrary prior knowledge.
The consequence of guarding against arbitrary prior
knowledge is the significant degradation of the utility
of data, which we will discuss explicitly in §6. A user
is allowed to continuously submit a sum query of
∑

i∈S xi over any data group S. The task of auditing is
to prevent an adversary from breaching the database
privacy. Full disclosure is commonly studied in the

auditing literature. However, one may argue that a
variable of 100 is nearly disclosed if an adversary
ascertains that the variable is between 99 and 101. In
this paper, we adopt the interval-based privacy notion
(Li et al. 2003) defined as follows.

Definition 1 (Interval-Based Privacy). A variable
xi is considered safe if one cannot ascertain that xi
resides in an interval with length less than �i, the safe
threshold for xi.

Suppose a variable xi with threshold value 5. If one
ascertains that xi is within 60157, xi is considered
safe. But if the interval is improved to 60147, then xi
is compromised. We are aware that there are other
privacy notions, such as k-anonymity, l-diversity, and
distribution-based privacy notions. Because we consider
a SDB with all numerical values, this paper uses the
interval-based privacy notion. The auditing problem
can then be described as the following.

Definition 2 (Auditing Problem). Devise an effi-
cient and effective query response strategy such that all
variables are safe regarding the interval-based privacy
notion.

2.1. Existing Auditing Schemes
Before we present our auditing scheme, we first
examine the limitations of existing auditing schemes.
To illustrate them, throughout this section, we will
use one example as follows. A nonnegative numeric
database consists of variables 8x11x21x31x41x59. They
are 81011012121109 with safe thresholds 85151111169,
respectively. Queries 8Q11Q21Q31Q49 with their accu-
rate answers are listed in the following order:

Q1: x1 + x2 = 201

Q2: x1 + x3 = 121

Q3: x2 + x4 = 121

Q4: x1 + x5 = 200

Conventional Auditing. Conventional auditing is the
first proposes auditing scheme in the literature. It can
be formally stated as the following.

Definition 3 (Conventional Auditing). When-
ever a new query is posed, if the answer to it, when
combined with past query answers, can infer that for
one variable the difference of its lower and upper
bound is less than or equal to its safe threshold, deny
the query, otherwise answer it.

To implement conventional auditing, the auditor only
needs to continuously solve LPs as formulated in (1),
where AX = b represents the past answered queries,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

∑

i∈Qm
xi = bm denotes the new query, and L≤X ≤U

are public information on X.

min4max5 x14x21 0 0 0 1 xn5

s.t.



















AX = b1
∑

i∈Qm

xi = bm1

L≤X ≤U0

(1)

According to conventional auditing, Q1 is first
answered, because returning the answer of 20 only
helps refine the bounds for 8x11x29 to 601207; Q2 is
answered as well, although the bounds of x1 and x2 are
refined to 601127 and 681207, respectively. However, if
Q3 is answered, the bounds for both x1 and x2 would
be refined to 681127. The interval length is 4, which is
less than their safe threshold 5. Therefore Q3 should be
denied. The system will proceed to examine Q4. To do
so, the system needs to solve the following LPs:

min4max5 x14x2 0 0 0 x55

s.t.



















Q12 x1 + x2 = 201
Q22 x1 + x3 = 121
Q42 x1 + x5 = 201
x11 0 0 0 1 x5 ≥ 00

(2)

The result is x1 ∈ 601127, x2 ∈ 681207, x3 ∈ 601127, x4 ≥ 0,
and x5 ∈ 681207. Every variable is considered to be
safe regarding their safe thresholds. Therefore, Q4 is
answered.

However, this is wrong. If Q4 is answered, x5 will be
disclosed, as it can be deduced to fall in 681137, and
the length is less than its safe threshold 6. The reason
is that the denial of Q3 releases some information.

To explain the reason, let us first denote the real
answer to Q3 by A3. Given Q12 x1 +x2 = 20, Q22 x1 +x3 =

12, and Q32 x2 + x4 =A3, it is not difficult to infer that
x1 ∈ 620 −A31127, x2 ∈ 681A37, x3 ∈ 601min8121A3 − 897,
and x4 ∈ 601A3 − 87. Denying Q3 implies that if A3 is
released, at least for one variable, the difference of its
lower and upper bounds becomes less than or equal to
its safe threshold. The following are four possibilities:



















x12 12 − 420 −A35≤ 51
x22 A3 − 8 ≤ 51
x32 min8121A3 − 89− 0 ≤ 11
x42 A3 − 8 ≤ 10

(3)

For cases x1 and x2, A3 ∈ 4−�1137. For cases x3
and x4, A3 ∈ 4−�197. Because the adversary cannot
ascertain which variables are to be disclosed, all he can
infer is A3 ∈ 4−�1137∪ 4−�197= 4−�1137.

Given the answered Q2 of x1 + x3 = 12, we have
x1 ≤ 12. By combining it with the answered Q1 of

x1 + x2 = 20, we further have x2 ≥ 8. Therefore, A3 =

x2 + x4 ≥ 8. Finally, from the denial of Q3 in addition to
the past two query answers, one can infer 8 ≤A3 ≤ 13.

Given 8 ≤ A3 ≤ 13 derived from the denial of Q3,
the adversary can deduce x1 ∈ 671127 and x2 ∈ 681137,
which make the privacy of both x1 and x2 at the edge
of being breached with safe thresholds of 5. However,
they are still considered to be safe according to the
data disclosure definition.

The real threat of the query denial of Q3 comes
when auditing Q4. By solving LPs (4), where Q32 8 ≤

x2 + x4 ≤ 13 is the complete information leakage from
the denial of Q3, x5 is deduced to fall in 681137. Hence
the privacy of x5 is breached, because its safe threshold
is 6. However, conventional auditing fails to detect the
breach:

min4max5 x14x2 0 0 0 x55

s.t.































Q12 x1 + x2 = 201
Q22 x1 + x3 = 121
Q32 8 ≤ x2 + x4 ≤ 131
Q42 x1 + x5 = 201
x11 0 0 0 1 x5 ≥ 00

(4)

Simulatable Auditing. Simulatable auditing was pro-
posed to prevent the attack of query denials. Its basic
idea is essentially to protect data privacy by denying
any suspicious query that may cause trouble. Its origi-
nal definition as stated in Kenthapadi et al. (2005) is
given as follows.

Definition 4 (Simulatable Auditing (Kenthapadi
et al. 2005)). An auditor is simulatable if the decision
to deny or give an answer to the query qt is made
based exclusively on q11 0 0 0 1 qt and a11 0 0 0 1 at−1 (and not
at and not the data set X = 8x11 0 0 0 1 xn9), and possibly
also the underlying probability distribution D from
which the data was drawn.

To achieve such a simulatable auditing, Kenthapadi
et al. (2005) proposes to do the following. Given previ-
ously posed queries 8q11 0 0 0 1 qm−19 and their answers
8a11 0 0 0 1 am−19, a newly posed query qm will be denied if
(i) there exists a feasible answer a′

m to the new query qm,
which is consistent with all past query answers and
(ii) releasing a′

m would breach some variable’s privacy.
The essential idea of simulatable auditing is to deny
more queries, including innocent queries to achieve
data security. However, it suffers from the serious data
utility issue.

Look at Q12 x1 + x2 = 20 in the previous example.
Obviously x1 + x2 = 0 is a feasible answer to the query.
If the answer is 0, given all variables are nonnegative,
both x1 and x2 are 0, and hence uniquely identified.
According to simulatable auditing, Q1 should be denied,
as well as all subsequent queries.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 5

Modified Conventional Auditing. Malvestuto and
Moscarini (2006) propose an auditing scheme for sum
queries, which attempts to solve the query denial issue.
Its basic idea is summarized as the following.

