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Abstract. There is growing interest in the use of grid–level storage to smooth variations in sup-

ply that are likely to arise with increased use of wind and solar energy. Energy arbitrage, the
process of buying, storing, and selling electricity to exploit variations in electricity spot prices,

is becoming an important way of paying for expensive investments into grid–level storage. Inde-

pendent system operators such as the NYISO (New York Independent System Operator) require
that battery storage operators place bids into an hour–ahead market (although settlements may

occur in increments as small as 5 minutes, which is considered near “real–time”). The operator
has to place these bids without knowing the energy level in the battery at the beginning of the

hour, while simultaneously accounting for the value of leftover energy at the end of the hour. The

problem is formulated as a dynamic program. We describe and employ a convergent approximate
dynamic programming (ADP) algorithm that exploits monotonicity of the value function to find a

revenue–generating bidding policy; using optimal benchmarks, we empirically show the computa-

tional benefits of the algorithm. Furthermore, we propose a distribution–free variant of the ADP
algorithm that does not require any knowledge of the distribution of the price process (and makes

no assumptions regarding a specific real–time price model). We demonstrate that a policy trained

on historical real–time price data from the NYISO using this distribution–free approach is indeed
effective.

1. Introduction

Bidding into the electricity market can be a complicated process, mainly due to the require-
ment of balancing supply and demand at each point in the grid. To solve this issue, the Independent
System Operators (ISOs) and the Regional Transmission Organizations (RTOs) generally use multi–
settlement markets: several tiers of markets covering planning horizons that range from day–ahead
to real–time. The idea is that the markets further away from the operating time settle the majority
of the generation needed to handle the predicted load, while the markets closer to the operating time
correct for the small, yet unpredictable deviations that may be caused by issues like weather, trans-
mission problems, and generation outages (see, for example, Shahidehpour et al. [2002], Eydeland
and Wolyniec [2003], Harris [2011], for more details). Settlements in these real–time markets are
based on a set of intra–hour prices, typically computed at 5, 10, or 15 minute intervals, depending
on the specific market in question. A settlement refers to the financial transaction after a generator
clears the market, which refers to being selected to either buy or sell energy from the market. If
a generator does not clear the market, it remains idle and no settlement occurs. We refer to this
situation as being out of the market.

Many ISO’s and RTO’s, such as the Pennsylvania–New Jersey–Maryland Interconnection (PJM),
deal with the balancing market primarily through the day–ahead market. PJM’s balancing market
clears every 5 minutes (considered to be near “real–time”), but the bids are all placed the previous
day. See Eydeland and Wolyniec [2003] and the PJM Energy and Ancillary Services Market Oper-
ations Manual for more information. In certain markets, however, it is not only possible to settle
in real–time, but market participants can also submit bids each hour, for an hour in the future.
Thus, a bid (consisting of buy and sell prices) can be made at 1pm that will govern the battery
between 2pm and 3pm. The process of both bidding and settling in real–time is a characteristic
of the New York Independent System Operator (NYISO) real–time market and is the motivating
example for this paper. Other prominent examples of markets that include a real–time bidding
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aspect include California ISO (CAISO) and Midcontinent ISO (MISO). In particular, our goal is to
pair battery storage with hour–ahead bidding in the real–time market for revenue maximization, a
strategy sometimes referred to as energy arbitrage.

It is unlikely that profits from battery/energy arbitrage alone can be sustainable for a company;
however, if performed optimally, it can be an important part of a range of profit generating activities
(one such example is the frequency regulation market). See Walawalkar et al. [2007] for an economic
analysis of using a storage device for both energy arbitrage (using a simple “charge–off–peak and
discharge–on–peak” policy) and frequency regulation in the New York area. The analysis shows that
in New York City (but not the surrounding areas), there is a “high probability of positive NPV [net
present value] for both energy arbitrage and regulation,” but even so, there is still significant risk
in not being able to recover the initial capital cost. However, the potential for more efficient and
cost–effective technology combined with better control policies can make energy arbitrage feasible
in the near future. Other studies on the topic of the value of storage include Sioshansi et al. [2009],
Sioshansi et al. [2011], and Byrne and Silva-Monroy [2012].

In our problem, we assume that the goal is to optimally control a 1 MW battery; in practice,
a company may operate a fleet of such batteries. Market rules state that we must bid in integer
increments, meaning the possible actions at each settlement are to charge, discharge (both at a
rate of 1 MW), or do nothing. Hence, our precise problem is to optimize the placement of two
hour–ahead bids, a “positive” bid (for a quantity of +1 MW) and a “negative” bid (for a quantity
of −1 MW) that correspond to selling (generation) and buying (negative generation), respectively,
over a period of time such that purchased energy can be stored in the finite capacity battery. The
goal is to maximize expected revenue. Further, given that our model is tailored to battery storage
(inherently small capacity), it is reasonable to assume no price impact (i.e., our bids do not affect
the spot prices of electricity). In the real–time market, bidding for the operating hour closes an hour
in advance and the hour–ahead bid is fixed for the entire operating hour.

This paper makes the following contributions. We describe, in detail, a mathematical model of the
bidding process in the real–time electricity market and formulate the sequential decision problem as
a Markov Decision Process (MDP). Along the way, we show the structural properties of the problem
(monotonicity of the contribution and value functions) that we utilize in our solution technique.
Next, we describe and benchmark a convergent approximate dynamic programming algorithm called
Monotone–ADP (M–ADP) (Jiang and Powell [2015]) that can be used to obtain an approximate,
but near–optimal bidding policy. We also present a new version of Monotone–ADP utilizing post–
decision states that allows us to train bidding policies without any model or knowledge of the
distribution of real–time prices (which we call a distribution–free method), allowing our solution
technique to be easily adopted in practice. Finally, we present a case study detailing the results of
an ADP policy trained using only historical real–time price data from the NYISO. In the case study,
we also compare the ADP policy to other rule–based policies, two of which are from the energy
arbitrage literature and one from our industry contacts. All proofs can be found in the Appendix.

2. Literature Review

With renewable energy sources like wind and solar becoming more established, the problem of
energy storage is also becoming increasingly important. In this section, we first review studies
dedicated solely to storage and then move on to those that consider the bidding aspect. Lastly, we
discuss algorithmic techniques similar to our proposed method (Monotone–ADP).

Coupling wind energy with storage has been well–studied in a variety of ways. The paper by Kim
and Powell [2011] poses a wind energy commitment problem given storage and then analytically
determines the optimal policy for the infinite horizon case. Sioshansi [2011] uses ideas from economics
and game theory (i.e., the Stackelberg Model) to make several conclusions, including the finding
that the value of storage increases with market–competitiveness. In addition, Greenblatt et al.
[2007] finds that for high green house gas (GHG) emissions prices, compressed air energy storage is
a better choice as a supplemental generator to wind energy when compared to natural gas turbines.
The well–known smoothing effects of energy storage on intermittent renewable sources is studied in
the context of wind power output by Paatero and Lund [2005].
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Another problem within this realm is the storage of natural gas, which involves optimally control-
ling injection and withdrawal of gas from a storage facility that is typically underground. Carmona
and Ludkovski [2010] uses a technique known as optimal switching to solve a natural gas storage
problem; computationally, the value function is approximated using basis functions. In a similar
vein, Thompson et al. [2009] formulates a stochastic control problem and numerically solve the re-
sulting integro–differential equation to arrive at the optimal policy. Lai et al. [2010] proposes using
an ADP algorithm along with an approximation technique to reduce the number of state space
dimensions for natural gas storage valuation.

Other energy storage problems include reservoir management (see Nandalal and Bogardi [2007])
and pairing solar with battery storage (see Barnhart et al. [2013]). It quickly becomes clear that all
of these problems are similar; in fact, Secomandi [2010] gives the structure of the optimal policy for
trading generic commodities given storage. At its core, energy storage has similarities to an array of
classical problems related to operations research, such as resource allocation and inventory control.

There are also many studies that consider the bidding aspect of the electricity markets. One
significant difference between many of these studies and our paper is that, rather than placing many
bids at once, we consider a sequential, hourly bidding problem. Löhndorf and Minner [2010] considers
a day–ahead bidding problem different from ours using an infinite horizon MDP; Conejo et al. [2002]
solves a price–taker bidding problem using a deterministic look–ahead policy; Gross and Finlay
[2000] formulate a constrained optimization problem for optimal bidding in a competitive power
pool; and David [1993] develops both deterministic and stochastic models for bidding under the
consideration of other market players. Lastly, Löhndorf et al. [2013] uses approximate dual dynamic
programming (ADDP) to solve a day–ahead bidding problem involving hydro storage. Besides the
major algorithmic differences from our paper, Löhndorf et al. [2013] also works in a day–ahead
setting with individual bids for each hourly subinterval, while we work in an hourly setting with
bids that must be simultaneously active for every 5 minute subinterval. Furthermore, in order to
have complete information to make the optimal decision and to implement the transition dynamics,
the previous bid (placed in the last time interval) is a part of our state variable, which is not the
case for Löhndorf et al. [2013]. For more details, the literature survey by Wen and David [2000]
provides an excellent overview to strategic bidding.

In the case of real–world problems with large state spaces, backward dynamic programming is
typically not a viable solution strategy, so we often use approximate dynamic programming (ADP)
techniques. In this paper, we consider a variant of the approximate value iteration (AVI) algorithm
(see both Bertsekas and Tsitsiklis [1996] and Powell [2011]) that exploits the monotonicity in certain
dimensions of the optimal value function (also known as the cost–to–go function) in order to quickly
approximate the shape of the value function. The algorithm, called Monotone–ADP, is analyzed in
Jiang and Powell [2015] and was used previously as a heuristic in Papadaki and Powell [2003].

Like monotonicity, convexity/concavity also often arise in applications, and similar algorithms to
Monotone–ADP that exploit these structural properties have been studied in Godfrey and Powell
[2001], Topaloglu and Powell [2003], Powell et al. [2004], and Nascimento and Powell [2009]. In
general, the above studies on monotonicity and convexity have shown that it is advantageous to use
the structural properties of value functions in ADP algorithms.

3. Mathematical Formulation

We can formulate the problem mathematically as follows. Let M be the number of settlements
made per hour and let ∆t = 1/M be the time increment between settlements (in hours). For example,
in the New York Independent System Operator (NYISO), settlements occur every 5 minutes, so we
choose M = 12. Although settlements are made intra–hour, bidding decisions are always made on
the hour, for an hour in the future. Thus, the operator places bids at 1pm to operate the battery
between 2 and 3pm, with settlements made in 5 minute intervals within the hour. For time indexing,
we use t (measured in hours); bidding decisions are made when t ∈ N and settlements occur when
t ∈ T = {k ·∆t : k ∈ N}.

