
Semidefinite Programming
and Nash Equilibria in Bimatrix Games

Amir Ali Ahmadi and Jeffrey Zhang ∗

Abstract

We explore the power of semidefinite programming (SDP) for finding additive ε-approximate
Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming
formulation of the Nash equilibrium (NE) problem and provide a number of valid inequalities to
improve the quality of the relaxation. If a rank-1 solution to this SDP is found, then an exact
NE can be recovered. We show that for a strictly competitive game, our SDP is guaranteed to
return a rank-1 solution. We propose two algorithms based on iterative linearization of smooth
nonconvex objective functions whose global minima by design coincide with rank-1 solutions.
Empirically, we demonstrate that these algorithms often recover solutions of rank at most two
and ε close to zero. Furthermore, we prove that if a rank-2 solution to our SDP is found, then a
5
11 -NE can be recovered for any game, or a 1

3 -NE for a symmetric game. We then show how our
SDP approach can address two (NP-hard) problems of economic interest: finding the maximum
welfare achievable under any NE, and testing whether there exists a NE where a particular set
of strategies is not played. Finally, we show the connection between our SDP and the first level
of the Lasserre/sum of squares hierarchy.

Keywords: Nash equilibria, semidefinite programming, correlated equilibria.

1 Introduction

A bimatrix game is a game between two players (referred to in this paper as players A and B)
defined by a pair of m × n payoff matrices A and B. Let 4m and 4n denote the m-dimensional
and n-dimensional simplices

4m = {x ∈ Rm| xi ≥ 0,∀i,
m∑
i=1

xi = 1},4n = {y ∈ Rn| yi ≥ 0, ∀i,
n∑
i=1

yi = 1}.

These form the strategy spaces of player A and player B respectively. For a strategy pair (x, y) ∈
4m ×4n, the payoff received by player A (resp. player B) is xTAy (resp. xTBy). In particular,
if the players pick vertices i and j of their respective simplices (also called pure strategies), their
payoffs will be Ai,j and Bi,j . One of the prevailing solution concepts for bimatrix games is the
notion of Nash equilibrium. At such an equilibrium, the players are playing mutual best responses,
i.e., a payoff maximizing strategy against the opposing player’s strategy. In our notation, a Nash
equilibrium for the game (A,B) is a pair of strategies (x∗, y∗) ∈ 4m ×4n such that

x∗TAy∗ ≥ xTAy∗,∀x ∈ 4m,

and
x∗TBy∗ ≥ x∗TBy, ∀y ∈ 4n.

1

∗The authors are partially supported by the DARPA Young Faculty Award, the Young Investigator Award of the
AFOSR, the CAREER Award of the NSF, the Google Faculty Award, and the Sloan Fellowship.

1In this paper we assume that all entries of A and B are between 0 and 1, and argue at the beginning of Section 2
why this is without loss of generality for the purpose of computing Nash equilibria.
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Nash [36] proved that for any bimatrix game, such pairs of strategies exist (in fact his result more
generally applies to games with a finite number of players and a finite number of pure strategies).
While existence of these equilibria is guaranteed, finding them is believed to be a computationally
intractable problem. More precisely, a result of Daskalakis, Goldberg, and Papadimitriou [16]
implies that computing Nash equilibria is PPAD-complete (see [16] for a definition) even when the
number of players is 3. This result was later improved by Chen and Deng [9] who showed the same
hardness result for bimatrix games.

These results motivate the notion of an approximate Nash equilibrium, a solution concept in
which players receive payoffs “close” to their best response payoffs. More precisely, a pair of
strategies (x∗, y∗) ∈ 4m ×4n is an (additive) ε-Nash equilibrium for the game (A,B) if

x∗TAy∗ ≥ xTAy∗ − ε, ∀x ∈ 4m,

and
x∗TBy∗ ≥ x∗TBy − ε,∀y ∈ 4n.

2

Note that when ε = 0, (x∗, y∗) form an exact Nash equilibrium, and hence it is of interest to find
ε-Nash equilibria with ε small. Unfortunately, approximation of Nash equilibria has also proved to
be computationally difficult. Cheng, Deng, and Teng have shown in [10] that, unless PPAD ⊆ P,
there cannot be a fully polynomial-time approximation scheme for computing Nash equilibria in
bimatrix games. There have, however, been a series of constant factor approximation algorithms
for this problem [18, 17, 27, 44], with the current best producing a .3393 approximation via an
algorithm by Tsaknakis and Spirakis [44].

We remark that there are exponential-time algorithms for computing Nash equilibria, such as
the Lemke-Howson algorithm [32, 41]. There are also certain subclasses of the problem which can
be solved in polynomial time, the most notable example being the case of zero-sum games (i.e.
when B = −A). This problem was shown to be solvable via linear programming by Dantzig [14],
and later shown to be polynomially equivalent to linear programming by Adler [2]. Aside from
computation of Nash equilibria, there are a number of related decision questions which are of
economic interest but unfortunately NP-hard. Examples include deciding whether a player’s payoff
exceeds a certain threshold in some Nash equilibrium, deciding whether a game has a unique Nash
equilibrium, or testing whether there exists a Nash equilibrium where a particular set of strategies
is not played [21, 12].

Our focus in this paper is on understanding the power of semidefinite programming3 (SDP)
for finding approximate Nash equilibria in bimatrix games or providing certificates for related
decision questions. The goal is not to develop a competitive solver, but rather to analyze the
algorithmic power of SDP when applied to basic problems around computation of Nash equilibria.
Semidefinite programming relaxations have been analyzed in depth in areas such as combinatorial
optimization [22], [33] and systems theory [8], but not to such an extent in game theory. To our
knowledge, the appearance of SDP in the game theory literature includes the work of Stein for
exchangeable equilibria in symmetric games [43], of Parrilo on zero-sum polynomial games [38], of
Parrilo and Shah for zero-sum stochastic games [42], and of Laraki and Lasserre for semialgebraic
min-max problems in static and dynamic games [28].

1.1 Organization and Contributions of the Paper

In Section 2, we formulate the problem of finding a Nash equilibrium in a bimatrix game as a
nonconvex quadratically constrained quadratic program and pose a natural SDP relaxation for it. In

2There are also other important notions of approximate Nash equilibria, such as ε-well-supported Nash equilib-
ria [20] and relative approximate Nash equilibria [15] which are not considered in this paper.

3The unfamiliar reader is referred to [45] for the theory of SDPs and a description of polynomial-time algorithms
for them based on interior point methods.
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Section 3, we show that our SDP is exact when the game is strictly competitive (see Definition 3.3).
In Section 4, we design two continuous but nonconvex objective functions for our SDP whose global
minima coincide with rank-1 solutions. We provide a heuristic based on iterative linearization for
minimizing both objective functions. We show empirically that these approaches produce ε very
close to zero (on average in the order of 10−3). In Section 5, we establish a number of bounds on
the quality of the approximate Nash equilibria that can be read off of feasible solutions to our SDP.
In Theorems 5.5, 5.6, and 5.8, we show that when the SDP returns solutions which are “close”
to rank-1, the resulting strategies have have small ε. We then present an improved analysis in
the rank-2 case which shows how one can recover a 5

11 -Nash equilibrium from the SDP solution

(Theorem 5.10). We further prove that for symmetric games (i.e., when B = AT ), a 1
3 -Nash

equilibrium can be recovered in the rank-2 case (Theorem 5.17). We do not currently know of a
polynomial-time algorithm for finding rank-2 solutions to our SDP. If such an algorithm were found,
it would, together with our analysis, improve the best known approximation bound for symmetric
games. In Section 6, we show how our SDP formulation can be used to provide certificates for
certain (NP-hard) questions of economic interest about Nash equilibria in symmetric games. These
are the problems of testing whether the maximum welfare achievable under any symmetric Nash
equilibrium exceeds some threshold, and whether a set of strategies is played in every symmetric
Nash equilibrium. In Section 7, we show that the SDP analyzed in this paper dominates the first
level of the Lasserre hierarchy (Proposition 7.1). Some directions for future research are discussed
in Section 8. The four appendices of the paper add some numerical and technical details.

2 The Formulation of our SDP Relaxation

In this section we present an SDP relaxation for the problem of finding Nash equilibria in bi-
matrix games. This is done after a straightforward reformulation of the problem as a nonconvex
quadratically constrained quadratic program. Throughout the paper the following notation is used.

· Ai, refers to the i-th row of a matrix A.
· A,j refers to the j-th column of a matrix A.
· ei refers to the elementary vector (0, . . . , 0, 1, 0, . . . , 0)T with the 1 being in position i.
· 4k refers to the k-dimensional simplex.
· 1m refers to the m-dimensional vector of one’s.
· 0m refers to the m-dimensional vector of zero’s.
· Jm,n refers to the m× n matrix of one’s.
· A � 0 denotes that the matrix A is positive semidefinite (psd), i.e., has nonnegative eigen-

values.
· A ≥ 0 denotes that the matrix A is nonnegative, i.e., has nonnegative entries.
· A � B denotes that A−B � 0.
· Sk×k denotes the set of symmetric k × k matrices.
· Tr(A) denotes the trace of a matrix A, i.e., the sum of its diagonal elements.
· A⊗B denotes the Kronecker product of matrices A and B.
· vec(M) denotes the vectorized version of a matrix M .
· For a vector v, diag(v) denotes the diagonal matrix with v on its diagonal. For a square

matrix M , diag(M) denotes the vector containing its diagonal entries.

We also assume that all entries of the payoff matrices A and B are between 0 and 1. This
can be done without loss of generality because Nash equilibria are invariant under certain affine
transformations in the payoffs. In particular, the games (A,B) and (cA+ dJm×n, eB + fJm×n)
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have the same Nash equilibria for any scalars c, d, e, and f , with c and e positive. This is because

x∗TAy ≥ xTAy
⇔ c(x∗TAy∗) + d ≥ c(xTAy∗) + d

⇔ c(x∗TAy∗) + d(x∗TJm×ny
∗) ≥ c(xTAy∗) + d(xTJm×ny

∗)

⇔ x∗T (cA+ dJm×n)y∗ ≥ xT (cA+ dJm×n)y

Identical reasoning applies for player B.

2.1 Nash Equilibria as Solutions to Quadratic Programs

Recall the definition of a Nash equilibrium from Section 1. An equivalent characterizaiton is that
a strategy pair (x∗, y∗) ∈ 4m ×4n is a Nash equilibrium for the game (A,B) if and only if

x∗TAy∗ ≥ eTi Ay∗, ∀i ∈ {1, . . . ,m},
x∗TBy∗ ≥ x∗TBei, ∀i ∈ {1, . . . , n}.

(1)

The equivalence can be seen by noting that because the payoff from playing any mixed strategy
is a convex combination of payoffs from playing pure strategies, there is always a pure strategy best
response to the other player’s strategy.

