
Online Checkpointing with Improved
Worst-Case Guarantees

Karl Bringmann∗ Benjamin Doerr Adrian Neumann
Jakub Sliacan

October 4, 2018

Abstract

In the online checkpointing problem, the task is to continuously main-
tain a set of k checkpoints that allow to rewind an ongoing computation
faster than by a full restart. The only operation allowed is to replace an
old checkpoint by the current state. Our aim are checkpoint placement
strategies that minimize rewinding cost, i.e., such that at all times T when
requested to rewind to some time t ≤ T the number of computation steps
that need to be redone to get to t from a checkpoint before t is as small as
possible. In particular, we want that the closest checkpoint earlier than
t is not further away from t than qk times the ideal distance T/(k + 1),
where qk is a small constant.

Improving over earlier work showing 1 + 1/k ≤ qk ≤ 2, we show
that qk can be chosen asymptotically less than 2. We present algorithms
with asymptotic discrepancy qk ≤ 1.59 + o(1) valid for all k and qk ≤
ln(4) + o(1) ≤ 1.39 + o(1) valid for k being a power of two. Experiments
indicate the uniform bound pk ≤ 1.7 for all k. For small k, we show how
to use a linear programming approach to compute good checkpointing
algorithms. This gives discrepancies of less than 1.55 for all k < 60.

We prove the first lower bound that is asymptotically more than one,
namely qk ≥ 1.30− o(1). We also show that optimal algorithms (yielding
the infimum discrepancy) exist for all k.

1 Introduction
Checkpointing means storing selected intermediate states of a long sequence of
computations. This allows reverting the system to an arbitrary previous state
much faster, since only the computations from the preceding checkpoint have
to be redone. Checkpointing is one of the fundamental techniques in computer
science. Classic results date back to the seventies [3], more recent topics are
checkpointing in distributed [4], sensor network [7], or cloud [10] architectures.

∗Karl Bringmann is a recipient of the Google Europe Fellowship in Randomized Algorithms,
and this research is supported in part by this Google Fellowship.

1

ar
X

iv
:1

30
2.

42
16

v2
 [

cs
.D

S]
 3

0
A

pr
 2

01
3

Checkpointing usually involves a careful trade-off between the speed-up
of reversions to previous states and the costs incurred by setting checkpoints
(time, memory). Much of the classic literature (see [5] and the references therein)
studies checkpointing with the focus of gaining fault tolerance against immediately
detectable faults. Consequently, only reversions to the most recent checkpoint
are needed. However, setting a checkpoint can be highly time consuming,
because the whole system state has to be copied to secondary memory. In
such scenarios, the central question is how often to set a checkpoint such that
the expected time spent on setting checkpoints and redoing computations from
the last checkpoint is minimized (under a stochastic failure model and further,
possibly time-dependent [9], assumptions on the cost of setting a checkpoint).

In this work, we will regard a checkpointing problem of a different nature.
If not fault-tolerance of the system is the aim of checkpointing, then often
the checkpoints can be kept in main memory. Applications of this type arise
in data compression [2] and numerics [6, 8]. In such scenarios, the cost of
setting a checkpoint is small compared to the cost of the regular computation.
Consequently, the memory used by the stored checkpoints is the bottleneck.

The first to provide an abstract framework independent of a particular
application in mind were Ahlroth, Pottonen and Schumacher [1]. They do not
make assumptions on which reversion to previous states will be requested, but
simply investigate how checkpoints can be set in an online fashion such that at
all times their distribution is balanced over the total computation history.

They assume that the system is able to store up to k checkpoints (plus
a free checkpoint at time 0). At any point in time, a previous checkpoint
may be discarded and replaced by the current system state as new checkpoint.
Costs incurred by such a change are ignored. However, as it turns out, good
checkpointing algorithms do not set checkpoints very often. For all algorithms
discussed in the remainder of this paper, each checkpoint is changed only O(log T)
times up to time T .

The max-ratio discrepancy measure. Each set of checkpoints, together
with the current state and the state at time 0, partitions the time from the
process start to the current time T into k + 1 disjoint intervals. Clearly, without
further problem-specific information, an ideal set of checkpoints would lead to
all these intervals having identical length. Of course, this is not possible at all
points in time due to the restriction that new checkpoints can only be set on the
current time. As discrepancy measure for a checkpointing algorithm, Ahlroth
et al. mainly regard the maximum gap ratio, that is, the maximum ratio of the
longest interval vs. the shortest interval (ignoring the last interval, which can be
arbitrarily small), over all current times T . They show that there is a simple
algorithm achieving a discrepancy of two: Start with all checkpoints placed
evenly, e.g., at times 1, . . . , k. At an even time T , remove one of the checkpoints
at an odd time and place it at T . This will lead to all checkpoints being at the
even times 2, 4, . . . , 2k when T = 2k is reached. Since these checkpoints form a
scaled copy of the initial ones, we can continue in this fashion forever. It is easy

2

to see that at all times, the intervals formed by neighboring checkpoints have at
most two different lengths, the larger being twice the smaller in case that not all
lengths are equal. This shows the discrepancy of two.

It seems tempting to believe that one can do better, but, in fact, not
much improvement is possible for general k as shown by the lower bound
of 21−1/d(k+1)/2e = 2(1− o(1)). For small values of k, namely k = 2, 3, 4, and 5,
better upper bounds of approximately 1.414, 1.618, 1.755, and 1.755, respectively,
were shown.

The maximum distance discrepancy measure. In this work, we shall
regard a different, and, as we find, more natural discrepancy measure. Recall
that the actual cost of reverting to a particular state is basically the cost of
redoing the computation from the preceding checkpoint to the desired point
in time. Adopting a worst-case view on the time to revert to, our aim is to
keep the length of the longest interval small (at all times). Note that with
time progressing, the interval lengths necessarily grow. Hence a fair point of
comparison is the length T/(k+1) of a longest interval in the (at time T) optimal
partition of the time frame into equal length intervals. For this reason, we say
that a checkpointing algorithm (using k checkpoints) has maximum distance
discrepancy (or simply discrepancy) q if it places the checkpoints in such a way
that at all times T , the longest interval has length at most qT/(k + 1). We
denote by q∗(k) the infimum discrepancy among all checkpointing algorithms
using k checkpoints.

This maximum distance discrepancy measure was suggested in [1]. There it
was remarked that an upper bound of β for the gap-ratio discrepancy implies an
upper bound of β(1 + 1

k) for the maximum distance discrepancy. Furthermore,
for all k an upper bound of 2 and a lower bound of 1 + 1

k is shown for q∗(k).
For k = 2, 3, 4, and 5, stronger upper bounds of 1.785, 1.789, 1.624, and 1.565,
respectively, were shown.