Let the price Pt for t ∈ T be a discrete–time, nonnegative, stochastic process. Due to the fact
that bidding decisions and settlements occur on two different schedules (every hour versus every ∆t),
we use the following notation. For t ∈ N, let P(t,t+1] be an M–dimensional vector that represents
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the spot prices that occurred within the hour from t to t+ 1:

P(t,t+1] = (Pt+∆t, Pt+2·∆t, . . . , Pt+(M−1)·∆t, Pt+1). (1)

Hence, P(t,t+1] does not become fully known until time t+ 1. Next, let our set of bidding decisions
be a finite set B such that

B ⊆ {(b−, b+) : 0 ≤ b− ≤ b+ ≤ bmax}, (2)

with bmax ∈ R+. Let bt = (b−t , b
+
t ) ∈ B be the bidding decision made at t used for the interval

(t+ 1, t+ 2]. All sell bids, b+t , (or “positive” bids because we are transferring at a rate of +1 MW)
less than the spot price are picked up for dispatch (releasing energy into the grid). All buy bids, b−t ,
(or “negative” bids because we are transferring at a rate of −1 MW) greater than the spot price are
picked up for charge. If the spot price falls in between the two bids, we are out of the market and
the battery stays in an idle state. When we are obligated to sell to the market but are unable to
deliver, we are penalized K · Pt, where K ≥ 0. The restriction of b−t ≤ b+t guarantees that we are
never obligated to buy and sell simultaneously.

We remark that in the actual bidding process, the buy bid is a negative number and the criteria
for clearing the market is that the bid is less than the negative of the spot price. Due to our bids
being for only two quantities (±1 MW), the above reformulation of the bidding process is cleaner
and more intuitive.

Let Rt ∈ R = {0, 1, 2, . . . , Rmax} be the energy stored in the battery. For simplicity, assume that
Rmax is adjusted so that a unit of resource represents 1/M MWh of energy. Thus, it is clear that
at each settlement within the hour, the change in resource is either +1, −1, or 0. We also define a
deterministic function that maps a vector of intra–hour prices P ∈ RM+ and a bid b = (b−, b+) ∈ B to

a vector of outcomes (charge = −1, discharge = +1, or idle = 0). Define q : RM ×B → {−1, 0, 1}M
such that the m–th component of q(P, b) is

qm(P, b) = 1{b+<eᵀmP} − 1{b−>eᵀmP}, (3)

where em is a vector of zeros with a one at the m–th row (and thus, picks out the m–th component
of the price vector P ). Note that q is not dependent on time, but in the context of our hour–ahead
bidding problem, we use it in the form of q(P(t−1,t], bt−2), which is deterministic at time t. Figure
1 illustrates the intra–hour behavior.

∆t

t t + 1

Pt

b�t�1: buy bid

b+
t�1: sell bid

: buy (charge)

: sell (discharge)

: idle

Figure 1. Illustration of the Intra–hour Bidding Behavior

To define the hourly transition function between Rt and Rt+1, we model each of the individual
settlements within the hour and then combine them recursively (since from t to t+ 1, we settle M
times). Let qs ∈ {−1, 0, 1}M be a vector of settlement outcomes and suppose gRm(Rt, qs) represents
the amount of resource after the m–th settlement. Thus, we have

gR0 (Rt, qs) = Rt,

gRm+1(Rt, qs) =
[
min{gRm(Rt, qs)− eᵀmqs, Rmax}

]+
,

(4)

for 1 ≤ m ≤M . The intra–hour resource levels are

Rt+m∆t = gRm(Rt, qs).
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Finally, let gR be the hourly transition function, which is defined as a composition of the functions
gRM and q in the following way:

Rt+1 = gR(Rt, P(t,t+1], bt−1) = gRM
(
Rt, q(P(t,t+1], bt−1)

)
. (5)

The need for an hourly transition function from Rt directly to Rt+1 (rather than simply defining
the sub–transitions between the intra–hour settlements) is due to the hourly decision epoch of the
problem.

Proposition 1. For an initial resource level r ∈ R, a vector of intra–hour prices P ∈ RM , a bid b =
(b−, b+) ∈ B, and a subinterval m, the resource transition function gRm

(
r, q(P, b)

)
is nondecreasing

in r, b−, and b+.

We now consider another dimension to our problem by allowing a limit to be imposed on the
number of charge–discharge cycles used by the battery, for the sake of increasing the lifetime of the
battery. Battery cycle–life (the approximate number of cycles before capacity diminishes to around
80%), a key issue when considering economic feasibility, varies between the different types of battery
technologies and the operating conditions, but are typically in the range of 1000 (e.g., lead–acid) to
5000 (e.g., vanadium redox); for an extensive review, see Yang et al. [2011]. In our correspondence
with industry colleagues, we found that a common (though possibly somewhat conservative) estimate
of battery usage is 300 cycles/year, meaning that most devices can last at least 3 to 4 years. However,
the model developed in this paper is for hourly decision making and it would be impractical to solve
the model for time–horizons of several years. Note that different batteries technologies degrade
in different ways, but in general, degradation occurs slowly (nearly linearly with charge–discharge
cycles) at first, but after a point, efficiency drops much more rapidly.

Over a short horizon (on the order of days), the effects of battery degradation is negligible, but
we propose the following way for one to impose a sort of artificial limit to the number of trades
(charge–discharge cycles) performed. Let Lt ∈ L = {0, 1, 2, . . . , Lmax} be decremented on every
discharge of the battery (starting with L0 = Lmax) and suppose that when selling to the market at
a settlement time t′ in (t, t+ 1], the revenue is discounted by a factor of β(Lt′) where β : L → [0, 1]
is a nondecreasing function. Depending on the battery technology, preferences of the operator, and
the time–horizon of the model, the choice of β may vary greatly; the list below offers a few examples:

(1) Constant: β(l) = c ∈ [0, 1] for all l ∈ L,
(2) Step: β(0) = 0 and β(l) = 1 for l ∈ L \ {0},
(3) Linear: β(l) = l/Lmax for all l ∈ L,

(4) Power: β(l) = (l/Lmax)
1
n for some n > 1 and all l ∈ L,

where (4) seeks to very roughly mimic the efficiency degradation of a real battery. We assume that
the physical characteristics of the battery are summarized through β and the dynamics of Lt, which
we now describe.

Similar to the specification of q in (3), we define a function d : RM × B → {0, 1}M such that the
m–th component of d(P, b) is

dm(P, b) = 1{b+<eᵀmP},

which indicates the settlements for which a discharge occurred. Like before, we define the transition
function from Lt to Lt+1 using a sequence of sub–transitions. Let ds ∈ {0, 1}M be a vector of
settlement outcomes (in this case, whether a discharge happened or not) and

gL0 (Lt, ds) = Lt,

gLm+1(Lt, ds) =
[
gLm(Lt, ds)− eᵀmds

]+
,

(6)

for 1 ≤ m ≤M . The intra–hour values are

Lt+m∆t = gLm(Lt, ds),

and the hourly transition function gL is defined

Lt+1 = gL(Lt, P(t,t+1], bt−1) = gLM
(
Lt, d(P(t,t+1], bt−1)

)
. (7)
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Proposition 2. For an initial l ∈ L, a vector of intra–hour prices P ∈ RM , a bid b = (b−, b+) ∈ B,
and a subinterval m, the transition function gLm

(
l, d(P, b)

)
is nondecreasing in l, b−, and b+.

At time t, we can determine the revenue from the previous hour (t− 1, t], which depends on the
initial resource Rt−1, the remaining lifetime Lt−1, the intra–hour prices P(t−1,t], and the bid placed
in the previous hour, bt−2. The revenue made at the m–th settlement depends on four terms, the
price Pt+m∆t, the settlement outcome qm(P, b) (which establishes the direction of energy flow), a
discount factor γm (due to Lt), and the undersupply penalty Um. Let r ∈ R, l ∈ L, P ∈ RM , and
b ∈ B. Since we discount only when selling to the market, let

γm(l, P, b) = β(l) · 1{qm(P,b)=1} + 1{qm(P,b) 6=1}. (8)

The undersupply penalty takes values of either 1 (no penalty) or −K (penalty):

Um(r, P, b) =
(

1− (K + 1) · 1{r=0} · 1{qm(P,b)=1}
)
. (9)

This penalization scheme reflects reality: the NYISO penalizes using a price–proportional penalty
of K = 1 (in addition to lost revenue), the reason being to uphold the market balance. When a
market participant reneges on a promise to deliver energy to the market, it must pay the penalty of
the quantity times the market price to correct the imbalance; this is equivalent to purchasing that
energy from another generator at the market price and delivering to the market.

Hence, we can write the following sum (over the settlements) to arrive at the hourly revenue,
denoted by the function C:

C
(
Rt−1, Lt−1, P(t−1,t], bt−2

)

=

M∑

m=1

γm
(
Lt−1+m∆t, P(t−1,t], bt−2

)
· Pt+m∆t · qm(P(t−1,t], bt−2) · Um

(
Rt−1+m∆t, P(t−1,t], bt−2

)
.

(10)
Note that C is not time–dependent. The timeline of events and notation we use is summarized in
Figure 2. The top half of Figure 2 shows the contrast between when bids are placed and when bids
are active: bt and bt+1 are placed at times t and t+ 1 (arrows pointing up), while bt−1 is active for
the interval (t, t + 1] and bt is active for the interval (t + 1, t + 2]. It also shows that the revenue
function C(Rt, Lt, P(t,t+1], bt−1) refers to the interval (t, t + 1]. The bottom half of Figure 2 shows
an example of the bidding outcomes, i.e., the output of q(P(t,t+1], bt−1). Finally, we emphasize that
M settlements (and thus, transitions) occur between consecutive values of Rt and Lt due to the
discrepancy between the bidding timeline (hourly) and the settlement timeline (every five minutes).

3.1. Markov Decision Process. The problem of optimizing revenue over a time horizon is a
sequential decision problem that we can formulate as a Markov Decision Process (MDP). First,
suppose the set of state variables associated with the price process Pt is denoted PSt ∈ P, where
P is the space of price model state variables. The MDP can be characterized by the following
components:

– The state variable for the overall problem is St = (Rt, Lt, b
−
t−1, b

+
t−1, P

S
t ) ∈ S where S is

the state space. The previous bid bt−1 is included because it is the bid that becomes valid
at time t for the interval (t, t + 1] and is necessary for computing the resource transition
function.

– The decision is the hour–ahead bid bt = (b−t , b
+
t ) ∈ B that is active for the interval (t+1, t+2].