We now treat the Nash problem as the following quadratic programming (QP) feasibility prob-
lem:

min
x∈Rm,y∈Rn

0

subject to xTAy ≥ eTi Ay,∀i ∈ {1, . . . ,m},
xTBy ≥ xTBej ,∀j ∈ {1, . . . , n},
xi ≥ 0, ∀i ∈ {1, . . . ,m},
yi ≥ 0,∀j ∈ {1, . . . , n},
m∑
i=1

xi = 1,

n∑
i=1

yi = 1.

(2)

Similarly, a pair of strategies x∗ ∈ 4m and y∗ ∈ 4n form an ε-Nash equilibrium for the game
(A,B) if and only if

x∗TAy∗ ≥ eTi Ay∗ − ε,∀i ∈ {1, . . . ,m},

x∗TBy∗ ≥ x∗TBei − ε, ∀i ∈ {1, . . . , n}.
Observe that any pair of simplex vectors (x, y) is an ε-Nash equilibrium for the game (A,B) for
any ε that satisfies

ε ≥ max{max
i

eTi Ay − xTAy,max
i

xTBei − xTBy}.

We use the following notation throughout the paper:

· εA(x, y) := max
i

eTi Ay − xTAy,

· εB(x, y) := max
i

xTBei − xTBy,

· ε(x, y) := max{εA(x, y), εB(x, y)},

and the function parameters are later omitted if they are clear from the context.
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2.2 SDP Relaxation

The QP formulation in (2) lends itself to a natural SDP relaxation. We define a matrix

M :=

[
X P
Z Y

]
,

and an augmented matrix

M′ :=

X P x
Z Y y
x y 1

 ,
with X ∈ Sm×m, Z ∈ Rn×m, Y ∈ Sn×n, x ∈ Rm, y ∈ Rn and P = ZT .

The SDP relaxation can then be expressed as

min
M′∈Sm+n+1,m+n+1

0 (SDP1)

subject to Tr(AZ) ≥ eTi Ay,∀i ∈ {1, . . . ,m}, (3)

Tr(BZ) ≥ xTBej ,∀j ∈ {1, . . . , n}, (4)
m∑
i=1

xi = 1, (5)

n∑
i=1

yi = 1, (6)

M′ ≥ 0, (7)

M′m+n+1,m+n+1 = 1, (8)

M′ � 0. (9)

We refer to the constraints (3) and (4) as the relaxed Nash constraints and the constraints (5)
and (6) as the unity constraints. This SDP is motivated by the following observation.

Proposition 2.1. Let M′ be any rank-1 feasible solution to SDP1. Then the vectors x and y from
its last column constitute a Nash equilibrium for the game (A,B).

Proof. We know that x and y are in the simplex from the constraints (5), (6), and (7).
If the matrix M′ is rank-1, then it takes the formxxT xyT x

yxT yyT y
xT yT 1

 =

xy
1

xy
1

T . (10)

Then, from the relaxed Nash constraints we have that

eTi Ay ≤ Tr(AZ) = Tr(AyxT ) = Tr(xTAy) = xTAy,

xTAei ≤ Tr(BZ) = Tr(ByxT ) = Tr(xTBy) = xTBy.

The claim now follows from the characterization given in (1).

Remark 2.1. Because a Nash equilibrium always exists, there will always be a matrix of the form (10)
which is feasible to SDP1. Thus we can disregard any concerns about SDP1 being feasible, even
when we add valid inequalities to it in Section 2.3.
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Remark 2.2. It is intuitive to note that the submatrix P = ZT of the matrix M′ corresponds to a
probability distribution over the strategies, and that seeking a rank-1 solution to our SDP can be
interpreted as making P a product distribution.

The following theorem shows that SDP1 is a weak relaxation and stresses the necessity of
additional valid constraints.

Theorem 2.2. Consider a bimatrix game with payoff matrices bounded in [0, 1]. Then for any

two vectors x ∈ 4m and y ∈ 4n, there exists a feasible solution M′ to SDP1 with

xy
1

 as its last

column.

Proof. Consider any x, y, γ > 0, and the matrixxy
1

xy
1

T +

[
γJm+n,m+n 0m+n

0Tm+n 0

]
.

This matrix is the sum of two nonnegative psd matrices and is hence nonnegative and psd. By
assumption x and y are in the simplex, and so constraints (5)− (9) of SDP1 are satisfied. To check
that constraints (3) and (4) hold, note that since A and B are nonnegative, as long as the matrices
A and B are not the zero matrices, the quantities Tr(AZ) and Tr(BZ) will become arbitrarily
large as γ increases. Since eTi Ay and xTBei are bounded by 1 by assumption, we will have that
constraints (3) and (4) hold for γ large enough. In the case where A or B is the zero matrix, the
Nash constraints are trivially satisfied for the respective player.

2.3 Valid Inequalities

In this subsection, we introduce a number of valid inequalities to improve upon the SDP relaxation
in SDP1. These inequalities are justified by being valid if the matrix returned by the SDP is
rank-1. The terminology we introduce here to refer to these constraints is used throughout the
paper. Constraints (11) and (12) will be referred to as the row inequalities, and (13) and (14) will
be referred to as the correlated equilibrium inequalities.

Proposition 2.3. Any rank-1 solution M′ to SDP1 must satisfy the following:

m∑
j=1

Xi,j =

n∑
j=1

Pi,j = xi, ∀i ∈ {1, . . . ,m}, (11)

n∑
j=1

Yi,j =

m∑
j=1

Zi,j = yi, ∀i ∈ {1, . . . , n}. (12)

n∑
j=1

Ai,jPi,j ≥
n∑
j=1

Ak,jPi,j , ∀i, k ∈ {1, . . . ,m}, (13)

m∑
j=1

Bj,iPj,i ≥
m∑
j=1

Bj,kPj,i, ∀i, k ∈ {1, . . . , n}. (14)

Proof. Recall from (10) that if M′ is rank-1, it is of the formxxT xyT x
yxT yyT y
xT yT 1

 =

xy
1

xy
1

T .
6



To show (11), observe that

m∑
j=1

Xi,j =
m∑
j=1

xixj = xi,∀i ∈ {1, . . . ,m}.

An identical argument works for the remaining matrices P,Z, and Y . To show (13) and (14),
observe that a pair (x, y) is a Nash equilibrium if and only if

∀i, xi > 0⇒ eTi Ay = xTAy = max
i

eTi Ay,

∀i, yi > 0⇒ xTBei = xTBy = max
i

xTBei.

This is because the Nash conditions require that xTAy, a convex combination of eTi Ay, be at least
eTi Ay for all i. Indeed, if xi > 0 but eTi Ay < xTAy, the convex combination must be less than
max
i

xTAy.

For each i such that xi = 0 or yi = 0, inequalities (13) and (14) reduce to 0 ≥ 0, so we only
need to consider strategies played with positive probability. Observe that if M′ is rank-1, then

n∑
j=1

Ai,jPi,j = xi

n∑
j=1

Ai,jyj = xie
T
i Ay ≥ xieTkAy =

n∑
j=1

Ak,jPi,j , ∀i, k

m∑
j=1

Bj,iPj,i = yi

m∑
j=1

Bj,ixj = yix
TBei ≥ yixTBek =

m∑
j=1

Bj,iPj,k, ∀i, k.

Remark 2.3. There are two ways to interpret the inequalities in (13) and (14): the first is as a
relaxation of the constraint xi(e

T
i Ay− eTj Ay) ≥ 0,∀i, j, which must hold since any strategy played

with positive probability must give the best response payoff. The other interpretation is to have
the distribution over outcomes defined by P be a correlated equilibrium [4]. This can be imposed
by a set of linear constraints on the entries of P as explained next.

Suppose the players have access to a public randomization device which prescribes a pure
strategy to each of them (unknown to the other player). The distribution over the assignments can
be given by a matrix P , where Pi,j is the probability that strategy i is assigned to player A and
strategy j is assigned to player B. This distribution is a correlated equilibrium if both players have
no incentive to deviate from the strategy prescribed, that is, if the prescribed pure strategies a and
b satisfy

n∑
j=1

Ai,jProb(b = j|a = i) ≥
n∑
j=1

Ak,jProb(b = j|a = i),

m∑
i=1

Bi,jProb(a = i|b = j) ≥
m∑
i=1

Bi,kProb(a = i|b = j).

If we interpret the P submatrix in our SDP as the distribution over the assignments by the

public device, then because of our row constraints, Prob(b = j|a = i) =
Pi,j

xi
whenever xi 6= 0

(otherwise the above inequalities are trivial). Similarly, P (a = i|b = j) =
Pi,j

yj
for nonzero yj .

Observe now that the above two inequalities imply (13) and (14). Finally, note that every Nash
equilibrium generates a correlated equilibrium, since if P is a product distribution given by xyT ,
then Prob(b = j|a = i) = yj and P (a = i|b = j) = xi.

7



2.3.1 Implied Inequalities

In addition to those explicitly mentioned in the previous section, there are other natural valid
inequalities which are omitted because they are implied by the ones we have already proposed.
We give two examples of such inequalities in the next proposition. We refer to the constraints
in (15) below as the distribution constraints. The constraints in (16) are the familiar McCormick
inequalities [34] for box-constrained quadratic programming.

Proposition 2.4. Let z :=

[
x
y

]
. Any rank-1 solution M′ to SDP1 must satisfy the following:

m∑
i=1

m∑
j=1

Xi,j =

n∑
i=1

m∑
j=1

Zi,j =

n∑
i=1

n∑
j=1

Yi,j = 1. (15)

Mi,j ≤ zi,∀i, j ∈ {1, . . . ,m+ n},
Mi,j + 1 ≥ zi + zj ,∀i, j ∈ {1, . . . ,m+ n}.

(16)

Proof. The distribution constraints follow immediately from the row constraints (11) and (12),
along with the unity constraints (5) and (6).

The first McCormick inequality is immediate as a consequence of (11) and (12), as all entries of
M are nonnegative. To see why the second inequality holds, consider whichever submatrix X,Y, P ,
or Z that contains Mi,j . Suppose that this submatrix is, e.g., P . Then, since P is nonnegative,

0 ≤
m∑

k=1,k 6=i

n∑
l=1,l 6=j

Pk,l
(11)
=

m∑
k=1,k 6=i

(xk − Pk,j)
(12)
= (1− xi)− (yj − Pi,j) = Pi,j + 1− xi − yj .

The same argument holds for the other submatrices, and this concludes the proof.

2.4 Simplifying our SDP

We observe that the row constraints (11) and (12) along with the correlated equilibrium con-
straints (13) and (14) imply the relaxed Nash constraints (3) and (4). Indeed, if we fix an index
k ∈ {1, . . . ,m}, then

Tr(AZ) =
m∑
i=1

n∑
j=1

Ai,jPi,j
(13)

≥
m∑
i=1

n∑
j=1

Ak,jPi,j ≥
n∑
j=1

Ak,j(
m∑
i=1

Pi,j)
(12),P=ZT

≥
n∑
j=1

Ak,jyj = eTkAy.