Our results. In this work, we show that the optimal discrepancy q∗(k) is
asymptotically bounded away from both one and two by a constant. We present
algorithms that achieve a discrepancy of 1.59+O(1/k) for all k (Theorem 2), and a
discrepancy of ln(4)+o(1) ≤ 1.39+o(1) for k being any power of two (Theorem 3).
For small values of k, and this might be an interesting case in applications with
memory-consuming states, we show superior bounds by suggesting a class of
checkpointing algorithms and optimizing their parameters via a combination
of exhaustive search and linear programming (Table 1). Experiments suggest
q∗(k) ≤ 1.7 for all k (Sect. 6). We complement these constructive results by a
lower bound for q∗(k) of 2− ln(2)−O(1/k) ≥ 1.3−O(1/k) (Theorem 6). We
round off this work with a natural, but seemingly nontrivial result: We show
that for each k there is indeed a checkpointing algorithm having discrepancy
q∗(k) (Theorem 4). In other words, the infimum in the definition of q∗(k) can
be replaced by a minimum.

3

2 Notation and Preliminaries
In the checkpointing problem with k checkpoints, we consider a long running
computation during which we can choose to save the state at the current time T
in a checkpoint, or delete a previously placed one. We assume that our storage
can hold at most k checkpoints simultaneously, and that there are implicit
checkpoints at time t = 0 and the current time. We disregard any costs for
placing or maintaining checkpoints. Consequently, we may assume that we only
delete a previous checkpoint when a new one is placed.

An algorithm for checkpoint placement can be described by two infinite
sequences. First, the time points where new checkpoints are placed, i.e., a
non-decreasing infinite sequence of reals t1 ≤ t2 ≤ . . . such that limi→∞ ti =∞,
and second, a rule that describes which old checkpoints to delete when a new
one is installed, that is, an injective function d : [k+ 1..∞)→ N satisfying di < i
for all i ≥ k + 1.

The algorithm A described by (t, d) will start with t1, . . . , tk as initial check-
points and then for each i ≥ k + 1, at time ti remove the checkpoint at tdi
and set a new checkpoint at the current time ti. We call the act of removing
a checkpoint and placing a new one a step of A. Note that there is little point
in setting the first k checkpoints to zero, so to make the following discrepancy
measure meaningful, we shall always require that tk > 0.

We call the set of checkpoints that exist at time T active. The active
checkpoints, together with the two implicit checkpoints at times 0 and T , define
a sequence of k + 1 interval lengths LT = (`0, . . . , `k). The discrepancy q(A, T)
of an algorithm A at time T ≥ tk is a measure of how long the maximal interval
is, normalized to be one if all intervals have the same length. It is calculated as

q(A, T) := (k + 1)¯̀
T /T,

where ¯̀
T = ||LT ||∞ denotes the length of the longest interval. We also use the

term discrepancy when we refer to the scaled length of a single interval.
The discrepancy Perf(A) of an algorithm A then is the supremum over the

discrepancy over all times T , i.e.,

Perf(A) := sup
T≥tk

q(A, T).

Hence the discrepancy of an algorithm would be 1, if it kept its checkpoints evenly
distributed at all times. Denote the infimum discrepancy of a checkpointing
algorithm using k checkpoints by

q∗(k) := inf
A

Perf(A),

where A runs over all algorithms using k checkpoints. We will see in Sect. 7 that
algorithms achieving this discrepancy actually exist.

Note that we allow checkpointing algorithms to set checkpoints at continuous
time points. One can convert any such algorithm to an algorithm with integral

4

checkpoints by rounding all checkpointing times ti down. This does not increase
the discrepancy since btic − bti−1c ≤ ti − ti−1 + 1, but with discrete time there
are at most btic − bti−1c − 1 steps to recompute in this interval.

In the definition of the discrepancy, the supremum is never attained at some
T with ti < T < ti+1 for any i, as shown in the following lemma.

Lemma 1. In the definition of the discrepancy it suffices to consider times
T = ti for all i ≥ k, i.e., we have

Perf(A) = sup
i≥k

q(A, ti).

Proof. Consider a time T with ti < T < ti+1 for any i ≥ k. We show that

q(A, T) ≤ max{q(A, ti), q(A, ti+1)}.

Denote the active checkpoints at time T by x1, . . . , xk. Note that xk = ti, since
ti was the last time we set a checkpoint. Consider the interval [xk, T]. Its
discrepancy is exactly

(k + 1)
T − xk
T

≤ (k + 1)
ti+1 − xk
ti+1

≤ q(A, ti+1).

Any other interval at time T is of the form [xj−1, xj] for some 1 ≤ j ≤ k (where
we set x0 := 0), whose discrepancy is

(k + 1)
xj − xj−1

T
≤ (k + 1)

xj − xj−1

ti
≤ q(A, ti).

Together, this proves the claim.

To bound the discrepancy of an algorithm we need to bound the largest of
the q(A, ti) over all i ≥ k. For this purpose, it suffices to look at the two newly
created intervals at time ti for each i, as made explicit by the following lemma.

Lemma 2. Let i > k and let `1, `2 be the lengths of the two newly created
intervals at time ti due to the removal and the insertion of a checkpoint. Then

max{q(A, ti−1), q(A, ti)} = max{q(A, ti−1), (k + 1)`1/ti, (k + 1)`2/ti}.

Proof. If `1 or `2 is the longest interval at time ti the claim holds. Any other
interval existed already at time ti−1 and had a larger discrepancy at this time,
as we divide by the current time to compute the discrepancy. Thus, if any other
interval is the longest at time ti, then we have q(A, ti−1) ≥ q(A, ti) and the claim
holds again.

Often, it will be useful to use a different notation for the checkpoint that
is removed in step i. Instead of the global index d, one can also use the index
p : [k + 1..∞)→ [1..k] among the active checkpoints, i.e.,

pi = di − |{j ∈ [i− 1] | dj < di}|.

5

We call an algorithm A = (t, p) cyclic, if the pi are periodic with some period
n, i.e., pi = pi+n for all i, and after n steps A has transformed the intervals
to a scaled version of themselves, that is, Ltk+jn

= γjLtk for some γ > 1 and
all j ∈ N. We call γ the scaling factor. For a cyclic algorithm A, it suffices to
fix the pattern of removals P = (pk+1, . . . , pk+n) and the checkpoint positions
t1, . . . , tk, tk+1, . . . , tk+n. Since our discrepancy notion is invariant under scaling,
we can assume without loss of generality that tk = 1 (and hence tk+n = γ).

Since cyclic algorithms transform the starting position to a scaled copy of
itself, it is easy to see that their discrepancy is given by the maximum over the
discrepancies during one period, i.e., for cyclic algorithms A with period n we
have

Perf(A) = max
k<i≤k+n

q(A, ti).

This makes this class of algorithms easy to analyze.

3 Introductory Example – A Simple Bound for
k = 3

For the case of k = 3 there is a very simple algorithm, Simple, with a discrepancy
of 4/φ2 ≈ 1.53, where φ = (

√
5 + 1)/2 is the golden ratio. Because the algorithm

is so simple, we use it to familiarize ourselves with the notation we introduced
in Sect. 2. The algorithm is cyclic with a pattern of length one. We prove the
following theorem.

Theorem 1. For k = 3 there is a cyclic algorithm Simple with period length
one and

Perf(Simple) =
4

φ2
.

Proof. We fix the pattern to be P = (1), that is, algorithm Simple always
removes the oldest checkpoint. For this simple pattern it is easy to calculate the
discrepancy depending on the scaling factor γ. Since the intervals need to be
a scaled copy of themselves after just one step and we can fix t3 = 1, we know
immediately that

t1 =
1

γ2
, t2 =

1

γ
, t3 = 1, t4 = γ,

and hence the discrepancy is determined by

4 ·max

{
t1 − 0

t3
,
t2 − t1
t3

,
t3 − t2
t3

}
= 4 ·max

{
1

γ2
,
γ − 1

γ2
,
γ − 1

γ

}
.