– The exogenous information in this problem is the price process Pt.
– The state transition function or system model SM is given by

St+1 = SM (St, bt, P(t,t+1])

=
(
gR(Rt, P(t,t+1], bt−1), gL(Lt, P(t,t+1], bt−1), bt, P

S
t+1

)
. (11)
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t t + 1 t + 2

P(t,t+1]

bt

btbt�1

bt+1

Rt+1

... ...

Lt+2Lt+1

q(P(t,t+1], bt�1)

(�1, 0, 1, 1, 0, . . . , 0,�1)

Rt+2

M settlements

Revenue from (t, t + 1] = C
�
Rt, Lt, P(t,t+1], bt�1

�

=

M�

m=1

revenue/cost at settlement m

Figure 2. Illustration of the Bidding Process

– The contribution function in this model represents the expected value of the revenue in the
interval from t+ 1 to t+ 2 using bid bt given the current state St. Define:

Ct,t+2(St, bt) = E
[
C(Rt+1, Lt+1, P(t+1,t+2], bt) |St

]
. (12)

The double subscript of t and t+ 2 signifies that the contribution is determined at t (hence,
variables indexed by t′ ≤ t are known) but represents the expectation of the revenue in the
interval (t+ 1, t+ 2]. In practice, it is likely that we must redefine Ct,t+2(St, bt) as a sample
expectation over the available training data (see Section 6) if 1) a stochastic model of the
prices is unavailable or 2) the expectation is impossible to compute. Regardless of its form,
we assume that Ct,t+2(St, bt) can be computed exactly at time t.

– Let T − 1 be the last time for which a bid needs to be placed (hence, the trading horizon
lasts until T +1 and the last value function we need to define is at T ) and let Bπt : S → B be
the decision function for a policy π from the class Π of all admissible policies. The following
is the objective function for maximizing expected revenue:

max
π∈Π

E

[
T−1∑

t=0

Ct,t+2(St, B
π
t (St)) + Cterm(ST )

∣∣∣S0

]
,

where Cterm(ST ) represents a terminal contribution that is nondecreasing in RT , LT , and
bT−1.

We can express the optimal policy in the form of a stochastic dynamic program using Bellman’s
optimality equation [Bellman, 1957]. The optimal value function V ∗ is defined for each t and each
state St:

V ∗t (St) = max
bt∈B

[
Ct,t+2(St, bt) + E

[
V ∗t+1(St+1) |St

]]
for t = 0, 1, 2, . . . , T − 1,

V ∗T (ST ) = Cterm(ST ).
(13)

Figure 3 illustrates the above notation. Notice that at any decision epoch t, both the contribution
and value functions are looking one step ahead, i.e., from t+1 onwards, in the form of an expectation.
Because of this, the revenue from t to t+1 become, in a sense, irrelevant. However, the link between
the time periods comes from the dependence of Rt+1 and Lt+1 on Rt, Lt, and bt−1 (and of course,
the random prices). In other words, at time t, our bid has to be placed for (t + 1, t + 2] with an
uncertain amount of resource, Rt+1 in the battery. It is important to note that it is precisely because
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Ct,t+2(St, bt) does not include the revenue made in (t, t + 1] that allows us to show the important
structural property of monotonicity for Ct,t+2 in bt−1 (see Proposition 3 in the next section).

bt−1

E
Ct,t+2(St, bt)

bt

V ∗
t+1(St+1)

maxE

C
(
Rt+1, Lt+1, P(t+1,t+2], bt

)

t t + 1 t + 2 t + 3

{
C

(
Rt+2, Lt+2, P(t+2,t+3], bt+1

)
+ · · ·

}

Figure 3. Illustration of the Dynamic Programming Notation

We now provide some results regarding the structure of the contribution and value functions. The
algorithm (Monotone–ADP–Bidding) that we implement to solve for the optimal value function is
inspired by the following monotonicity properties.

Proposition 3. The contribution function Ct,t+2(St, bt), with St = (Rt, Lt, bt−1, P
S
t ) is nondecreas-

ing in Rt, Lt, b
−
t−1, and b+t−1.

Proposition 4. The optimal value function V ∗t (St), with St = (Rt, Lt, bt−1, P
S
t ) is nondecreasing

in Rt, Lt, b
−
t−1, and b+t−1.

4. Algorithmic Technique

The traditional way to solve for the optimal value function in (13) is by backward dynamic
programming. Due to the fact that this technique requires us to visit every state (which is compu-
tationally difficult), we propose the use of approximate dynamic programming. We first note that
both methods require a finite state space. Since R, L and B were assumed to be finite, we need to
assume, in particular, that P is also finite or that it is properly discretized.

The idea behind our ADP algorithm, which we call Monotone–ADP–Bidding (see Jiang and Powell
[2015]) is to iteratively learn the approximations V nt (St) (after n iterations) of V ∗t (St) that obey
the structural property of monotonicity. The algorithm is a form of asynchronous (or approximate)
value iteration (AVI), so for each time t in iteration n, only one state Snt is visited. In addition, at
each step, we perform a monotonicity preservation step to ensure the approximation is in a sense,
structurally similar to V ∗t . We show experimentally that failure to maintain monotonicity, despite
the availability of convergence proofs, produces an algorithm that simply does not work in practice.

4.1. Preliminaries. Let v̂nt (Snt ) be an observation of the value of being in state Snt at iteration n
and time t. Define the noise term

wnt (Snt ) = v̂nt (Snt )−max
bt∈B

[
Ct,t+2(Snt , bt) + E

[
V n−1
t+1 (St+1) |Snt

]]
,

to be the difference between the observation and the optimal value using the iteration n− 1 approx-
imation. We remark, for the sake of clarity, that this is not the noise representing the deviation
from the true value, V ∗t (Snt ). Rather, wnt (Snt ) is the noise from an inability to exactly observe the
optimal value of the maximization: maxbt∈B

[
Ct,t+2(Snt , bt) + E

[
V n−1
t+1 (St+1) |Snt

]]
.

Thus, we can rearrange to arrive at:

v̂nt (Snt ) = max
bt∈B

[
Ct,t+2(Snt , bt) + E

[
V n−1
t+1 (St+1) |Snt

]]
+ wnt (Snt ).
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Before we continue, let us define a partial order 4 on the state space S so that for s = (r, l, b, p) and
s′ = (r′, l′, b′, p′) where r, r′ ∈ R, l, l′ ∈ L, b, b′ ∈ B, and p, p′ ∈ P, we have that s 4 s′ if and only if
the following are satisfied:

(r, l, b) ≤ (r′, l′, b′) and p = p′.

The values of any two states that can be related by 4 can be compared using Proposition 4. The
main idea of the algorithm is that every observation v̂nt (Snt ) is smoothed with the previous estimate
of the value of Snt and the resulting smoothed estimate znt (Snt ) can be used to generalize to the rest
of the state space by means of a monotonicity preserving operator, ΠM . Let s ∈ S be an arbitrary
state that has a current estimated value of v. After znt (Snt ) is known, ΠM adjusts the value of s in
the following way:

ΠM (Snt , z
n
t , s, v) =





znt if s = Snt ,

znt ∨ v if Snt 4 s, s 6= Snt ,

znt ∧ v if s 4 Snt , s 6= Snt ,

v otherwise.

(14)

First, we note that if monotonicity is already satisfied, then nothing changes because in the
second and third cases of (14), we get that znt ∨ v = v and znt ∧ v = v, respectively. If, however,
monotonicity is violated, then the newly observed value znt prevails and replaces the previous value
of v. Figure 4 shows an example of this operation for the two bids b−t−1 and b+t−1. In the illustration,
assume that the observations are made for fixed values of Rt and Lt, but note that when we run the
algorithm, this adjustment is made over all four dimensions. The figure should be interpreted as a
three–dimensional plot of the value function, where all state variables besides bt−1 are fixed. Each
bid pair, bt−1 = (b−t−1, b

+
t−1), is associated with a z–coordinate value represented by colors in gray

scale (darker colors correspond to larger values). In the first and third plots, new observations arrive,
and in the second and fourth plots, we see how the ΠM operator uses monotonicity to generalize the
observed values to the rest of the state space.

�M

b�t�1

b+ t�
1

: observed values where <

�M

Figure 4. Illustration of Monotonicity Preservation (Darker Colors = Larger Values)

The stepsize sequence used for smoothing in new observations with the previous approximation is
denoted αnt , which can be thought of as a (possibly stochastic) sequence in n, for each t. Furthermore,
states that are not visited do not get updated unless the update is made through the operator ΠM ,
so we also define:

αnt (s) = αn−1
t 1{s=Sn

t }.

For notational purposes, let us also define the history of the algorithm until iteration n by the
filtration

Fn = σ
{(
Smt , w

m
t (Smt )

)
m≤n, t≤T

}
.
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Step 0a. Initialize V 0
t (s) = 0 for each t ≤ T − 1 and s ∈ S.

Step 0b. Set V nT (s) = 0 for each s ∈ S and n ≤ N .

Step 0c. Set n = 1.

Step 1. Select an initial state Sn0 .

Step 2. For t = 0, 1, . . . , (T − 1):

Step 2a. Sample a noisy observation:

v̂nt (Snt ) = max
bt∈B

[
Ct,t+2(Snt , bt) + E

[
V n−1
t+1 (St+1) |Snt

]]
+ wnt (Snt ).

Step 2b. Smooth in the new observation with previous value:

znt (Snt ) =
(
1− αnt (Snt )

)
V n−1
t (Snt ) + αnt (Snt ) v̂nt (Snt ).

Step 2c. Perform monotonicity projection operator. For each s ∈ S:

V nt (s) = ΠM (Snt , z
n
t , s, V

n−1
t (s)).

Step 2d. Choose the next state Snt+1 given Fn−1.

Step 3. If n < N , increment n and return Step 1.

Figure 5. Monotone–ADP–Bidding Algorithm for Training a Bidding Policy

4.2. Algorithm Description and Convergence. The full description of the algorithm is given in
Figure 5. Monotone–ADP–Bidding can be shown to converge; we reproduce the set of assumptions
and the resulting theorem here.

Assumption 1. For all s ∈ S and t ≤ T ,
∞∑

n=1

P
(
Snt = s | Fn−1

)
=∞ a.s.,

i.e, every state is visited infinitely often (see the Extended Borel–Cantelli Lemma in Breiman [1992]).

Assumption 2. The optimal value function V ∗t (s) and the observations v̂nt (Snt ) are bounded above
and below by ±Vmax, where Vmax is a positive constant.

Assumption 3. The noise sequence wnt satisfies E
[
wn+1
t (s) | Fn

]
= 0.