The proof for player B proceeds identically. Then, after collecting the valid inequalities and remov-
ing the relaxed Nash constraints, we arrive at an SDP given by

min
M′∈S(m+n+1)×(m+n+1)

0 (SDP1’)

subject to (5)− (9), (11)− (14).

We make the observation that the last row and column of M′ can be removed from this SDP,
that is, there is a one-to-one correspondence between solutions to SDP1’ and those to the following

SDP (where M :=

[
X P
Z Y

]
, with P = ZT ):

8



min
M∈S(m+n)×(m+n)

0 (SDP2)

subject to M� 0, (17)

M≥ 0, (18)
n∑
i=1

n∑
j=1

Pi,j = 1, (19)

m∑
j=1

Xi,j =
n∑
j=1

Pi,j , ∀i ∈ {1, . . . ,m}, (20)

n∑
j=1

Yi,j =

m∑
j=1

Zi,j ,∀i ∈ {1, . . . , n}, (21)

n∑
j=1

Ai,jPi,j ≥
n∑
j=1

Ak,jPi,j , ∀i, k ∈ {1, . . . ,m}, (22)

m∑
j=1

Bj,iPj,i ≥
m∑
j=1

Bj,kPj,i, ∀i, k ∈ {1, . . . , n}. (23)

Indeed, it is readily verified that the submatrixM from any feasible solutionM′ to SDP1’ is fea-
sible to SDP2. Conversely, letM be any feasible matrix to SDP2. Consider an eigendecomposition

M =
∑k

i=1 λiviv
T
i and let

[
x
y

]
:=M1m+n

2 . Then the matrix

M′ :=

 M
[
x
y

]
[
xT yT

]
1

 =
k∑
i=1

λi

[
vi

1Tm+nvi/2

] [
vi

1Tm+nvi/2

]T
(24)

is easily seen to be feasible to SDP1’.
Given any feasible solution M to SDP2, observe that the submatrix P is a correlated equilib-

rium. We take our candidate approximate Nash equilibrium to be the pair x = P1n and y = P T 1m.
If the correlated equilibrium P is rank-1, then the pair (x, y) so defined constitutes an exact Nash
equilibrium. In Section 4, we will add certain objective functions to SDP2 with the interpretation
of searching for low-rank correlated equilibria.

3 Exactness for Strictly Competitive Games

In this section, we show that SDP1 recovers a Nash equilibrium for any zero-sum game, and that
SDP2 recovers a Nash equilibrium for any strictly competitive game (see Definition 3.3 below).
Both these notions represent games where the two players are in direct competition, but strictly
competitive games are more general, and for example, allow both players to have nonnegative
payoff matrices. These classes of games are solvable in polynomial time via linear programming.
Nonetheless, it is reassuring to know that our SDPs recover these important special cases.

Definition 3.1. A zero-sum game is a game in which the payoff matrices satisfy A = −B.

Theorem 3.2. For a zero-sum game, the vectors x and y from the last column of any feasible
solution M′ to SDP1 constitute a Nash equilibrium.

9



Proof. Recall that the relaxed Nash constraints (3) and (4) read

Tr(AZ) ≥ eTi Ay,∀i ∈ {1, . . . ,m},

Tr(BZ) ≥ xTBej ,∀j ∈ {1, . . . , n}.

Since B = −A, the latter statement is equivalent to

Tr(AZ) ≤ xTAej ,∀j ∈ {1, . . . , n}.

In conjunction these imply

eTi Ay ≤ Tr(AZ) ≤ xTAej , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. (25)

We claim that any pair x ∈ 4m and y ∈ 4n which satisfies the above condition is a Nash
equilibrium. To see that xTAy ≥ eTi Ay,∀i ∈ {1, . . . ,m}, observe that xTAy is a convex combination
of xTAej , which are at least eTi Ay by (25). To see that xTBy ≥ xTBej ⇔ xTAy ≤ xTAej , ∀j ∈
{1, . . . , n}, observe that xTAy is a convex combination of eTi Ay, which are at most xTAej by (25).

Definition 3.3. A game (A,B) is strictly competitive if for all x, x′ ∈ 4m, y, y
′ ∈ 4n, xTAy −

x′TAy′ and x′TBy′ − xTBy have the same sign.

The interpretation of this definition is that if one player benefits from changing from one outcome
to another, the other player must suffer. Adler, Daskalakis, and Papadimitriou show in [3] that the
following much simpler characterization is equivalent.

Theorem 3.4 (Theorem 1 of [3]). A game is strictly competitive if and only if there exist scalars
c, d, e, and f, with c > 0, e > 0, such that cA+ dJm×n = −eB + fJm×n.

One can easily show that there exist strictly competitive games for which not all feasible so-
lutions to SDP1 have Nash equilibria as their last columns (see Theorem 2.2). However, we show
that this is the case for SDP2.

Theorem 3.5. For a strictly competitive game, the vectors x := P1n and y := P T 1m from any
feasible solution M to SDP2 constitute a Nash equilibrium.

To prove Theorem 3.5 we need the following lemma, which shows that feasibility of a matrix
M in SDP2 is invariant under certain transformations of A and B.

Lemma 3.6. Let c, d, e, and f be any set of scalars with c > 0 and e > 0. If a matrixM is feasible
to SDP2 with input payoff matrices A and B, then it is also feasible to SDP2 with input matrices
cA+ dJm×n and eB + fJm×n.

Proof. It suffices to check that constraints (22) and (23) of SDP2 still hold, as only the correlated
equilibrium constraints use the matrices A and B. We only show that constraint (22) still holds
because the argument for constraint (23) is identical.

Note from the definition of x that for each i ∈ {1, . . . ,m}, xi =
∑n

j=1(Jm×n)i,jPi,j . To check
that the correlated equilibrium constraints hold, observe that for scalars c > 0, d, and for all
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i, k ∈ {1, . . . ,m},
n∑
j=1

Ai,jPi,j ≥
n∑
j=1

Ak,jPi,j

⇔ c
n∑
j=1

Ai,jPi,j + d
n∑
j=1

Pi,j ≥ c
n∑
j=1

Ak,jPi,j + d
n∑
j=1

Pi,j

⇔ c
n∑
j=1

Ai,jPi,j + d
n∑
j=1

(Jm×n)i,jPi,j ≥ c
n∑
j=1

Ak,jPi,j + d
n∑
j=1

(Jm×n)k,jPi,j

⇔
n∑
j=1

(cAi,j + dJm×n)k,jPi,j ≥
n∑
j=1

(cAi,j + dJm×n)k,jPi,j .

Proof (of Theorem 3.5). Let A and B be the payoff matrices of the given strictly competitive game
and let M be a feasible solution to SDP2. Since the game is strictly competitive, we know from
Theorem 3.4 that cA + dJm×n = −eB + fJm×n for some scalars c > 0, e > 0, d, f . Consider a
new game with input matrices Ã = cA + dJm×n and B̃ = eB − fJm×n. By Lemma 3.6, M is
still feasible to SDP2 with input matrices Ã and B̃. By the arguments in Section 2.4, the matrix

M′ :=

 M
[
x
y

]
[
xT yT

]
1

 is feasible to SDP1’, and hence also to SDP1. Now notice that since

Ã = −B̃, Theorem 3.2 implies that the vectors x and y in the last column form a Nash equilibrium
to the game (Ã, B̃). Finally recall from the arguments at the beginning of Section 2 that Nash
equilibria are invariant to scaling and shifting of the payoff matrices, and hence (x, y) is a Nash
equilibrium to the game (A,B).

4 Algorithms for Lowering Rank

In this section, we present heuristics which aim to find low-rank solutions to SDP2 and present
some empirical results. Recall that our SDP2 in Section 2.4 did not have an objective function.
Hence, we can encourage low-rank solutions by choosing certain objective functions, in particular
the trace of the matrix M, which is a general heuristic for minimizing the rank of symmetric
matrices [40, 19]. This simple objective function is already guaranteed to produce a rank-1 solution
in the case of strictly competitive games (see Proposition 4.1 below). For general games, however,
one can design better objective functions in an iterative fashion (see Section 4.1).

Notational Remark: For the remainder of this section, we will use the shorthand x := P1n and
y := P T 1m, where P is the upper right submatrix of a feasible solution M to SDP2.

Proposition 4.1. For a strictly competitive game, any optimal solution to SDP2 with Tr(M) as
the objective function must be rank-1.

Proof. Let

M :=

[
X P
P T Y

]
be a feasible solution to SDP2. In the case of strictly competitive games, from Theorem 3.5 we
know that that (x, y) is a Nash equilibrium. Then because the matrix M is psd, from (24) and an

application of the Schur complement (see, e.g. [7, Sect. A.5.5]) to

 M
[
x
y

]
[
xT yT

]
1

, we have that

11



M �
[
x
y

] [
x
y

]T
. Hence, M =

[
xxT xyT

yxT yyT

]
+ P for some psd matrix P and the Nash equilibrium

(x, y). Given this expression, the objective function Tr(M) is then xTx + yT y + Tr(P). As (x, y)
is a Nash equilibrium, the choice of P = 0 results in a feasible solution. Since the zero matrix
has the minimum possible trace among all psd matrices, the solution will be the rank-1 matrix[
x
y

] [
x
y

]T
.

Remark 4.1. If the row constraints and the nonnegativity constraints on X and Y are removed
from SDP2, then this SDP with Tr(M) as the objective function can be interpreted as searching
for a minimum-rank correlated equilibrium P via the nuclear norm relaxation; see [40, Section 2].

4.1 Linearization Algorithms

The algorithms we present in this section for minimzing the rank of the matrix M in SDP2 are
based on iterative linearization of certain nonconvex objective functions. Motivated by the next
proposition, we design two continuous (nonconvex) objective functions that, if minimized exactly,
would guarantee rank-1 solutions. We will then linearize these functions iteratively.

Proposition 4.2. Let the matrices X and Y and vectors x := P1n and y := P T 1m be taken from
a feasible solution to SDP2. Then the matrix M is rank-1 if and only if Xi,i = x2i and Yi,i = y2i for
all i.

Proof. Note that if M is rank-1, then it can be written as zzT for some z ∈ Rm+n. The i-th
diagonal entry in the X submatrix will then be equal to

z2i
(15)
=

1

4
z2i (1Tm+nzz

T 1m+n) = (
1

2
Mi,1m+n)2

(11)
= (Pi,1n)2 = x2i ,

where the second equality holds becauseMi,—the i-th row ofM—is ziz
T . An analogous statement

holds for the diagonal entries of Y , and hence the condition is necessary.

To show sufficiency, let z :=

[
x
y

]
. SinceM is psd, we have thatMi,j ≤

√
Mi,iMj,j , which im-

pliesMi,j ≤ zizj by the assumption of the proposition. Recall from the distribution constraint (15)

that
∑m+n

i=1

∑m+n
j=1 Mi,j = 4. Further, the same constraint along with the definitions of x and y

imply that
∑m+n

i=1 zi = 2, which means that
∑m+n

i=1

∑m+n
j=1 zizj = 4. Hence in order to have the

equality

4 =

m+n∑
i=1

m+n∑
j=1

Mi,j ≤
m+n∑
i=1

m+n∑
j=1

zizj = 4,

we must have Mi,j = zizj for each i and j. Consequently M is rank-1.

