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We study the ambulance relocation problem in which one tries to respond to possible future incidents
quickly. For this purpose, we consider compliance table policies: a relocation strategy commonly used in

practice. Each compliance table level indicates the desired waiting site locations for the available ambulances.
To compute efficient compliance tables, we introduce the minimum expected penalty relocation problem (MEX-
PREP), which we formulate as an integer linear program. In this problem, one has the ability to control the
number of waiting site relocations. Moreover, different performance measures related to response times, such
as survival probabilities, can be incorporated. We show by simulation that the MEXPREP compliance tables
outperform both the static policy and compliance tables obtained by the maximal expected coverage reloca-
tion problem (MECRP), which both serve as benchmarks. Besides, we perform a study on different relocation
thresholds and on two different methods to assign available ambulances to desired waiting sites.
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1. Introduction
In life-threatening situations where every second
counts, the ability of ambulance service providers to
arrive at the emergency scene within a few minutes to
provide medical aid can make the difference between
survival or death. The location of ambulances has a
huge impact on the response time to an incident, i.e.,
the total time between an incoming emergency call
and the moment that an ambulance arrives at the
emergency scene. To realize short response times, it
is crucial to plan ambulance services efficiently. This
encompasses a variety of planning problems at the
strategic, tactical, and operational level. At the strate-
gic level, the locations of the ambulance base stations
are determined. A base station is a structure or other
area set aside for idle ambulances. In addition, sta-
tions often also have a crew room and other facilities
for the ambulance personnel. Ambulance staff may be
summoned for emergencies by siren, radio, or pagers,
depending on the station. When not busy serving
patients, the crew usually spends its shift at a base sta-
tion. At the tactical level, the number of ambulances
per base station is specified and, as a direct conse-
quence, the number of ambulance crews per base sta-
tion. In this paper, we focus on the operational level:
the real-time dispatching of ambulances to incidents
and the real-time relocation of ambulances.

At certain moments in time, crews may be required
to park up at a waiting site away from the base sta-
tion, to increase coverage of the region. Such a reloca-
tion decision is usually made when an event happens,
i.e., when a change of the system occurs. Examples of
event types are, for instance, a change in availability
of ambulances (when an ambulance is dispatched to
an incident or when an ambulance finishes service),
the arrival of an ambulance at the emergency scene,
or the departure to a hospital. However, whether
relocations are allowed and if so, to which poten-
tial other waiting sites, depends on regulatory rules.
For instance, in Vienna, repositioning idle ambulances
(apart from sending them back to a waiting site) is
not allowed (Schmid 2012), as opposed to Edmonton,
Alberta (Alanis et al. 2013). Moreover, the number of
allowed potential waiting sites may differ. The num-
ber of allowed potential waiting sites may exceed the
number of ambulances, as in Gendreau et al. (2006),
but this is certainly not the case in general. The set-
ting we consider is the Dutch setting: the dispatcher
is allowed to relocate an ambulance from one wait-
ing site to another, but the number of waiting sites is
relatively small.

The most common measure on which ambulance
service providers base their performance is the frac-
tion of calls reached within some response time or
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coverage radius: a demand point is covered if an idle
ambulance is present within this coverage radius.
Note that this coverage radius is expressed in time,
e.g., 12 minutes. At the strategic level, at the tactical
level, and at the operational level, the focus is on the
search for the best possible coverage, based on the
coverage radius.

At the operational level, a commonly used policy
structure for the ambulance relocation problem is the
use of compliance tables (Alanis et al. 2013, Sudtachat
et al. 2016, Gendreau et al. 2006). Each row in a com-
pliance table indicates, for a given number of avail-
able ambulances, the desired waiting sites for these
ambulances. If these ambulances are at their desired
waiting sites, the system is in compliance. The num-
ber of available ambulances changes when a request
arrives or when an ambulance becomes available
again. Then, each idle ambulance may be assigned to
a different waiting site.

A strength of the compliance table policy is that
it is simple to explain to and to use by dispatchers:
the state of the Emergency Medical Services (EMS)
system is only described by the number of available
ambulances. Another strength is the ability to cal-
culate compliance tables offline, as opposed to real-
time methods which need to compute new relocation
decisions whenever an event occurs. After all, there
may not be enough time to compute such decisions
between two events, although efficient methods exists
(Jagtenberg et al. 2015).

1.1. Related Work
Surveys on ambulance location and relocation mod-
els are provided by Brotcorne et al. (2003) and Li
et al. (2011). In these papers, several determinis-
tic, probabilistic, and dynamic models are reviewed,
of which the maximum coverage location problem
(MCLP) (Church and ReVelle 1974), and the maxi-
mum expected coverage location problem (MEXCLP)
(Daskin 1983) are of most interest to this paper. The
MEXCLP is an extension of the MCLP in the sense
that the MEXCLP takes ambulance unavailability into
account. Multiple extensions to the MEXCLP exist;
for instance, the ones considered in Batta et al. (1989)
and Repede and Bernardo (1994). As an alternative
to the MCLP, the p-median problem, proposed in
ReVelle and Swain (1970), can be used to determine
ambulance locations if the objective is to minimize
weighted average response times to incidents.

Ambulance location models for performance mea-
sures other than coverage and average response times
are considered in Erkut et al. (2008). In this paper,
performance is based on the survival probability of a
patient suffering from a cardiac arrest. Survival func-
tions proposed in Larsen et al. (1993), Maio et al.
(2003), Valenzuela et al. (1997), and Waaelwijn et al.

(2001) are incorporated in the MCLP and the MEX-
CLP. It is shown empirically that survival-maximizing
location models are better suited for ambulance loca-
tion than models based on coverage. In some of these
models, probabilistic response times are incorporated
based on the work by Ingolfsson et al. (2008). More-
over, McLay and Mayorga (2010) propose a methodol-
ogy for evaluating the performance of response time
thresholds in terms of resulting patient survival rates.
In this paper, the model proposed in Larsen et al.
(1993) is used, which results in a patient survival
probability that is a function of the response time.

A common way to solve the ambulance relocation
problem is the online approach: whenever an event
occurs, most often when an ambulance becomes avail-
able again, the dispatcher has the opportunity to con-
trol the system. That is, the current state of the system
is observed, and based on that information, a reloca-
tion decision is computed. Since these problems typi-
cally need to be solved in real-time, the main focus is
on heuristics. For instance, in Jagtenberg et al. (2015),
a dynamic version of the MEXCLP is proposed to com-
pute a new waiting location for an ambulance that just
finished service of a patient. Moreover, in Gendreau
et al. (2001), a parallel tabu search heuristic is used for
the real-time redeployment of ambulances. In Ander-
sson and Värbrand (2007), the notion of preparedness
is used. Preparedness is a measure for the ability to
serve potential patients now and in future. Moreover,
a dynamic relocation model named DYNAROC and a
heuristic to solve this model is presented. In addition,
Maxwell et al. (2010, 2013), and Schmid (2012) use
approximate dynamic programming for determining
relocation strategies.