Assumption 4. For each t ≤ T and state s, suppose αnt ∈ [0, 1] is Fn–measurable and

(i)

∞∑

n=0

αnt (s) =∞ a.s.,

(ii)

∞∑

n=0

αnt (s)2 <∞ a.s.

Theorem 1. Under Assumptions 1–4, for each t ≤ T and s ∈ S, the estimates V nt (s) produced by
the Monotone–ADP–Bidding Algorithm of Figure 5, converge to the optimal value function V ∗t (s)
almost surely.

Proof. The proof is based on the result for a generalized MDP with a monotone value function in
Jiang and Powell [2015]. �

4.3. Approximating the Expectation. Our algorithm can be applied to any model of spot prices
Pt, with the caveat that more complex models generally require a higher dimensional state space.
These include diffusion models (i.e., Schwartz [1997], Cartea and Figueroa [2005], Coulon et al.
[2013]), which often incorporate features such as Ornstein–Uhlenbeck processes, jump terms, and
regime switching. Recently, there has also been interest in structural models of electricity prices,
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where the underlying supply, demand, and bid–stack behavior is taken into account; see Carmona
and Coulon [2014] for a survey.

The fact that the state space becomes larger or higher dimensional is indeed a computational
difficulty that requires the availability of more powerful computational resources, but the convergence
of the algorithm is unaffected (as long as PSt is properly discretized). On the other hand, any model
without finite support (or finite, but with large cardinality) necessitates the approximation of an
expectation using a sample mean in Step 2a of the Monotone–ADP–Bidding algorithm (see Figure
5). In other words, because the expectation E

(
V n−1
t+1 (St+1) |Snt

)
of Step 2a is, in general, impossible

to compute, we must resort to letting vnt (Snt ) be the solution to the sample average approximation
(see Kleywegt et al. [2002]) problem:

max
bt∈B

[
Ct,t+2(Snt , bt) + J−1

J∑

j=1

V n−1
t+1 (Sjt+1)

]
, (15)

where Sjt+1 are samples drawn independently from the distribution St+1 |Snt . Suppose we take the
observation v̂nt (Snt ) to be the value of (15). By an interchange of the conditional expectation and
the max operator, we see that:

E

[
max
bt∈B

[
Ct,t+2(Snt , bt) + J−1

J∑

j=1

V n−1
t+1 (Sjt+1)

] ∣∣∣Snt
]
≥

max
bt∈B

[
Ct,t+2(Snt , bt) + E

(
V n−1
t+1 (St+1)

∣∣Snt
)]

a.s.,

and thus, after conditioning on Fn−1 on both sides, we see that E[wnt (Snt )|Fn−1] is biased upward
from zero, a contradiction of Assumption 3. When J is large, we can certainly solve the sample
average approximation problem in Step 2a and apply the algorithm as is and expect an effective
heuristic solution. Practically speaking, our informal tests (using J = 1000 on a diffusion price
model) showed no significant convergence issues. Even so, we cannot claim that such an approxi-
mation produces a theoretically sound and convergent algorithm due to the biased noise term. This
calls for us to propose another version of Monotone–ADP, for which Assumption 3 can be easily
satisfied, without restricting to price process models that facilitate an easily computable expectation
of the downstream value.

4.4. Post–Decision, Distribution–Free Approach. Using the idea of a post–decision state (see
Powell [2011]), we can make a small adjustment to the algorithm, so that Assumption 3 is satis-
fied. In the case of the hourly bidding problem, the post–decision state Sbt is the state–action pair
(St, bt). Oftentimes, post–decision states help simplify the computational aspect of an MDP, but
unfortunately, for this problem instance, the post–decision state space is higher dimensional than
the pre–decision state space. Let Sbt = (St, bt) ∈ Sb and define the post–decision value function

V bt (Sbt ) = V bt (St, bt) = E
[
V ∗t+1(St+1) |Sbt

]
.

Notice that we can rewrite Bellman’s optimality equation as:

V bt−1(Sbt−1) = E
[
max
bt∈B

[
Ct,t+2(St, bt) + V bt (Sbt )

]
|Sbt−1

]
. (16)

Instead of attempting to learn V ∗t , the idea now is to algorithmically learn the post–decision value
function V bt using the relation (23) and to implement the policy by solving

b∗t = arg max
bt∈B

[
Ct,t+2(St, bt) + V bt (Sbt )

]
.

Not surprisingly, the post–decision value function V bt also satisfies a monotonicity property, over six
dimensions.

Proposition 5. The post–decision value function V bt (Sbt ), with Sbt = (Rt, Lt, bt−1, bt, P
S
t ) is nonde-

creasing in Rt, Lt, b
−
t−1, b+t−1, b−t , and b+t .
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Let V b, nt be the iteration n approximation of the post–decision value function, Sb, nt be the state

visited by the algorithm in iteration n, v̂b, nt (Sb, nt ) be an observation of V bt (Sb, nt ) using the iteration

n− 1 approximation, wb, nt (Sb, nt ) be the observation noise, Fb, n be a filtration defined analogously
to Fn, and Πb

M be the monotonicity preservation operator on Sb defined analogously to ΠM . More
precisely,

v̂b, nt (Sb, nt ) = E
[

max
bt+1∈B

[
Ct+1,t+3(St+1, bt+1) + V b, n−1

t+1 (Sbt+1)
] ∣∣Sb,nt

]
+ wb,nt (Sb,nt ), (17)

Fb,n = σ
{(
Sb,mt , wb,mt (Sb,mt )

)
m≤n, t≤T

}
, (18)

and

Πb
M (Sb,nt , zb,nt , s, v) =





zb,nt if s = Sb,nt ,

zb,nt ∨ v if Sb,nt 4b s, s 6= Sb,nt ,

zb,nt ∧ v if s 4b Sb,nt , s 6= Sb,nt ,

v otherwise,

(19)

where s = (r, l, b1, b2, p) 4b s′ = (r′, l′, b′1, b
′
2, p
′) with r, r′ ∈ R, l, l′ ∈ L, b1, b

′
1, b2, b

′
2 ∈ B, and

p, p′ ∈ P if and only if
(r, l, b1, b2) ≤ (r′, l′, b′1, b

′
2) and p = p′.

The new algorithm for post–decision states is shown in Figure 6, and a set of analogous assumptions
are provided below. We remark that by definition, V bT−1(SbT−1) = E

[
Cterm(ST ) |SbT−1

]
; thus, we

only need to loop until T − 2 in Step 2.

Step 0a. Initialize V b, 0t (s) = 0 for each t ≤ T − 1 and s ∈ Sb.
Step 0b. Set V b, nT (s) = 0 for each s ∈ Sb and n ≤ N .

Step 0c. Set n = 1.

Step 1. Select an initial state Sb, n0 = (Sn0 , b
n
0 ).

Step 2. For t = 0, . . . , (T − 2):

Step 2a. Sample a noisy observation:

v̂b,nt (Sb,nt ) = E
[

max
bt+1∈B

[
Ct+1,t+3(St+1, bt+1)+V b, n−1

t+1 (Sbt+1)
] ∣∣Sb,nt

]
+wb,nt (Sb,nt ).

Step 2b. Smooth in the new observation with previous value:

zb, nt (Sb, nt ) =
(
1− αnt (Sb, nt )

)
V b, n−1
t (Sb, nt ) + αnt (Sb, nt ) v̂b, nt (Sb, nt ).

Step 2c. Perform monotonicity preservation operator. For each s ∈ Sb:

V b, nt (s) = Πb
M

(
Sb, nt , zb, nt , s, V b, n−1

t (s)
)
.

Step 2d. Choose the next state Sb, nt+1 given Fb, n−1.

Step 3. If n < N , increment n and return Step 1.

Figure 6. Monotone–ADP–Bidding Algorithm using Post–Decision States

Assumption 5. For all s ∈ Sb and t ≤ T ,
∞∑

n=1

P
(
Sb,nt = s | Fb,n−1

)
=∞ a.s.

Assumption 6. The optimal post–decision value function V bt (s) and the observations v̂b,nt (Sb,nt )
are bounded above and below, by ±Vmax.

Assumption 7. The noise sequence wb,nt satisfies E
[
wb,n+1
t (s) | Fb,n

]
= 0.
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The advantage to applying this revised algorithm is that even when we cannot compute the
expectation in Step 2a and must rely on sample paths, we can still easily satisfy Assumption 7 (the
unbiased noise assumption), unlike in the pre–decision case. To do so, we simply use:

v̂b, nt (Sb, nt ) = max
bt+1∈B

[
Ct+1,t+3(Snt+1, bt+1) + V b, n−1

t+1 (Snt+1, bt+1)
]
,

where we transition from Sb,nt to Snt+1 using a single sample outcome of prices P(t,t+1]. Hence, the

noise term wb,nt (Sb,nt ) is trivially unbiased.
Besides being able to work with more complex price models, the revised algorithm gives us another

important advantage, especially for implementation in practice/industry. As long as historical data
is available, a model of the real–time prices is not required to train the algorithm. We propose an
alternative idea: instead of fitting a stochastic model to historical data and then sampling P(t,t+1]

from the model, we can simply take a price path directly from historical data. Since no specific
knowledge regarding the distribution of prices is needed (besides the boundedness assumption needed
for the convergence of the ADP algorithm), as previously mentioned, we refer to this as a distribution–
free approach, and the technique is employed in Section 6. We now state the convergence theorem
for the post–decision state version of Monotone–ADP–Bidding. Because the convergence theory for
the post–decision state version is not discussed in detail in Jiang and Powell [2015], we provide a
sketch of the proof here. First, we define the following post–decision Bellman operator that acts on

a vector of values V ∈ RT ·|Sb| (any V , not necessarily corresponding to the optimal value function),
for Sbt ∈ Sb and t ≤ T :

(
HV

)
t
(Sbt ) =





E
[
maxbt+1∈B

[
Ct+1,t+3(St+1, bt+1) + Vt+1(Sbt+1)

]
|Sbt
]

for t = 0, 1, 2, . . . , T − 2,

E[Cterm(St+1) |Sbt ] for t = T − 1.
(20)

Step 2a of the algorithm (Figure 6) can thus be rewritten as:

v̂b, nt (Sb, nt ) =
(
HV b,n−1

)
t
(Sb,nt ) + wb,nt (Sb,nt ).

Theorem 2. Under Assumptions 4–7, for each t ≤ T and s ∈ Sb, the estimates V b,nt (s) produced by
the post–decision version of Monotone–ADP–Bidding Algorithm of Figure 6, converge to the optimal
post–decision value function V bt (s) almost surely.