We focus now on two nonconvex objectives that as a consequence of the above proposition
would return rank-1 solutions:

Proposition 4.3. All optimal solutions to SDP2 with the objective function
∑m+n

i=1

√
Mi,i or

Tr(M)− xTx− yT y are rank-1.
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Proof. We show that each of these objectives has a specific lower bound which is achieved if and
only if the matrix is rank-1.

Observe that since M�
[
x
y

] [
x
y

]T
, we have

√
Xi,i ≥ xi and

√
Yi,i ≥ yi, and hence

m+n∑
i=1

√
Mi,i ≥

m∑
i=1

xi +
n∑
i=1

yi = 2.

Further note that

Tr(M)−
[
x
y

]T [
x
y

]
≥
[
x
y

]T [
x
y

]
−
[
x
y

]T [
x
y

]
= 0.

We can see that the lower bounds are achieved if and only if Xi,i = x2i and Yi,i = y2i for all i,
which by Proposition 4.2 happens if and only if M is rank-1.

We refer to our two objective functions in Proposition 4.3 as the “square root objective” and
the “diagonal gap objective” respectively. While these are both nonconvex, we will attempt to
iteratively minimize them by linearizing them through a first order Taylor expansion. For example,
at iteration k of the algorithm,

m+n∑
i=1

√
M(k)

i,i '
m+n∑
i=1

√
M(k−1)

i,i +
1

2
√
M(k−1)

i,i

(M(k)
i,i −M

(k−1)
i,i ).

Note that for the purposes of minimization, this reduces to minimizing
∑m+n

i=1
1√

M(k−1)
i,i

M(k)
i,i .

In similar fashion, for the second objective function, at iteration k we can make the approxi-
mation

Tr(M)−
[
x
y

](k)T [
x
y

](k)
' Tr(M)−

[
x
y

](k−1)T [
x
y

](k−1)T
− 2

[
x
y

](k−1)T
(

[
x
y

](k)
−
[
x
y

](k−1)
).

Once again, for the purposes of minimization this reduces to minimizing Tr(M)−2

[
x
y

](k−1)T [
x
y

](k)
.

This approach then leads to the following two algorithms.4

Algorithm 1 Square Root Minimization Algorithm

1: Let x(0) = 1m, y
(0) = 1n, k = 1.

2: while !convergence do
3: Solve SDP2 with

∑m
i=1

1√
x
(k−1)
i

Xi,i +
∑n

i=1
1√

y
(k−1)
i

Yi,i as the objective, and let M∗ be an

optimal solution.
4: Let x(k) = diag(X∗), y(k) = diag(Y ∗).
5: Let k = k + 1.
6: end while

4An algorithm similar to Algorithm 2 is used in [24].
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Algorithm 2 Diagonal Gap Minimization Algorithm

1: Let x(0) = 0m, y
(0) = 0n, k = 1.

2: while !convergence do

3: Solve SDP2 with Tr(X) + Tr(Y ) − 2

[
x
y

](k−1)T [
x
y

](k)
as the objective, and let M∗ be an

optimal solution.
4: Let x(k) = P ∗1n, y

(k) = P ∗T 1m.
5: Let k = k + 1.
6: end while

Remark 4.2. Note that the first iteration of both algorithms uses the nuclear norm (i.e. trace) of
M as the objective.

The square root algorithm has the following property.

Theorem 4.4. Let M(1),M(2), . . . be the sequence of optimal matrices obtained from the square
root algorithm. Then the sequence

{
m+n∑
i=1

√
M(k)

i,i } (26)

is nonincreasing and is lower bounded by two. If it reaches two at some iteration t, then the matrix
M(t) is rank-1.

Proof. Observe that for any k > 1,

m+n∑
i=1

√
M(k)

i,i ≤
1

2

m+n∑
i=1

(
M(k)

i,i√
M(k−1)

i,i

+

√
M(k−1)

i,i ) ≤ 1

2

m+n∑
i=1

(
M(k−1)

i,i√
M(k−1)

i,i

+

√
M(k−1)

i,i ) =

m+n∑
i=1

√
M(k−1)

i,i ,

where the first inequality follows from the arithmetic-mean-geometric-mean inequality, and the

second follows from that M(k)
i,i is chosen to minimize

∑m+n
i=1

M(k)
i,i√

M(k−1)
i,i

and hence achieves a no

larger value than the feasible solution M(k−1). This shows that the sequence is nonincreasing.
The proof of Proposition 4.3 already shows that the sequence is lower bounded by two, and

Proposition 4.3 itself shows that reaching two is sufficient to have the matrix be rank-1.

The diagonal gap algorithm has the following property.

Theorem 4.5. Let M(1),M(2), . . . be the sequence of optimal matrices obtained from the diagonal
gap algorithm. Then the sequence

{Tr(M(k))−
[
x
y

](k)T [
x
y

](k)
} (27)

is nonincreasing and is lower bounded by zero. If it reaches zero at some iteration t, then the matrix
M(t) is rank-1.
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Proof. Observe that

Tr(M(k))−
[
x
y

](k)T [
x
y

](k)
≤ Tr(M(k))−

[
x
y

](k)T [
x
y

](k)
+ (

[
x
y

](k)
−
[
x
y

](k−1)
)T (

[
x
y

](k)
−
[
x
y

](k−1)
)

= Tr(M(k))− 2

[
x
y

](k)T [
x
y

](k−1)
+

[
x
y

](k−1)T [
x
y

](k−1)
≤ Tr(M(k−1))− 2

[
x
y

](k−1)T [
x
y

](k−1)
+

[
x
y

](k−1)T [
x
y

](k−1)
= Tr(M(k−1))−

[
x
y

](k−1)T [
x
y

](k−1)
,

where the second inequality follows from that M(k) is chosen to minimize

Tr(M(k−1))− 2

[
x
y

](k−1)T [
x
y

](k−1)
and hence achieves a no larger value than the feasible solutionM(k−1). This shows that the sequence
is nonincreasing.

The proof of Proposition 4.3 already shows that the sequence is lower bounded by zero, and
Proposition 4.3 itself shows that reaching zero is sufficient to have the matrix be rank-1.

We also invite the reader to also see Theorem 5.6 in the next section which relates the objective
value of the diagonal gap minimization algorithm and the quality of approximate Nash equilibria
that the algorithm produces.

4.2 Numerical Experiments

We tested Algorithms 1 and 2 on games coming from 100 randomly generated payoff matrices with
entries bounded in [0, 1] of varying sizes. Below is a table of statistics for 20 × 20 matrices; the
data for the rest of the sizes can be found in Appendix A.5 We can see that our algorithms return
approximate Nash equilibria with fairly low ε (recall the definition from Section 2.1). We ran 20
iterations of each algorithm on each game. Using the SDP solver of MOSEK [1], each iteration
takes on average under 4 seconds to solve on a standard personal machine with a 3.4 GHz processor
and 16 GB of memory.

Table 1: Statistics on ε for 20× 20 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0198 0.0046 0.0039 0.0034
Diagonal Gap 0.0159 0.0032 0.0024 0.0032

The histograms below show the effect of increasing the number of iterations on lowering ε on
20 × 20 games. For both algorithms, there was a clear improvement of the ε by increasing the
number of iterations.

5The code that produced these results is publicly available at aaa.princeton.edu/software. The function nash.m
computes an approximate Nash equilibrium using one of our two algorithms as specified by the user.
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Figure 1: Distribution of ε over numbers of iterations for the square root algorithm (left) and the
diagonal gap algorithm (right).

5 Bounds on ε for General Games

Since the problem of computing a Nash equilibrium to an arbitrary bimatrix game is PPAD-
complete, it is unlikely that one can find rank-1 solutions to this SDP in polynomial time. In
Section 4, we designed objective functions (such as variations of the nuclear norm) that empirically
do very well in finding low-rank solutions to SDP2. Nevertheless, it is of interest to know if the
solution returned by SDP2 is not rank-1, whether one can recover an ε-Nash equilibrium from it
and have a guarantee on ε. Our goal in this section is to study this question.

Notational Remark: Recall our notation for the matrix

M :=

[
X P
Z Y

]
.

Throughout this section, any matrices X,Z, P = ZT and Y are assumed to be taken from a feasible
solution to SDP2. Furthermore, x and y will be P1n and P T 1m respectively.

The ultimate results of this section are the theorems in Sections 5.2 and 5.3. To work towards
them, we need a number of preliminary lemmas which we present in Section 5.1.

5.1 Lemmas Towards Bounds on ε

We first observe the following connection between the approximate payoffs Tr(AZ) and Tr(BZ),
and ε(x, y), as defined in Section 2.1.

Lemma 5.1. Consider any feasible solution to SDP2. Then

ε(x, y) ≤ max{Tr(AZ)− xTAy,Tr(BZ)− xTBy}.

Proof. Recall from the argument at the beginning of Section 2.4 that constraints (13) and (14)
imply Tr(AZ) ≥ eTi Ay and Tr(BZ) ≥ xTBei for all i. Hence, we have εA ≤ Tr(AZ) − xTAy and
εB ≤ Tr(BZ)− xTBy.

We thus are interested in the difference of the two matrices P = ZT and xyT . These two
matrices can be interpreted as two different probability distributions over the strategy outcomes.
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The matrix P is the probability distribution from the SDP which generates the approximate payoffs
Tr(AZ) and Tr(BZ), while xyT is the product distribution that would have resulted if the matrix
had been rank-1. We will see that the difference of these distributions is key in studying the ε
which results from SDP2. Hence, we first take steps to represent this difference.

Lemma 5.2. Consider any feasible matrix M to SDP2 with an eigendecomposition

M =

k∑
i=1

λiviv
T
i =:

k∑
i=1

λi

[
ai
bi

] [
ai
bi

]T
, (28)

so that the eigenvectors vi ∈ Rm+n are partitioned into vectors ai ∈ Rm and bi ∈ Rn. Then for all
i,
∑m

j=1(ai)j =
∑n

j=1(bi)j.

Proof. We know from (19), (20), and (21) that

k∑
i=1

λi1
T
maia

T
i 1m

(19),(20)
= 1, (29)

k∑
i=1

λi1
T
maib

T
i 1n

(19)
= 1, (30)

k∑
i=1

λi1
T
n bia

T
i 1m

(19)
= 1, (31)

k∑
i=1

λi1
T
n bib

T
i 1n

(19),(21)
= 1. (32)

Then by subtracting terms we have

(29)− (30) =

k∑
i=1

λi1
T
mai(a

T
i 1m − bTi 1n) = 0, (33)

(31)− (32) =

k∑
i=1

λi1
T
n bi(a

T
i 1m − bTi 1n) = 0. (34)

By subtracting again these imply

(33)− (34) =

k∑
i=1

λi(1
T
mai − 1Tn bi)

2 = 0. (35)

As all λi are nonnegative due to positive semidefiniteness of M, the only way for this equality to
hold is to have 1Tmai = 1Tn bi, ∀i. This is equivalent to the statement of the claim.