Since γ > 1, the second term is always smaller than the third and can be ignored.
As 1/γ2 is decreasing and (γ− 1)/γ is increasing, the maximum is minimal when
they are equal. Simple calculation shows this to be the case at γ = φ.

Hence for k = 3 the algorithm with pattern (1) and checkpoint positions
t1 = 1/φ2, t2 = 1/φ, t3 = 1, and t4 = φ has discrepancy 4/φ2 ≈ 1.53.

6

step 0
step 1
step 2
step 3
step 4
step 5

T = 1

T = 2.46

Figure 1: One period of the algorithm Linear from Sect. 4 for k = 5. After one
period all intervals are scaled by the same factor.

The experiments in Sect. 6 indicate that for k = 3 this is optimal among all
cyclic algorithms with a period of length at most 6.

4 A Simple Upper Bound for Large k

In this section we present an algorithm, Linear, with a discrepancy of roughly
1.59 for large k. This improves upon the asymptotic bound of 2 from [1].
Moreover, Linear is easily implemented for all k.

Like the algorithm Simple of the previous section, the algorithm Linear is
cyclic. It has a simple pattern of length k. The pattern is just (1, . . . , k), that is,
at the i-th step of a period Linear deletes the i-th active checkpoint. Overall,
during one period Linear removes all checkpoints at times ti with odd index i,
as shown in Fig. 1.

This removal pattern is identical to the one of Powers-Of-Two algorithm
from [1]. However, that algorithm starts with a uniform checkpoint distribution
where removing any checkpoint doubles the maximum interval. This leads to
an asymptotic discrepancy of two. In contrast, Linear places checkpoints on
a polynomial. For i ∈ [1, 2k] we set ti = (i/k)α, where α is a constant. In the
analysis we optimize the choice of α and set α := 1.302. For this algorithm we
show the following theorem.

Theorem 2. Algorithm Linear has a discrepancy of at most

Perf(Linear) ≤ 1.586 +O(k−1).

Experiments show that the discrepancy of algorithm Linear is close to the
bound of 1.586 even for moderate sizes of k. Comparisons using the optimization
method from Sect. 6 indicate that for the pattern (1, . . . , k − 1) of algorithm
Linear, different checkpoint placements can yield only improvements of about
4.5% for large k. Experimental results are summarized in Fig. 4.

Proof. As algorithm Linear is cyclic, we can again compute the discrepancy
from the 2k checkpoint positions and the pattern,

Perf(Linear) = max
k<i≤2k

(k + 1)¯̀
ti/ti,

7

where ¯̀
ti is the length of the longest interval at time ti. By Lemma 2 it suffices

to consider newly created intervals at times tk+1, . . . , t2k. Note that at time
ti we create the intervals [ti−1, ti] (from insertion of a checkpoint at ti) and
[t2(i−k)−2, t2(i−k)] (from deletion of the checkpoint at t2(i−k)−1). The discrepancy
of the new interval by insertion is, for k < i ≤ 2k,

(k + 1)
ti − ti−1

ti
= (k + 1)

iα − (i− 1)α

iα
≤ (k + 1)

(k + 1)α − kα

(k + 1)α
.

Using (x+ 1)c − xc ≤ c(x+ 1)c−1 for any x ≥ 0 and c ≥ 1, this simplifies to

≤ (k + 1)
α(k + 1)α−1

(k + 1)α
= α,

for any constant α ≥ 1.
For the new interval from deleting the checkpoint at t2(i−k)−1 we get a

discrepancy of

(k + 1)
t2(i−k) − t2(i−k)−2

ti
= (k + 1)

(2(i− k))α − (2(i− k)− 2)α

iα

≤ (k + 1)2α
α(i− k)α−1

iα
,

where we used again (x+ 1)c − xc ≤ c(x+ 1)c. An easy computation shows that
(i − k)α−1/iα is maximized at i = αk over k < i ≤ 2k. Hence, we can upper
bound this discrepancy by

≤
(

1 +
1

k

)
2α
α(α− 1)α−1

αα
= 2α

(
1− 1

α

)α−1

+O(k−1).

We optimize the latter term numerically and obtain for α = 1.302 an upper
bound of

1.586 +O(k−1).

Note that this bound is larger than the bound α = 1.302 from the new intervals
from insertion. Hence, overall we get the desired upper bound.

5 An Improved Upper Bound for Large k

In this section we present the algorithm Binary that yields a discrepancy of
roughly ln(4) ≈ 1.39 for large k. Compared to the algorithm Linear from the
last section, Binary has a considerably better discrepancy at the price of a more
involved analysis, and it only works for k being a power of two.

Theorem 3. For k ≥ 8 being any power of 2, the algorithm Binary has
discrepancy

Perf(Binary) ≤ ln(4) +
0.05

lg(k/4)
+O

(1

k

)
.

8

Here and in the remainder of this paper, let ‘lg’ denote the binary and ‘ln’
the natural logarithm. Note that the term O(1/k) quickly tends to 0, whereas
the Θ(1/ lg(k/4)) term is small due to the constant 0.05. Hence, this discrepancy
is close to ln(4) already for moderate k. Also note that ln(4) is by less than
0.1 larger than our lower bound from Sect. 8, leaving room for less than a
6% improvement over the upper bound for algorithm Binary for large k. We
verified experimentally that algorithm Binary yields very good bounds already
for relatively small k. The results are summarized in Fig. 5.

5.1 The Algorithm Binary
The initial checkpoints t1, . . . , tk satisfy the equation

ti = αti/2 (1)

for each even 1 ≤ i ≤ k and some α = α(k) ≥ 2. Precisely, we set

α := 21+
lg(
√

2/ ln 4)
lg(k/4) ≈ 21+ 0.029

lg(k/4) .

However, the usefulness of this expression becomes clear only in the analysis of
the algorithm.

During one period we delete all odd checkpoints t1, t3, . . . , tk−1 and insert
the new checkpoints

tk+i := αtk/2+i, (2)

for 1 ≤ i ≤ k/2. Then after one period we end up with the checkpoints

(t2, t4, . . . , tk−2 , tk , tk+1 , tk+2 , . . . , tk+k/2)
= α· (t1, t2, . . . , tk/2−1, tk/2, tk/2+1, tk/2+2, . . . , tk/2+k/2) = α(t1, t2, . . . , tk),

which proves cyclicity. Note that (1) and (2) allow us to compute all ti from the
values tk/2+1, . . . , tk, however, we still have some freedom to choose the latter
values. Without loss of generality we can set tk := 1, then tk/2 = α−1. In
between these two values, we interpolate lg ti linearly, i.e., we set for i ∈ (k/2, k]

ti := α2i/k−2, (3)

completing the definition of the ti. Note that this equation also works for i = k
and i = k/2.