Before discussing the proof, we state two necessary lemmas (proofs in Appendix A). The idea of
the first lemma is attributed to Tsitsiklis [1994].

Lemma 1. Define deterministic bounding sequences Lkt and Ukt in the following way. Let U0 =
V ∗+Vmax ·e and L0 = V ∗−Vmax ·e, where e is a vector of ones. In addition, Uk+1 = (Uk+HUk)/2
and Lk+1 = (Lk +HLk)/2. Then, for each s ∈ Sb and t ≤ T − 1,

Lkt (s)→ V bt (s),

Ukt (s)→ V bt (s),

where the limit is in k.

Lemma 2. Uk and Lk both satisfy the monotonicity property: for each t, k, and s1, s2 ∈ Sb such
that s1 4b s2,

Ukt (s1) ≤ Ukt (s2),

Lkt (s1) ≤ Lkt (s2).
(21)

Sketch of Proof of Theorem 2. With Lemmas 1 and 2, we can proceed to show convergence of the
post–decision state version of Monotone–ADP using the general steps to prove convergence of
Monotone–ADP for pre–decision states taken in Jiang and Powell [2015]. The steps are as follows:

(1) Given a fixed k and a state s ∈ Sb such that s is increased finitely often by the monotonicity
preservation operator Πb

M , then we can show that for any sufficiently large n,

Lkt (s) ≤ V b,nt (s) ≤ Ukt (s). (22)
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There exists at least one such state, i.e., the minimal state (0, 0, (bmin, bmin), PSt ). Repeat
the argument for states that are decreased finitely often by Πb

M .
(2) Next, we must show that states s that are affected by Πb

M infinitely often also satisfy (22).
This leverages the fact that the result has already been proven for states that are affected
finitely often. The idea is that if all states immediately less than s (i.e., x is immediately
less than y if x 4b y and there does not exist z such that x 4b z 4b y) satisfy (22), then
s satisfies (22) as well. Lemma 2 and an induction argument are used in this part of the
proof.

(3) Finally, combining Lemma 1 along with the fact that all post–decision states s ∈ Sb satisfy
(22), it is easy to see that from a type of squeeze argument,

V b,nt (s)→ V bt (s),

for each t and s, as desired.

Note that both Steps (1) and (2) require Assumption 7, hence the focus that we have placed on it
in this paper. �

4.5. Stepsize Selection. The selection of the stepsize αnt , also known as a learning rate, can have
a profound effect on the speed of convergence of an ADP algorithm. A common example of stepsize
rule that satisfies Assumption 4 is simply:

αnt =
1

N(Snt , n)
,

where N(Snt , n) =
∑n
m=1 1{Sm

t =Sn
t } is the number of visits by the algorithm to the state Snt . The

issue is that this method weighs all observations equally, even though we know that the error can
be extremely large in early iterations of any ADP algorithm. See Chapter 11 of Powell [2011] for an
overview of the numerous available stepsize rules.

After some experimentation, we found that the bias–adjusted Kalman Filter (BAKF) developed
in George and Powell [2006], performed better than simpler alternatives. The main idea behind
BAKF is to choose αnt such that the mean squared error to the true value function is minimized; we
omit the details and refer interested readers to the original paper.

5. Benchmarking on Stylized Problems using Pre–Decision Monotone–ADP

In this section, we present results of running Monotone–ADP–Bidding and traditional approxi-
mate value iteration on a tractable problem (i.e., the optimal solution is computable) in order to show
the advantages of using ΠM . In this section, we consider both four and five dimensional versions
of the sequential bidding problem. We first describe some simplifications to make benchmarking
possible.

In order to benchmark the algorithm against a truly optimal solution, we make some simplifying
assumptions (to be relaxed in the following section) so that backward dynamic programming can be
used to compute an optimal solution. First, we suppose that Pt has finite support and that M = 1,
so that the exact value of E

[
Vt+1(St+1) |St

]
can be computed easily. When M is larger, we can only

compute an approximation to the expectation, due to the fact that an exponential in M number of
outcomes of the price process need to be considered for an exact result.

In addition, in the numerical work of this paper, we take the traditional approach and choose
Cterm(s) = 0; however, we remark that this may not always be the best choice in practice. See
Section 6.3 for further discussion on the issue of selecting a terminal contribution function.

To test the approximate policies, we compute a value of the policy in the following way. For a
particular set of value function approximations V , the set of decision functions can be written as

B̄t(St) = arg max
bt∈B

[
Ct,t+2(St, bt) + E

[
V t+1(St+1) |St

]]
.

For a sample path ω ∈ Ω, let

F
(
V , ω

)
=

T+1∑

t=0

C
(
Rt+1(ω), Lt+1(ω), P(t+1,t+2](ω), B̄t(St)

)
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be a sample outcome of the revenue. We report the empirical value of the policy, which is the sample
mean of F

(
V , ω

)
over 1000 sample paths ω.

5.1. Variation 1. First, we consider a four dimensional variation of the bidding problem, where
St = (Rt, Lt, b

−
t−1, b

+
t−1). In particular, we assume that the price process has no state variables.

Several versions of this problem are explored by altering the parameter values: a typical size for the
batteries under consideration for the energy arbitrage application is Rmax = 6 MWh, but we also
allow values of Rmax = 12 MWh and Rmax = 18 MWh for variety. The decision space is fixed in the
following way: we set bmin = 15 and bmax = 85, and discretized linearly between bmin and bmax for
a total of 30 possible values in each dimension of the bid. The price process Pt has the form

Pt = S(t) + εt,

where the sinusoidal (representing the hour–of–day effects on price) deterministic component is

S(t) = 15 sin(2πt/24) + 50,

and εt ∈ {0,±1,±2, . . . ,±20}, a sequence of mean zero i.i.d. random variables distributed according
to the discrete pseudonormal distribution with σ2

X = 49 (a discrete distribution where the probability
masses are defined by the evaluating at the density function of N (0, σ2

X) and then normalizing). We
consider both the cases where the battery age does and does not matter (by setting β(l) = 1), in
effect introducing an irrelevant state variable. When aging does matter, the aging function we use
is β(l) = (l/Lmax)

1
6 , which provides a roughly linear decline in efficiency from 100% to around 70%,

followed by a much steeper decline. Lastly, in Problem 4, we considered a uniform distribution for the
noise, while the remaining problems used pseudonormal noise. In line with the operation procedures
of the NYISO, the undersupply penalty parameter K is set to 1 in our simulations — this means that
if one is unable to deliver energy to the market, then the penalty is precisely the current spot price
(essentially, we are paying another generator to produce the energy instead). The different problems
instances, labeled A1–F1, along with their state space cardinalities are summarized in Table 1.

Problem T Rmax Lmax β(l) Distribution of εt Cardinality of S

A1 24 6 8 1 Pseudonormal 22,320

B1 24 6 8 (l/8)
1
6 Pseudonormal 22,320

C1 36 6 8 1 Pseudonormal 22,320

D1 24 12 12 (l/12)
1
6 Uniform 66,960

E1 24 12 12 (l/12)
1
6 Pseudonormal 66,960

F1 36 18 18 (l/18)
1
6 Pseudonormal 150,660

Table 1. Parameter Choices for Variation 1 Benchmark Problems

5.2. Numerical Results for Variation 1. We first evaluate the effectiveness of Monotone–ADP–
Bidding versus approximate value iteration, a traditional ADP algorithm (exactly the same as
Monotone–ADP–Bidding with ΠM removed); the results for Variation 1 are given in Table 2.

Figure 7 gives a quick visual comparison between the two types of approximate value functions,
generated by approximate value iteration and Monotone–ADP–Bidding. We remark that after N =
1000 iterations, the value function approximation in Figure 7b obtained by exploiting monotonicity
has developed a discernible shape and structure, with a relatively wide range of values. The result
in Figure 7a, on the other hand, is relatively unusable as a policy.

We notice that as the cardinality of the state space increases, the value of monotonicity preser-
vation becomes more pronounced. This is especially evident in Problem F , where after N = 1000
iterations, Monotone–ADP–Bidding achieves 45.9% optimality while traditional approximate value
iteration does not even reach 10%. Although this finite state, lookup table version of approximate
value iteration (for lookup table) is also a convergent algorithm (see Proposition 4.6 of Bertsekas
and Tsitsiklis [1996]), its performance is markedly worse, especially when the state space is large.
Because it exploits the monotone structure, Monotone–ADP–Bidding has the ability to quickly at-
tain the general shape of the value function. Figure 8 illustrates this by showing the approximations
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(b) M–ADP, N = 1000

Figure 7. Visual Comparison of Value Function Approximations for t = 12 and Rt = 3

at early iterations of the algorithm. These numerical results suggest that the convergence rate of the
ADP algorithm is substantially increased through the use of the monotonicity preserving operation.
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Figure 8. Value Function Approximations from Early Iterations of Monotone–ADP

Iterations Algorithm
Problem

A1 B1 C1 D1 E1 F1

N = 1000
M–ADP 58.9% 67.8% 73.5% 60.7% 56.8% 45.9%
AVI 53.7% 45.7% 66.6% 23.4% 24.8% 7.8%

N = 5000
M–ADP 83.7% 82.8% 87.2% 73.8% 66.1% 64.1%
AVI 60.7% 67.3% 82.1% 43.8% 52.6% 49.0%

N = 9000
M–ADP 89.4% 93.6% 93.3% 76.2% 74.9% 86.6%
AVI 70.2% 75.8% 85.3% 46.7% 58.8% 57.3%

N = 13000
M–ADP 93.8% 89.9% 96.8% 79.8% 83.7% 88.5%
AVI 76.3% 83.1% 87.8% 49.8% 68.2% 57.8%

N = 17000
M–ADP 95.8% 96.4% 97.8% 82.7% 86.8% 91.4%
AVI 78.0% 85.1% 90.7% 62.2% 72.0% 70.6%

N = 21000
M–ADP 95.0% 98.4% 98.1% 90.5% 87.8% 92.7%
AVI 81.1% 87.7% 90.0% 61.0% 73.7% 76.3%

N = 25000
M–ADP 97.0% 98.5% 98.5% 89.7% 90.4% 94.8%
AVI 86.4% 89.4% 92.1% 60.0% 75.1% 76.0%

Table 2. % Optimal of Policies from the M–ADP and AVI Algorithms for Variation 1

With the effectiveness of Monotone–ADP–Bidding on Variation 1 established, we now examine its
computational benefits over backward dynamic programming. A comparison of CPU times between
Monotone–ADP–Bidding and backward dynamic programming is shown in Figure 9, where the hor-
izontal axis is in log–scale. Once again, we notice the order of magnitude difference in computation
time for the exact solution and for the near–optimal ADP solution. Indeed from Table 3, we see that
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we can achieve very good solutions using an ADP approach while cutting computational resources
by over 93%. In the most drastic case, Problem F (over 150,000 states), a 95% optimal solution is
achieved using only 4% the amount of computational power.
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Figure 9. Computation Times of M–ADP vs. BDP for Variation 1

Problem
A1 B1 C1 D1 E1 F1

BDP CPU Time (Minutes) 14,112 24,392 18,720 19,448 20,256 56,968

M–ADP CPU Time (Minutes)/% Optimality 1,003/95% 1,077/94% 1,167/96% 1,264/90% 1,506/90% 2,470/95%

% Time Savings 93% 96% 94% 94% 93% 96%

Table 3. % Time Savings from BDP when using M–ADP Near–Optimal Solution

5.3. Variation 2. Briefly, we also consider a problem with a more complex price process: a Markov
Regime–Switching model with two regimes, denoted by the process Xt. We represent the normal
regime as Xt = 0 and the spike regime as Xt = 1. Let S(t) be a deterministic seasonal component,
εt be discrete, independent and identically distributed (i.i.d.) random variables representing noise in
the normal regime, and εst be discrete, i.i.d. random variables representing noise in the spike regime.
The price process can be written as:

Pt = S(t) + 1{Xt=0} · εt + 1{Xt=1} · εst .
Also, we define the transition probabilities of the (time–inhomogenous) Markov chain Xt:

pi,j(t) = P(Xt+1 = j |Xt = i).