From Lemma 5.2, we can let si :=
∑m

j=1(ai)j =
∑n

j=1(bi)j , and furthermore we assume without
loss of generality that each si is nonnegative. Note that from the definition of x we have

xi =

m∑
j=1

Pij =
k∑
l=1

m∑
j=1

λl(al)i(bl)j =
k∑
j=1

λjsj(al)i. (36)

Hence,

x =
k∑
i=1

λisiai. (37)
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Similarly,

y =
k∑
i=1

λisibi. (38)

Finally note from the distribution constraint (15) that this implies

k∑
i=1

λis
2
i = 1. (39)

Lemma 5.3. Let

M =
k∑
i=1

λi

[
ai
bi

] [
ai
bi

]T
,

be a feasible solution to SDP2, such that the eigenvectors of M are partitioned into ai and bi with∑m
j=1(ai)j =

∑n
j=1(bi)j = si, ∀i. Then

P − xyT =
k∑
i=1

k∑
j>i

λiλj(sjai − siaj)(sjbi − sibj)T .

Proof. Using equations (37) and (38) we can write

P − xyT =

k∑
i=1

λiaib
T
i − (

k∑
i=1

λisiai)(

k∑
j=1

λjsjbj)
T

=

k∑
i=1

λiai(bi − si
k∑
j=1

λjsjbj)
T

(39)
=

k∑
i=1

λiai(

k∑
j=1

λjs
2
jbi − si

k∑
j=1

λjsjbj)
T

=

k∑
i=1

k∑
j=1

λiλjaisj(sjbi − sibj)T

=

k∑
i=1

k∑
j>i

λiλj(sjai − siaj)(sjbi − sibj)T ,

where the last line follows from observing that terms where i and j are switched can be combined.

We can relate ε and P − xyT with the following lemma.

Lemma 5.4. Let the matrix P and the vectors x := P1n and y := P T 1m come from any feasible
solution to SDP2. Then

ε ≤ ‖P − xy
T ‖1

2
,

where ‖ · ‖1 here denotes the entrywise L-1 norm, i.e., the sum of the absolute values of the entries
of the matrix.
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Proof. Let D := P − xyT . From Lemma 5.1,

εA ≤ Tr(AZ)− xTAy = Tr(A(Z − yxT )).

If we then hold D fixed and restrict that A has entries bounded in [0,1], the quantity Tr(ADT ) is
maximized when

Ai,j =

{
1 Di,j ≥ 0

0 Di,j < 0
.

The resulting quantity Tr(ADT ) will then be the sum of all nonnegative elements of D. Since the
sum of all elements in D is zero, this quantity will be equal to 1

2‖D‖1.
The proof for εB is identical, and the result follows from that ε is the maximum of εA and εB.

5.2 Bounds on ε

We provide a number of bounds on ε(x, y) for x := P1n and y := P T 1m coming from any feasible
solution to SDP2. Our first two theorems roughly state that solutions which are “close” to rank-1
provide small ε.

Theorem 5.5. Consider any feasible solution M to SDP2. Suppose M is rank-k and its eigen-
values are λ1 ≥ λ2 ≥ ... ≥ λk > 0. Then x and y constitute an ε-NE to the game (A,B) with

ε ≤ m+n
2

∑k
i=2 λi.

Proof. By the Perron Frobenius theorem (see e.g. [35, Chapter 8.3]), the eigenvector corresponding
to λ1 can be assumed to be nonnegative, and hence

s1 = ‖a1‖1 = ‖b1‖1. (40)

We further note that for all i, since

[
ai
bi

]
is a vector of length m + n with 2-norm equal to 1, we

must have ∥∥∥∥[aibi
]∥∥∥∥

1

≤
√
m+ n. (41)

Since si is the sum of the elements of ai and bi, we know that

si ≤ min{‖ai‖1, ‖bi‖1} ≤
√
m+ n

2
. (42)

This then gives us

s2i ≤ ‖ai‖1‖bi‖1 ≤
m+ n

4
, (43)

with the first inequality following from (42) and the second from (41). Finally note that a conse-
quence of the nonnegativity of ‖ · ‖1 and (41) is that for all i, j,

‖ai‖1‖bj‖1 + ‖bi‖1‖aj‖1 ≤ (‖ai‖1 + ‖bi‖1)(‖aj‖1 + ‖bj‖1) =

∥∥∥∥[aibi
]∥∥∥∥

1

∥∥∥∥[ajbj
]∥∥∥∥

1

(41)

≤ m+ n. (44)
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Now we let D := P − xyT and upper bound 1
2‖D‖1 using Lemma 5.3.

1

2
‖D‖1 =

1

2
‖

k∑
i=1

k∑
j>i

λiλj(sjai − siaj)(sjbi − sibj)T ‖1

≤ 1

2

k∑
i=1

k∑
j>i

‖λiλj(sjai − siaj)(sjbi − sibj)T ‖1

≤ 1

2

k∑
i=1

k∑
j>i

λiλj‖sjai − siaj‖1‖sjbi − sibj‖1

≤ 1

2

k∑
i=1

k∑
j>i

λiλj(sj‖ai‖1 + si‖aj‖1)(sj‖bi‖1 + si‖bj‖1) (45)

(40),(43)

≤ 1

2

k∑
j=2

λ1s
2
1λj(sj + ‖aj‖1)(sj + ‖bj‖1)

+
1

2

k∑
i=2

k∑
j>i

λiλj(s
2
j

m+ n

4
+ s2i

m+ n

4
+ sisj‖ai‖1‖bj‖1 + sisj‖aj‖1‖bi‖1)

(41),(44),(42)

≤ m+ n

2
λ1s

2
1

k∑
i=2

λi

+
1

2

k∑
i=2

k∑
j>i

λiλj
m+ n

4
(s2i + s2j ) + λiλjsisj(m+ n)

AMGM6

≤ m+ n

2
λ1s

2
1

k∑
i=2

λi +
m+ n

2

k∑
i=2

k∑
j>i

λiλj(
s2i + s2j

4
+
s2i + s2j

2
)

=
m+ n

2
λ1s

2
1

k∑
i=2

λi +
3(m+ n)

8

k∑
i=2

k∑
j>i

λiλj(s
2
i + s2j )

=
m+ n

2
λ1s

2
1

k∑
i=2

λi +
3(m+ n)

8
(

k∑
i=2

λis
2
i

k∑
j>i

λj +

k∑
i=2

λi

k∑
j>i

λjs
2
j )

=
m+ n

2
λ1s

2
1

k∑
i=2

λi +
3(m+ n)

8
(

k∑
j=2

λj

k∑
2≤i<j

λis
2
i +

k∑
i=2

λi

k∑
j>i

λjs
2
j )

≤ m+ n

2
λ1s

2
1

k∑
i=2

λi +
3(m+ n)

8
(

k∑
j=2

λjs
2
j )

k∑
i=2

λi

(39)
=

m+ n

2
λ1s

2
1

k∑
i=2

λi +
3(m+ n)

8
(1− λ1s21)

k∑
i=2

λi

=
m+ n

8
(3 + λ1s

2
1)

k∑
i=2

λi

(39)

≤ m+ n

2

k∑
i=2

λi.
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The following theorem quantifies how making the objective of the diagonal gap algorithm from
Section 4 small makes ε small. The proof is similar to the proof of Theorem 5.5.

Theorem 5.6. Let M be a feasible solution to SDP2. Then, x and y constitute an ε-NE to the

game (A,B) with ε ≤ 3(m+n)
8 (Tr(M)− xTx− yT y).

Proof. Let M be rank-k with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and eigenvectors v1, . . . , vk

partitioned as in Lemma 5.2 so that vi =

[
ai
bi

]
with

∑m
j=1(ai)j =

∑n
j=1(bi)j for i = 1, . . . , k. Let

si :=
∑m

j=1(ai)j . Then we have Tr(M) =
∑k

i=1 λi, and

xTx+ yT y
(37),(38)

= (

k∑
i=1

λisivi)
T (

k∑
i=1

λisivi) =

k∑
i=1

λ2i s
2
i . (46)

We now get the following chain of inequalities (the first one follows from Lemma 5.4 and inequal-
ity (45)):

ε ≤ 1

2

k∑
i=1

k∑
j>i

λiλj(sj‖ai‖1 + si‖aj‖1)(sj‖bi‖1 + si‖bj‖1)

(40),(43)

≤ 1

2

k∑
i=1

k∑
j>i

λiλj(s
2
j

m+ n

4
+ s2i

m+ n

4
+ sisj‖ai‖1‖bj‖1 + sisj‖aj‖1‖bi‖1)

(44)

≤ 1

2

k∑
i=1

k∑
j>i

λiλj
m+ n

4
(s2i + s2j ) + λiλjsisj(m+ n)

AMGM
≤ m+ n

2

k∑
i=1

k∑
j>i

λiλj(
s2i + s2j

4
+
s2i + s2j

2
)

=
3(m+ n)

8

k∑
i=1

k∑
j>i

λiλj(s
2
i + s2j )

=
3(m+ n)

8
(

k∑
i=1

λis
2
i

k∑
j>i

λj +

k∑
i=1

λi

k∑
j>i

λjs
2
j )

=
3(m+ n)

8
(

k∑
j=1

λj

k∑
1≤i<j

λis
2
i +

k∑
i=1

λi

k∑
j>i

λjs
2
j )

=
3(m+ n)

8
(

k∑
i=1

λi
∑
j 6=i

λjs
2
j )

(39)
=

3(m+ n)

8
(

k∑
i=1

λi(1− λis2i ))

=
3(m+ n)

8
(

k∑
i=1

λi −
k∑
i=1

λ2i s
2
i )

(46)
=

3(m+ n)

8
(Tr(M)− xTx− yT y).

6AMGM is used to denote the arithmetic-mean-geometric-mean inequality.
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We now give a bound on ε which is dependent on the nonnegative rank of the matrix returned
by SDP2. Our analysis will also be useful for the next subsection. To begin, we first recall the
definition of the nonnegative rank.

Definition 5.7. The nonnegative rank of a (nonnegative) m × n matrix M is the smallest k for
which there exist a nonnegative m × k matrix U and a nonnegative n × k matrix V such that
M = UV T . Such a decomposition is called a nonnegative matrix factorization of M .

Theorem 5.8. Consider the matrix P from any feasible solution to SDP2. Suppose its nonnegative
rank is k. Then x := P1n and y := P T 1m constitute an ε-NE to the game (A,B) with ε ≤ 1− 1

k .