In contrast to the real-time computation of reloca-
tion decisions, many ambulance service providers use
prescribed rules or compliance tables as their policy.
Real-time computation of such policies is not neces-
sary. In some papers, repositioning is considered pre-
planned and provides ambulance locations for every
time interval on the planning horizon (Rajagopalan
et al. 2008, Schmid and Doerner 2010, van den Berg
and Aardal 2015). Some literature focuses on opti-
mization of compliance tables, e.g., in Alanis et al.
(2013) a two-dimensional Markov chain is proposed
to analyze the system performance of compliance
table policies. This Markov chain is also used in Sud-
tachat et al. (2016), in which an integer program-
ming model for the computation of nested compliance
tables is proposed, using steady-state probabilities of
this Markov chain model as input parameters. The
objective is to maximize expected coverage in a sys-
tem with a single type of ambulance and a single type
of call priority.

The model that is of most importance to this paper
is the maximal expected coverage relocation prob-
lem (MECRP), proposed in Gendreau et al. (2006),
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which can be used to compute compliance tables. In
Maleki et al. (2014), it is stated that computing com-
pliance tables is just the first part of the computa-
tion of relocation decisions. The second part involves
the actual assignment of ambulances to waiting sites,
and two models minimizing relocation travel times
are proposed, based on compliance tables computed
by MECRP.

1.2. Contribution
In this paper we present the minimum expected
penalty relocation problem (MEXPREP), which is an
extension of the MECRP proposed in Gendreau et al.
(2006), to compute compliance tables. Although the
MECRP (summarized in Section 2.1) is a good and
applicable model to compute compliance tables, it has
some major limitations:

1. An area is covered if an idle ambulance is pres-
ent within a certain coverage radius: multiple idle
ambulances within the coverage radius do not con-
tribute to the coverage of the area. Especially in an
EMS system with a high call arrival rate, it may hap-
pen that another incident occurs before the idle ambu-
lances reach the locations to which they are assigned,
according to the compliance table. The MECRP does
not take this into account—it only focuses on the next
future emergency request.

2. There are at least as many waiting site locations
as ambulances. This is a rather strong assumption and
not generally true in practice. After all, it may be dic-
tated by law that ambulances are allowed to idle at
designated ambulance base stations only.

3. The capacity of each waiting site location equals
one. This may be true for designated ambulance park-
ing spaces, but in general not for base stations.

4. Only a performance measure related to coverage
can be incorporated.

As a consequence of limitations 1 and 3, each wait-
ing site location occurs at most once in each compli-
ance table level. However, it could be beneficial to
locate multiple ambulances at a waiting site—e.g., at a
waiting site in the middle of a densely populated area
with a high call arrival rate—to anticipate a possible
rapid succession of incidents occurring in that area. In
addition, we are forced to do this in a system in which
limitation 2 does not hold. We extend the MECRP in
such a way that within a compliance table level, a
waiting site can occur multiple times. We do this by
incorporating the objective function of the maximum
expected coverage location problem (MEXCLP), pre-
sented in Daskin (1983), into the objective function of
the MECRP.

The last limitation is related to coverage. As pointed
out in Maio et al. (2003), the most common EMS stan-
dard is to respond to 90% of all urgent calls within
eight minutes. Many EMS systems use the percentage

of calls covered as a performance measure. However,
as stated in Erkut et al. (2008), the black-and-white
nature of the coverage concept is an important limi-
tation, and standard coverage models should not be
used for ambulance location. First, coverage can result
in large measurement errors because of their lim-
ited ability to discriminate between different response
times. Second, these measurement errors are likely to
result in large optimality errors when one uses cover-
ing models to locate ambulances instead of a model
that takes survival probabilities into account. The dif-
ference between “coverage” and “survival” is demon-
strated by an artificial example in Erkut et al. (2008),
and it is shown that covering models can result in
arbitrarily poor location decisions for ambulances.

In the MECRP, only the performance measure of
coverage can be incorporated. The MEXPREP we pro-
pose in this paper is an extension of the MECRP in
which a general performance measure can be incor-
porated, including the concept of survival previously
mentioned. We do this by introducing a penalty func-
tion, which is a nondecreasing function that solely
depends on the response time (hence the name mini-
mal expected penalty relocation problem).

The remainder of this paper is organized as follows:
in Section 2.1 we explain the MECRP of Gendreau
et al. (2006). In Sections 2.2 and 2.3, we treat the limi-
tations mentioned above, resulting in the formulation
of the MEXPREP in Section 2.4. In Section 3, we con-
sider two models for the assignment problem, which
needs to be solved to obtain an assignment of avail-
able ambulances to the waiting sites corresponding to
the compliance table level. We conclude the paper by
a numerical study in Section 4.

2. Mathematical Model
One method used to compute compliance tables is
solving MECRP, presented in Gendreau et al. (2006).
In this section, we will extend MECRP. Next, we pro-
ceed with a summary of this problem.

2.1. Maximal Expected Coverage Relocation
Problem

The MECRP is defined on a directed graph G= 4V ∪

W1A5 representing the region of interest. The region
is discretized into demand zones, e.g., postal codes,
in which V is the vertex set of these demand points.
Moreover, W is the vertex set of potential waiting sites
for n emergency vehicles and A is a set of arcs defined
on 4V ∪ W52. A travel time is associated to each arc
4i1 j5 ∈ A and di denotes the demand at vertex i ∈ V .
This di may, for instance, correspond to the popula-
tion of demand zone i, or to the probability that an
incoming emergency call occurs in demand zone i,
which can be estimated by analyzing historical data.
A vertex i is said to be covered by a vertex j ∈W if the
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expected travel time from j to i, denoted by �ji, is less
than a given coverage radius r , expressed in time. We
denote by Wi the subset of vertices of W covering i.

In MECRP, the busy fraction p plays an important
role. This is the probability that an ambulance is busy,
i.e., responding to an emergency call, or serving or
transporting a patient. This busy fraction could be
computed by p = �/4n�5, where � is the call arrival
rate, � is the average service rate and the number of
ambulances is n. This busy fraction may also be esti-
mated by analysis of historical data. The probability
of being in a situation with k available ambulances,
denoted by qk, is easily computed by means of a bino-
mial distribution:

qk =

(

n

k

)

41 − p5kpn−k1 k = 01 0 0 0 1n0 (1)

As was pointed out in Gendreau et al. (2006), a simple
relaxation procedure for the MECRP consists of solv-
ing MCLP (presented in Church and ReVelle 1974)
for each compliance table level k = 11 0 0 0 1n. This pro-
cedure produces a compliance table, but it ignores
constraints on waiting site changes at each event. To
incorporate such constraints, it is useful to view the
system as being in a succession of states k over time,
where k is the number of available ambulances. In
the remainder of the paper, we will call the row of
the compliance table level with k waiting sites the
kth level of the compliance table, which indicates the
desired waiting sites for k available ambulances. This
compliance table level k is described by binary vari-
ables xjk equal to 1 if and only if an ambulance is
located at j ∈W , and by binary variables yik equal to
1 if demand point i is covered by at least one ambu-
lance in compliance table level k. Moreover, a bound
�k is imposed on the number of waiting site changes
between compliance table levels k and k + 1, where
1 ≤ k ≤ n− 1. As a consequence, binary variables ujk

are defined, which equal 1 if and only if j ∈W ceases
to be a waiting site in compliance table level k + 1,
starting from level k. The MECRP is formulated as
follows:

MECRP:

Maximize
n
∑

k=1

∑

i∈V

diqkyik (2)

Subject to:
∑

j∈Wi

xjk ≥yik i∈V 1 k=01110001n (3)

∑

j∈W

xjk =k k=01110001n (4)

xjk−xj1k+1 ≤ujk j ∈W1k=110001n−1 (5)
∑

j∈W

ujk ≤�k k=110001n−1 (6)

xjk ∈80119 j ∈W1k=01110001n (7)

yik ∈80119 i∈V 1 k=01110001n (8)

ujk ∈80119 j ∈W1k=110001n−10 (9)

In this model, the objective function (2) maximizes the
expected coverage. Constraints (3) induce that ver-
tex i ∈ V is covered only if at least one ambulance is
located in at least one of the waiting sites in Wi, in
compliance table level k. Constraints (4) ensure that
exactly k waiting sites are occupied in compliance
table level k. Constraints (5) and (6) control the num-
ber of waiting site changes between compliance table
levels k and k + 1. The designated waiting sites at
compliance table level k are given by decision vari-
ables xjk. Although k = 0 is included in the original
MECRP by Gendreau et al. (2006), it is not necessary
to include this case.