There is one more freedom we have with this algorithm, namely in which
order we delete all odd checkpoints during one period, i.e., we need to fix the
pattern of removals. In iteration 1 ≤ i ≤ k/2 we insert the checkpoint tk+i and
remove the checkpoint td(i+k), defined as follows. For m ∈ N = N≥1 let 2e(m) be
the largest power of 2 that divides m. We define S : N→ N, S(m) := m/2e(m).
Note that S(m) is an odd integer. Using this definition, we set

d(k + i) := S
(
i+

k

2

)
, (4)

9

step 0
step 1
step 2
step 3
step 4
step 5
step 6
step 7
step 8

T = 1

T = 2.012

Figure 2: One period of the algorithm Binary for k = 16. Note that, recursively,
checkpoints are removed twice as often from the right half of the initial setting
(at steps i where i mod 2 = 1) as from the second quarter.

finishing the definition of the algorithm Binary. If we write this down as a
pattern, then we have pi = 1 + k/(21+e(i)) for 1 ≤ i < k/2 and pk/2 = 1.
For intuition as to the behavior of this pattern, see the example in Fig. 2.
The following lemma implies that the deletion behavior of Binary is indeed
well-defined, meaning that during one period we delete all odd checkpoints
t1, t3, . . . , tk−1 (and no point is deleted twice).

Lemma 3. The function S induces a bijection between {k/2 < i ≤ k} and
{1 ≤ i ≤ k | i is odd}.

Proof. Let A := {k/2 < i ≤ k} and B := {1 ≤ i ≤ k | i is odd}. Since
S(m) ≤ m and S(m) is odd for all m ∈ N, we have S(A) ⊆ B. Moreover, A and
B are of the same size. We present an inverse function to finish the proof. Let
x ∈ B. Note that there is a unique number y ∈ N such that x2y ∈ A, since A is
a range between two consecutive powers of 2 and x ≤ k. Setting S−1(x) = x2y

we have found the inverse.

5.2 Discrepancy Analysis
We now bound the largest discrepancy encountered during one period, i.e.,

Perf(Binary) = max
1≤i≤k/2

q(Binary, ti+k) = (k + 1) max
1≤i≤k/2

`ti+k
/ti+k.

We first compute the maximum and later multiply with the factor k + 1. By
Lemma 2, we only have to consider intervals newly created by insertion and
deletion at any step.

Intervals from Insertion: We first compute the discrepancy of the interval
newly added at time ti+k, 1 ≤ i ≤ k/2. Its length is ti+k − ti+k−1, so its

10

discrepancy (without the factor k + 1) is

ti+k − ti+k−1

ti+k
= 1− ti+k−1

ti+k

= 1−
ti+k/2−1

ti+k/2
(3)
= 1− α−2/k,

where the second equality holds because of (2) if i > 1 or (1) if i = 1.
Using ex ≥ 1 + x for x ∈ R yields a bound on the discrepancy of

ti+k − ti+k−1

ti+k
≤ ln(α)

2

k
= ln(α2).

Deleting t1: We show similar bounds for the intervals we get from deleting
an old checkpoint. We first analyze the deletion of t1—this case is different from
the general one, since t1 has no predecessor. Note that t1 is deleted at time t3k/2.
The deletion of t1 creates the interval [0, t2]. This interval has discrepancy

t2
t3k/2

(2),(1)
=

αt1
αtk

(1)
= α− lg k ≤ 1/k,

since we choose α ≥ 2. Hence, this discrepancy is dominated by the one we get
from newly inserted intervals.

Other Intervals from Deletion: It remains to analyze the discrepancy of
the intervals we get from deletion in the general case, i.e., at some time ti+k,
1 ≤ i < k/2. At this time we delete checkpoint d(i+ k), so we create the interval
[td(i+k)−1, td(i+k)+1] of discrepancy

qi :=
td(i+k)+1 − td(i+k)−1

ti+k

(2),(4)
=

tS(i+k/2)+1 − tS(i+k/2)−1

αti+k/2
.

Let h := e(i+ k/2), so that 2h is the largest power of 2 dividing i+ k/2, and
2h S(i+ k/2) = i+ k/2. Then tS(i+k/2)+1 = α−hti+k/2+2h by (1), and a similar
statement holds for tS(i+k/2)−1, yielding

qi = α−1−h ti+k/2+2h − ti+k/2−2h

ti+k/2
.

Using (3) we get ti+k/2 = α2i/k−1. Comparing this with the respective terms for
ti+k/2+2h and ti+k/2−2h yields

qi = α−1−h
(
α2h+1/k − α−2h+1/k

)
= α−1−h · 2 sinh

(
ln
(
α2
)

2h/k
)
.

11

By elementary means one can show that the function f(x) = x−A sinh(Bx),
A ≥ 1, B > 0, is convex on R≥0. Since convex functions have their maxima at
the boundaries of their domain, and since by above equation qi can be expressed
using f(2h) (for A = lgα and B = ln(α2)/k), we see that qi is maximal at (one
of) the boundaries of h. Recall that we treated i = k/2 separately, and observe
that the largest power of 2 dividing i+ k/2, 1 ≤ i < k/2 is at most k/4. Hence,
we have 0 ≤ 2h ≤ k/4 and

qi ≤ max
{

2α−1 sinh(ln(α2)/k), 2α−1(k/4)− lgα sinh(ln(α)/2)
}
.

We simplify using α ≥ 2 and sinh(x) = x+O(x2) to get

qi ≤ max
{

ln(α2)/k +O(1/k2), (k/4)− lgα sinh(ln(α)/2)
}
. (5)

The first term is already of the desired form. For the second one, note that
setting α = 2 we would get a discrepancy of 4 sinh(ln(2)/2)/k =

√
2/k. We get

a better bound by choosing

α := 21+ c
lg(k/4) ,

with c := lg(
√

2/ ln(4)) ≈ 0.029. Then the second bound on qi from above
becomes

(k/4)− lgα sinh(ln(α)/2) =
4

k
2−c sinh

(
ln(2)

2

(
1 +

c

lg(k/4)

))
.

The particular choice of c allows to bound the derivative of sinh((1 + x) ln(2)/2)
for x ∈ [0, c] from above by

ln(2)

2
cosh((1 + c) ln(2)/2) < 0.39.

Hence, we can upper bound

sinh

(
ln(2)

2

(
1 +

c

lg(k/4)

))
≤ sinh(ln(2)/2) +

0.39c

lg(k/4)
.

Thus, in total the second bound on qi from inequality (5) becomes

(k/4)− lgα sinh(ln(α)/2) ≤ 4

k
2−c sinh(ln(2)/2) +

4 · 2−c · 0.39c

k lg(k/4)
.

Since c = lg(
√

2/ ln(4)) = lg(4 sinh(ln(2)/2)/ ln(4)), this becomes

≤ ln(4)/k + 0.044/(k lg(k/4)).

Overall discrepancy: In total, we can bound the discrepancy q := Perf(Binary)
of our algorithm (now including the factor of k + 1) by

q ≤ (k + 1) max
{

ln(α2)/k +O(1/k2), ln(4)/k + 0.044/(k lg(k/4))
}
.