Definition 5 (Modified Conventional Auditing).
Whenever a new query is posed, if the answer to it
when combined with past query answers does not
threaten data privacy, answer the query; otherwise,
return an approximate answer, the bounds of the real
answer, which are derived from past query answers.

The scheme adds one more step to conventional
auditing: If the answer to a new query is determined
to be dangerous, derive the bounds of the real answer
from past query answers and release such bounds
instead of the real answer. However, the query submit-
ter alone can derive such released bounds, as he knows
all past query answers. In fact, an intelligent adversary
can infer more information. Releasing bounds is the
same as telling the query submitter that the real answer
would make some variable to be in danger. Thus the
query submitter can narrow the denied real answer
and would eventually use the narrowed results to
threaten data privacy. Therefore, modified conventional
auditing still suffers from the attack of query denials as
conventional auditing, because it inaccurately calculates
the complete information leakage from query denials.

To illustrate, look at the previous example again.
Q1 and Q2 are answered, and Q3 obviously should be
denied. Instead of denying Q3, modified conventional
auditing derives the lower and upper bounds of Q3
based on past query answers and returns such an
approximate answer to the query submitter. By solving
LPs (5), the constraints of which are answers to Q1
and Q2, x2 + x4 is limited to 681+�5, which is issued to
the user and will be carried over to audit subsequent
queries.

min4max5 x2 + x4

s.t.











Q12 x1 + x2 = 201
Q22 x1 + x3 = 121
x11 0 0 0 1 x5 ≥ 00

(5)

The system proceeds to check Q4 by solving LPs (6),
where Q32 x2 + x4 ≥ 8 is the information derived from
the previous step.

min4max5 x14x2 0 0 0 x55

s.t.































Q12 x1 + x2 = 201
Q22 x1 + x3 = 121
Q32 x2 + x4 ≥ 81
Q42 x1 + x5 = 201
x11 0 0 0 1 x5 ≥ 00

(6)

The results of the above LP suggest that x1 ∈ 601127,
x2 ∈ 681207, x3 ∈ 601127, x4 ≥ 0, and x5 ∈ 681207, which
is exactly the same as the results of conventional

auditing. Hence, according to modified conventional
auditing, Q4 is answered. However, as explained before,
releasing Q4 would infer x5 ∈ 681137, and hence breach
the privacy of x5. The reason modified conventional
auditing fails is because it inaccurately calculates the
complete information leakage from a query denial. The
denial of Q3, in fact, can narrow down the answer of
Q3 to 681137 instead of 681+�5.

2.2. New Auditing Scheme
From the previous example, we observe that there
is no privacy threat if every query is inspected by
incorporating complete information released from
both past query answers and denials. The observation
naturally leads to the prototype of our new auditing
scheme as follows.

At each auditing time, the lower and upper bounds
of every variable are derived by inspecting complete
information released from both past query answers
and denials along with the current query.

If we strictly comply with the above auditing scheme,
it is unlikely to find a practical implementation algo-
rithm. It is because a denied answer can be narrowed
down to a feasible solution region composed of dis-
crete intervals. Because discrete intervals cannot be
formulated as linear equalities or inequalities employed
in a standard LP form, it poses great difficulty for
inspecting the subsequent queries. We are still able to
solve the problem by formulating it as a mixed-integer
programming (MIP) problem by introducing slack
integer variables, and MIP is generally NP-hard (Garey
and Johnson 1979).

To further elaborate, consider the following example
of nonnegative variables 8x11x21x31x49, all with safe
thresholds of 1. Suppose the following two queries are
posed, where � denotes the answer of x1 + x2:

Q12 x1 + x2 + x3 + x4 = 51

Q22 x1 + x2 = �0
(7)

Q1 is answered and then Q2 is denied. Because Q2
is denied, an adversary would know that the answer
of Q2 can infer an interval of some variable’s value,
with length equal to or less than the variable’s safe
threshold. Furthermore, the adversary can infer that
� must fall in either 60117 or 64157. When � ∈ 60117,
as 0 ≤ x1, x2 ≤ �, x1, and x2 suffer from the disclosure
threat, and hence Q2 has to be denied. When � ∈

64157, as 0 ≤ x3, x4 ≤ 5 −�, x3, and x4 suffer from the
disclosure threat, and hence Q2 needs to be denied.
Denying Q2 is equivalent to releasing the information
of � ∈ 60117∪ 64157. If we need to carry this information
over to inspect subsequent queries, when auditing the
following query, the formulated optimization problems
for deriving bounds of involved variables are no longer
convex optimization problems.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

To address the issue, we propose a refined version
of the previous auditing scheme.

Definition 6 (Auditing Sum Queries). At each
auditing time, for each variable, derive its lower and
upper bounds by inspecting both exact and approxi-
mate query answers in the past along with the new
query:

• If the difference of the lower and upper bounds
for every variable is greater than its safe threshold,
return the exact answer;

• Else, return an approximate answer, which is
obtained by deriving the region of possible denied
query answers (which could include multiple separate
intervals), and returning the interval in the region that
contains the real answer.

Note that if the region of possible denied answers
include multiple nonoverlapping intervals, we return
the interval containing the real answer, which cor-
responds to a lower and upper bound of the real
answer.

To illustrate it, we still consider example (7). Suppose
x1 = 004, x2 = 004, x3 = 002, x4 = 4, and Q22 x1 + x2 = 008.
Even though denying a query only helps infer � ∈

60117∪ 64157, we release � ∈ 60117. The information we
return is more than what a query denial implies (since
we in effect reveal which variables’ privacy is being
threatened). The reason we return such an interval
is because the returned information still makes the
whole feasible solution space to be convex. Then to
audit subsequent queries, we are still able to formulate
it as a series of LPs.

2.3. Security Analysis
Is the auditing scheme for sum queries secure? This
section will answer this question. First, let us examine
how information is released from a query denial. From
an adversary’s perspective, if a query is denied, there
must exist some variable such that the difference of
its lower and upper bounds is less than or equal to
its safe threshold, given the denied query’s answer.
If xi causes the query denial, one can deduce a feasible
solution region feasiblei4�5 of the denied answer �, such
that � being any value in feasiblei4�5 would make the
difference of xi’s lower and upper bounds less than or
equal to its safe threshold. But the adversary has no
knowledge of which variable (variables) causes the
query denial. Therefore the complete information leak-
age from a query denial is

⋃

i feasiblei4�5. The following
theorem is used to prove that each feasiblei4�5 must be
one continuous interval.

Theorem 1. If given 8AX = b1 aX = �1L≤X ≤U9, the
values, which � can have so that it is possible to deduce that
the difference of the lower and upper bounds of xi is less
than or equal to �i, must be one continuous interval.