Because Xt only takes two states, let p(t) = p0,1(t) (the probability, at time t, of moving from the
normal regime into the spike regime) and q(t) = p1,0(t) (the probability, at time t, of returning to the
normal regime). The state variable for this problem is five–dimensional: St = (Rt, Lt, b

−
t−1, b

+
t−1, Xt).

In order to generate a small library of test problems, we considered two versions of the seasonal
component:

Si(t) = 15 fi(2πt/12) + 50,

for i ∈ {1, 2} and f1(x) = sin(x) and f2(x) = cos(x). We roughly model the fact that price spikes
tend to occur more frequently when demand is high. Since demand is often modeled using sinusoidal
functions, we use the following for p(t) (the probability of moving from the normal regime to the
spike regime) when the seasonal component is Si(t):

pi(t) = αp
[
fi(2πt/12) + 1

]
/2,
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for some parameter αp ≤ 1, representing the maximum probability of moving to the spike regime:
pt(t) ∈ [0, αp]. In these numerical results, q(t), the probability of returning to the normal regime, is
always modeled as a constant αq. Moreover, both εt and εst have support {−10,−9,−8, . . . ,+39,+40}
and are distributed according to the discrete pseudonormal distribution (with parameters (µX , σX) =
(0, 7) and (µX , σX) = (15, 20), respectively). The skewed support allows us to model the prepon-
derance of upward spikes in electricity spot prices. The remainder of the parameters vary across the
test problems and are summarized in Table 4 below.

Problem T Rmax Lmax β(l) Trend αp αq Cardinality of S

A2 24 4 6 (l/6)
1
6 S2(t) 0.9 0.5 22,320

B2 24 4 8 (l/8)
1
6 S1(t) 0.8 0.7 29,760

C2 12 8 6 (l/6)
1
6 S2(t) 0.9 0.5 44,640

D2 12 6 8 (l/8)
1
6 S2(t) 0.8 0.7 44,640

E2 12 8 10 (l/10)
1
6 S1(t) 0.9 0.5 74,400

F2 12 10 8 (l/8)
1
6 S2(t) 0.8 0.7 74,400

Table 4. Parameter Choices for Variation 2 Benchmark Problem

We ran both Monotone–ADP–Bidding and traditional approximate value iteration for 10,000
iterations on each of the test problems. The results of the benchmarking are summarized in Table
5 below (for brevity, we omit plots of the approximate value function and computation times and
instead state that they are very comparable to those of Variation 1). It is clear that, once again,
Monotone–ADP–Bidding provides significantly better solutions than approximate value iteration,
particularly in the early iterations.

Iterations Algorithm
Problem

A2 B2 C2 D2 E2 F2

N = 2000
M–ADP 82.4% 82.6% 94.6% 93.6% 82.8% 82.8%
AVI 31.3% 32.2% 43.6% 60.9% 33.0% 46.2%

N = 4000
M–ADP 86.7% 83.7% 96.1% 99.1% 93.2% 90.0%
AVI 53.4% 46.1% 62.1% 76.9% 54.0% 62.4%

N = 6000
M–ADP 93.6% 81.0% 88.3% 98.2% 90.2% 90.5%
AVI 64.8% 51.0% 69.3% 82.6% 63.5% 76.1%

N = 8000
M–ADP 95.3% 86.8% 92.2% 93.8% 93.4% 88.8%
AVI 77.4% 68.0% 67.5% 79.6% 77.0% 77.0%

N = 10000
M–ADP 94.4% 87.8% 95.8% 96.3% 95.2% 98.2%
AVI 84.1% 58.7% 77.9% 71.8% 84.3% 60.8%

Table 5. % Optimal of Policies from the M–ADP and AVI Algorithms for Variation 2

6. Case Study: Training and Testing an ADP Policy Using Real NYISO Data

In this section, we use the distribution–free, post–decision state version of Monotone–ADP to
produce bidding policies for the New York City zone of the NYISO, with the goal of demonstrating
the idea of training using only historical data as “sample paths.” The case study uses two full years
of 5–minute real–time price data obtained from the NYISO, for the recent years of 2011 and 2012.
See Figure 10 below for a visual comparison. The concern with the historical prices is that we must
satisfy Assumption 6; i.e., we must assume that the unknown stochastic process Pt is bounded. This
is not an unreasonable assumption if we allow the bound to be high, say $3,000, which is consistent
with the prices in our data set. We remark again that, in order to satisfy Assumption 7, we use:

v̂b,nt (Sb,nt ) = max
bt+1∈B

[
Ct+1,t+3(Snt+1, bt+1) + V b,n−1

t+1 (Snt+1, bt+1)
]
,

in Step 2a of Figure 6, where the transition from Sb,nt to Snt+1 is accomplished using a single sample
from historical data. The remaining assumptions are satisfied for the same reasons as before.
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Figure 10. NYISO Real–Time, 5–Minute Prices Used for Training and Testing of an
ADP Policy

6.1. ADP Policies. There are many sensible ways to choose training data for a specific operating
time horizon. In this paper, we consider two commonsense methods: 1) using historical samples
from the same month of the previous year to train a policy for the current month (“ADP Policy
1”), and 2) using samples from the previous month to train a policy for the current month (“ADP
Policy 2”). The rationale for the first method is that the price process may behave similarly in the
same month across years (though factors like weather, natural gas prices, etc, should be considered
before assuming that such a statement is true), and the rationale for the second method is to simply
use the most recent data available. We train an hourly bidding policy that has a horizon of one day
(T + 1 = 24) and the post–decision state variable for this case study is five–dimensional:

Sbt = (Rt, b
−
t−1, b

+
t−1, b

−
t , b

+
t ) ∈ Sb,

where the bids are linearly discretized between bmin = 0 and bmax = 150 into 15 grid points in each
dimension. Although it is difficult to discern from Figure 10, 98.2% of the prices in our data set
are below $150. To have a lower dimensional state variable for more reasonable runtimes, we elect
to assume PSt = {} and β(l) = 1 (it is also not typical for a battery manufacturer to provide an
expression for β(l); an accurate model for β(l) would require estimation from empirical data, which
is outside the scope of this paper). Conversations with industry colleagues suggested that, for this
application, it is reasonable to model a 1 MW, 6 MWh battery. Since M = 12, we choose Rmax = 72,
giving us a state space of size |Sb| = 3.6 million states, much larger than that of the benchmark
problems in the previous section. The remaining details are summarized in the list below.

(1) Due to the fact that the characteristics of the spot prices can be very different on weekends
(see e.g., Coulon et al. [2013]), we considered weekdays only. In a true application, it would
be important to train a separate policy for weekends.

(2) In order to have a larger data set for our simulations, our main assumption is that spot
prices of a particular hour are identically distributed across weekdays of the same month,
allowing us to train and test on a large set of sample paths.

(3) We train a daily value function for each month of the year. In essence, we combine the data
for the weekdays of each month to produce a policy that is valid for any given weekday of
the same month.

(4) As before, we set the undersupply penalty parameter K to 1.

The real–time prices from 2011 are used as training data and the prices from 2012 are used simulta-
neously as training and test data: for each month of 2012, we generate two policies, one trained using
data from the same month in 2011 and the other trained using data from the previous month. The
revenues generated by these policies are given in Table 6, where the evaluation method from Section
5 is used. The results correspond to running the algorithm for N = 100,000 iterations. Note that
because the post–decision version does not compute an expectation, each iteration is significantly
faster than that of the pre–decision version, but in general, requires more iterations. The results
show that ADP Policy 1 (training on data from the same month of the previous year) narrowly
outperforms ADP Policy 2 (training on data from the previous month) in most cases. Although
our MDP only optimizes for revenue in expectation, we nevertheless report that the (0.05–quantile,
0.95–quantile) of daily revenue for ADP Policy 1 is ($60.37, $474.24) with a median of $174.55. For
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ADP Policy 2, we have a (0.05–quantile, 0.95–quantile) of daily revenue of ($44.13, $453.30) with a
median of $154.12. These results confirm that the policies consistently generate revenue.

Test Dataset
ADP Policy 1 ADP Policy 2

Training Dataset Revenue ($) Training Dataset Revenue ($)

January–12 January–11 6,539.00 December–11 7,857.69
February–12 February–11 1,966.02 January–12 2,061.99

March–12 March–11 5,810.70 February–12 5,511.07
April–12 April–11 4,147.60 March–12 4,223.85
May–12 May–11 9,030.54 April–12 8,296.17
June–12 June–11 11,465.39 May–12 10,934.07
July–12 July–11 11,323.50 June–12 9,042.77

August–12 August–11 6,277.31 July–12 6,206.56
September–12 September–11 5,754.93 August–12 5,561.24
October–12 October–11 3,693.01 September–12 3,623.33

November–12 November–11 7,228.85 October–12 2,768.00
December–12 December–11 3,275.84 November–12 3,160.28

Yearly Revenue: 76,512.68 69,247.02

Table 6. Performance of Monotone–ADP–Bidding Policy Trained and Tested on Real Data

6.2. Comparison to Standard Trading Policies. This subsection compares the ADP policies to
several other rule–based policies developed from both the literature and discussions with industry.
Due to the existence of (and lack of access to) proprietary trading strategies, we cannot claim to be
comparing against the best; however, we do believe that the basic strategies surveyed in this paper
are involved in a significant portion of high performing trading/bidding policies. Trading policies A
and B are based on determining peak and off–peak hours using historical price data and inspired
by strategies considered in the paper Walawalkar et al. [2007] and the technical report Byrne and
Silva-Monroy [2012], but adapted to our bidding setting. Trading policy C uses the idea of bidding at
certain quantiles and attributed to ideas given to us by our industry colleagues. Policies subscripted
by 1 (i.e., A1, B1, and C1) use historical price data from the same month of the previous year, and
policies subscripted by 2 use data from the previous month.