2.2. Expected Covered Demand
In the MECRP, the objective function for a given com-
pliance table level k is to maximize the demand cov-
ered within the response time threshold. Then, each
level is weighted according to qk, the probability of
being in a situation with k available ambulances,
which can be computed using Equation (1). As stated
in Gendreau et al. (2006), the MECRP reduces to the
MCLP with k ambulances if qk = 1. After all, k ambu-
lances are always available, because qi = 0 for i 6= k.

Although the MCLP is a useful method for deter-
mining ambulance base locations, it has a major short-
coming: it assumes there is always an ambulance
available at a base location. In practice, this is not
true, since ambulances may be busy serving a patient.
The fraction of duty time an ambulance is busy serv-
ing a patient is the definition of the earlier mentioned
busy fraction p. As a consequence of this limitation,
it makes no sense in the MCLP to locate multiple
ambulances at one location. This shortcoming was
addressed in Daskin (1983) by proposing the maxi-
mum expected coverage location problem (MEXCLP),
which was one of the first probabilistic models for
ambulance location.

In the MEXCLP, the busy fraction is incorporated
as follows: if vertex i ∈ V is covered by k ambulances,
the expected covered demand is di41 − pk5. Moreover,
the marginal contribution of the kth ambulance equals
di41 − p5pk−1. This expression is incorporated in the
objective value of MEXCLP:

MEXCLP:

Maximize
∑

i∈V

n
∑

k=1

di41 − p5pk−1zik (10)

Subject to:
∑

j∈Wi

xj ≥
n
∑

k=1

zik i ∈ V (11)

∑

j∈W

xj ≤ n (12)
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xj ∈ 80111 0 0 0 1n9 j ∈W (13)

zik ∈ 80119 i ∈ V 1 k = 11 0 0 0 1n0 (14)

Here, zik = 1 if and only if vertex i is covered by at
least k ambulances. Note that constraint (12) is an
inequality, while its MCLP counterpart is an equal-
ity. This is due to the concavity of the objective func-
tion in k for each i, which implies that if zik = 1,
then zi1 = zi2 = · · · = zik = 1 and if zil = 0, then zi1 l+1 =

zi1 l+2 = · · · = zin = 0. Moreover, the objective is to be
maximized. Hence, constraint (12) will be satisfied at
equality.

Analogous to the extension of the MCLP to the
MEXCLP, we will extend the MECRP to address the
first three shortcomings of the MECRP mentioned in
Section 1.2. This is done by replacing the objective
function of the MECRP, expression (2), by the follow-
ing objective function:

Maximize
∑

i∈V

n
∑

k=1

k
∑

l=1

diqk41 − p5pl−1zikl1 (15)

where zikl = 1 if and only if, in compliance table level
k, vertex i is covered by at least l ambulances. Other-
wise, zikl = 0. Moreover, constraint (3) is replaced by

∑

j∈Wi

xjk ≥

k
∑

l=1

zikl1 i ∈ V 1 k = 11 0 0 0 1n0 (16)

This constraint is satisfied at equality by the same
reasons as before. None of the other constraints of
the MECRP change, except for constraints (7) and (8),
which become xjk ∈ 80111 0 0 0 1n9 and zikl ∈ 80119,
where j ∈W , i ∈ V , k = 11 0 0 0 1n and l = 11 0 0 0 1 k. More-
over, constraint (9) is changed into ujk ∈ 80111 0 0 0 1n9,
where j ∈W and k = 11 0 0 0 1n− 1.

2.3. General Performance Measures
As stated in Section 1.2, another limitation of the
MECRP is the inability to incorporate EMS perfor-
mance measures other than coverage, such as patient
survival. This is a limitation of the MCLP and the
MEXCLP as well. In this section, we demonstrate how
to incorporate different objectives in the MECRP. Sim-
ilar to van Barneveld et al. (2015), we do this by intro-
ducing a non-negative nondecreasing penalty or cost
function ê, which is a function of the response time
solely, with domain �≥0. A penalty function assigns a
penalty to each different response time, and thus sev-
eral performance measures related to response times
can be incorporated. The commonly used EMS per-
formance measure of coverage can be translated into
the penalty function ê4t5 = �8t>r9, where t denotes
the response time and r the coverage radius. Other
examples of objectives could be minimizing the aver-
age response time or minimizing the average lateness,

modeled by penalty functions ê4t5 = t and ê4t5 =

max801 t − r9, respectively. In Erkut et al. (2008), sur-
vival functions are considered, which we can use as
penalty function as well (see Section 4).

To incorporate penalty functions, and thus general
performance objectives in the MECRP framework, we
must be aware of the fact that coverage does not
play a role here: we cannot use the set Wi defined
in our model formulation. After all, even an ambu-
lance positioned at a location for which the travel time
between this location and vertex i exceeds the cover-
age radius, has an effect. This effect gets larger and
larger if fewer ambulances are available. Hence, all
available ambulances are of influence on the ability
to respond to a request for each vertex. In contrast,
ambulances outside the coverage radius of a certain
vertex i are treated as nonexistent ones for this vertex,
if one uses the 0-1 nature of coverage.

As a consequence, constraint (3) of the MECRP
needs to be replaced by a different constraint, which
is able to take all available ambulances for each ver-
tex into account. That is, for each vertex i, we need an
ordering of ambulances according to their expected
travel time to i, because we incorporated ambulance
unavailability in our model: with probability 1−p the
closest ambulance will respond to the request, gen-
erating a certain penalty ê4t15, and with probability
41 − p5p the second closest ambulance will respond,
generating penalty ê4t25≥ê4t15, and so on up to the
kth ambulance for compliance table level k. Moreover,
to specify ê4t151ê4t251 0 0 0 1ê4tk5 for compliance table
level k, we need to incorporate the expected travel
times t11 t21 0 0 0 1 tk in our model, because the penalty
function relies on these.

As previously stated, the expected travel time from
waiting site j ∈ W to demand point i ∈ V is denoted
by �ji. If �ji ≤ �j ′i, then it holds that ê4�ji5 ≤ ê4�j ′i5,
from the definition of the penalty function. Moreover,
for the ordering of ambulances, we define zijkl = 1 if
and only if for compliance table level k, the lth closest
ambulance to vertex i is at waiting site j . We need to
introduce the constraint

∑

j∈W zijkl = 1 to ensure that at
compliance table level k, there is exactly one ambu-
lance that is the lth closest to i. Now we have all
the ingredients to formulate the minimal expected
penalty relocation problem (MEXPREP).