Denote S to be the value set of � such that ∀� ∈S,
8AX = b1 aX = �1L≤X ≤U9 deduces xi’s upper bound
of max�4xi5, and xi’s lower bound of min�4xi5, such
that max�4xi5− min�4xi5≤ �i. Theorem 1 proves that if
�11�2 ∈S, and �2 >�1, any �3 ∈ 6�11�27 must belong to
S, in other words, max�3

4xi5− min�3
4xi5≤ �i. Because

max�3
4xi5− min�3

4xi5≤ �i is equivalent to that for any
pair of solutions X14�35 and X24�35, both of which
satisfy constraints of 8AX = b1aX = �31L ≤ X ≤ U9,
�X1

i 4�35−X2
i 4�35� ≤ �i holds, where X1

i 4�35 and X2
i 4�35

denote the values of xi.
For any �3 ∈ 6�11�27, we can represent �3 as �3 =

��1 + 41 − �5�2, where � ∈ 60117. Any feasible solution
X4�35 satisfying 8AX = b3aX = �33L≤X ≤U9 can be
represented as X4�35= �X4�15+ 41−�5X4�25 as well.
This can be seen as follows:

• A4�X4�15 + 41 − �5X4�255 = �AX4�15 + 41 − �5 ·
AX4�25= �b+ 41 − �5b = b;

• a4�X4�15+41−�5X4�255= �aX4�15+41−�5aX4�25=

��1 + 41 − �5�2 = �3;
• X4�35= �X4�15+ 41 − �5X4�25≥ 4�+ 41 − �55L≥ L;
• X4�35= �X4�15+ 41 −�5X4�25≤ 4�+ 41 −�55U ≤U .
Next, we will prove that for any X14�35 and X24�35,

�X1
i 4�35−X2

i 4�35� ≤ �i holds:
∣

∣X1
i 4�35−X2

i 4�35
∣

∣

=
∣

∣�X1
i 4�15+41−�5X1

i 4�25−4�X2
i 4�15+41−�5X2

i 4�255
∣

∣

=
∣

∣�4X1
i −X2

i 5+41−�54X1
i −X2

i 5
∣

∣≤�i0

Theorem 1 shows that each feasiblei4x5 is one continu-
ous interval. When a query denial occurs, the adversary
has no knowledge of which variable (variables) causes
the query denial. The complete information leakage
from a query denial is � ∈

⋃

i feasiblei4x5, where 8xi9
are all involved variables. The complete information
leakage

⋃

i feasiblei4x5 could be one continuous interval
or multiple discrete intervals. Without loss of generality,
⋃

i feasiblei4x5 can be represented by
⋃

j 6Lj1Uj 7, where
86Lj1Uj79 are nonoverlapping intervals. The auditing
scheme is to release the single interval 6Lj1Uj 7, which
contains the true answer, and carry it over to inspect
subsequent queries. Now, the security question is:
would releasing � ∈ 6Lj1Uj 7 threaten data privacy?

Theorem 2. Suppose the past exact and approximate
query answers do not breach data privacy, a new query is
denied according to the auditing scheme for sum queries,
and

⋃

j 6Lj1Uj 7, where 86Lj1Uj 79 are nonoverlapping, is the
derived possible values of the denied answer �. Returning
the interval 6Lj1Uj 7, which contains the real query answer,
does not threaten data privacy.

For convenience, we represent past exact answers
and approximate answers as 8A1X = b3LB ≤A2X ≤UB9,
and the new query as aX.

It is known that
⋃

j6Lj1Uj7 =
⋃

i feasiblei4�5, where
feasiblei4�5 is the feasible value of the denied answer

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 7

� given xi causes the query denial. Theorem 1 states
that feasiblei4�5 is a continuous interval. Therefore the
returned interval 6Lj1Uj7 must be the union of some
feasiblei4�5.

As such, all involved variables 8xi9 can be divided
into two groups, one group with feasiblei4�5 belonging
to 6Lj1Uj7, and the other group with feasiblei4�5 not
belonging to 6Lj1Uj7. If xi has feasiblei4�5 ⊆ 6Lj1Uj7,
releasing 6Lj1Uj7 cannot breach the privacy of xi. It
is because 8A1X = b3aX ∈ 6Lj1Uj73LB ≤ A2X ≤ UB9
cannot infer information more than 8A1X = b3aX ∈

feasiblei4�53LB ≤A2X ≤UB9, which only deduces an
interval of xi with length equal to �i, in which case xi is
still considered safe. If xi has feasiblei4�5 not belonging
to 6Lj1Uj 7, releasing 6Lj1Uj 7 obviously does not affect
the privacy of xi at all.

2.4. Deriving Information Leakage
This section studies how to derive feasiblei4�5, the pos-
sible values of the denied answer �, which would limit
the feasible solutions of xi to an interval with length
less than or equal to its safe threshold. Suppose we
have answered a set of queries, which can be repre-
sented by the equation system 8AX = b1L≤X ≤U9,
where L≤X ≤U are prior known bounds for X and
have not denied any query yet. Assume a new query
aX, whose real answer is �, arrives. After solving
a series of LPs as (8) for all involved variables, the
auditor decides to deny the query.

min4max5 xi

s.t.











AX = b1

aX = �1

L≤X ≤U0

(8)

As stated before, from the adversary’s perspective,
the reason for this denial must be that for some vari-
able xi, the difference of its upper bound and its lower
bound is less than or equal to its safe threshold �i.
The problem of finding feasiblei4�5 can be described as
follows.

Problem 1. If given 8AX = b1 aX = �1L≤X ≤U9 for
variable xi, what values can � have so that max�4xi5−
min�4xi5 ≤ �i, where max�4xi5 and min�4xi5 denote
the maximum and minimum values that xi can take
given �?

When � is treated as an unknown parameter, the
optimization problem (8) becomes a typical right-hand
side (RHS) parametric LP problem. A RHS parametric
LP problem is a LP problem with a variable (parameter)
on the right-hand side of the linear constraints. The
study of RHS parametric LP can be traced back to the
beginning of operations research (Dantzig 1963). It has
been shown that the optimal objective function value
of a RHS parametric LP problem is a piecewise linear

function of the parameter. There exists an efficient
algorithm to derive such a function (Vanderbei 2008).
The basic procedure is as follows: first, choose a feasible
value of � and determine its characteristic interval,
where the objective function optimality does not change;
then study adjacent characteristic intervals till the
whole real region is traversed.

We adopt the algorithm to deduce feasiblei4�5. First,
use the algorithm to determine a piecewise function,
say, f 1

i 4�5, for max�4xi5, and a piecewise function,
say, f 2

i 4�5, for min�4xi5. Then feasiblei4�5 is the feasible
values of � that make f 1

i 4�5− f 1
i 4�5≤ �i.

To illustrate this process, we reconsider the example
employed in §2. As explained before, Q32 x2 + x4 = 12
has to be denied, because it can breach the privacy of x1
and x2. Denote � to be the answer to Q3. Given Q3 being
denied, we demonstrate how to compute feasible14�5,
the feasible values of � that make the difference of
lower and upper bounds of x1 less than or equal to its
safe threshold 5.

max4min5 x1

s.t.



















x1 + x2 = 201
x1 + x3 = 121
x2 + x4 = �1

x11x21x31x4 ≥ 00

(9)

By solving the RHS parametric LP (9), we find that
max x1 is 12 when �≥ 8, while it is infeasible to have
�< 8. When 8 ≤ �≤ 20, min x1 is 20 −�, and when
�≥ 20, min x1 is 0. The piecewise functions of max x1
and min x2 dependent on � are depicted in Figure 1.
It is not difficult to see that feasible14�5 is [8, 13].

2.5. Discussion
In this section, we briefly discuss the two concerns
that some people may have: (i) the auditing scheme
releases more information than necessary and (ii) an
auditing process needs to solve a large number of LPs.

With the auditing scheme, feasible solutions are
maintained in a convex space. As such, whether audit-
ing a query or deriving information from a query

Max x1

Min x1

5

8 13 20 �

Figure 1 Derivation of Information Leakage

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

denial, the auditor only needs to solve a number of
linear programs. However, the benefit comes at the
cost of leaking more information than necessary, as
we release the specific interval of the denied answer.
If the auditor does not feel comfortable with this sce-
nario, he or she can simply take more computational
effort to derive and release all intervals that the denied
answer may fall in by employing the same information
leakage deriving method and carry them on to audit
subsequent queries. In particular, when the first query
denial occurs, because the previous queries constitute
a polytope, the auditor can use the exact same method
to drive the feasible intervals of the denied answer.
But for subsequent query denials, the auditor cannot
employ the method directly to derive information
leakage, because the feasible region of the previously
denied answer might be the union of multiple discrete
intervals. However, the auditor can derive the feasible
intervals for the subsequently denied answer by repet-
itively employing the information leakage deriving
method, because the feasible solution space constituted
by the past query answers and denials are the union of
multiple polytopes. For each polytope, the auditor can
derive intervals that may cause the new query to be
denied. The union of all such derived intervals is the
complete information leakage.

