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Abstract: Joint chance-constrained optimization problems under discrete distributions arise frequently in

financial management and business operations. These problems can be reformulated as mixed-integer pro-

grams. The size of reformulated integer programs is usually very large even though the original problem is of

medium size. This paper studies an augmented Lagrangian decomposition method for finding high-quality

feasible solutions of complex optimization problems, including non-convex chance-constrained problems.

Different from the current augmented Lagrangian approaches, the proposed method allows randomness to

appear in both the left-hand-side matrix and the right-hand-side vector of the chance constraint. In addition,

the proposed method only requires to solve a convex subproblem and a 0-1 knapsack subproblem at each

iteration. Based on the special structure of the chance constraint, the 0-1 knapsack problem can be computed

in quasi-linear time that keeps the computation for discrete optimization subproblems at relatively low level.

The convergence of the method to a first-order stationary point is established under certain mild conditions.

Numerical results are presented in comparison with a set of existing methods in the literature for various

real-world models. It is observed that the proposed method compares favorably in terms of the quality of the

best feasible solution obtained within a certain time for large size problems, particularly when the objective

function of the problem is non-convex or the left-hand-side matrix of the constraints is random.
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1. Introduction

Consider the following joint chance-constrained optimization problem

min f(x)

s.t. P{g(x, ξ)≥ 0} ≥ 1−α,

x∈X,

(P)

where f : <n→< is a continuously differentiable function, g = (g1, . . . , gm) : <n × <s→

<m, gj(x, ξ) (j = 1, . . . ,m) are continuously differentiable concave functions of x, ξ is a

random vector taking values in <s, α ∈ (0,0.5) is a given small risk level, P denotes the

probability, and X is a nonempty compact convex set in <n. Throughout the paper, we

assume that problem (P) is feasible. Problem (P) can be viewed as a stochastic version of

the conventional constrained optimization problem. The probabilistic constraint in (P) is

also called the joint chance constraint, which allows violation of the constraints g(x, ξ)≥ 0

with a small probability α. It is a reasonable relaxation of requiring g(x, ξ)≥ 0 to be held

for all possible realizations of ξ, which could be very expensive or impossible in many

situations.

Chance-constrained (or probabilistically constrained) optimization problems are intro-

duced by Charnes et al. (1958), Charnes and Cooper (1959), Miller and Wagner (1965),

and Prékopa (1970) and have been studied extensively in the stochastic optimization liter-

ature. Readers are referred to Prékopa (2003) and Shapiro et al. (2009) for comprehensive

reviews on the theory and applications of those problems.

One of the major difficulties in solving problem (P) is the nonconvexity caused by the

probabilistic constraint (Prékopa 2003, Lagoa et al. 2005, Henrion and Strugarek 2008).

Several approximation approaches have been proposed to build tractable approximations

to problem (P), which can be optimized efficiently using standard methods, such as convex

programming (Rockafellar and Uryasev 2000, Nemirovski and Shapiro 2006a), CVaR based

robust optimization (Chen et al. 2010), sequential convex approximation using various DC

(difference of two convex functions) representations of the non-convex probability function

(Hong et al. 2011, Hu et al. 2013, Shan et al. 2014), trust-region-based sequential quadratic

programming method (Curtis et al. 2018), scenario approximations (Calafiore and Campi

2005, 2006, Nemirovski and Shapiro 2006b), the progressive hedging method (Rockafellar

and Sun 2019), and many others.
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In the literature, there is also extensive research under the assumption of finite discrete

distribution on ξ. As shown by Ruszczyński (2002), under the assumption of finite discrete

distribution, problem (P) can be reformulated as a mixed-integer problem and thus can

be solved in the framework of branch-and-bound methodology. Recently, Luedtke (2014)

proposes a branch-and-cut decomposition algorithm for chance-constrained mathematical

programs with finite support. Adam and Branda (2016) derive necessary optimality con-

ditions based on a relaxation reformulation with complementarity constraints. Motivated

by these studies, we focus on the special case of problem (P) that satisfies the following

two assumptions:

(A1) There are only finitely many realizations (scenarios) of ξ, i.e.,

P(ξ = ξi) = pi, i= 1, . . . ,N,
N∑
i=1

pi = 1.

(A2) The constraint functions gj(x, ξ) (j = 1, . . . ,m) are affine in x.

Assumption (A1) arises frequently in applications, either by using a set of past data,

or by using sample approximations of the underlying distribution. Related results can be

found, say, in Luedtke and Ahmed (2008) and Shapiro et al. (2009).