2.4. Minimal Expected Penalty Relocation
Problem

The MEXPREP is formulated as follows:

Minimize
n
∑

k=1

k
∑

l=1

∑

i∈V

∑

j∈W

qkdi41−p5pl−1ê4�ji5zijkl (17)

Subject to:
k
∑

l=1

zijkl=xjk i∈V 1 j ∈W1k=110001n (18)
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∑

j∈W

zijkl=1

i∈V 1 k=110001n1 l=110001k (19)
∑

j∈W

xjk =k k=110001n (20)

xjk−xj1k+1 ≤ujk

j ∈W1k=110001n−1 (21)
∑

j∈W

ujk ≤�k k=110001n−1 (22)

xjk ∈801110001n9 j ∈W1k=110001n (23)

zijkl∈80119 i∈V 1 j ∈W1k=110001n1

l=110001k (24)

ujk ∈801110001n9

j ∈W1k=110001n−10 (25)

Note that there is only a contribution to the objective
value if zijkl = 1, i.e., if for compliance table level k, the
lth closest ambulance to vertex i is at waiting site j .
The marginal contribution of this lth closest ambu-
lance to vertex i is di41 − p5pl−1ê4�ji5 for given ver-
tex i, waiting site j , and compliance table level k. That
is, with probability 41 − p5pl−1, the lth closest ambu-
lance to vertex i is the closest available one, inducing
a penalty of diê4�ji5. Like in the MECRP, each compli-
ance table level k is weighted according to the proba-
bility that the system is in a situation with k available
ambulances, as computed in (1).

Constraints (18) and (19) take over the role of
constraint (3) in the MECRP formulation. In con-
straint (18), both the left- and the right-hand side rep-
resent the number of ambulances at waiting site j
for compliance table level k. Note that no i-index is
present in the right-hand side. Since constraint (18)
holds for each i ∈ V , it is immediately forced that

k
∑

l=1

zi1jkl =
k
∑

l=1

zi2jkl1 i11i2 ∈V 1j ∈W1k=110001n0 (26)

This should hold in a feasible solution to the problem,
since for level k all the ambulances at waiting site j
contribute to the penalty induced by each demand
point in the objective function. As stated before, con-
straint (19) ensures that at compliance table level k,
there is exactly one ambulance that is the lth clos-
est to i. All the other constraints are the same as
the constraints in the MECRP formulation, except
for the integer and binary constraints. Note that since
the objective is to be minimized and the penalty func-
tion ê is non-decreasing, we do not require con-
straints related to the ordering of ambulances.

2.5. Adjusted MEXPREP
In the MEXCLP-formulation of Daskin (1983), some
simplifying assumptions are made: ambulances oper-
ate independently; each ambulance has the same busy
fraction; and ambulance busy fractions are invariant
with respect to the ambulance locations. Moreover,
the MEXPREP formulation, like the formulations of
MEXCLP and MECRP, all assume that the busy frac-
tion is an input. However, in reality, the busy frac-
tion p is an output as the service rate that is needed to
calculate the busy fraction depends on the allocation
of ambulances to waiting sites. The use of a univer-
sal busy fraction is a rough approximation of reality,
since the actual busy fractions depend on the compli-
ance table itself and on the dispatch policy.

Batta et al. (1989) consider an adjustment of the
objective function in MEXCLP, relaxing the assump-
tions on busy fractions. In this problem, called AMEX-
CLP, correction factors Q4n1p1k5, k = 01 0 0 0 1n − 1,
derived in Larson (1975), are incorporated in the
objective function of MEXCLP. We extend MEXPREP
to AMEXPREP by incorporating the correction factors
Q4n1p1k− 15 in Equation (17), where

Q4n1p1k5=

∑n−1
j=k

4n−k−15!4n−j5

4j−k5!
nj

n!
pj−k

41−p5
∑n−1

i=0
ni

i!
pi+ nnpn

n!

1

k=010001n−11 (27)

analogous to the work done by Batta et al. (1989). In
Section 4.6, we will explore the differences between
MEXPREP and AMEXPREP.

3. Assignment Problem
Determining the compliance table is just the first part
of the ambulance relocation problem. The second part
is related to the actual assignment of the k available
ambulances to the k waiting sites occurring in compli-
ance table level k. This problem is studied extensively
in Maleki et al. (2014), and two models for deter-
mining the assignment of ambulances to the waiting
sites in compliance table level k (as computed via
solving the MECRP) are proposed. In each of these
two models, called the generalized ambulance assign-
ment problem (GAAP) and the generalized ambu-
lance bottleneck assignment problem (GABAP), a dif-
ferent, yet related, objective is incorporated: GAAP
minimizes the total travel time travelled by all ambu-
lances to attain the configuration of the compliance
table level, while GABAP minimizes the maximum
travel time. Both, like the MECRP, are offline methods,
computing assignments beforehand. However, scala-
bility issues are present, since the number of combi-
nations between hospitals/waiting sites and waiting
sites grows very rapidly.
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As opposed to the offline approach of Maleki et al.
(2014), we use an online approach in our computa-
tions, by modeling the assignment problem as either
a minimum weighted bipartite matching problem
(MWBMP) or a linear bottleneck assignment prob-
lem (LBAP), similar to van Barneveld et al. (2015). By
modeling the problem as a MWBMP, we aim to find
an assignment of available ambulances to the desig-
nated waiting sites in the compliance table that min-
imizes the total travel time. However, in the assign-
ment, it may happen that one ambulance needs to
make a very long trip. Hence, the area around the
waiting site to which this ambulance is assigned is
vulnerable for a long time. It may be advantageous to
minimize the maximum travel time, and thus the time
until the system is in compliance. This can be done
by modeling the assignment problem as an LBAP.

In contrast to the computation of compliance tables,
fast methods exist for solving MWBMP and the LBAP,
e.g., the Hungarian method of complexity O4n35 for
MWBMP and the threshold algorithm of complexity
O4n205/

√

logn5 for LBAP (Burkhard et al. 2009). Hence,
this can be done in real time and an offline solu-
tion is not necessary. After all, this would require a
complex state dependent policy, which shows relo-
cation moves for every realized state of the system.
Moreover, an online implementation of the assign-
ment problem takes into account the actual locations
of driving ambulances and hence a redirection of
ambulances to different waiting sites. Therefore, we
recommend computing compliance tables offline, and
the assignment problem online. In Section 4.4, we will
explore the differences in MWBMP and LBAP.

4. Computational Study
MEXPREP computes compliance tables taking into
account ambulance unavailability, general perfor-
mance measures, and a restriction on the number of
waiting site changes. We apply MEXPREP to an EMS
region in The Netherlands, particularly the capital of
Amsterdam and its surrounding region. Results are
generated by simulation using historical data.

4.1. Experimental Setup
The EMS region of Amsterdam and the surrounding
areas is an amalgamation of two former EMS regions:
the semirural Zaanstreek-Waterland (North) and the
urban Amsterdam-Amstelland (South). The region is
displayed in Figure 1(a). This region covers approx-
imately 630 km2 and is home to 1.2 million inhabi-
tants, of which 68% live in Amsterdam itself. Ambu-
lance waiting sites are at the 17 nodes in Figure 1, of
which locations 2–4, 6–8, 11, 13, and 16 are hospitals.
Hence, �W � = 17. The numbers in brackets denote the
actual waiting site capacities. These restrictions could
be incorporated into all methods in Section 2, but in

the computational study we do not consider these,
apart from Section 4.7.