Whether deriving information leakage from query
denials, auditing sum queries needs to solve a large
number of LP problems to inspect the difference of the
lower and upper bounds for every involved variable.
While it is not difficult to solve one LP problem, solving
such LP problems is still a huge burden for the system.
Worse, the size and number of LP problems keep
growing as more queries are issued. Although we
cannot avoid those LPs, we can reduce the overall
computing time by adopting the strategy employed
in Lu et al. (2009). It uses two patterns existing in
the LPs formulated in an auditing process. First, at
each auditing time, the formulated LPs share the same
constraints. Second, the LPs formulated for auditing
the next query only have one more constraint than the
currently formulated LPs. It is known that a feasible
solution of one LP can be quickly constructed at the
basis of the solution of another similar LP. Finding a
feasible solution is an integral part in simplex methods
and typically takes half the computing time of solving
a LP problem. By leveraging the similarity of LPs
in an auditing process, we can reduce the overall
computing time.

3. Max and Min
Max and min queries have been less researched. Repre-
sentative research results include Chin (1986), Kleinberg
et al. (2003), Kenthapadi et al. (2005), and Nabar et al.
(2006). But none of those schemes can be directly

applied to our scenario, i.e., real-valued data regarding
interval-based data disclosure policy, free of query
denial threat. Chin (1986) proposes the first auditing
scheme for max and min queries. Because they assume
all queries come together as a batch, their scheme
does not consider the query denial issue. The auditing
scheme in Kleinberg et al. (2003) is able to eliminate
the query denial threat, but at the great loss of data
utility. Motivated by Kleinberg et al. (2003), Kenthapadi
et al. (2005) propose a simulatable auditing scheme,
which effectively counteracts the query denial threat
and also improves data utility. But their scheme consid-
ers full data disclosure and is applicable to max- or
min-only queries. Improved upon Kenthapadi et al.
(2005), the auditing scheme in Nabar et al. (2006) can
handle mixed max and min queries, but it does not
address interval-based disclosure. More importantly,
their scheme cannot be applied to mixed query types,
including sum, max, min, and deviation. In this section,
we modify the auditing scheme in Nabar et al. (2006)
in accord with the interval-based data disclosure policy.
We will later show how to incorporate the scheme into a
general auditing framework for the mixed query types.

A max query Qj can be represented by max4Qj5= bj ,
where bj is the query answer. Similarly, a min query
Qj can be represented by min4Qj5= bj . Given a set of
max and min queries 8Q11 0 0 0 1Qt9 and their answers
8b11 0 0 0 1 bt9, the maximum possible value of xi is
min4bj �Qj is a max query, xi ∈Qj5, denoted by �i. Simi-
larly, the minimum possible value of xi is max4bj �Qj is
a min query, xi ∈Qj5, denoted by `i. We will say xi is a
min extreme element of Qj , if Qj is a min query, xi ∈Qj ,
and bj = `i, and xi is a max extreme element of Qj , if Qj

is a max query, xi ∈Qj , and bj =�i.
The uniqueness of max and min queries comes

from their inherent discrete nature. Consider a max
query max4Qj5 = bj ; it gives two pieces of informa-
tion: (i) ∀xi ∈Qj1xi ≤ bj and (ii) ∃xi ∈Qj1 xi = bj . The
former is of continuous nature, like sum queries,
while the latter is combinatorial oriented. Consider
Q12 max4x11x21x35= 10 and Q2: max4x11 x25= 5, where
the safe threshold for every variable is 1. Q1 is answered
since no privacy disclosure occurs. Q2 is denied,
because given max4x11 x21 x35= 10 and max4x11 x25= 5,
x3 becomes the only extreme element of Q1, and thus
x3 must be 10. However, if Q2 is denied, an adversary
can still infer x3 to be 10, because otherwise Q2 would
not be denied. In this case, whether you answer or
deny Q2, x3 is disclosed.

We have observed that a max and min query denial
can occur in two cases: (i) some variable is fully dis-
closed as it becomes a max or min extreme element
or (ii) some variable is partially disclosed because the
difference of its lower and upper bounds is less than
or equal to its safe threshold. For the former case, if
there exists one element, which could become a max or

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 9

min extreme element because of the denied answer,
then denying the query would still fully disclose the
element. For the latter case, answering a query would
not immediately compromise data privacy, because an
adversary can only narrow down the denied answer to
an interval, in which any possible answer could cause
some variable to be partially disclosed. We propose the
following auditing scheme.

Definition 7 (Auditing Max and Min Queries).
For each new max and min query, we first use the
simulatable auditing scheme in Nabar et al. (2006) to
check if there exists any possible answer to the query,
which is consistent to previous query answers and
makes some variable an extreme element.

• If yes, deny the query. (Note that the decision is
made without consulting the database.)

• Else, consult the database to see if the real answer
would make some element partially disclosed (i.e., the
difference of the lower and upper bounds is less than
the safe threshold).

—If yes, deny the query and derive the infor-
mation leakage from the query denial, which will be
carried over to audit the subsequent queries.

—Else, answer the query.

The first step of the algorithm is to counteract the
query denial effect caused by the discrete nature of max
and min queries. Given a set of previously answered
max and min queries, Q11 0 0 0 1Qt−1, the auditing scheme
needs to check if there is any possible answer to the
new query Qt that is consistent with past answers
and would cause an xi to be an extreme element.
Nabar et al. (2006) showed that it is not necessary to
check all possible answers and it suffices to check a
finite number of points. In particular, let Q′

11 0 0 0 1Q
′

l

be the query sets of previous queries that intersect
with Qt , ordered according to their corresponding
answers b′

1 ≤ · · · ≤ b′

l. We only need to consider each
bt ∈ 8b′

lb1 b
′
11 4b

′
1 + b′

25/21 b′
21 0 0 0 1 b

′

l1 4b
′

l−1 + b′

l5/21 b′

l1 b
′

ub9,
where b′

lb = b′
1 − 1 and b′

ub = b′

l + 1, to check if it is
consistent to the previous answers and causes some
element to be an extreme element. All of them can
be efficiently implemented. The second step is to
consult the database to check if the true answer would
cause some element to be partially disclosed. If a
query is denied, an adversary knows there exists some
element, which would be partially disclosed if the
answer is released. Without loss of generality, consider
the denied query Qj as a max query. The real answer
bj to the max query Qj only affects the upper bound
of variables in Qj . Therefore, the cause for the query
denial is ∃ i ∈ Sj1 bj − min4xi5≤ �j . Because an adversary
does not know which one is at risk, the information
leakage from the denial of the max query Qj is bj ≤
maxi∈Sj

4�j + min4xi5), where min4xi5 can be derived
from past query responses. Similarly, the denial of

the min query Qj releases bj ≥ mini∈Sj
4max4xi5− �j).

The released information should be carried along with
answered queries to audit the subsequent queries.