12

Using (k + 1)/k = 1 +O(1/k) and

ln(α2) = ln(4)

(
1 +

c

lg(k/4)

)
≤ ln(4) +

0.040

lg(k/4)
,

this bound can be simplified to

q ≤ max{ln(4) + 0.040/ lg(k/4) +O(1/k), ln(4) + 0.044/ lg(k/4) +O(1/k)},

which proves Theorem 3.

6 Upper Bounds via Combinatorial Optimization
In this section we show how to find upper bounds on the optimal discrepancy q∗(k)
for fixed k. We do so by constructing cyclic algorithms using exhaustive enumer-
ation of all short patterns in the case of very small k or randomized local search
on the patterns for larger k, combined with linear programming to optimize the
checkpoint positions. This yields good algorithms as summarized in Table 1. In
the following we describe our algorithmic approach.

Finding Checkpoint Positions: First we describe how to find a nearly
optimal cyclic algorithm given a pattern P and a scaling factor γ, i.e., how to
optimize the checkpoint positions. To do so, we construct a linear program that
is feasible if a cyclic algorithm with discrepancy λ and scaling factor γ exists.
We use three kinds of constraints: We fix the ordering of the checkpoints, enforce
that the i-th active checkpoint after one period is a factor γ larger than the i-th
initial checkpoint, and upper bound the discrepancy of each interval during the
period by λ. We then use binary search to optimize λ.

Lemma 4. For a fixed pattern P of length n and scaling factor γ, let q∗ =
infA Perf(A) be the optimal discrepancy among algorithms A using P and γ.
Then finding an algorithm with discrepancy at most q∗ + ε reduces to solving
O(log ε−1) linear feasibility problems with O(nk) inequalities and k+n variables.

Proof. For a fixed pattern and scaling factor, we can tune the discrepancy of the
algorithm by cleverly choosing the time points when to remove an old checkpoint
and place a new one. By solving a linear feasibility problem we can check whether
a cyclic algorithm with scaling factor γ and pattern P exists that guarantees a
discrepancy of at most λ. We can then optimize over λ to find an approximately
optimal algorithm.

We construct a linear program with the k + n time points (t1, . . . , tk+n) as
variables (where we can set tk = 1 without loss of generality). It uses three kinds
of constraints. The first kind is of the form

ti ≤ ti+1,

for all i ∈ [1, k + n). These constraints are satisfied if the checkpoint positions
have the correct ordering, i.e. checkpoints with larger index are placed at later
times.

13

The second kind of constraints enforces the scaling factor. Since the pattern
is fixed, we can compute at all steps which checkpoints are active. For i ∈ [1, k]
and j ∈ [0, n], let τ ji be the variable of the i-th active checkpoint in step j and
let τ j0 be 0 for all j. It is easy to see that the algorithm has a scaling factor of γ
if the i-th active checkpoint in the last step is larger by a factor of γ than in the
first step. We encode this as constraints of the form

τni = γτ0
i .

Lastly we encode an upper bound of λ for the discrepancy. Since the discrepancy
of a cyclic algorithm is given by

max
k<i≤k+n

(k + 1)¯̀
ti/ti,

and each ¯̀
ti can be expressed by a maximum over k terms, we can encode a

discrepancy guarantee of λ with nk constraints of the form

τ ji+1 − τ
j
i ≤ λτ

j
k/(k + 1),

for all i ∈ [0, k) and j ∈ [0, n].
A feasible solution of these constraints fixes the checkpoint positions and

hence, together with the pattern P , provides an algorithm with discrepancy at
most λ. Using a simple binary search over λ ∈ [1, 2] we can find an approximately
optimal algorithm for this value of γ and the pattern P .

Finding Scaling Factors: Next we show how to find scaling factors γ for
which algorithms with good discrepancy exist. We first show an upper bound
for γ.

Lemma 5. A cyclic algorithm with k checkpoints, discrepancy λ < k, and a
period length of n can have scaling factor at most

γ ≤
(

1

1− λ/(k + 1)

)n
.

Proof. Consider any checkpointing algorithm A = (t, d) with k checkpoints and
discrepancy λ. At any time ti, i ≥ k, the largest interval has length ¯̀

ti ≥ ti−ti−1,
as there is no checkpoint in the time interval [ti−1, ti]. Hence, we have

(k + 1)
ti − ti−1

ti
≤ λ.

Rearranging, this yields

ti ≤
1

1− λ/(k + 1)
ti−1.

Iterating this n times, we get

tk+n ≤
(

1

1− λ/(k + 1)

)n
tk.

14

k | 3 4 5 6 7 8 9 10 15 20 30 50 100
Discr.|1.529 1.541 1.472 1.498 1.499 1.499 1.488 1.492 1.466 1.457 1.466 1.481 1.484

Table 1: Upper bounds for different k. For k < 8 all patterns up to length k were
tried. For k = 8 all patterns up to length 7 were tried. For larger k, patterns
were found via randomized local search.

Hence, for any cyclic algorithm (with discrepancy λ, k checkpoints, and a period
length of n) we get the desired bound on the scaling factor γ = tk+n/tk.

Since algorithms with discrepancy 2 are known [1], we can restrict our
attention to λ ≤ 2. Hence, for any given pattern length n, Lemma 5 yields an
upper bound on γ, while a trivial lower bound is given by γ > 1. Now, for any
given pattern P we optimize over γ using a linear search with a small step size
over the possible values for γ. For each tested γ, we optimize over the checkpoint
positions using the linear programming approach described above.

Finding Patterns: For small k and n, we can exhaustively enumerate all kn
removal patterns of period length n. Some patterns can be discarded as they
obviously cannot lead to a good algorithm or are equivalent to some other pattern:
No pattern that never removes the first checkpoint can be cyclic. Furthermore,
patterns are equivalent under cyclic shifts, so we can assume without loss of
generality that all patterns end with removing the first checkpoint. Lastly,
it never makes sense to remove the currently last checkpoint. Hence, for k
checkpoints there are at most (k − 1)n−1 interesting patterns of length n. This
finishes the description of our combinatorial optimization approach.

Results: We ran experiments that try patterns up to length k for k ∈ [3, 7].
For k = 8 we stopped the search after examining patterns of length 7. For larger
k we used a randomized local search to find good patterns. The upper bounds
we found are summarized in Table 1, and for k ≤ 8 the removal patterns and
time points when to place new checkpoints can be found in Fig. 3. Note that for
k = 3 this procedure re-discovers the golden ratio algorithm of Sect. 3.

Note that we can combine the results presented in Table 1 with the algorithm
Linear (Theorem 2 and Fig. 4) to read off a global upper bound of q∗(k) ≤ 1.7
for the optimal discrepancy for any k.

For a fixed pattern the method is efficient enough to find good checkpoint
positions for much larger k. For k ≤ 1000 we experimentally compared the
algorithm Linear of Sect. 4 with algorithms found for its pattern (1, . . . , k − 1).
The experiments show that for k = 1000 Linear is within 4.5% of the optimized
bounds. For the algorithm Binary of Sect. 5, this comparison is even more
favorable. For k = 1024 the algorithm places its checkpoints so well that the
optimization procedure improves discrepancy only by 1.9%. The results are
summarized in Fig. 4 and Fig. 5.