We aggregate the region into 162 demand points
based on four-digit postal codes, hence, �V � = 162. In
our computations, we use two different travel times.
For the average emergency travel times between the
vertices, we use travel times estimated by the RIVM,1

which provided us a 162 × 162 table of travel times
between the four-digit postal codes in this region. We
refer to Kommer and Zwakhals (2008) for a more
detailed description of this travel time model, which
we summarize in the online supplement (available as
supplemental material at http://dx.doi.org/10.1287/
ijoc.2015.0687). The relocation travel times were com-
puted by multiplying the emergency travel times by
a factor 10/9.

Moreover, historical data on emergency requests in
the year 2011 was provided by Ambulance Amster-
dam, which runs the emergency medical services in
this region. We only consider the time-period between
7 a.m. and 6 p.m., because during the evening and
night a different number of ambulances is on duty.
During the considered time period, 33 ambulances are
present in the system. However, of these 33 ambu-
lances, many are busy with ordered transport: taxi-
type transport of patients not able to travel to the
hospital themselves, usually scheduled in advance.
Therefore, we assume a fleet size of 21 in our
computations.

In 2011 between 7 a.m. and 6 p.m., the total num-
ber of emergency requests was 44,966, yielding an
hourly arrival rate of 11.2 requests. Only 44,520 of
these requests are useful, because historical data of
the remainder was not complete. We use this histori-
cal data to compute the busy fraction by dividing the
total patient-related work during these 4,015 hours
by the total duty time of 21 ambulances to obtain
a busy fraction of p = 0043047. The average busy
time (excluding relocation time after transferring the
patient at the hospital) of an ambulance is 0.82 hours.
The annual number of emergency requests ranges
between two (in a postal code somewhere between
waiting sites 9 and 13) and 1,545 (in the city center
of Amsterdam, near waiting site 1), with an average
demand of 275 per node. We define di as the probabil-
ity that an incoming request occurs in vertex i, com-
puted by normalization of the number of emergency
requests.

We assume a deterministic dispatch time of 120 sec-
onds and a deterministic pre-trip delay of 60 sec-
onds for ambulances at a waiting site. There is no
pre-trip delay if the dispatched ambulance is already
on the road. Moreover, the pre-trip delay for moving

1 Rijksinstituut Volksgezondheid en Milieu (National Institute for
Public Health and the Environment).
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Figure 1 (Color online) EMS Region of Amsterdam

an ambulance from a waiting site to another one is
assumed to be 180 seconds. The ambulance that can
be present fastest at the emergency scene is always
dispatched to the request.

We perform simulations using the computed com-
pliance tables and the actual emergency requests in
the region during the daytime of the year 2011. We
use the following historical data of these requests:
time and place (based on four-digit postal codes)
of occurrence, the on-scene time of the ambulance,
whether the patient needed transportation to a hospi-
tal, and the hospital time of the ambulance. No ran-
domness is involved, as we use the actual historical
data (trace-driven). The simulation model is coded in
MATLAB. Computation of the assignment of ambu-
lances to waiting sites is done online by solving either
the MWBMP or LBAP during the simulation. We test
performance according to six statistics:

1. Percentage requests responded to within the
response time threshold (720 seconds)

2. Average penalty per request
3. Average response time
4. Average number of relocations per ambulance

per day. A move of an ambulance only counts as relo-
cation if this move is induced by carrying out the
compliance table policy.

5. Average relocation time
6. Computation time to solve the model, run with

CPLEX 12.6 on a 2.2 GHz Intel(R) Core(TM) i7-
3632QM laptop with 8 GB RAM

In our computations, we consider five different
penalty functions. Three of them are based on sur-
vival functions, considered in Maio et al. (2003),
Valenzuela et al. (1997), and Waaelwijn et al. (2001).
These three functions all relate a survival proba-
bility to a response time, in the case of a cardiac
arrest. However, these survival probabilities depend
on additional factors rather than just the response
time, e.g., whether the collapse of a patient was wit-
nessed by the ambulance crew, the duration from
collapse to defibrillation, and the duration from col-
lapse to cardiopulmonary resuscitation (CPR). These
three survival functions are considered in Erkut et al.
(2008), and assumptions on these factors are made.
We follow these assumptions to obtain a survival
function solely depending on the response time (in
seconds). The considered penalty functions are as
follows:

ê14t5 = �8t>7209 (28)

ê24t5 = t (29)

ê34t5 = 1 − 41 + e00679+000044t5−1 (30)
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Figure 2 (Color online) Mortality Probabilities as a Function of
the Response Time

ê44t5 = 1 − 41 + e00113+000041t5−1 (31)

ê54t5 = 1 − 41 + e0004+00005t5−10 (32)

Function ê1 is based on coverage, in which we con-
sider a response time threshold of 720 seconds (12
minutes). Function ê2 represents the penalty function
focusing on the objective of minimizing the average
response time. Functions ê3, ê4, and ê5 represent the
survival functions of Maio et al. (2003), Valenzuela
et al. (1997), and Waaelwijn et al. (2001), respectively,
in a penalty function (mortality) setting. A graphical
representation of ê3, ê4, and ê5 is given in Figure 2.

4.2. Comparison of MEXPREP with MECRP
First, we compare the compliance tables obtained by
MEXPREP with the ones obtained by MECRP, fol-
lowing the formulation proposed in Gendreau et al.
(2006). We do this for the coverage-based penalty
function ê4t5= �8t>r9, since MECRP cannot take other
penalty functions into account. We use a coverage
radius of r = 720 seconds (12 minutes), and compute
compliance tables for different values of �k. Due to
the inability of the MECRP to consider systems with
more ambulances than waiting sites, which is the case
here, we compare MEXPREP with MECRP on two dif-
ferent settings: a setting with 17 ambulances instead
of 21; and a setting in which we have 21 ambulances,
but the compliance table will be carried out only if
17 or fewer ambulances are available. If more than 17
ambulances are available, ambulances that finish ser-
vice of a patient return to their home waiting site. In
the first setting, the busy fraction is 0.53175, whereas
in the second setting the busy fraction equals 0.43047
as mentioned before.

We only display the compliance tables for the �k = 0
case, since these compliance tables are nested and thus
can be represented efficiently. We represent such a

Table 1 Simulation Results for 17 Ambulances and Penalty
Function ê4t5=�8t>7209, Based on 44,520 Requests in 2011

Method Performance indicators �k = 0 �k = 1 �k = �k/2� �k = k

MECRP Percentage on time (%) 86.55 86.29 86.62 86.60
Lower bound 95%-CI (%) 86.24 85.97 86.31 86.28
Upper bound 95%-CI (%) 86.87 86.60 86.94 86.92
Average response time (s) 473 476 474 474
Mean no. of relocations 1.62 2.14 3.86 3.72
Average relocation time (s) 646 576 451 457
Computation time (s) <1 <1 <1 <1

MEXPREP Percentage on time (%) 88.23 88.18 88.18 88.34
Lower bound 95%-CI (%) 87.93 87.88 87.88 88.04
Upper bound 95%-CI (%) 88.53 88.48 88.48 88.64
Average response time (s) 461 461 461 460
Mean no. of relocations 1.30 1.31 1.31 1.54
Average relocation time (s) 625 616 616 571
Computation time (s) 76 85 85 77

nested compliance table by a one-dimensional vector,
where compliance table level k is given by entries 1
up to k. The computed MECRP and MEXPREP com-
pliance tables for �k = 0, for the two different settings
are displayed in (33) and (34), respectively. Note that
none of these four compliance tables equals another,
although the two MECRP-tables are very similar. Sim-
ulation results, using MWBMP as assignment policy,
for these compliances tables are listed in Tables 1
and 2, respectively. These tables include 95% confi-
dence intervals around the percentage of requests re-
sponded to within 720 seconds.