4. Standard Deviation
Standard deviation has never been studied in the
database auditing literature, although it is supported
by most SDBs. A standard deviation query Qj can be
represented by std4Qj5= bj , computed as

√

∑

i∈Qj
4xi −

∑

t∈Qj
xt/�Qj �5

2

�Qj � − 1
= bj1

where �Qj � denotes the set size. The standard deviation
value bj can be further expanded as a quadratic function

∑

i∈Qj

(

�Qj �xi −
∑

t∈Qj

xt

)2

= 4�Qj � − 15�Qj �
2b2

j 0

Standard deviation shows how much variation exists
from the average. A low standard deviation indicates
that the data points tend to be very close to the mean,
whereas high standard deviation indicates that the data
points are spread out. From the statistical inference
perspective, the most risky case would be a standard
deviation value being 0, which implies all data points
have the same value. However, answers to a set of
standard deviation queries without additional informa-
tion does not improve the lower and upper bounds
of involved data points at all, since standard devi-
ation only provides closeness information on data
points. If there are prior known bounds of data points,
then standard deviation query answers could compro-
mise a database. Consider a database of 8x11x21x39
and it is known that x11x2 ∈ 60127 and x3 ∈ 681107. If
std4x11 x21 x35= 304641, which is the minimum standard
deviation value among feasible solutions, then it is
disclosed that x1 and x2 are 2 and x3 is 8.

To avoid triviality, we study how to respond to
standard deviation queries with elements of prior-
known bounds. Look at a batch of standard deviation
queries 8Q11 0 0 0 1Qt9; the bounds of variables X are
denoted by 6L1U7. To examine whether the query
answers compromise the database, we can formulate
and solve a set of nonlinear optimization problems as
follows:

min4max5 xi

s.t.























∑

i∈Qj

(

�Qj �xi−
∑

t∈Qj

xt

)2

= 4�Qj �−15�Qj �
2b2

j 1

for j=110001t1
L≤X≤U0

(10)

Constraints (10) are typical semidefinite program-
ming problems (Vandenberghe and Boyd 1996), because

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

the value of
∑

i∈Qj
4�Qj �xi −

∑

t∈Qj
xt5

2 is nonnegative for
any X. It is well known that semidefinite programs
can be solved efficiently, both in theory and prac-
tice. However, a safe auditing scheme has to consider
information leakage from a query denial and carry
it over to audit subsequent queries. A good thing
is that standard deviation queries are continuously
oriented, which is the same as sum queries. In other
words, if we deny a standard deviation query when
∃ i1max4xi5− min4xi5≤ �i, the feasible solution space
is a convex set or the union of several convex sets. We
adopt the same auditing strategy as for sum queries.

Definition 8 (Auditing Standard Deviation
Queries). For each new standard deviation query, for-
mulate and solve a series of semidefinite programming
problems to compute the lower and upper bounds for
each variable. If ∃ i1max4xi5− min4xi5≤ �i, deny the
query, find the feasible values of the denied answer
that would make the query to be denied, and return the
interval of continuous feasible solutions that contain
the real answer; else, answer the query.

We release the interval of feasible solutions that
contain the real answer so that all following auditing
problems are forumulated as convex optimization
problems. Although we release more information than
necessary, all variable privacy is kept intact. We skip
the scheme security analysis, since the proof for the
sum query case can be easily extended here, as both
query types are convex in nature.

Now we study how to find the feasible values
of the denied answer that would deny a standard
deviation query. Denote the denied answer as �, and
the maximum and minimum of xi dependent on �
as f 1

i 4�5 and f 2
i 4�5, respectively. Computing f 1

i 4�5
and f 2

i 4�5 is a typical RHS parametric semidefinite
programming problem. Berkelaar et al. (1996) show
that the solution to a RHS quadratic programming
is concave and piecewise quadratic. In Goldfarb and
Scheinberg (1999), an explicit formula is provided to
compute the interval of a RHS parameter value, where
the optimal solution (a function of the RHS parameter)
is unchanged. In fact, the formula is very similar to the
one for RHS parametric LP. Given the formula, we can
derive f 1

i 4�5 and f 2
i 4�5 and find the feasible solutions

feasiblei4�5 that make f 1
i 4�5− f 2

i 4�5 ≤ �i. Because an
adversary cannot determine which one is at risk, the
total information leakage is � ∈

⋃

i feasiblei4�5. We then
release the interval containing the real answer to enable
the subsequent auditing problems to be formulated as
convex optimization problems.

5. Mixed Query Types
In this section, we provide a consolidated frame-
work for auditing mixed query types, including

sum, max, min, and standard deviation. Suppose
old queries are 8Q11 0 0 0 1Qt1

1Q′
11 0 0 0 1Q

′
t2
1Q′

11 0 0 0 1Q
′
t3
9,

where 8Q11 0 0 0 1Qt1
9 are sum queries, 8Q′

11 0 0 0 1Q
′
t2
9

max or min queries, and 8Q′′
11 0 0 0 1Q

′′
t3
9 standard devi-

ation queries. The auditing problem is to determine
whether to answer or deny a new query Qnew. Based
on what we have studied in the previous sections,
the adversary’s knowledge from responses to the past
queries can be represented by a set of equality and
inequality constraints, which are either in a linear
or positive definite quadratic form. Specifically, if a
sum query Qi is answered, the information leakage
is sum4Qi5 = bi. If the query is deemed dangerous,
an interval 6li1ui7 is returned and the information
leakage is li ≤ sum4Qi5 ≤ ui. Similarly, if a standard
deviation query Q′′

i is answered, the information leak-
age is std4Q′′

i 5= b′′
i . Else, an interval is returned and

the information leakage is l′′i ≤ std4Q′′
i 5≤ u′′

i . A max
or min query Q′

i is either denied or fully answered.
If it is denied because there exists a possible answer,
which makes some element an extreme element, then
there is no information leakage, because the decision is
reached without consulting the database. If it is denied
because the real answer would make some element
partially disclosed, then the information leakage can
be represented by l′i ≤ max/min4Q′

i5 ≤ b′
i, such that

max/min4Q′
i5 being any value in 6l′i1 b

′
i7 would make

some element partially disclosed. We denote the set of
feasible solutions satisfying those constraints, derived
from past query responses, by Q. The consolidated
auditing scheme for mixed query types is as follows.

Definition 9 (Auditing Mixed Query Types).
Given x ∈ Q, the information leakage from the responses
to the past queries, to audit a new query Qnew, we do
the following:

• If it is a sum query, formulate and solve a set of
semidefinite programming problems of max/min4xi �x
∈ Q1 sum4Qnew5 = bnew5 for each xi. If there is an xi
being compromised, formulate and solve a set of
parametric semidefinite programming problems of
max/min4xi �x ∈ Q1 sum4Qnew5= �5 for each xi to derive
the feasible values of � that would compromise the
database, and then return the interval containing the
exact answer.

• If it is a standard deviation query, run the same
procedure as above, except for replacing the constraint
sum4Qnew5= bnew with std4Qnew5= bnew.

• If it is a max or min query, check whether there
exists a possible answer that is consistent to past answers
and causes the existence of extreme elements.

—If yes, deny the query (note the decision is
made without consulting the database).

—If no, consult the database to see if the real an-
swer makes some element partially compromised.

∗ If yes, deny the answer and derive information
leakage.

∗ If no, answer the query.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 11

The framework treats max and min queries differ-
ently, due to their inherent discrete nature. In the first
step of auditing a max or min query, there is no need
to check all possible answers. It suffices to check a
finite number of points, as what we did to audit max
and min-only queries. Suppose it is a max query. For
consistency checking, we use a method in Vanden-
berghe and Boyd (1996) to check the feasibility of the
semidefinite constraint set 8x ∈Q3xi ≤ b′

i1∀xi ∈Qnew9.
To determine the existence of extreme elements, we
adopt the same algorithm used in Nabar et al. (2006).
To derive the information leakage from a query denial,
we formulate and solve parametric semidefinite pro-
gramming problems to find out the possible values of
b′
i that would make some element partially disclosed.