15

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

k=3
Pattern=1

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

k=4
Pattern=3,1

0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k=5
Pattern=2,3,1

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k=6
Pattern=2,3,5,1,3,1

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k=7
Pattern=3,4,1,5,3,1

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k=8
Pattern=4,7,2,3,4,1

Figure 3: Time points where the i-th checkpoint is placed to achieve the bounds
of Table 1. Time is on the y-Axis, iteration is on the x-Axis.

101 102 103

k

1.50

1.55

1.60

1.65

1.70

1.75

1.80

P
e
rf

o
rm

a
n
ce

Asymptotic

Algorithm

Optimized

Figure 4: The discrepancy of algorithm Linear from Sect. 4 for different values
of k compared with the upper bounds for its pattern found via the combinatorial
method from Sect. 6. For large k Linear is about 4.5% worse.

16

23 24 25 26 27 28 29 210

k

1.35

1.40

1.45

1.50

1.55

1.60
P
e
rf

o
rm

a
n
ce

Asymptotic

Algorithm

Optimized

Figure 5: The discrepancy of the algorithm from Sect. 5 for some values of k,
compared with the upper bounds for its pattern found via the combinatorial
method from Sect. 6. For k = 1024, the optimization procedure finds a checkpoint
placement with only 1.9% better discrepancy.

Do we find optimal algorithms? One could ask whether the algorithms
from Table 1 are optimal, or at least near optimal. There are two steps in above
optimization algorithm that prevent this question to be answered positively. First,
we are only optimizing over short patterns, and it might be that much larger
pattern lengths are necessary for optimal checkpointing algorithms. Second,
we do not know how smoothly the optimal discrepancy for fixed pattern P
and scaling factor γ behaves with varying γ, i.e., we do not know whether our
linear search for γ yields any approximation on the discrepancy λ. However, in
experiments we tried all patterns of length 2k for k ∈ [3, 4, 5] and found no better
algorithm than for the shorter patterns of length up to k. Moreover, smaller step
sizes in the linear search for γ lead only to small improvements, indicating that
the discrepancy is continuous in γ. This suggests that the reported algorithms
might be near optimal.

7 Existence of Optimal Algorithms
In this section, we prove that optimal algorithms for the checkpointing problem
exist, i.e., that there is an algorithm having discrepancy equal to the infimum
discrepancy q∗(k) := infA Perf(A) among all algorithms for k checkpoints.

Theorem 4. For each k there exists a checkpointing algorithm A for k check-
points with Perf(A) = q∗(k), i.e., there is an optimal checkpointing algorithm.

As we will see throughout this section, this a non-trivial statement. From
the proof of this statement, we gain additional insight in the behavior of good

17

algorithms. In particular, we show that we can assume without increasing
discrepancy that for all i the i-th checkpoint is set by a factor of at least
(1 + 1/k)Θ(i) later than the first checkpoint.

An initial set of checkpoints can be described by a vector x = (x1, . . . , xk),
0 ≤ x1 ≤ . . . ≤ xk. Since x = (0, . . . , 0) can never be extended to a checkpointing
algorithm of finite discrepancy, we shall always assume x 6= 0. Denote by X the
set of all initial sets of checkpoints (described by vectors x 6= 0 as above), and
by X0 the set of all x ∈ X with xk = 1.

We say that A = (t, d) is an algorithm for an initial set x ∈ X of checkpoints
if ti = xi for all i ∈ [k]. We denote by q(x) := infA Perf(A), where A runs over
all algorithms for x, the discrepancy of x. An initial set x ∈ X is called optimal
if q(x) = infx∈X q(x) = q∗(k).

Lemma 6. Optimal initial sets of checkpoints exist.

Proof. Since the discrepancy of an initial set of checkpoints is invariant under
scaling, that is, q(x) = q(λx) for all x ∈ X and λ > 0, we have infx∈X q(x) =
infx∈X0

q(x).
It is not hard to see that q(·) is continuous on X0: Let x, x′ ∈ X0 with

|x − x′|∞ ≤ ε and consider an algorithm A = (t, d) for x. We construct an
algorithm A′ = (t′, d) for x′ by setting t′i = ti for i > k. Then |Perf(A) −
Perf(A′)| ≤ 2ε, since any interval’s length is changed by at most 2ε. This implies
|q(x)− q(x′)| ≤ 2ε and, thus, shows continuity of q(·).

Now, since q(·) is continuous on X0 and X0 is compact, there exists an
x ∈ X0 such that q(x) = infx∈X0 q(x) = q∗(k).

An easy observation is that if some checkpointing algorithm leads to a vector
x of checkpoints at some time, then we may continue from there using any other
algorithm for x. The discrepancy of this combined algorithm is at most the
maximum of the two discrepancies.

Lemma 7. Let A = (t, d) be a checkpointing algorithm. Let i > k. We
call qA,i = maxj∈[k..i]

¯̀
tj (k + 1)/tj the partial discrepancy of A observed in

the time up to ti. Assume that when running A, at time ti the checkpoints
x = (x1, . . . , xk = ti) are active. Let A′ = (t′, d′) be an algorithm for x. Then
the checkpointing algorithm obtained from running A until time ti and then
continuing with algorithm A′ is a checkpointing algorithm that has discrepancy
at most max{qA,i,Perf(A′)}. If we run this combined algorithm only until some
time t′j, then the partial discrepancy observed till then is max{qA,i, qA′,j}.

Proof. Trivial.

The above lemma implies that in the following, we may instead of looking at
an arbitrary time simply assume that the algorithm just started, that is, that
the current set of checkpoints is the initial one.

The following lemma shows that we can, without loss of discrepancy, assume
that an algorithm for the checkpointing problem does not set checkpoints too
close together. While also of independent interest, among others because it

18

shows how to keep additional costs for setting and removing checkpoints low,
we shall need this statement in our proof that optimal checkpointing algorithms
exist.

Lemma 8. Let A = (t, d) be an algorithm for the checkpointing problem with
Perf(A) < k + 1. Then there is an algorithm A′ = (t′, d′) with the same starting
position such that (i) Perf(A′) ≤ Perf(A) and

(ii) t′k+3 ≥ t′k
(

1 +
Perf(A)

k + 1− Perf(A)

)
≥ t′k

(
1 +

1

k

)
.

Proof. Let r = Perf(A)/(k + 1 − Perf(A)) for convenience. By way of contra-
diction, assume that the lemma is false. Let A be a counter-example such that
i := min{i ∈ N | tk+i ≥ 1 + r} is minimal (the minimum is well-defined, since
for any algorithm the sequence (ti)i tends to infinity). Note that i ≥ 4, since A
is a counter-example.

Assume that there is a j ∈ [1..i− 1] such that tk+j in the further run of A
is removed (and replaced by the then current time tx) earlier than both tk+j−1

and tk+j+1. Consider the Algorithm A′ that arises from A by the following
modifications. Let ty be the checkpoint that was removed to install the checkpoint
tj . Let A′ be the checkpointing algorithm that proceeds as A except that ty is not
replaced by tk+j , but by tx, and tk+j is never created. The only interval which
could cause this algorithm to have a worse discrepancy than A is [tk+j−1, tk+j+1].
However, this interval contributes (k+1)(tk+j+1−tk+j−1)/tk+j+1 ≤ (k+1)r/(1+
r) ≤ Perf(A) to the discrepancy of A′. Hence, Perf(A′) ≤ Perf(A) and A′ has
fewer checkpoints in the interval [1, 1 + r] contradicting the minimality of A.
Thus, there is no j ∈ [1..i − 1] such that tk+j is removed earlier than both
tk+j−1and tk+j+1 (*).