Policies A1 and A2: Taking advantage of the trend that lower prices occur at night, we split
the operating day hours into two intervals 1 to h∗ and h∗+1 to 24, with h∗ > 6. The intervals are
then sorted using average historical prices. If hour h of the first interval has one of the six lowest
prices, then it is designated a buy interval. Similarly, if hour h of the second interval has one of
the six highest prices, then it is a sell interval. All other hours are idle intervals. When placing
a bid bt, we consider the hour h corresponding to (t + 1, t + 2]: if hour h is a buy interval, we
choose bt = (bmax, bmax); if hour h is a sell interval, we choose bt = (bmin, bmin); and if hour h is
an idle interval, we choose bt = (bmin, bmax). This policy essentially guarantees (with the possible
exception of spike situations where prices exceed bmax) that we fill up the battery in the interval
from 1 to h∗ and then empty it in the interval from h∗ + 1 to 24. With some tuning, we found
that h∗ = 12 provided the highest valued policies.
Policies B1 and B2: The second set of policies are again based on the idea of pairing periods of
low prices with periods of high prices, but with more flexibility than policies A1 and A2. Instead,
we sort all hours of a given day using average historical prices and designate the k∗ lowest priced
hours as buy intervals, corresponding to bt = (bmax, bmax) and the k∗ highest priced hours as sell
intervals, corresponding to bt = (bmin, bmin). The remaining hours are idle intervals, meaning we
set bt = (bmin, bmax). Again using historical prices, at time t, we estimate the level of resource

R̂t+1 at the beginning of the next hour as the average of the outcomes of Rt+1 over historical

sample paths. When encountering a buy interval with R̂t+1 > 60 (nearly full battery) or a sell

interval with R̂t+1 < 12 (nearly empty battery), we place the idle bid instead. Finally, if we
detect that we have more energy in storage than can be sold in the time left until the end of
horizon, we place sell bids thereafter. We report results for the tuned parameter k∗ = 10.
Policies C1 and C2: Let α < 0.5 be the parameter to our final set of policies. For each hour h,
we compute the empirical quantiles of the historical prices at α and 1−α, denoted qα and q(1−α),
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respectively (note the suppressed dependence on h). When bidding at time t, we again estimate

R̂t+1 using historical data. For times when the battery is estimated to be nearly full, we place the
bid bt = (bmin, q(1−α)). Similarly, if the battery is nearly empty, we place the bid bt = (qα, bmax).
For anything inbetween, we simply bid bt = (qα, q(1−α)), with the hope of consistently buying low
and selling high. We implement the same logic for when we hold more energy than the maximum
that can be sold in the time remaining and initiate a sell–off. In the numerical results below, we
use α = 0.1. Smaller values of α correspond to the notion of reserving the battery for only the
highest valued trades.

The results of running policies Ai, Bi, and Ci are given in Table 7. Given that they were afforded

Test Dataset
Revenue ($)

Policy A1 Policy A2 Policy B1 Policy B2 Policy C1 Policy C2

January–12 3,078.56 3,539.68 3,182.07 3,445.84 1,901.89 8,461.97
February–12 707.02 404.68 397.38 (349.51) 1,503.52 1,487.59

March–12 2,380.97 2,343.57 1,837.57 2,154.49 4,744.29 6,214.73
April–12 702.84 1,247.13 205.12 1,078.62 3,403.25 3,412.50
May–12 5,855.13 3,564.74 4,888.52 3,797.41 6,944.26 5,013.73
June–12 3,449.75 4,742.00 4,511.81 3,427.11 7,329.25 7,618.00
July–12 6,871.67 4,488.28 6,940.68 6,781.36 8,003.43 (7,066.45)

August–12 1,278.66 1,482.63 1,824.57 1,273.28 4,724.14 4,908.08
September–12 1,438.39 1,638.63 315.94 1,665.22 3,868.75 4,336.50
October–12 701.91 751.93 633.58 321.80 2,879.64 2,750.99

November–12 1,585.50 1,938.98 1,354.96 1,359.01 4,438.00 (1,270.90)
December–12 1,240.97 1,012.26 424.56 431.05 2,703.46 2,445.46

Yearly Revenue: 29,291.36 27,154.52 26,516.76 25,385.68 52,443.88 38,312.20

Table 7. Performance of Standard Trading Policies Trained and Tested on Real Data

more nuanced actions than simply buy and sell, perhaps not surprisingly, Policies Ci outperformed
the rest. However, we also notice that, unlike the other policies, Policy C2 generated large negative
revenues in July–12 and November–12. Comparing Policy C1 against ADP Policy 1 and comparing
Policy C2 against ADP Policy 2, we see the revenues generated are still a disappointing 68.5% and
55.3%, respectively, of the ADP revenues, suggesting that it is difficult, even after tuning, for simple
rule–based heuristics to perform at the level of a well–trained ADP policy that considers downstream
value. Moreover, the months of July–12 and November–12 (during which Policy C2 posted negative
revenues) suggest that the ADP strategy is more robust to the differences in training data when
compared to Policy Ci. A possible driving force behind Policy C2’s failure to generate revenue
during these months is that the training data from June–12 and October–12 has largely differing
characteristics (e.g., many spikes) from the testing data in July–12 and November–12 (see Figure
10).

6.3. Additional Insights. Applying Monotone–ADP–Bidding to real data from the NYISO has
given us several insights into the topic of energy arbitrage. First, we note that for both ADP Policy
1 and ADP Policy 2 (see Table 6), the largest revenues were generated in the months of May, June,
July, presumably due to changes in weather. The difference between the revenues generated in the
months of highest and lowest revenue, June and February, is more drastic than one might expect:
Jun Revenue − Feb Revenue = $9,499.37 for ADP Policy 1 and Jun Revenue − Feb Revenue =
$8,872.08 for ADP Policy 2. These results suggest that perhaps energy arbitrage should not be a
year–round investment, but rather one that is active only during months with potential for high
revenue. As Sioshansi et al. [2009] concludes, when it comes to the value of energy storage, it is
important to consider various revenue sources.

Costs of energy storage can be as low as $160 kWh−1 today, and it is reasonable to expect that
they will continue to decrease. As mentioned earlier, with optimal storage control strategies and
decreased capital costs, energy arbitrage can soon become profitable on its own, but as it currently
stands, storage costs are still relatively high compared to potential revenue. Therefore, it is also
imperative that the precise storage needs of our trading/bidding policies are well–understood; it
may be the case that in some months, one would choose to dedicate the entire battery to frequency
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regulation, while in high revenue months, the better strategy may be to use some of the capacity
toward arbitrage. It is clear that some policies, such as Policies Ai, are designed with fully utilizing
the available storage in mind, but for more complex policies such as those generated by Monotone–
ADP–Bidding, the usage profiles are not obvious. Figure 11 shows the empirical distribution for
the storage level of the battery (on an hourly basis) throughout the test data set. Note that for
presentation purposes we have scaled the plot so that the bar at Rt = 0 is cut off; due to its
designation as the initial state (and final state as well for most sample paths), its probability is
skewed to 0.09 and 0.10, for the two plots respectively. The high probability at 1 MWh is likely
explained by the fact that it corresponds to full hourly charge, the minimum amount of energy needed
to avoid the possibility of an undersupply penalty. The 0.9– and 0.95–quantiles for ADP Policy 1
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Figure 11. Empirical Distribution of Storage Level using ADP Policies 1 and 2

occur at 3.00 MWh and 3.75 MWh, and for ADP Policy 2, they are 3.16 MWh and 3.75 MWh.
This means for our (relatively short) daily trading horizon, a 6 MWh battery is unnecessary—a
33% smaller device with 4 MWh storage would have sufficed and delivered similar results at a steep
discount in capital cost. However, if a longer trading horizon, say, weekly (allowing us to take into
account the low prices on the weekends), is desired, it would be necessary to train a policy using
a sufficiently large battery and then using simulation to determine the effective amount of storage
needed by the policy. In summary, with today’s substantial capital costs, it would be prudent to do
an analysis of a policy’s storage needs.

Lastly, we discuss the issue of choosing Cterm(s) in a practical implementation of the algorithm.
Due to the daily cycles present in the real–time market, there is likely to be little additional value
added in expending computational resources towards developing a bidding policy whose horizon lasts
much longer than a few days or a week. In fact, from our conversations with industry colleagues,
we envision that a bidding policy such as ours have a daily horizon that is used repeatedly day
after day, with the policy retrained periodically (perhaps weekly). For such a usage scenario, it is
important to correctly choose Cterm(s), because leftover energy has value that can be capitalized on
even after the true horizon of the policy. We suggest the following practical methods for determining
the functional form of Cterm(s):

(1) Given the knowledge that the same policy is to be reused, in an effort to prevent the
forced “sell–off” type behavior that is expected when Cterm(s) = 0, it is reasonable to
choose Cterm(s) to structurally resemble V ∗0 (s) (i.e., up to constant shifts). One strategy for
accomplishing this is to first compute V ∗0 (s) using a zero terminal contribution, and then re–
solving the dynamic program using the previously computed V ∗0 as the terminal contribution.
This process can be iterated until the resulting policies (not the value functions themselves)
are observed to converge. Our (informal) implementation of this procedure shows that the
desired behavior of not forcing the storage to zero at the end of the time horizon is indeed
attained.

(2) After training an initial policy, we can determine, by inspecting the resource paths, a point
in time where the storage level is empty or very low (e.g., immediately after a period of high
prices). The horizon of the problem can then be redefined so that T corresponds to this
point in time and a new policy (with zero terminal contribution) can be trained. Essentially,
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we hope that the forced sell–off is translated to a point in time where a natural sell–off would
have likely occurred.