We take the interval containing the real answer as
the information leakage and carry it over to audit the
subsequent queries.

6. Experimental Study
An auditing scheme can be evaluated in three dimen-
sions: privacy, utility, and efficiency. Privacy is the most
important because it is the reason for the existence of a
privacy protection mechanism. Data utility determines
the usage of a database, and efficiency affects user
experience. Unanimously, privacy can be examined
with regard to the defined data privacy policy and
efficiency can be measured in running time. There are
many ways to measure utility. For example, Nabar
et al. (2006) measure utility by the number of answered
queries. But an auditing scheme could provide ambigu-
ous and partial answers to unlimited queries without
compromising a database and that does not make
the auditing scheme preferable. So we measure utility
by the amount of released information on database
elements. Regarding the interval-based privacy policy,
the best auditing scheme is the one that allows a user to
infer the feasible database solutions to a polytope with
max4xi5− min4xi5= �i1∀xi, where �i is the predefined
safe threshold of xi.

6.1. Sum
The first experiment is to study sum-only queries.
We compared our auditing scheme with conventional
auditing and simulatable auditing. Note that we do not
consider the modified auditing scheme, as it is essen-
tially the same as the conventional auditing scheme.
We generated a database of 100 elements with values
randomly drawn from 6111007, and 200 random sum
queries uniformly drawn from the pool of possible
sum queries. For each element, we set its safe threshold
to be 0.1 times its value. We run all auditing schemes
against the same database and queries, and report the
results in Figures 2–4, where each diamond denotes
a query and the dark diamond means the database
is compromised. We observe the following: First, in

Answered

Denied

1 90 93 113 200

Compromised Safe

Figure 2 Conventional

terms of privacy, both our auditing scheme and simu-
latable auditing protects the privacy throughout the
auditing process, whereas conventional auditing is
unable to protect privacy after query 90. We also
notice that the first abnormal query response occurs
at query 90 for both conventional and our auditing
scheme. Conventional auditing denied the query, while
our auditing scheme partially answered the query.
After that, conventional auditing answered query 91,
which immediately compromised the database, due
to the ignorance of information leakage of the denial
of query 90. As the result, the database continued
to stay in the compromised state, even though the
most subsequent queries were denied. In contrast,
our auditing scheme partially answered queries 90–92
and 94–200, and fully answered query 93. It provides
data information and maintains data privacy. Second,
regarding utility, our auditing scheme provides the
maximum data utility, because at query 96, the privacy
boundaries had been reached. In contrast, conventional
auditing releases more information than the privacy
policy allows, which is unacceptable, and simulatable
auditing does not answer any query, because all ele-
ments are known to fall in a bounded range. Third,
in terms of efficiency, our auditing scheme takes the
most computing. However, the computing time of our
auditing scheme is comparable to that of conventional
auditing. Firstly, for queries 1–89, our auditing scheme
and conventional auditing took the same amount of
time because no query denial occurs yet. For queries
90–95, our auditing scheme took more computing time,
as it needs to derive information leakage. But after
query 96, our auditing scheme took the same amount
of time as conventional auditing, because the privacy
boundaries were reached and there was no need to
derive information leakage. To provide a partial answer,

Answered

1 90 93 113 200

Denied

Compromised Safe

Figure 3 Simulatable

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
12 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

1

Fully answered

Partially answered

90 93 96 113

Reaching privacy boundariesCompromised
Safe

200

Figure 4 Our Auditing Scheme

our auditing scheme only needs to formulate and solve
two LPs with the information derived from queries
1–96 as constraints to obtain the lower and upper
bounds of the query.

Simulatable auditing took the least computing time,
but with no query being answered. The zero data utility
is because the simulatable auditing scheme is too strict.
Recall that the simulatable auditing scheme denies a
query if there is a feasible answer, which can cause
privacy disclosure. For a first query

∑

i xi against a
nonnegative database, a feasible and consistent answer
is 0, which indicates every variable is zero. If the
answer is 0, all variables are uniquely determined to
be 0. Therefore the query must be denied, as must all
subsequent sum queries. The example shows that the
simulatable auditing scheme is not suitable for cases
where variables have prior known bounds. However,
databases with prior known bounds are very common
in practice. For instance, salary is nonnegative, age is a
positive number less than 150, etc.

6.2. Mixed
The second experiment is to study mixed query types.
First, we present a result on a small data set, depicted
in Figure 5, to provide some insights. The data set com-
prises 20 elements 8x11 0 0 0 1 x209 with values randomly
drawn from 611207. The task is to audit 100 random
queries generated by the following two-step procedure:
(i) determine a random number k in 611207 and then
select k random elements from 8x11 0 0 0 1 x209, and (ii) ran-
domly specify the query type so that sum, max or min,
and standard deviation have the same probability. The
safe threshold is 0.1 times each element’s value. We
made the following observations: (i) Eight sum queries
are fully answered. The number would be much larger

Fully answered

Partially
answered

Denied

10 23 40

Reaching privacy
boundaries

Sum
Max or min
Std

Figure 5 Auditing Mixed Query Types

if we were auditing sum-only queries. For a database
of n elements, element values would be fully disclosed
by n linearly independent sum queries. However, for
reasonable safe threshold values, the number of fully
answered queries should be close to the number of total
elements, which has been verified by many existing
studies. One recent evidence is Figure 4, in which 90
queries over a database of 100 elements are answered.
Figure 5 shows that as answers to max, min, and stan-
dard deviation queries leak information, the number of
answered sum queries is significantly reduced. (ii) Four
max or min queries are fully answered and the rest
are denied, not partially answered. So the simulatable
auditing step incorporated in our scheme to counteract
the discrete nature threat of max and min queries is
the sole cause for them to be denied. (iii) There are
13 standard deviation queries being answered, which
is larger than the sum of answered sum, max, and
min queries. It shows that an answer to a standard
deviation query does not release much information
relatively. (iv) After query 40, the privacy boundaries
are reached; in other words, the maximum utility is
achieved, while the privacy is well kept. It also tells
us that for the remaining queries, there is no need
to apply our sophisticated auditing scheme, as no
additional information can be released. An auditor can
simply answer the query based on released information
without consulting the database.

To validate the observations made from the previous
single case, we conducted more experiments. We gen-
erated five databases with the number of elements
ranging from 20 to 100, with the same generation
procedure as that for the previous example. The results
are reported in Figure 6 with the patterns matching
the findings from Figure 5. It is observed that (i) the
query types in the order of the number of queries
being fully answered are standard deviation, sum, and
max or min and (ii) the total number of queries being
fully answered increase as the database size increases.

20 40 60 80 100

5

10

15

20

25

30

Number of elements

N
um

be
r

of
 fu

lly
 a

ns
w

er
ed

 q
ue

rie
s

Sum

Std

Max or min

Figure 6 More Results on Mixed Query Types

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 13

We noticed that almost no max or query was partially
answered. Therefore we conducted more experiments
by removing the step of using the simulatable auditing
strategy to eliminate the discrete nature threat of max
and min queries. We found that nearly all max and
min queries were fully answered. As element values
are uniformly drawn and widely dispersed, answers to
max and min queries do not improve the lower and
upper bounds of elements by much. We conclude that
the discrete nature is the main cause for fewer max
and min queries being answered.