We consider now separately the two cases that tk+1 is removed earlier than
tk+i−2 and vice versa. Note first that k+ 1 < k+ i− 2 by assumption that i ≥ 4.

Assume first that tk+1 is removed (at some time tx) earlier than tt+i−2. Then
tk must have been removed even earlier (at some time ty), otherwise we found a
contradiction to (*). Let A′ be an algorithm working identically as A, except
that at time ty the checkpoint tk+1 is removed (instead of tk) and at time tx
the checkpoint tk is removed (instead of tk+1). Since the checkpoint at tt+i−2 is
still present, the only interval affected by this exchange, namely the one with
tk as left endpoint, has length at most r. Hence as above, this contributes at
most Perf(A) to the discrepancy of A′. The algorithm A′ has the property that
there is a checkpoint in between tk and tk+i−2 which is removed before these
two points. The earliest such checkpoint, call it tk+j , has the property that tk+j

is removed earlier than both tk+j−1 and tk+j+1, contradicting earlier arguments.
A symmetric argument shows that also tk+i−2 being removed before tk+1

leads to a contradiction. Consequently, our initial assumption that i ≥ 4 cannot
hold, proving the claim.

The following is a global variant of Lemma 8. It shows that any reasonable
checkpointing algorithm does not store new checkpoints too often.

19

Theorem 5. Let A = (t, d) be a checkpointing algorithm with Perf(A) < k − 1.
Then there is an algorithm A′ = (t′, d′) with the same starting position such that
(i) Perf(A′) ≤ Perf(A) and (ii) t′i+3 ≥ (1 + 1/k) · t′i for all i ≥ k.

Proof. Let j ≥ k be the smallest index with a small jump, tj+3 < (1 + 1/k)tj .
Using Lemma 8 (on the remainder of algorithm A starting at time tj) we can
remove this small jump and get an algorithmA′ = (t′, d′) with Perf(A′) ≤ Perf(A)
and t′i+3 ≥ (1 + 1/k) · t′i for all k ≤ i ≤ j, i.e., we patched the earliest small jump.
Iterating this patching procedure infinitely often yields the desired algorithm.

Lemma 9. For any optimal initial set x = (x1, . . . , xk), there is an algorithm
A = (t, d) such that (i) qA,k+3 = maxj∈[k..k+3] `tj (k + 1)/tj ≤ q∗(k), (ii) tk+3 ≥
tk(1 + 1/k), and the set of checkpoints active at time tk+3 is again optimal.

Proof. By the definition of optimality, for each n ∈ N there is an algorithm A(n)

for x that has discrepancy at most q∗(k) + 1/n. Let (t
(n)
k+1, t

(n)
k+2, t

(n)
k+3) denote

the corresponding next three checkpoints. By Lemma 8, we may assume that
t
(n)
k+3 ≥ tk(1 + 1/k) for all n ∈ N .

Note that (using the same arguments as in Lemma 5) any algorithm hav-
ing discrepancy at most 2.5 satisfies tk+i ≤ 6itk for any k ≥ 2. Hence,
(t

(n)
k+1, t

(n)
k+2, t

(n)
k+3)n∈N≥2

is a sequence in the compact space [tk, 6
3tk]3. This se-

quence has a convergent subsequence with limit (tk+1, tk+2, tk+3). Also, since
there are only finitely many values possible for (d

(n)
k+1, d

(n)
k+2, d

(n)
k+3), this subse-

quence can be chosen such that this d-tuple is constant, say (dk+1, dk+2, dk+3).
For this subsequence, also all k+1 intervals existing at the three times of interest
converge. Consequently, the discrepancy caused by each of them also converges
to a value upper bounded by q∗(k). This defines the three steps of algorithm A,
satisfying qA,k+3 ≤ q∗(k).

Similarly, we observe that the set of checkpoints x(n) active at time t(n)
k+3

when running algorithm A(n) has discrepancy at most q∗(k)+1/n. Consequently,
the active checkpoints we get from the limit checkpoints (tk+1, tk+2, tk+3) and
deletions (dk+1, dk+2, dk+3) are again optimal.

Finally, since all t(n)
k+3 ≥ tk(1 + 1/k), this also holds for tk+3.

We are now in position to prove the main result of this section, Theorem 4. For
this, we repeatedly apply Lemma 9: We start with an optimal set of checkpoints x.
Then we run the algorithm delivered by Lemma 9 for three steps. This creates
no partial discrepancy larger than q∗(k) and we end up with another optimal
set of checkpoints. From this, we continue to apply Lemma 9 and execute three
steps of the algorithm obtained. By Lemma 7, the partial discrepancy of the
combined algorithm is again at most q∗(k). Iterating infinitely, this yields an
optimal algorithm, which proves Theorem 4.

20

8 Lower Bound
In this section, we prove a lower bound on the discrepancy of all checkpointing
algorithms. For large k we get a lower bound of roughly 1.3, so we have a lower
bound that is asymptotically larger than the trivial bound of 1. Moreover, it
shows that algorithm Binary from Sect. 5 is nearly optimal, as for large k the
presented lower bound is within 6% of the discrepancy of Binary.

Theorem 6. All checkpointing algorithms with k checkpoints have a discrepancy
of at least

2− ln 2−O(k−1) ≥ 1.306−O(k−1).

The remainder of this section is devoted to the proof of the above theorem.
Let A = (t, d) be an arbitrary checkpointing algorithm and let q′ := Perf(A) be
its discrepancy. For convenience, we define q = kq′/(k + 1) and bound q. Since
q < q′ this suffices to show a lower bound for the discrepancy of A. For technical
reasons we add a gratis checkpoint at time tk that must not be removed by A.
That is, even after the removal of the original checkpoint at tk, there still is the
gratis checkpoint active at tk. Clearly, this can only improve the discrepancy.
We analyze the discrepancy of A from time tk until it deleted k/(2q) of the initial
checkpoints1. More formally, we let t′ be the minimal time at which the number
of active checkpoints of A contained in [0, tk] is k − k/(2q). Note that we might
have t′ =∞, if the checkpointing algorithm A never deletes k/(2q) points from
[0, tk]. However, in this case its discrepancy is lower bounded by 1.5.

Lemma 10. If t′ =∞, then Perf(A) ≥ 1.5.

Proof. Consider a large i > k and the algorithm’s discrepancy at time ti. By
assumption, there are at most k − k/(2q) active checkpoints in (tk, ti]. Hence,
by comparing with an equidistant spread we can bound the discrepancy (at time
ti) by

Perf(A) ≥ k + 1

ti
· ti − tk
k(1− 1/(2q))

≥ 2q

2q − 1

(
1− tk

ti

)
.

Letting i→∞, so that ti →∞, we obtain

Perf(A) ≥ 2q

2q − 1
≥ 2 Perf(A)

2 Perf(A)− 1
,

(by definition of q and x 7→ 2x
2x−1 being monotonically decreasing). This inequality

solves to the desired Perf(A) ≥ 1.5.