Proof. Since P has nonnegative rank k and its entries sum up to 1, we can write P =
∑k

i=1 σiaib
T
i ,

where ai ∈ 4m, bi ∈ 4n, and
∑k

i=1 σi = 1. From Lemma 5.4 and inequality (45) (keeping in mind
that si = 1, ∀ i) we have

ε ≤ 1

2

k∑
i=1

k∑
j>i

σiσj(‖ai‖1 + ‖aj‖1)(‖bi‖1 + ‖bj‖1)

≤ 2
k∑
i=1

k∑
j>i

σiσj

= 2(
1

2
(
k∑
i=1

σi

k∑
j=1

σj −
k∑
i=1

σ2i ))

= 1−
k∑
i=1

σ2i

≤ 1− 1

k
,

where the last line follows from the fact that ‖v‖22 ≥ 1
k for any vector v ∈ 4k.

5.3 Bounds on ε in the Rank-2 Case

We now provide a number of bounds on ε(x, y) with x := P1n and y := P T 1m which hold for rank-2
feasible solutionsM to SDP2 (note that P will have rank at most 2 in this case). This is motivated
by our ability to show stronger (constant) bounds in this case, and the fact that we often recover
rank-2 (or rank-1) solutions with our algorithms in Section 4. Furthermore, our analysis will use
the special property that a rank-2 nonnegative matrix will have nonnegative rank also equal to two,
and that a nonnegative factorization of it can be computed in polynomial time (see, e.g., Section 4
of [11]). We begin with the following observation, which follows from Theorem 5.8 when k = 2.

Corollary 5.9. If the matrix P from a feasible solution to SDP2 is rank-2, then x and y constitute
a 1

2−NE.

We now show how this pair of strategies can be refined.

Theorem 5.10. If the matrix P from a feasible solution to SDP2 is rank-2, then either x and y
constitute a 5

11 -NE, or a 5
11 -NE can be recovered from P in polynomial time.

Proof. We consider 3 cases, depending on whether εA(x, y) and εB(x, y) are greater than or less
than .4. If εA ≤ .4, εB ≤ .4, then (x, y) is already a .4-Nash equilibrium. Now consider the case
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when εA ≥ .4, εB ≥ .4. Since εA ≤ Tr(A(P − xyT )T ) and εB ≤ Tr(B(P − xyT )T ) as seen in the
proof of Lemma 5.1, we have, reusing the notation in the proof of Theorem 5.8,

σ1σ2(a1 − a2)TA(b1 − b2) ≥ .4, σ1σ2(a1 − a2)TB(b1 − b2) ≥ .4.

Since A, a1, a2, b1, and b2 are all nonnegative and σ1σ2 ≤ 1
4 ,

aT1Ab1 + aT2Ab2 ≥ (a1 − a2)TA(b1 − b2) ≥ 1.6,

and the same inequalities hold for for player B. In particular, since A and B have entries bounded in
[0,1] and a1, a2, b1, and b2 are simplex vectors, all the quantities aT1Ab1, a

T
2Ab2, a

T
1Bb1, and aT2Bb2

are at most 1, and consequently at least .6. Hence (a1, a2) and (a2, b2) are both .4-Nash equilibria.
Now suppose that (x, y) is a .4-NE for one player (without loss of generality player A) but not for

the other (without loss of generality player B). Then εA ≤ .4, and εB ≥ .4. Let y∗ be a best response
for player B to x, and let p = 1

1+εB−εA . Consider the strategy profile (x̃, ỹ) := (x, py + (1− p)y∗).
This can be interpreted as the outcome (x, y) occurring with probability p, and the outcome (x, y∗)
happening with probability 1 − p. In the first case, player A will have εA(x, y) = εA and player
B will have εB(x, y) = εB. In the second outcome, player A will have εA(x, y∗) at most 1, while
player B will have εB(x, y∗) = 0. Then under this strategy profile, both players have the same
upper bound for ε, which equals εBp = εB

1+εB−εA . To find the worst case for this value, let εB = .5

(note from Theorem 5.9 that εB ≤ 1
2) and εA = .4, and this will return ε = 5

11 .

We now show a stronger result in the case of symmetric games.

Definition 5.11. A symmetric game is a game in which the payoff matrices A and B satisfy
B = AT .

Definition 5.12. A Nash equilibrium strategy (x, y) is said to be symmetric if x = y.

Theorem 5.13 (see Theorem 2 in [36]). Every symmetric bimatrix game has a symmetric Nash
equilibrium.

For the proof of Theorem 5.17 below we modify SDP2 so that we are seeking a symmetric
solution. We also need a more specialized notion of the nonnegative rank.

Definition 5.14. A matrix M is completely positive (CP) if it admits a decomposition M = UUT

for some nonnegative matrix U .

Definition 5.15. The CP-rank of an n× n CP matrix M is the smallest k for which there exists
a nonnegative n× k matrix U such that M = UUT .

Theorem 5.16 (see e.g. [26] or Theorem 2.1 in [6]). A rank-2, nonnegative, and positive semidef-
inite matrix is CP and has CP-rank 2.

It is also known (see e.g., Section 4 in [26]) that the CP factorization of a rank-2 CP matrix
can be found to arbitrary accuracy in polynomial time.

Theorem 5.17. Suppose the constraint P � 0 is added to SDP2. Then if in a feasible solution to
this new SDP the matrix P is rank-2, either x and y constitute a symmetric 1

3 -NE, or a symmetric
1
3 -NE can be recovered from P in polynomial time.
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Proof. If (x, y) is already a symmetric 1
3 -NE, then the claim is established. Now suppose that

(x, y) does not constitute a 1
3 -Nash equilibrium. Similarly as in the proof of Theorem 5.8, we can

decompose P into
∑2

i=1 σiaia
T
i , where

∑2
i=1 σi = 1 and each ai is a vector on the unit simplex.

Then we have

σ1σ2(a1 − a2)TA(a1 − a2) ≥
1

3
.

Since A, a1, and a2 are all nonnegative, and σ1σ2 ≤ 1
4 , we get

aT1Aa1 + aT2Aa2 ≥ (a1 − a2)TA(a1 − a2) ≥
4

3
.

In particular, at least one of aT1Aa1 and aT2Aa2 is at least 2
3 . Since the maximum possible payoff

is 1, at least one of (a1, a1) and (a2, a2) is a (symmetric) 1
3 -Nash equilibrium.

Remark 5.1. For symmetric games, instead of the construction stated in Theorem 5.17, one can
simply optimize over a smaller m × m matrix (note m = n). This is the relaxed version of
exchangeable equilibria [43], with the completely positive constraint relaxed to a psd constraint.

Remark 5.2. The statements of Corollary 5.9, and Theorem 5.10, and Theorem 5.17 hold for
any rank-2 correlated equilibrium. Indeed, given any rank-2 (equivalently, nonnegative-rank-2)
correlated equilibrium P , one can complete it to a (rank-2) feasible solution to SDP2 as follows.

Let P =
∑2

i=1 σiaib
T
i , where ai ∈ 4m, bi ∈ 4n, and σ1 + σ2 = 1. It is easy to check that

M :=
2∑
i=1

σi

[
ai
bi

] [
ai
bi

]T
is feasible to SDP2.

6 Bounding Payoffs and Strategy Exclusion in Symmetric Games

In addition to finding ε-additive Nash equilibria, our SDP approach can be used to answer certain
questions of economic interest about Nash equilibria without actually computing them. For in-
stance, economists often would like to know the maximum welfare (sum of the two players’ payoffs)
achievable under any Nash equilibrium, or whether there exists a Nash equilibrium in which a given
subset of strategies (corresponding, e.g., to undesirable behavior) is not played. Both these ques-
tions are NP-hard for bimatrix games [21], even when the game is symmetric and only symmetric
equilibria are considered [13]. In this section, we consider these two problems in the symmetric
setting and compare the performance of our SDP approach to an LP approach which searches
over symmetric correlated equilibria. For general equilibria, it turns out that for these two specific
questions, our SDP approach is equivalent to an LP that searches over correlated equilibria.

6.1 Bounding Payoffs

When designing policies that are subject to game theoretic behavior by agents, economists would
often like to find one with a good socially optimal outcome, which usually corresponds to an
equilibrium giving the maximum welfare. Hence, given a game, it is of interest to know the highest
achievable welfare under any Nash equilibrium. For symmetric games, symmetric equilibria are
of particular interest as they reflect the notion that identical agents should behave similarly given
identical options.

Note that the maximum welfare of a symmetric game under any symmetric Nash equilibrium
is equal to the optimal value of the following quadratic program:
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max
x∈4m

2xTAx

subject to xTAx ≥ eTi Ax, ∀i ∈ {1, . . . ,m}.
(47)

One can find an upper bound on this number by solving an LP which searches over symmetric
correlated equilibria:

max
P∈Sm,m

Tr(AP T ) (LP1)

subject to
m∑
i=1

m∑
j=1

Pi,j = 1 (48)

m∑
j=1

Ai,jPi,j ≥
m∑
j=1

Ak,jPi,j ,∀i, k ∈ {1, . . . ,m}, (49)

P ≥ 0. (50)

A potentially better upper bound on the maximum welfare can be obtained from a version of
SDP2 adapted to this specific problem:

max
P∈Sm,m

Tr(AP T ) (SDP3)

subject to (48), (49), (50)

P � 0.

To test the quality of these upper bounds, we tested this LP and SDP on a random sample of
one hundred 5× 5 and 10× 10 games7. The resulting upper bounds are in Figure 2, which shows
that the bound returned by SDP3 was exact in a large number of the experiments.8

7The matrix A in each game was randomly generated with diagonal entries uniform and independent in [0,.5] and
off-diagonal entries uniform and independent in [0,1].

8The computation of the exact maximum payoffs was done with the lrsnash software [5], which computes all
extreme Nash equilibria. For a definition of extreme Nash equilibria and for understanding why it is sufficient
for us to compare against extreme Nash equilibria (both in Section 6.1 and in Section 6.2), see Appendix C. The
computation of the SDP upper bound has been implemented in the file nashbound.m, which is publicly available at
aaa.princeton.edu/software. This file more generally computes an SDP-based lower bound on the minimum of
an input quadratic function over the set of Nash equilibria of a bimatrix game. The file also takes as an argument
whether one wishes to only consider symmetric equilibria when the game is symmetric.
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Figure 2: The quality of the upper bound on the maximum welfare obtained by LP1 and SDP3 on
100 5× 5 games (left) and 100 10× 10 games (right).

6.2 Strategy Exclusion

The strategy exclusion problem asks, given a subset of strategies S = (Sx,Sy), with Sx ⊆ {1, . . . ,m}
and Sy ⊆ {1, . . . , n}, is there a Nash equilibrium in which no strategy in S is played with positive
probability. We will call a set S “persistent” if the answer to this question is negative, i.e. at least
one strategy in S is played with positive probability in every Nash equilibrium. One application
of the strategy exclusion problem is to understand whether certain strategies can be discouraged
in the design of a game, such as reckless behavior in a game of chicken or defecting in a game of
prisoner’s dilemma. In these particular examples these strategy sets are persistent and cannot be
discouraged.