MECRP: 411161121141519117181111151

3110141131216175

MEXPREP: 4111161161611512110116114111

1011519161171125

(33)

MECRP: 411161121141519117181101151

1113141131216175

MEXPREP: 41161161111511012114161161

101911712112114155

(34)

Note that in Table 1 as well as in Table 2, the
MEXPREP significantly outperforms the MECRP on
the most important performance indicator: the per-
centage of requests responded to within the response
time threshold of 720 seconds. We observe improve-
ments on this criterion between 0.7% (second setting,
�k = 0) and 1.89% (first setting, �k = 1). Moreover,
this performance gain is achieved with fewer reloca-
tions, although the average relocation time is longer
for MEXPREP. A small disadvantage of the MEXPREP
compared to the MECRP is the computation time.
However, as stated in Section 1, the computation time
of the MEXPREP compliance tables is of less impor-
tance, since the problem can be solved offline.
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Table 2 Simulation Results for 21 Ambulances, Compliance
Tables Up to Level 17 and Penalty Function ê4t5=�8t>7209,
Based on 44,520 Requests in 2011

Method Performance indicators �k = 0 �k = 1 �k = �k/2� �k = k

MECRP Percentage on time (%) 94.39 94.27 94.11 94.09
Lower bound 95%-CI (%) 94.17 94.06 93.89 93.87
Upper bound 95%-CI (%) 94.60 94.49 94.33 94.31
Average response time (s) 415 417 418 418
Mean no. of relocations 2.64 3.79 4.16 4.17
Average relocation time (s) 509 444 420 420
Computation time (s) <1 <1 <1 <1

MEXPREP Percentage on time (%) 95.09 95.09 95.09 95.17
Lower bound 95%-CI (%) 94.89 94.89 94.89 94.97
Upper bound 95%-CI (%) 95.30 95.30 95.30 95.37
Average response time (s) 416 416 416 412
Mean no. of relocations 1.53 1.53 1.53 2.88
Average relocation time (s) 675 675 675 515
Computation time (s) 67 67 67 72

Observing Tables 1 and 2, we note that the bene-
fit of allowing non-nested compliance tables is very
marginal with respect to the percentage of requests,
for which the response time threshold is achieved,
and to the average response time. In some cases it is
even disadvantageous to allow more than zero wait-
ing site changes. Besides that, in the second setting
the MEXPREP computes the same compliance tables
for �k = 0, �k = 1, and �k = �k/2�. However, the effect
on the number of relocations is large if one uses
the compliance tables with no restrictions on wait-
ing site changes rather than compliance tables with
restrictions. The question arises whether this marginal
performance improvement outweighs this increase in
number of relocations. In line with Gendreau et al.
(2006), the average relocation time decreases if more
waiting site changes are allowed, as expected.

4.3. Relocation Thresholds
The number of relocations in Table 2 is quite large.
For instance, for the MEXPREP with �k = 0, the aver-
age number of relocations per day is 32. This is
because of the large number of changes in avail-
ability of ambulances. After all, each time an ambu-
lance is dispatched or finishes service, relocations
may be performed. However, one could argue the
effect of ambulance relocations if enough ambulances
are still available. As an example, it probably makes
no sense to relocate ambulances if n − 1 instead of
n ambulances are available, since frequent move-
ments may inconvenience ambulance crews. A way to
address this is the introduction of a relocation threshold,
denoted by K. If the number of available ambulances
is below this threshold, we use the compliance table
policy. However, if this is not the case, we carry out
the static policy: we perform no relocations if an ambu-
lance is dispatched, and we send a newly finished

ambulance back to its home waiting site. If a tran-
sition from level K to K + 1 occurs, each ambulance
is sent back to its home waiting site. Note that these
ambulance movements do not contribute to the num-
ber of relocations, as it is beneficial from the crew’s
perspective to be present at the home waiting site.

The determination of the ideal level of this relo-
cation threshold is an interesting topic. If it is too
high, it is possible that too many relocations are per-
formed. On the other hand, a low threshold may
result in a worse performance of an ambulance ser-
vice provider. To investigate the behavior of differ-
ent relocation thresholds K, we compute compliance
tables by MEXPREP for K = 7, K = 14, and K = 21, for
the five different penalty functions of (28)–(32), where
�k = 0. That is, we change n in the MEXPREP formu-
lation to K and compute K compliance table levels.
Except for the fact we do not change the qk values
in the objective function, we compute MEXPREP as if
there were K ambulances instead of n.

In addition, we compute an initial configuration of
the n = 21 ambulances by an ordinary location prob-
lem, which is a modification of MEXPREP. In MEX-
PREP, we set k = 21 in all constraints and in the objec-
tive function. Moreover, we discard constraints (21),
(22), and (25), as well as qk in the objective function.
Note that for penalty function ê1, this modification of
MEXPREP is equivalent to MEXCLP.

Then, we simulate our system for K = 0 (the static
policy), K = 7, K = 14, and K = 21, starting in the ini-
tial configuration. This initial configuration also deter-
mines the home waiting site of each ambulance. In the
simulation, we solve the MWBMP to obtain a solu-
tion to the assignment problem. Results are listed in
Table 3.

As expected, the patient-based performance indica-
tors (which are fractions on time, average penalty, and
average response time) increase as K increases. Specif-
ically, the compliance tables obtained by MEXPREP
outperform the static policies, which in addition to
the MECRP compliance tables could also serve as a
benchmark policy on all penalty functions. However,
this comes at the expense of additional ambulance
relocations.

Interestingly, fewer ambulance relocations are per-
formed when a relocation threshold K = 21 is used
instead of K = 14. This behavior is easily explained by
the following observation: the majority of the ambu-
lance relocations are done when a transition from
level K + 1 to K occurs. If K = n = 21, there are
no transitions from level K + 1 to level K. Due to
the nesting of the compliance table, relatively few
ambulance relocations are performed. However, for
K = 14, there are many transitions from level 15 to 14.
Together with the fact that level 14 is not in general
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Table 3 Simulation Results for Several Levels of K , n = 21
Ambulances, and �k = 0, Based on 44,520 Requests in 2011

Function Performance indicators K = 0 K = 7 K = 14 K = 21

ê1 Percentage on time (%) 90041 91036 95002 95019
Average penalty 0010 0009 0005 0004
Average response time (s) 462 456 422 415
Mean no. of relocations 0 1009 2007 1040
Average relocation time (s) — 707 676 678
Computation time (s) — 5 38 470

ê2 Percentage on time (%) 93054 94009 95047 95066
Average penalty 433 429 405 403
Average response time (s) 433 429 405 403
Mean no. of relocations 0 1013 2030 1060
Average relocation time (s) — 604 595 647
Computation time (s) — 6 35 172

ê3 Percentage on time (%) 93026 93092 95008 95013
Average penalty 009124 009114 009052 009043
Average response time (s) 431 426 405 402
Mean no. of relocations 0 1002 2041 1075
Average relocation time (s) — 632 574 603
Computation time (s) — 7 68 455

ê4 Percentage on time (%) 93026 93089 95008 95011
Average penalty 008464 008447 008351 008341
Average response time (s) 431 426 405 403
Mean no. of relocations 0 1002 2041 1076
Average relocation time (s) — 633 574 608
Computation time (s) — 5 50 548

ê5 Percentage on time (%) 93026 93089 95005 95009
Average penalty 008741 008726 008632 008614
Average response time (s) 431 426 405 402
Mean no. of relocations 0 1002 2039 1078
Average relocation time (s) — 633 575 600
Computation time (s) — 4 107 713

nested in the ambulance configuration with 15 ambu-
lances, many ambulance relocations are carried out.
This behavior is also reflected in Figure 3, where the
total number of relocations and mean penalty as func-
tion of K is displayed. It is not a surprise that the peak
of the number of relocations is at K = 12. After all,
the mean number of available ambulances is between
12 and 13, so many transitions from a situation with
13 to a situation with 12 available ambulances take
place.