6.3. Trade-off
In this section, we study the trade-offs along differ-
ent dimensions. Because privacy is the principle of
auditing and should never be compromised, what
we can do is exchange utility in return for efficiency.
There are many ways to improve efficiency: one way
is to utilize the algorithm in Kleinberg et al. (2003)
to eliminate occurrence of extreme elements, when
auditing a max or min query, instead of the algorithm
in Nabar et al. (2006). Kleinberg et al. (2003) show
that given a collection 8Q11 0 0 0 1Qt9 of max (or min)
queries, for element i to be a max extreme element,
there must exist Qj\4

⋃

r∈c Qr 5= 8i9, where c is a subcol-
lection. To eliminate occurrence of extreme elements,
we can deny a max (or min) query without consulting
the database if there exists Qj\4

⋃

r∈c Qr 5= 8i9 for some
element i, which can be implemented efficiently. The
consequence is that more innocuous queries would
be denied. If we use the modified scheme to audit
max- and min-only queries, the probability of a query
denial would be increased. If we audit mixed query
types, including sum, max, min, and deviation, and
consider reaching privacy boundaries is the maximum
utility, the modified scheme does not reduce utility.
The only effect is fewer max and min queries would be
answered. To find out the detailed trade-off effect, we
executed the original auditing scheme and the modified
scheme with the algorithm in Kleinberg et al. (2003)
being plugged against the five databases created for
the previous experiment. The results are reported in
Figure 7. The left vertical axis denotes the ratio of fully
answered max and min queries by the original scheme
to the number of answered max and min queries by the
modified scheme and the right vertical axis represents
the ratio of average auditing time for a max or min
query by the original scheme to the time by the modi-
fied scheme. Figure 7 shows that the original scheme
takes significantly more computing time, because the
original scheme requires solving a large number of
optimization problems, while the modified scheme
takes almost no time. However, the utility gain at the
great cost of computing time is not that significant,
as illustrated by the left vertical axis of Figure 7. We
conclude that if it is not critical to answer max and min
queries, it is advisable to take the modified scheme.

20
1.0

1.5

2.0

R
at

io
 o

f a
ns

w
er

ed
 q

ue
rie

s

30 40 50 60 70 80 90 100
500

1,000

R
at

io
 o

f c
om

pu
tin

g
tim

e

1,500

Number of elements

Figure 7 Answered Queries vs. Computing Time

Another way to improve efficiency is to deny a sum
query right after the first sum query denial occurs.
As observed in Figure 5, after the first query denial,
the privacy boundaries will be quickly approached.
Because deriving information leakage takes a lot of
time, if we simply deny all queries after the first query
denial, then much time is saved. We conducted an
experiment to compare the original scheme with the
“lazy” scheme regarding computing time and released
information on five synthetic databases, with number n
of elements ranging from 20 to 100 and element values
drawn from 601n7. All queries to be audited are sum
queries and the threshold value is 0.1 times an element
value. The maximum knowledge on xi that a user is
allowed to obtain is the bounds being improved from
601n7 to 6li1ui7, where ui − li = 001 × xi. Comparing the
original scheme and the “lazy” scheme regarding the
released information of xi, we take the measure of
4n−001×xi5/4n− 4u′

i − l′i55, where u′
i and l′i are the lower

and upper bounds of xi at the end of the “lazy” scheme.
We compute the average measure over all elements for
each database and report the results in the left vertical
axis of Figure 8. The right vertical axis represents the
ratio of the total auditing time of the original scheme
to that of the “lazy” scheme. We observed that the
“lazy” scheme provides decent information with less
computing time. We conclude that if efficiency is a
top concern for a system, it is worth trying the “lazy”
scheme.

There are many other ways to improve efficiency.
For example, we could incorporate other privacy mech-
anisms into the auditing mechanism, e.g., perturbation
might be the easiest way to achieve data privacy. Keep
in mind that doing so would lose many properties of
auditing, such as flexibility and accuracy. As reported
in Dinur and Nissim (2003), for a SDB by an n-bit
string d11 0 0 0 1 dn with a query being a subset q ⊆ 6n7
to be answered by

∑

i∈q di, to achieve privacy, one has
to add perturbation of magnitude ì4

√
n5. For SDBs

of positive integers x11 0 0 0 1 xn, the perturbation needs
to be of magnitude ì4

√

∑

i xi5. To illustrate this, we
did an experiment on a synthetic database of 100
elements with five sum queries. Figure 9 reports the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
14 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS

20

2
R

at
io

 o
f r

el
ea

se
d

in
fo

rm
at

io
n

40 60 80 100
0

5

R
at

io
 o

f c
om

pu
tin

g
tim

e

10

Number of elements

Figure 8 Released Information vs. Computing Time

1 2 3 4 5

1,000

2,000

3,000

4,000

5,000

R
et

ur
ne

d
an

sw
er

Query

Auditing

Perturbation

Figure 9 Comparison of Released Answers

answers returned by the auditing scheme and from a
perturbed database. We observed that the perturbation
mechanism significantly alters real answers. Therefore,
perturbation might only be suitable for large data sets
where auditing is not feasible.

Note that it has long been recognized that
“0 0 0auditing may serve as a solution to the SDB security
problem for small SDBs” (Chin and Özsoyoglu 1982,
p. 575). Auditing provides the complete data privacy,
maximum data utility, and query flexibility at a great
computational cost. Auditing is typically formulated
as a set of linear programs, therefore the scalability
and practicability of the auditing approach largely
depends on the state of art in optimization technolo-
gies. For instance, the current front line large-scale
LP/QP solver engine1 can solve linear and quadratic
programming problems with up to 32,000 variables
and 32,000 constraints in the standard version. It is
reasonable to apply the auditing approach to SDBs
with thousands of variables or less. As optimization
technologies advance, the practicability of auditing
will increase accordingly. Significant advancements on
optimization technologies have been observed since the

1 http://www.solver.com/large-scale-lpqp-solver-engine.

1970s when auditing was first introduced. In addition,
our auditing algorithm is faster than the conventional
auditing algorithms. As briefly mentioned in §2.5, our
algorithm takes advantage of the two patterns observed
in the set of linear programs formulated in an auditing
process, which allow us to utilize the sensitivity analy-
sis technologies used in optimization to reduce half the
computing time.

7. Conclusion
In this paper, we present an auditing framework, which
is applicable to mixed query types, including sum,
max, min, and deviation. The framework provides the
maximum data utility and is free of query denial threat.
The key idea is acknowledging the fact that query
denials leak information. Upon each query denial, we
derive information leakage and treat it as a part of
the adversary knowledge when auditing subsequent
queries. Due to the discrete nature of max and min
queries, when auditing a max or min query, we employ
the simulatable auditing strategy to eliminate the
occurrence of extreme elements. The experimental study
shows that our scheme provides the maximum data
utility to users, as the privacy boundaries are reached
for each case. Experimental results also show that
standard deviation has more queries being answered
than other types, which is because a standard deviation
query does not release much information. We also
observed that max and min have the least queries that
can be answered, because the simulatable auditing
strategy that we added to the whole auditing process
denies many innocuous queries. Designing a better
auditing algorithm for max and min queries will be
our future work.

References
Adam NR, Wortmann JC (1989) Security-control methods for statis-

tical databases: A comparative study. ACM Comput. Surveys
21:515–556.

Agrawal S, Budetti P (2012) Physician medical identity theft. JAMA
307:459–460.

Berkelaar AB, Jansen B, Roos K, Terlaky T (1996) Sensitivity analysis
in (degenerate) quadratic programming. Technical Report 96-26,
(Delft University of Technology, Delft, the Netherlands).

Castro J (2007) A shortest-paths heuristic for statistical data protection
in positive tables. INFORMS J. Comput. 19:520–533.