As in the previous subsection, we consider the strategy exclusion problem for symmetric strate-
gies in symmetric games (such as the aforementioned games of chicken and prisoner’s dilemma). A
quadratic program which addresses this problem is as follows:

min
x∈4m

∑
i∈Sx

xi

subject to xTAx ≥ eTi Ax, ∀i ∈ {1, . . . ,m}.
(51)

Observe that by design, S is persistent if and only if this quadratic program has a positive
optimal value. As in the previous subsection, an LP relaxation of this problem which searches over
symmetric correlated equilibria is given by

min
P∈Sm,m

∑
i∈Sx

m∑
j=1

Pij (LP2)

subject to (48), (49), (50).

The SDP relaxation that we propose for the strategy exclusion problem is the following:
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min
P∈Sm,m

∑
i∈Sx

m∑
j=1

Pij (SDP4)

subject to (48), (49), (50)

P � 0.

Our approach would be to declare that the strategy set Sx is persistent if and only if SDP4 has
a positive optimal value.

Note that since the optimal value of SDP4 is a lower bound for that of (51), SDP4 carries over
the property that if a set S is not persistent, then the SDP for sure returns zero. Thus, when
using SDP4 on a set which is not persistent, our algorithm will always be correct. However, this is
not necessarily the case for a persistent set. While we can be certain that a set is persistent if SDP4
returns a positive optimal value (again, because the optimal value of SDP4 is a lower bound for
that of (51)), there is still the possibility that for a persistent set SDP4 will have optimal value
zero. The same arguments hold for the optimal value of LP2.

To test the performance of LP2 and SDP4, we generated 100 random games of size 5 × 5 and
10×10 and computed all their symmetric extreme Nash equilibria9. We then, for every strategy set
S of cardinality one and two, checked whether that set of strategies was persistent, first by checking
among the extreme Nash equilibria, then through LP2 and SDP4. The results are presented in
Tables 2 and 3. As can be seen, SDP4 was quite effective for the strategy exclusion problem.

Table 2: Performance of LP2 and SDP4 on 5× 5 games
|S| 1 2

Number of total sets 500 1000
Number of persistent sets 245 748

Persistent sets certified (LP2) 177 (72.2%) 661 (88.7%)
Persistent sets certified (SDP4) 245 (100%) 748 (100%)

Table 3: Performance of LP2 and SDP4 on 10× 10 games
|S| 1 2

Number of total sets 1000 4500
Number of persistent sets 326 2383

Persistent sets certified (LP2) 39 (12.0%) 630 (26.4%)
Persistent sets certified (SDP4) 318 (97.5%) 2368 (99.4%)

7 Connection to the Sum of Squares/Lasserre Hierarchy

In this section, we clarify the connection of the SDPs we have proposed in this paper to those
arising in the sum of squares/Lasserre hierarchy. We start by briefly reviewing this hierarchy.

9The exact computation of the exact Nash equilibria was done again with the lrsnash software [5], which computes
extreme Nash equilibria. To understand why this suffices for our purposes see Appendix C.

27



7.1 Sum of Squares/Lasserre Hierarchy

The sum of squares/Lasserre hierarchy10 gives a recipe for constructing a sequence of SDPs whose
optimal values converge to the optimal value of a given polynomial optimization problem. Recall
that a polynomial optimization problem (pop) is a problem of minimizing a polynomial over a basic
semialgebraic set, i.e., a problem of the form

min
x∈Rn

f(x)

subject to gi(x) ≥ 0, ∀i ∈ {1, . . . ,m},
(52)

where f, gi are polynomial functions. In this section, when we refer to the k-th level of the Lasserre
hierarchy, we mean the optimization problem

γksos :=max
γ,σi

γ

subject to f(x)− γ = σ0(x) +

m∑
i=1

σi(x)gi(x),

σi is sos, ∀i ∈ {0, . . . ,m},
σ0, giσi have degree at most 2k, ∀i ∈ {1, . . . ,m}.

(53)

Here, the notation “sos” stands for sum of squares. We say that a polynomial p is a sum of squares
if there exist polynomials q1, . . . , qr such that p =

∑r
i=1 q

2
i . There are two primary properties of

the Lasserre hierarchy which are of interest. The first is that any fixed level of this hierarchy gives
an SDP of size polynomial in n. The second is that, if the set {x ∈ Rn|gi(x) ≥ 0} is Archimedean
(see, e.g. [31] for definition), then lim

k→∞
γksos = p∗, where p∗ is the optimal value of the pop in (52).

The latter statement is a consequence of Putinar’s positivstellensatz [39], [29].

7.2 The Lasserre Hierarchy and SDP1

One can show, e.g. via the arguments in [30], that the feasible sets of the SDPs dual to the SDPs
underlying the hierarchy we summarized above produce an arbitrarily tight outer approximation to
the convex hull of the set of Nash equilibria of any game. The downside of this approach, however,
is that the higher levels of the hierarchy can get expensive very quickly. This is why the approach
we took in this paper was instead to improve the first level of the hierarchy. The next proposition
formalizes this connection.

Proposition 7.1. Consider the problem of minimizing any quadratic objective function over the
set of Nash equilibria of a bimatrix game. Then, SDP1 (and hence SDP2) gives a lower bound on
this problem which is no worse than that produced by the first level of the Lasserre hierarchy.

Proof. To prove this proposition we show that the first level of the Lasserre hierarchy is dual to a
weakened version of SDP1.

Explicit parametrization of first level of the Lasserre hierarchy. Consider the for-
mulation of the Lasserre hierarchy in (53) with k = 1. Suppose we are minimizing a quadratic
function

f(x, y) =

xy
1

T C
xy

1


10The unfamiliar reader is referred to [29, 37, 31] for an introduction to this hierarchy and the related theory of

moment relaxations.
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over the set of Nash equilibria as described by the linear and quadratic constraints in (2). If we
apply the first level of the Lasserre hierarchy to this particular pop, we get

max
Q,α,χ,β,ψ,η

γ

subject to

xy
1

T C
xy

1

− γ =

xy
1

T Q
xy

1

+

m∑
i=1

αi(x
TAy − eTi Ay)

+
n∑
i=1

βi(x
TBy − xTBei)

+
m∑
i=1

χixi +
n∑
i=1

ψiyi

+ η1(
m∑
i=1

xi − 1) + η2(
n∑
i=1

yi − 1),

Q � 0,

α, χ, β, ψ ≥ 0,

(54)

where Q ∈ Sm+n+1×m+n+1, α, χ ∈ Rm, β, ψ ∈ Rn, η ∈ R2.
By matching coefficients of the two quadratic functions on the left and right hand sides of (54),

this SDP can be written as
max

γ,α,β,χ,ψ,η
γ

subject to H � 0,

α, β, χ, ψ ≥ 0,

(55)

where

H :=
1

2

 0 (−
∑m

i=1 αi)A+ (−
∑m

i=1 βi)B
∑n

i=1 βiB,i − χ− η11m
(−
∑m

i=1 αi)A+ (−
∑n

i=1 βi)B 0
∑m

i=1 αiA
T
i, − ψ − η21n∑n

i=1 βiB
T
,i − χT − η11Tm

∑m
i=1 αiAi, − ψT − η21Tn 2η1 + 2η2 − 2γ

+C.

(56)
Dual of a weakened version of SDP1. With this formulation in mind, let us consider a

weakened version of SDP1 with only the relaxed Nash constraints, unity constraints, and nonneg-
ativity constraints on x and y in the last column (i.e., the nonegativity constraint is not applied to
the entire matrix). Let the objective be Tr(CM′). To write this new SDP in standard form, let

Ai :=
1

2

 0 A 0
AT 0 −ATi,
0 −Ai, 0

 ,Bi :=
1

2

 0 B −B,i
BT 0 0
−BT

,i 0 0

 ,
S1 :=

1

2

 0 0 1m
0 0 0

1Tm 0 −2

 ,S2 :=
1

2

0 0 0
0 0 1n
0 1Tn −2

 .
Let Ni be the matrix with all zeros except a 1

2 at entry (i,m+ n+ 1) and (m+ n+ 1, i) (or a 1 if
i = m+ n+ 1).
Then this SDP can be written as
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min
M′

Tr(CM′) (SDP0)

subject to M′ � 0, (57)

Tr(NiM′) ≥ 0,∀i ∈ {1, . . . ,m+ n}, (58)

Tr(AiM′) ≥ 0,∀i ∈ {1, . . . ,m}, (59)

Tr(BiM′) ≥ 0, ∀i ∈ {1, . . . , n}, (60)

Tr(S1M′) = 0, (61)

Tr(S2M′) = 0, (62)

Tr(Nm+n+1) = 1. (63)

We now create dual variables for each constraint; we choose αi and βi for the relaxed Nash
constraints (59) and (60), η1 and η2 for the unity constraints (61) and (62), χ for the nonnegativity
of x (58), ψ for the nonnegativity of y (58), and γ for the final constraint on the corner (63). These
variables are chosen to coincide with those used in the parametrization of the first level of the
Lasserre hierarchy, as can be seen more clearly below.

We then write the dual of the above SDP as

max
α,β,λ,γ

γ

subject to
m∑
i=1

αiAi +
n∑
i=1

βiBi +
2∑
i=1

ηiSi +
m∑
i=1

Ni+nχi +
n∑
i=1

Niψi + γNm+n+1 � C,

α, β, χ, ψ ≥ 0.

which can be rewritten as
max

α,β,χ,ψ,γ
γ

subject to G � 0,

α, β, χ, ψ ≥ 0,

(64)

where

G :=
1

2

 0 (−
∑m

i=1 αi)A+ (−
∑m

i=1 βi)B
∑n

i=1 βiB,i − χ− η11m
(−
∑m

i=1 αi)A+ (−
∑n

i=1 βi)B 0
∑m

i=1 αiA
T
i, − ψ − η21n∑n

i=1 βiB
T
,i − χT − η11Tm

∑m
i=1 αiAi, − ψT − η21Tn 2η1 + 2η2 − 2γ

+C.

We can now see that the matrix G coincides with the matrix H in the SDP (55). Then we have

(54)opt = (55)opt = (64)opt ≤ SDP0opt ≤ SDP1opt,

where the first inequality follows from weak duality, and the second follows from that the constraints
of SDP0 are a subset of the constraints of SDP1.

Remark 7.1. The Lasserre hierarchy can be viewed in each step as a pair of primal-dual SDPs:
the sum of squares formulation which we have just presented, and a moment formulation which is
dual to the sos formulation [29]. All our SDPs in this paper can be viewed more directly as an
improvement upon the moment formulation.
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Remark 7.2. One can see, either by inspection or as an implication of the proof of Theorem 2.2,
that in the case where the objective function corresponds to maximizing player A’s and/or B’s
payoffs11, SDPs (55) and (64) are infeasible. This means that for such problems the first level of
the Lasserre hierarchy gives an upper bound of +∞ on the maximum payoff. On the other hand,
the additional valid inequalities in SDP2 guarantee that the resulting bound is always finite.