Hence, in the following we can assume that t′ <∞. We partition the intervals
that exist at time t′ into three types:

1To be precise we should round k
2q

to one of its nearest integers. When doing so, all
calculations in the remainder of this section go through as they are; this only slightly increases
the hidden constant in the error term O(k−1).

21

1. Intervals existing both at time tk and t′. These intervals are contained in
[0, tk].

2. Intervals that are contained in [0, tk], but did not exist at time tk. These
intervals were created by the removal of some checkpoint in [0, tk] after
time tk.

3. Intervals contained in [tk, t
′].

Note that we need the gratis checkpoint at tk in order for these definitions to
make sense, as otherwise there could be an interval overlapping tk.

Let Li denote the set of intervals of type i for i ∈ {1, 2, 3}, and set ki := |Li|.
Let L2 = {I1, . . . , Ik2}, where the intervals are ordered by their creation times
τ1 ≤ . . . ≤ τk2 . Since each interval in L2 contains at least one deleted point we
have

k2 ≤
k

2q
,

and we set m := k
2q − k2. Then m counts the number of deleted checkpoints in

[0, tk] that did not create an interval in L2, but some strict sub-interval of an
interval in L2. We call these m removed checkpoints free.

We first bound the length of the intervals in L1 and L2.

Lemma 11. The length of any interval in L1 is at most qtk/k.

Proof. As all intervals in L1 already are present at time tk and the algorithm
has discrepancy q′, we have for any I ∈ L1

(k + 1)|I|/tk ≤ q′ = (k + 1)q/k.

The bound follows.

Lemma 12. The length of any interval Ii ∈ L2 is at most

|Ii| ≤
tk

k/q −m− i
.

Proof. As the algorithm has discrepancy q′, we know

|Ii| ≤ qτi/k. (6)

In the following we bound τi, the time of creation of Ii. At time τi there are at
most m+ i intervals in L3, since at most m free checkpoints and i checkpoints
from the creation of I1, . . . , Ii are available. Comparing with an equidistant
spread of m+ i checkpoints in [tk, τi] and the algorithm’s discrepancy, the longest
interval L in [tk, τi] (at time τi) has length

τi − tk
m+ i

≤ |L| ≤ qτi
k
.

22

Rearranging the outer inequality yields a bound on τi of

τi ≤
ktk

k − (m+ i)q
.

Substituting this into (6) yields the desired result.

Furthermore, we need a relation between k1, k,m, and q.

Lemma 13. We have
k1 = k +m− k/q + 1.

Proof. As the intervals in L1 and L2 partition [0, tk], there are k1 + k2 intervals
left in [0, tk] at time t′. Note that each but one such interval has its left endpoint
among the k active checkpoints from time tk (the one exception having as left
endpoint 0). Hence, there are k1 + k2 − 1 checkpoints left in [0, tk]. Comparing
with the number k2 +m of deleted checkpoints in [0, tk] until time t′ and their
overall number k yields

(k2 +m) + (k1 + k2 − 1) = k.

Rearranging this and plugging in k2 = k
2q −m (which holds by definition of m)

yields the desired result.

Now we use our bounds on the length of intervals from L1 and L2 to find a
bound on q. Note that the intervals in L1 and L2 partition [0, tk], so that

tk =
∑
I∈L1

|I|+
∑
I′∈L2

|I ′|.

Using Lemmas 11 and 12, we obtain

tk ≤ k1
qtk
k

+

k2∑
i=1

tk
k/q −m− i

.

Substituting k1 using Lemma 13 yields

tk ≤ [k +m− k/q + 1] qtk/k +

k/(2q)−m∑
i=1

tk
k/q −m− i

= tk

q − 1 +m
q

k
+O(k−1) +

k/(2q)−m∑
i=1

1

k/q −m− i

 . (7)

Recall that Hn =
∑

1≤i≤n i
−1 is the n-th harmonic number. Rearranging (7)

yields

q ≥ 2−mq

k
−O(k−1)−Hk/q−m−1 +Hk/(2q)−1.

23

Observe that we have m q
k +Hk/q−m−1 ≤ Hk/q−1, implying

q ≥ 2 +Hk/(2q)−1 −Hk/q−1 −O(k−1)

≥ 2 +Hk/(2q) −Hk/q −O(k−1),

since we can hide the last summands of Hk/(2q) and Hk/q by O(k−1). In
combination with the asymptotic behavior of Hn = lnn+ γ +O(n−1), where γ
is the Euler-Mascheroni constant, we obtain

q ≥ 2 + ln(k/(2q))− ln(k/q)−O(k−1)

= 2− ln(2)−O(k−1).

This finishes the proof of Theorem 6.

References
[1] Lauri Ahlroth, Olli Pottonen, and André Schumacher. Approximately

uniform online checkpointing with bounded memory. Algorithmica, 2013.
To appear.

[2] Marshall W. Bern, Daniel H. Greene, Arvind Raghunathan, and Madhu
Sudan. On-line algorithms for locating checkpoints. Algorithmica, 11(1):33–
52, 1994.

[3] Kanianthra Mani Chandy and Chittoor V. Ramamoorthy. Rollback and re-
covery strategies for computer programs. IEEE Transactions on Computers,
C-21:546–556, 1972.

[4] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys, 34(3):375–408, 2002.

[5] Erol Gelenbe. On the optimum checkpoint interval. Journal of the ACM,
26(2):259–270, 1979.

[6] Vincent Heuveline and Andrea Walther. Online checkpointing for parallel
adjoint computation in PDEs: Application to goal-oriented adaptivity and
flow control. In Wolfgang E. Nagel, Wolfgang V. Walter, and Wolfgang
Lehner, editors, Euro-Par 2006 Parallel Processing, volume 4128 of Lecture
Notes in Computer Science, pages 689–699. Springer-Verlag, 2006.

[7] Fredrik Österlind, Adam Dunkels, Thiemo Voigt, Nicolas Tsiftes, Joakim
Eriksson, and Niclas Finne. Sensornet checkpointing: Enabling repeatability
in testbeds and realism in simulations. In Utz Roedig and Cormac J.
Sreenan, editors, Wireless Sensor Networks, volume 5432 of Lecture Notes
in Computer Science, pages 343–357. Springer-Verlag, 2009.

24

[8] P. Stumm and A. Walther. New algorithms for optimal online checkpointing.
SIAM Journal on Scientific Computing, 32(2):836–854, 2010.

[9] S. Toueg and Ö. Babaoglu. On the optimum checkpoint selection problem.
SIAM Journal on Computing, 13(3):630–649, 1984.

[10] Sangho Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot instances
via checkpointing in the Amazon elastic compute cloud. In IEEE 3rd
International Conference on Cloud Computing (CLOUD 2010), pages 236–
243, 2010.

25

	1 Introduction
	2 Notation and Preliminaries
	3 Introductory Example – A Simple Bound for k=3
	4 A Simple Upper Bound for Large k
	5 An Improved Upper Bound for Large k
	5.1 The Algorithm Binary
	5.2 Discrepancy Analysis

	6 Upper Bounds via Combinatorial Optimization
	7 Existence of Optimal Algorithms
	8 Lower Bound