Chin FY (1978) Security in statistical databases for queries with small
counts. ACM Trans. Database Systems 3:92–104.

Chin FYL (1986) Security problems on inference control for sum,
max, and min queries. J. ACM 33:451–464.

Chin FYL, Özsoyoglu G (1981) Statistical database design. ACM
Trans. Database Systems 6:113–139.

Chin FYL, Özsoyoglu G (1982) Auditing and inference control in
statistical databases. IEEE Trans. Software Engrg. 8:574–582.

Chowdhury SD, Duncan GT, Krishnan R, Roehrig SF, Mukherjee S
(1999) Disclosure detection in multivariate categorical databases:
Auditing confidentiality protection through two new matrix
operators. Management Sci. 45:1710–1723.

Dantzig GB (1963) Linear Programming and Extensions (Princeton
University Press, Princeton, NJ).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Lu et al.: Statistical Database Auditing Without Query Denial Threat
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2014 INFORMS 15

Dinur I, Nissim K (2003) Revealing information while preserving
privacy. Proc. Twenty-Second ACM Sympos. Principles Database
Systems (ACM, New York), 202–210.

Dobkin D, Jones AK, Lipton RJ (1979) Secure databases: Protection
against user influence. ACM Trans. Database Systems 4:97–106.

Dwork C (2008) Differential privacy: A survey of results. TAMC
4978:1–19.

Fischetti M, Salazar JJ (2001) Solving the cell suppression problem
on tabular data with linear constraints. Management Sci. 47:
1008–1027. .

Friedman AD, Hoffman LJ (1980) Towards a fail-safe approach to
secure databases. IEEE Sympos. Security and Privacy, Oakland, CA.

Fung BCM, Wang K, Chen R, Yu PS (2010) Privacy-preserving data
publishing: A survey of recent developments. ACM Comput.
Surveys 42:14:1–14:53.

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to
the Theory of NP-Completeness (W.H. Freeman, New York).

Garfinkel R, Gopal R, Goes P (2002) Privacy protection of binary
confidential data against deterministic, stochastic, and insider
threat. Management Sci. 48:749–764.

Goldfarb D, Scheinberg K (1999) On parametric semidefinite pro-
gramming. Appl. Numer. Math. 29:361–377.

Kadane JB, Krishnan R, Shmueli G (2006) A data disclosure policy for
count data based on the COM-Poisson distribution. Management
Sci. 52:1610–1617.

Kaelber DC, Jha AK, Johnston D, Middleton B, Bates DW (2008)
A research agenda for personal health records (phrs). J. Amer.
Medical Informatics Assoc. 15:729–736.

Kenthapadi K, Mishra N, Nissim K (2005) Simulatable auditing. Proc.
Twenty-Fourth ACM Sympos. Principles Database Systems (ACM,
New York), 118–127.

Kleinberg JM, Papadimitriou CH, Raghavan P (2003) Auditing
Boolean attributes. J. Comput. Syst. Sci. 66:244–253.

Kumar R, Gopal R, Garfinkel R (2010) Freedom of privacy: Anony-
mous data collection with respondent-defined privacy protection.
INFORMS J. Comput. 22:471–481.

Lee S, Genton MG, Arellano-Valle RB (2010) Perturbation of numerical
confidential data via skew-t distributions. Management Sci.
56:318–333.

Li N, Li T, Venkatasubramanian S (2007) t-Closeness: Privacy beyond
k-anonymity and l-diversity. Chirkova R, Dogac A, Tamerözsu M,
Sellis TK, eds. Proc. 23rd IEEE Internat. Conf. Data Engrg. (IEEE
Computer Society, Los Alamitos, CA), 106–115.

Li X-B, Sarkar S (2006) Privacy protection in data mining: A per-
turbation approach for categorical data. Inform. Systems Res.
17:254–270.

Li X-B, Sarkar S (2011) Protecting privacy against record linkage
disclosure: A bounded swapping approach for numeric data.
Inform. Systems Res. 22:774–789.

Li X-B, Sarkar S (2013) Class-restricted clustering and microperturba-
tion for data privacy. Management Sci. 59:796–812.

Li Y, Lu H (2008) Disclosure analysis and control in statistical
databases. ESORICS, Lecture Notes in Computer Science, Vol. 5283
(Springer, New York), 146–160.

Li Y, Wang L, Jajodia S (2003) Preventing interval-based inference
by random data perturbation. Proc. 2nd Internat. Conf. Privacy
Enhancing Tech., San Francisco, 160–170.

Lu H, Li Y (2008) Practical inference control for data cubes. IEEE
Trans. Dependable Sec. Comput. 5:87–98.

Lu H, Li Y, Atluri V, Vaidya J (2009) An efficient online auditing
approach to limit private data disclosure. ACM Internat. Conf.
Extending Database Tech. (ACM, New York), 636–647.

Machanavajjhala A, Gehrke J, Kifer D, Venkitasubramaniam M (2006)
l-Diversity: Privacy beyond k-anonymity. IEEE Internat. Conf.
Data Engrg. (IEEE Computer Society, Los Alamitos, CA), 24.

Malvestuto FM, Moscarini M (2006) Auditing sum-queries to make a
statistical database secure. ACM Trans. Inform. System Security
33:451–464.

Matloff NS (1986) Another look at the use of noise addition for
database security. IEEE Sympos. Security Privacy (IEEE Computer
Society, Los Alamitos, CA), 173–181.

Muralidhar K, Sarathy R (2006) Data shuffling—A new masking
approach for numerical data. Management Sci. 52:658–670.

Muralidhar K, Batra D, Kirs PJ (1995) Accessibility, security, and
accuracy in statistical databases: The case for the multiplicative
fixed data perturbation approach. Management Sci. 41:1549–1564.

Muralidhar K, Parsa R, Sarathy R (1999) A general additive data
perturbation method for database security. Management Sci.
45:1399–1415.

Nabar SU, Marthi B, Kenthapadi K, Mishra N, Motwani R (2006)
Towards robustness in query auditing. Proc. 32nd Internat. Conf.
Very Large Data Bases, Seoul, Korea.

Nunez MA, Garfinkel RS, Gopal RD (2007) Stochastic protection
of confidential information in databases: A hybrid of data
perturbation and query restriction. Oper. Res. 55:890–908.

Samarati P, Sweeney L (1998) Protecting privacy when disclosing
information: k-anonymity and its enforcement through general-
ization and suppression. Technical reportT, SRI International,
Menlo Park, CA.

Sarathy R, Muralidhar K, Parsa R (2002) Perturbing nonnormal
confidential attributes: The Copula approach. Management Sci.
48:1613–1627.

Schlorer J (1975) Confidentiality of statistical records: A threat-
monitoring scheme for on line dialgoue. Methods Inform. Medicine
14:36–42.

Sweeney L (2002) k-anonymity: A model for protecting privacy.
Internat. J. Uncertainty Fuzziness Knowledge-Based Systems 10:
557–570.

Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM
Rev. 38:49–95.

Vanderbei RJ (2008) Linear Programming: Foundations and Extensions,
3rd ed. (Springer-Verlag, New York).

Wang L, Jajodia S, Wijesekera D (2004) Securing OLAP data cubes
against privacy breaches. IEEE Sympos. Security Privacy (IEEE
Computer Society, Los Alamitos, CA), 161–175.

Wang L, Li Y, Wijesekera D, Jajodia S (2003) Precisely answering
multi-dimensional range queries without privacy breaches. Eur.
Sympos. Res. Comput. Security (Springer, New York), 100–115.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

20
2.

16
1.

58
.8

8]
 o

n
09

 N
ov

em
be

r
20

14
, a

t 2
2:

09
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