8 Future Work

Our work leaves many avenues of further research. Are there other interesting subclasses of games
(besides strictly competitive games) for which our SDP is guaranteed to recover an exact Nash
equilibrium? Can the guarantees on ε in Section 5 be improved in the rank-2 case (or the general
case) by improving our analysis? Is there a polynomial time algorithm that is guaranteed to find a
rank-2 solution to SDP2? Such an algorithm, together with our analysis, would improve the best
known approximation bound for symmetric games (see Theorem 5.17). Can this bound be extended
to general games? We show in Appendix D that some natural approaches based on symmetrization
of games do not immediately lead to a positive answer to this question. Can SDPs in a higher
level of the Lasserre hierarchy be used to achieve better ε guarantees? What are systematic ways
of adding valid inequalities to these higher-order SDPs by exploiting the structure of the Nash
equilibrium problem? For example, since any strategy played with positive probability must give
the same payoff, one can add a relaxed version of the cubic constraints

xixj(e
T
i Ay − eTj Ay) = 0, ∀i, j ∈ {1, . . . ,m}

to the SDP underlying the second level of the Lasserre hierarchy. What are other valid inequalities
for the second level? Finally, our algorithms were specifically designed for two-player one-shot
games. This leaves open the design and analysis of semidefinite relaxations for repeated games or
games with more than two players.
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A Statistics on ε from Algorithms in Section 4

Below are statistics for the ε recovered in 100 random games of varying sizes using the algorithms
of Section 4.

Table 4: Statistics on ε for 5× 5 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0702 0.0040 0.0004 0.0099
Diagonal Gap 0.0448 0.0027 0 0.0061

Table 5: Statistics on ε for 10× 5 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0327 0.0044 0.0021 0.0064
Diagonal Gap 0.0267 0.0033 0.0006 0.0053

Table 6: Statistics on ε for 10× 10 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0373 0.0058 0.0039 0.0065
Diagonal Gap 0.0266 0.0043 0.0026 0.0051

Table 7: Statistics on ε for 15× 10 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0206 0.0050 0.0034 0.0045
Diagonal Gap 0.0212 0.0038 0.0025 0.0039

Table 8: Statistics on ε for 15× 15 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0169 0.0051 0.0042 0.0039
Diagonal Gap 0.0159 0.0038 0.0029 0.0034

Table 9: Statistics on ε for 20× 15 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0152 0.0046 0.0035 0.0036
Diagonal Gap 0.0119 0.0032 0.0022 0.0027
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Table 10: Statistics on ε for 20× 20 games after 20 iterations.
Algorithm Max Mean Median StDev

Square Root 0.0198 0.0046 0.0039 0.0034
Diagonal Gap 0.0159 0.0032 0.0024 0.0032

B Comparison with an SDP Approach from [28]

In this section, at the request of a referee, we compare the first level of the SDP hierarchy given in
[28, Section 4] to SDP2 using Tr(M) as the objective function on 100 randomly generated games
for each size given in the tables below. The first level of the hierarchy in [28] optimizes over a
matrix which is slightly bigger than the one in SDP2, though it has a number of constraints linear
in the size of the game considered, as opposed to the quadratic number in SDP2. We remark that
the approach in [28] is applicable more generally to many other problems, including several in game
theory.

The scalar ε reported in Table 11 is computed using the strategies (x, y) extracted from the first
row of the optimal matrix M1 as described in Section 4.1 of [28]. The scalar ε reported in Table 12
is computed using x = P1n and y = P T 1m from the optimal solution to SDP2 with Tr(M) as the
objective function.

Table 11: Statistics on ε for first level of the hierarchy in [28].
5× 5 10× 5 10× 10 15× 10 15× 15 20× 15 20× 20

Max 0.3357 0.3304 0.2557 0.2189 0.1987 0.1837 0.1828
Mean 0.1883 0.1889 0.1513 0.1446 0.1262 0.1217 0.1087

Median 0.1803 0.1865 0.1452 0.1418 0.1271 0.1208 0.1070

Table 12: Statistics on ε for SDP2 with Tr(M) as the objective function.
5× 5 10× 5 10× 10 15× 10 15× 15 20× 15 20× 20

Max 0.1581 0.1589 0.115 0.1335 0.0878 0.082 0.0619
Mean 0.0219 0.0332 0.0405 0.04 0.0366 0.0356 0.0298

Median 0.0046 0.0233 0.036 0.0346 0.0345 0.0325 0.0293

We also ran the second level of the hierarchy in [28] on the same 100 5×5 games. The maximum
ε observed was .3362, while the mean was .1880 and the median was .1800. The size of the variable
matrix that needs to be positive semidefinite for this level is 78× 78.

C Lemmas for Extreme Nash Equilibria

The results reported in Section 6 were found using the lrsnash [5] software which computes extreme
Nash equilibria (see definition below). In particular the true maximum welfare and the persistent
strategy sets were found in relation to extreme symmetric Nash equilibria only. We show in this
appendix why this is sufficient for the claims we made about all symmetric Nash equilibria. We
prove a more general statement below about general games and general Nash equilibria since this
could be of potential independent interest. The proof for symmetric games is identical once the
strategies considered are restricted to be symmetric.

Definition C.1. An extreme Nash equilibrium is a Nash equilibrium which cannot be expressed
as a convex combination of other Nash equilibria.
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Lemma C.2. All Nash equilibria are convex combinations of extreme Nash equilibria.

Proof. It suffices to show that any extreme point of the convex hull of the set of Nash equilibria
must be an extreme Nash equilibrium, as any point in a compact convex set can be written as a
convex combination of its extreme points. Note that this convex hull contains three types of points:
extreme Nash equilibria, Nash equilibria which are not extreme, and convex combinations of Nash
equilibria which are not Nash equilibria. The claim then follows because any extreme point of the
convex hull cannot be of the second or third type, as they can be written as convex combinations
of other points in the hull.

The next lemma shows that checking extreme Nash equilibria are sufficient for the maximum
welfare problem.

Lemma C.3. For any bimatrix game, there exists an extreme Nash equilibrium giving the maximum
welfare among all Nash equilibria.

Proof. Consider any Nash equilibrium (x̃, ỹ), and let it be written as

[
x̃
ỹ

]
=
∑r

i=1 λi

[
xi

yi

]
for some

set of extreme Nash equilibria

[
x1

y1

]
, . . . ,

[
xr

yr

]
and λ ∈ 4r. Observe that for any i, j,

xiTAyj ≤ xjTAyj , xiTByj ≤ xiTByi, (65)

from the definition of a Nash equilibrium. Now note that

x̃T (A+B)ỹ = (
r∑
i=1

λix
i)T (A+B)(

r∑
i=1

λiy
i)

=
r∑
i=1

r∑
j=1

λiλjx
iT (A+B)yj

=
r∑
i=1

r∑
j=1

λiλjx
iTAyj +

r∑
i=1

r∑
j=1

λiλjx
iTByj

(65)

≤
r∑
i=1

r∑
j=1

λiλjx
jTAyj +

r∑
i=1

r∑
j=1

λiλjx
iTByi

=

r∑
i=1

λix
iTAyi +

r∑
i=1

λix
iTByi

=

r∑
i=1

λix
iT (A+B)yi.

In particular, since each (xi, yi) is an extreme Nash equilibrium, this tells us for any Nash
equilibrium (x̃, ỹ) there must be an extreme Nash equilibrium which has at least as much welfare.

Similarly for the results for persistent sets in Section 6.2, there is no loss in restricting attention
to extreme Nash equilibria.

Lemma C.4. For a given strategy set S, if every extreme Nash equilibrium plays at least one
strategy in S with positive probability, then every Nash equilibrium plays at least one strategy in S
with positive probability.
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Proof. Let S be a persistent set of strategies. Since all Nash equilibria are composed of nonnegative
entries, and every extreme Nash equilibrium has positive probability on some entry in S, any convex
combination of extreme Nash equilibria must have positive probability on some entry in S.

D A Note on Reductions from General Games to Symmetric Games

An anonymous referee asked us if our guarantees for symmetric games transfer over to general
games by symmetrization. Indeed, there are reductions in the literature that take a general game,
construct a symmetric game from it, and relate the Nash equilibria of the original game to symmetric
Nash equilibria of its symmetrized version. In this Appendix, we review two well-known reductions
of this type [23, 25] and show that the quality of approximate Nash equilibria can differ greatly
between the two games. We hope that our examples can be of independent interest.

D.1 The Reduction of Griesmer, Hoffman, and Robinson [23]

Consider a game (A,B) withA,B > 0 and a Nash equilibrium (x∗, y∗) of it with payoffs pA := x∗TAy∗

and pB := x∗TBy∗. Then the symmetric game (SAB, S
T
AB) with

SAB :=

[
0 A
BT 0

]
admits a symmetric Nash equilibrium in which both players play

[ pA
pA+pB

x∗
pB

pA+pB
y∗

]
. In the reverse direc-

tion, any symmetric equilibrium

([
x
y

]
,

[
x
y

])
of (SAB, S

T
AB) yields a Nash equilibrium ( x

1Tmx
, y
1Tny

)

to the original game (A,B).
To demonstrate that high-quality approximate Nash equilibria in the symmetrized game can

map to low-quality approximate Nash equilibria in the original game, consider the game given by

(A,B) =

([
ε 0
1 1

]
,

[
ε2 0
0 1

])
for some ε > 0. The symmetric strategy




1
1+ε
0
ε

1+ε
0

 ,


1
1+ε
0
ε

1+ε
0




is an ε1−ε1+ε -NE for (SAB, S
T
AB), but the strategy pair

([
1
0

]
,

[
1
0

])
is a (1− ε)-NE for (A,B).

D.2 The Reduction of Jurg, Jansen, Potters, and Tijs [25]

Consider a game (A,B) with A > 0, B < 0 and a Nash equilibrium (x∗, y∗) of it with payoffs
pA := x∗TAy∗ and pB := x∗TBy∗. Then the symmetric game (SAB, S

T
AB) with

SAB :=

0m×m A −1m
BT 0n×n 1n
1Tm −1Tn 0
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admits a symmetric Nash equilibrium in which both players play
x∗

2−pB
y∗

2+pA
1− 1

2−pB −
1

2+pA

 .

In the reverse direction, any symmetric equilibrium

xy
z

 ,
xy
z

 of (SAB, S
T
AB) yields a Nash

equilibrium ( x
1Tmx

, y
1Tny

) to the original game (A,B). This reduction has some advantages over the

previous one (see [25, Section 1]).
To demonstrate that high-quality approximate Nash equilibria in the new symmetrized game

can again map to low-quality approximate Nash equilibria in the original game, consider the game

given by (A,B) =

([
0 0
0 1

]
,

[
−1 −1
0 0

])
. Let ε ∈ (0, 12). The symmetric strategy




ε
0

1− ε
0
0

 ,


ε
0

1− ε
0
0




is an ε
2(1− ε)-NE12 for (SAB, S

T
AB), but the strategy pair

([
1
0

]
,

[
1
0

])
is a 1-NE for (A,B).

12Note that approximation factor is halved since the range of the entries of the payoff matrix in the symmetrized
game is [−1, 1].
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