Note that for the static policy K = 0, the perfor-
mance indicators differ for the considered penalty
functions in general, although no compliance table
policy is carried out. This is a direct consequence
of the differences in the initial configurations. More-
over, it is worth noting that the coverage penalty
function ê1 is outperformed by the average response
time penalty function ê2 on the percentage on time
criterion, despite the fact that ê1 focuses on maximiz-
ing this percentage. This underlines the conclusion
of Erkut et al. (2008) about the weakness of models
based on coverage.
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Figure 3 (Color online) Total Number of Relocations and Mean
Penalty as a Function of the Relocation Threshold K , for 21
Ambulances, �k = 0, and Penalty Function ê4t5=�8t>7209

4.4. Assignments
We proceed this numerical study with a comparison
of the two models for solving the assignment prob-
lem, mentioned in Section 3, namely the MWBMP and
the LBAP. Results are displayed in Table 4.

The results in Table 4 show that using the LBAP
for the assignment problem results in a slightly bet-
ter performance regarding the patient-based perfor-
mance indicators. This small increase is explained by
the observation that LBAP minimizes the maximum
travel time of a relocated ambulance. As a conse-
quence, the ambulance configuration corresponding
to the new compliance table level is attained faster.
Hence, as expected, the average relocation time per
ambulance decreases drastically. After all, using the
LBAP, a long trip of one ambulance is split into multi-
ple shorter trips, thus reducing the average relocation
time per ambulance. However, the total number of
relocations is approximately quadrupled with respect
to the usage of the MWBMP as assignment problem.
This is probably not acceptable from the crew per-
spective. It is up to the ambulance service provider to
decide whether this tremendous increase of number
of relocations outweighs the benefits of the increase
in patient-based performance.

4.5. Expected Number of Survivors
Another interesting indicator that provides insight
into the performance of the compliance tables is the
expected number of survivors. This expected num-
ber is easily computed by the summation of the
44,520 penalties for the survival functions ê3, ê4, and
ê5. Moreover, we perform cross-comparisons of these
functions: we evaluate the compliance table corre-
sponding to the solution of MEXPREP for one spe-
cific penalty function (rows) using the other ones
(columns), for both MWBMP and LBAP. Results are
listed in Table 5.
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Table 4 Simulation Results for n = K = 21 and �k = 0, Based on 44,520 Requests in 2011

Method Performance indicators ê1 ê2 ê3 ê4 ê5

MWBMP Percentage on time (%) 95019 95066 95013 95011 95009
Average penalty 0004 403 009043 008341 008614
Average response time (s) 415 403 402 403 402
Average no. of relocations 1040 1060 1075 1076 1078
Average relocation time (s) 678 647 603 608 600
Computation time (s) 470 172 455 548 713

LBAP Percentage on time (%) 95062 95071 95023 95026 95027
Average penalty 0004 394 009017 008300 008579
Average response time (s) 408 394 395 395 396
Average no. of relocations 6011 6033 6047 6052 6051
Average relocation time (s) 394 387 365 363 361
Computation time (s) 467 172 440 552 710

Table 5 Expected Number of Survivors for n = 21 and �k = 0, Based
on 44,520 Requests in 2011

ê3 ê4 ê5

Evaluation: MWBMP LBAP MWBMP LBAP MWBMP LBAP

ê1 41033 41163 71056 71248 51803 61003
ê2 41228 41350 71355 71537 61106 61294
ê3 41261 41378 71404 71577 61159 61339
ê4 41250 41372 71387 71567 61142 61329
ê5 41268 41371 71413 71565 61170 61328

If one considers the rows corresponding to ê3, ê4,
and ê5 in Table 5, one may observe that the differ-
ences within these columns are very small: the num-
bers differ at most by 0.5%. We conclude that the
chosen survival function is not of influence on the
maximization of survivors. In contrast, the number of
survivors differs for the compliance tables induced by
the penalty functions based on coverage and average
response times; ê1 and ê2, respectively. Especially for
ê1, this difference is around 5% compared to the sur-
vival functions. However, the difference between the
survival functions and ê2 is relatively minor. As a
consequence, it seems that the average response time
is a better approximation for survival than coverage.

As can be observed in Table 5, there are differ-
ences between MWBMP and LBAP. For instance, the
expected number of survivors using LBAP increases
with approximately 2.6% with respect to the case
in which the MWBMP is used as assignment prob-
lem for ê3. This was largely as expected due to
the increase in performance of LBAP with respect to
MWBMP, as can be observed in Table 4. The expected
number of survivors is smallest when the compliance
tables are evaluated using penalty function ê3. This
is explained by the fact that ê3 is the most pessimistic
survival function (see Figure 2).

4.6. AMEXPREP
In Section 2.5, we discussed some limitations and
assumptions on busy fractions. These assumptions

Table 6 MEXPREP Objective Values and Simulated Penalties for
n = 21, Based on 44,520 Requests in 2011

Performance indicators ê1 ê2 ê3 ê4 ê5

�k = 0 MEXPREP objective value 000572 443 009172 008533 008817
MWBMP simulated penalty 000438 403 009043 008341 008614
LBAP simulated penalty 000438 395 009012 008293 008573

�k = k MEXPREP objective value 000571 443 009172 008533 008817
MWBMP simulated penalty 000439 403 009038 008328 008608
LBAP simulated penalty 000426 396 009013 008292 008566

may result in an objective value of MEXPREP that dif-
fers from the values computed through simulation. In
Table 6, objective and simulated values are listed for
the two extremes �k = 0 and �k = k for both MWBMP
and LBAP.

From Table 6, we conclude that MEXPREP’s esti-
mation of the system performance is somewhat too
pessimistic. This is most evident in ê1, in which the
relative gap between objective value and simulated
values is largest. Moreover, we observe a difference
only in the fourth digit in the objective values for
�k = 0 and �k = k for ê1. From this observation, one
could draw the conclusion that nested compliance
tables are already very close to optimal. This is also
underlined by the simulated values. In all cases, the
simulated values using MWBMP are closer to the
objective values than in the simulation that uses LBAP
as the assignment problem. This is as expected, since
the use of LBAP results in better patient-based per-
formance (see Table 4).