7. Conclusion

In this paper, we describe an hour–ahead bidding and battery arbitrage problem for a real–time
electricity market (e.g. NYISO’s real–time market). We then formulate the problem mathematically
as an MDP and show that the optimal value function satisfies a monotonicity property, a structural
result that can be exploited in order to accelerate the convergence of ADP algorithms. The algorithm
that we employ is called Monotone–ADP–Bidding and uses monotonicity to infer the value of states
nearby an observed state. When benchmarked against a traditional approximate value iteration
algorithm, we found that the improvements in terms of solution quality were drastic. Furthermore,
the ADP algorithm can reach near–optimal solutions without the need for significant computational
time and power (which an exact solution technique like backward dynamic programming certainly
requires); in fact, our empirical results show that near–optimal solutions can be generated using
less than 10% of the computational resources necessary for backward dynamic programming. We
also describe and sketch the proof of convergence for a distribution–free method where we can train
value functions with Monotone–ADP–Bidding using historical spot prices — this removes the need
for us to perform the difficult task of specifying and fitting an accurate stochastic model of spot
prices. In our case study, the method is tested on two large data sets: the 5–minute real–time prices
from the NYISO from the years of 2011 and 2012. The policies from Monotone–ADP–Bidding help
us conclude that energy arbitrage may be most valuable if practiced in a select few, high revenue
months. Finally, the ADP policies consistently generated more revenue than several rule–based
heuristic strategies that we considered, confirming that an ADP approach that approximates future
value is worthwhile.
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Appendix A. Proofs

Proposition 1. For an initial resource level r ∈ R, a vector of intra–hour prices P ∈ RM , a bid b =
(b−, b+) ∈ B, and a subinterval m, the resource transition function gRm

(
r, q(P, b)

)
is nondecreasing

in r, b−, and b+.

Proof. Since

gRm+1(Rt, qs) =
[
min{gRm(Rt, qs)− eᵀmqs, Rmax}

]+
,

it is clear that the transition from gRm to gRm+1 is nondecreasing in the value of gm and nonincreasing
in the value of eᵀmqs. Thus, a simple induction argument shows that for r1, r2 ∈ R and q1, q2 ∈
{−1, 0, 1}M where r1 ≤ r2 and q1 ≤ q2,

gRM (r1, q2) ≤ gRM (r2, q1).

The result follows from the fact that q(P, b) is nonincreasing in b. �

Proposition 2. For an initial l ∈ L, a vector of intra–hour prices P ∈ RM , a bid b = (b−, b+) ∈ B,
and a subinterval m, the transition function gLm

(
l, d(P, b)

)
is nondecreasing in l, b−, and b+.

Proof. The transition

gLm+1(Lt, ds) =
[
gLm(Lt, ds)− eᵀmds

]+

is nondecreasing in gLm and nonincreasing in eᵀmds. Like in Proposition 1, induction shows that for
l1, l2 ∈ L and d1, d2 ∈ {0, 1}M where l1 ≤ l2 and d1 ≤ d2,

gLM (l1, d2) ≤ gLM (l2, d1).

The result follows from the fact that d(P, b) is nonincreasing in b. �

Proposition 3. The contribution function Ct,t+2(St, bt), with St = (Rt, Lt, bt−1, P
S
t ) is nondecreas-

ing in Rt, Lt, b
−
t−1, and b+t−1.

Proof. First, we argue that the revenue function C(r, l, P, b) is nondecreasing in r and l. From their
respective definitions, we can see that γm and Um are both nondecreasing in their first arguments.
These arguments can be written in terms of r and l through the transition functions gRm and gLm.
Applying Proposition 1 and Proposition 2, we can confirm that C(r, l, P, b) is nondecreasing in r
and l. By its definition,

Ct,t+2(St, bt) = E
[
C
(
gR(Rt, P(t,t+1], bt−1), gL(Lt, P(t,t+1], bt−1), P(t+1,t+2], bt

)
|St
]
.

Again, applying Proposition 1 and Proposition 2 (for m = M), we see that the term inside the
expectation is nondecreasing in Rt, b

−
t−1, and b+t−1 (composition of nondecreasing functions) for any

outcome of P(t,t+1] and P(t+1,t+2]. Thus, the expectation itself is nondecreasing. �

Proposition 4. The optimal value function V ∗t (St), with St = (Rt, Lt, bt−1, P
S
t ) is nondecreasing

in Rt, Lt, b
−
t−1, and b+t−1.

Proof. Define the function V bt (St, bt) = E
[
V ∗t+1(St+1) |St, bt

]
, often called the post–decision value

function (see Powell [2011]). Thus, we can rewrite the optimality equation as:

V ∗t (St) = max
bt∈B

[
Ct,t+2(St, bt) + V bt (St, bt)

]
for t = 0, 1, 2, . . . , T − 1,

V ∗T (ST ) = Cterm(ST ).
(23)

The proof is by backward induction on t. The base case is t = T and since V ∗T (·) satisfies monotonicity
for any state s ∈ S by definition. Notice that the state transition function satisfies the following
property. Suppose we have a fixed action bt and two states St = (Rt, Lt, bt−1, P

S
t ) and S′t =

(R′t, L
′
t, b
′
t−1, P

S
t ) where (Rt, Lt, bt−1) ≤ (R′t, L

′
t, b
′
t−1). Then, for any realization of the intra–hour

prices P(t,t+1] (by Propositions 1 and 2),

St+1 = (Rt+1, Lt+1, bt, P
S
t+1) = SM (St, bt, P(t,t+1]),

S′t+1 = (R′t+1, L
′
t+1, bt, P

S
t+1) = SM (S′t, bt, P(t,t+1]),
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with Rt+1 ≤ R′t+1 and Lt+1 ≤ L′t+1, implying that St+1 ≤ S′t+1. This means that the transition
function satisfies a specialized nondecreasing property. Using this and supposing that V ∗t+1(·) satisfies

the statement of the proposition (induction hypothesis), it is clear that V bt (St, bt) is nondecreasing
in Rt, Lt, and bt−1. Now, by the previous proposition, we see that the term inside the maximum
of (23) is nondecreasing in Rt, Lt, and bt−1 for any action bt. Hence, we can take the pointwise
maximum and retain monotonicity; the inductive step is complete. �

Proposition 5. The post–decision value function V bt (Sbt ), with Sbt = (Rt, Lt, bt−1, bt, P
S
t ) is nonde-

creasing in Rt, Lt, b
−
t−1, b+t−1, b−t , and b+t .

Proof. Previously in the proof of Proposition 4, we argued that V bt (Sbt ) is monotone in Rt, Lt, b
−
t−1,

and b+t−1. To see the monotonicity in b−t and b+t , first fix an outcome of P(t,t+1] and bt, b
′
t ∈ B, with

bt ≤ b′t. Observe that if we let (Rt+1, Lt+1, bt, P
S
t+1) = SM (St, bt, P(t,t+1]), then (Rt+1, Lt+1, b

′
t, P

S
t+1) =

SM (St, b
′
t, P(t,t+1]), with only the bid dimensions changed. Therefore,

SM (St, bt, P(t,t+1]) ≤ SM (St, b
′
t, P(t,t+1]).

Thus, by Proposition 4, for a fixed St, any outcome of the price process P(t,t+1], and bt ≤ b′t,

V ∗t+1

(
SM (St, bt, P(t,t+1])

)
≤ V ∗t+1

(
SM (St, b

′
t, P(t,t+1])

)
.

Hence, after taking expectations, we get the desired result: V bt (St, bt) ≤ V bt (St, b
′
t). �

Lemma 1. Define deterministic bounding sequences Lkt and Ukt in the following way. Let U0 =
V ∗+Vmax ·e and L0 = V ∗−Vmax ·e, where e is a vector of ones. In addition, Uk+1 = (Uk+HUk)/2
and Lk+1 = (Lk +HLk)/2. Then, for each s ∈ Sb and t ≤ T − 1,

Lkt (s)→ V bt (s),

Ukt (s)→ V bt (s),

where the limit is in k.

Proof. We first show that H satisfies the following properties:

(i) V ≤ V ′ =⇒ HV ≤ HV ′.
(ii) V ∗ is a unique fixed point of H, i.e., HV ∗ = V ∗.
(iii) HV − ηe ≤ H(V − ηe) ≤ H(V + ηe) ≤ HV + ηe, for η > 0.

Statement (i) is trivial and follows directly from the monotonicity of the max and expectation
operators. Statement (ii) follows from the fact that the finite horizon dynamic program exhibits a
unique optimal value function (and thus, post–decision value function as well) determined by the
backward recursive Bellman equations. Statement (iii) is easy to see directly from the definition of
H. Now, applying Lemma 4.6 of Bertsekas and Tsitsiklis [1996] gives us the desired limit result. �

Lemma 2. Uk and Lk both satisfy the monotonicity property: for each t, k, and s1, s2 ∈ Sb such
that s1 4b s2,

Ukt (s1) ≤ Ukt (s2),

Lkt (s1) ≤ Lkt (s2).
(21)

Proof. To show this, first note that given a fixed t ≤ T − 2 and any vector Y ∈ R|Sb| (defined over
the post–decision state space) that satisfies the monotonicity property, it is true that the vector htY ,
whose component at s ∈ Sb is defined using the post–decision Bellman recursion,

(htY )(s) = E
[

max
bt+1∈B

[
Ct+1,t+3(St+1, bt+1) + Y (Sbt+1)

]
|Sbt = s

]
,

also obeys the monotonicity property. We point out that there is a small difference between the
operator H and ht in that H operates on vectors of dimension T · |Sb|. To verify monotonicity,
s1, s2 ∈ Sb such that s1 4b s2. For a fixed sample path of prices P , let St+1(s1, P ) and St+1(s2, P )
be the respective downstream pre–decision states. Applying Propositions 1 and 2, we have that
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St+1(s1, P ) 4b St+1(s2, P ). For any fixed bt+1 ∈ B, we apply the monotonicity of the contribution
function Ct+1,t+3 (Proposition 3) and the monotonicity of Y to see that

Ct+1,t+3(St+1(s1, P ), bt+1) + Y ((St+1(s1, P ), bt+1)) (24)

≤ Ct+1,t+3(St+1(s2, P ), bt+1) + Y ((St+1(s2, P ), bt+1)), (25)

which confirms that (htY )(s1) ≤ (htY )(s2). When t = T−1, we set (htY )(s) = E
[
Cterm(St+1) |Sbt =

s
]

and the same monotonicity result holds.

Now, we can easily proceed by induction on k, noting that U0 and L0 satisfy monotonicity for
each t. Assuming that Uk satisfies monotonicity, we can argue that Uk+1 does as well; we first note
that for any t, by the definition of Uk+1,

Uk+1
t =

Ukt +
(
HUk

)
t

2
=
Ukt +

(
htU

k
t+1

)

2
.

By the induction hypothesis and the property of ht proved above, it is clear that Uk+1
t also satisfies

monotonicity and the proof is complete. �
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