As opposed to the objective values of MEXPREP,
the AMEXPREP presented in Section 2.5 provides an
optimistic estimation of the system performance, as
can be observed in Table 7. For the penalty functions
based on survival, ê3, ê4, and ê5, the objective value
of AMEXPREP differs more from the simulated val-
ues than is the case for MEXPREP. Surprisingly, for ê1
and ê2, it is the opposite. At last, it is worth noting
that AMEXPREP performs slightly better than MEX-
PREP on the penalty criterion in general.
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Table 7 AMEXPREP Objective Values and Simulated Penalties for
n = 21 and �k = 0, Based on 44,520 Requests in 2011

Performance
indicators ê1 ê2 ê3 ê4 ê5

MEXPREP Objective value 000572 443 009172 008533 008817
MWBMP simulated 000438 403 009043 008341 008614

penalty
LBAP simulated 000438 394 009017 008300 008579

penalty

AMEXPREP Objective value 000371 380 008127 007539 007794
MWBMP simulated 000435 400 009032 008323 008600

penalty
LBAP simulated 000423 395 009014 008293 008574

penalty

4.7. Base Station Capacities
In this section, we solve MEXPREP taking into ac-
count the actual waiting site capacities depicted in
Figure 1. These restrictions can easily be incorporated
in MEXPREP by introducing constraints of the type

xjk ≤ cj j ∈W1 k = 11 0 0 0 1n− 11 (35)

where cj denotes the capacity of waiting site j ∈ W .
We compute the restricted version of MEXPREP for
�k = 0. We compare the obtained compliance table
to the actual capacities. The number of deviations is
reported in the columns c1 in Table 8. For instance,
for ê1, the number of capacity violations is 13 for the
whole compliance table, and these violations occur in
levels nine up to 21. In addition, columns c2 report
the numbers for the restricted compliance table com-
pared to the unrestricted one. Note that the compli-
ance tables consist of 231 numbers in total.

Only for ê1 the computation of restricted MEX-
PREP results in a different objective value compared
to the unrestricted MEXPREP: 0.0576. For the other
penalty functions, the objective values do not differ
in the first four digits, although different compliance
tables were generated, as can be observed in Table 8.
From this observation, one could draw the conclusion
that minor differences in compliance tables are hardly
noticed in the objective value: there are many com-
pliance tables that are near-optimal. It is also inter-
esting to see that there are deviations in lower levels
for penalty functions ê3, ê4, and ê5 with respect to
the restricted compliance table, while these are not
present in the middle levels.

In addition, we simulate the restricted compliance
tables. The differences in average penalties between
restricted and unrestricted compliance tables are very
small for all penalty functions and not worth report-
ing. According to this analysis, one might conclude
that the current capacity is not a limiting factor.

4.8. Computation Times
We conclude this section with an investigation on
computation times of MEXPREP. Unfortunately, we
are not able to investigate the increase in computa-
tion time by choosing a different demand aggregation
for the considered case, since we only have access to
travel times between four-digit postal codes. As an
alternative, we create an artificial problem instance:
we pick �V � demand nodes out of a grid of size 100×

100, for different values of �V �, and assign demand
probabilities to them. Travel times between nodes are
calculated by the Manhattan metric. For the base loca-
tions, we select �W � = 15 points, and we consider
n = 20 ambulances. Then, we solve MEXPREP for
the extremes �k = 0 and �k = k, and for ê2 and ê5,
since in Table 4 the computation time of these penalty
functions is shortest and longest, respectively. Results
on computation times, as well as number of vari-
ables and constraints (Equations (18)–(22)) are listed
in Table 9.

For large values of �V �, it takes more time to obtain
a solution for �k = 0 compared to �k = k, as can be
observed in Table 9. The explanation of this phe-
nomenon is probably in the method CPLEX uses to
compute a solution. From Tables 3 and 4 one may
conclude that the use of ê2 and ê5 induce the short-
est and longest computation times, respectively. How-
ever, Table 9 shows that ê2 did not consistently result
in shorter computation times than ê5.

5. Concluding Remarks
In this paper, we presented the minimum expected
penalty relocation problem (MEXPREP) to compute
compliance tables. The MEXPREP is an extension
of the maximal expected coverage relocation prob-
lem (MECRP) formulated in Gendreau et al. (2006)
in two directions. First, we incorporated the objec-
tive function of the maximum expected covering loca-
tion problem (MEXCLP) into the objective function of
the MECRP to anticipate multiple future emergency
requests beyond a first request. Then, we introduced
penalty functions in order to focus on performance
measures other than coverage, including survival
probabilities. Moreover, based on the assumptions
and limitations of busy fractions, we introduced an
adjusted version of MEXPREP. In this adjusted ver-
sion, called AMEXPREP, correction factors proposed
in Batta et al. (1989) were incorporated. Additionally,
we considered both the minimum weighted bipartite
matching problem (MWBMP) and the linear bottle-
neck assignment problem (LBAP) as assignment prob-
lems for the assignment of available ambulances to
the waiting sites indicated by the compliance table
level.

We concluded this paper with a numerical study,
based on 44,520 emergency requests in 2011 in the
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Table 8 Deviations of Unrestricted MEXPREP Compliance Tables with Respect to Actual Capacities and Restricted MEXPREP for �k = 0

ê1 ê2 ê3 ê4 ê5

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

Deviations 13 16 4 4 5 9 5 10 11 14
Levels 9–21 9–21 18–21 18–21 17–21 2, 3, 18–21 17–21 2–4, 18–21 17–21 2–4, 18–21

Table 9 Computation Times for the Artificial Problem Instance

�V � = 100 �V � = 200 �V � = 300 �V � = 400 �V � = 500 �V � = 600

No. of variables 302× 105 603× 105 905× 105 103× 106 106× 106 109× 106

No. of constraints 301× 105 602× 105 902× 105 102× 106 105× 106 108× 106

Computation time ê2, �k = 0 (s) 53 168 348 695 1,119 1,770
Computation time ê5, �k = 0 (s) 38 196 387 808 1,182 1,689
Computation time ê2, �k = k (s) 63 197 459 595 1,049 1,594
Computation time ê5, �k = k (s) 47 189 349 576 997 1,650

region of Amsterdam and its surroundings. In this
study, we compared the MEXPREP compliance tables
to both the MECRP compliance tables and the static
policy, and we observed that the MEXPREP outper-
forms both of them on most performance indicators.
We also carried out a comparison between several
restrictions on waiting site changes. Moreover, we
considered several relocation thresholds, and com-
pared the resulting performance when using LBAP
and MWBMP as assignment problems. In addition,
we compared the objective values with the simulated
values for both MEXPREP and AMEXPREP. Stud-
ies regarding computation times of MEXPREP and
the effect of base station capacities were conducted
as well.

There are several extensions that can be made to
improve the realism of the MEXPREP model. For
instance, we assumed travel times to be determinis-
tic, while in reality these are stochastic. Moreover, we
used one universal busy fraction p, which included
some limitations. For instance, in reality, this busy
fraction probably differs per base location. Another
interesting research topic is a modification of MEX-
PREP in which only certain designated levels of the
compliance table are computed, rather than the whole
compliance table, and how this kind of policy affects
the performance. With regard to survival probabil-
ities, we only considered survival functions based
on a cardiac arrest, while other types of emergency
requests occur in practice as well. However, survival
functions for several types of emergency requests
could be combined in one survival function using
weights corresponding to the frequency of different
request types (if this could be quantified, as pointed
out in Erkut et al. 2008). The MEXPREP model to com-
pute compliance tables presented in this paper forms
a good basis for these extensions and modifications.
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