Assumption (A2) is also extensively used in the literature. Let us assume that the chance

constraint takes the following form:

P(Tx≥ η)≥ 1−α, (1)

where T is an m×n random matrix and η is a random vector in <m. We refer problem (P)

with constraint (1) as the linear (joint) chance-constrained programming (LCCP). Two

notable examples of LCCP are the Value-at-Risk (VaR) constrained portfolio selection

problem and the chance-constrained transportation problem. In the literature, there are

two research streams. One assumes that only the left-hand-side technology matrix T is

random and the other assumes that only the right-hand-side vector η is random. Van Ack-

ooij et al. (2011) and Cheng and Lisser (2012) propose efficient algorithms for LCCP when

η is deterministic and T is a random matrix with certain continuous distributions. For

instance, each row of T is normally distributed. Extensive research has been carried out

for LCCP when the matrix T is deterministic and the right-hand-side vector η is random.

Several authors considered mixed-integer linear programming (MILP) reformulations for
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LCCP when η has finite discrete distribution. By identifying p-efficient points, Prékopa

(1990) constructs improved MILP reformulations for LCCP. Lejeune and Noyan (2010)

discuss how to generate p-efficient points using mathematical programming approaches.

On the other hand, Dentcheva and Martinez (2012, 2013) propose a progressive augmented

Lagrangian method to solve the chance-constrained optimization problem with random

right-hand-side vector. Other methods for this case include the lower and upper bounds of

LCCP approach of Dentcheva et al. (2000), the branch-and-bound methods for LCCP by

Beraldi and Ruszczyński (2002a,b), the method of strengthened MILP reformulations of

LCCP by Luedtke et al. (2010), the methods of disjunctive programming proposed by Sen

(1992), the method based on extended disjunctive formulations by Vielma et al. (2012), the

branch-reduce-cut algorithm based on domain reduction and linear programming relax-

ation for LCCP with a general distribution by Cheon et al. (2006), and the pattern-based

modeling and solution method of Lejeune (2012). For more general non-convex chance-

constrained problems, the systematic reformulation and algorithm is proposed by Lejeune

and Margot (2016) for solving a class of non-convex stochastic programming problems with

random technology matrix and stochastic quadratic inequality.

As problem (P) is in general non-convex, exact global solution methods are only suitable

for problems of small to medium size. For large-size problems, it is natural to consider local

or approximation methods. Those methods can not guarantee the global optimality but

are capable of finding a high-quality feasible solution of (P) in reasonable computing time.

The purpose of this paper is to present an efficient local method of this type for problem

(P) under assumptions (A1) and (A2), where both T and η are random.

The contributions of this paper are as follows.

• We present an augmented Lagrangian decomposition formulation of problem (P).

When certain variables are fixed, the formulation can lead to a nonlinear (possibly non-

convex) programming subproblem over the set X or a 0-1 linear knapsack subproblem. We

introduce an additional proximal term to guarantee the resulted subproblem to be convex

and show that the 0-1 linear knapsack subproblem can be solved in quasi-linear time for

the case of equal probabilities.

• Under certain mild conditions, we prove that the method converges to a first-order

stationary point of problem (P).
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• To evaluate the performance of the proposed method, we conduct computational

experiments on real-world application problems such as the VaR-constrained portfolio

selection model, the chance-constrained transportation model with random supply and

the chance-constrained supply chain model with random demand and a non-convex objec-

tive function. The numerical results show that the proposed method is capable of finding

suboptimal solutions of high quality for the tested problems.

• We compare the proposed method with a set of existing methods in the literature,

some of which are aimed at finding an exact solution rather than a stationary point. The

comparison results indicate that the proposed method is favorable particularly for the large-

scale tested problems with a non-convex objective function or with a non-deterministic

technical matrix.

After the first draft of this paper has been submitted, a referee kindly introduces us to

three recent papers by Dentcheva et al. (2000) and Dentcheva and Martinez (2012, 2013).

These papers use the idea of augmented Lagrangian methods to solve chance-constrained

programming problems with discrete distributions, therefore bear some similarity to our

proposed method. However, there are some major differences between the proposed method

and the aforementioned methods (the existing methods for short). First, the existing meth-

ods aim at solving exactly the problem while our study primarily aims at finding high-

quality feasible solution for complex problems, including non-convex chance-constrained

problems. Second, the existing methods are applicable to the problems with random right-

hand-side vector and can not be applied to the problems with random technology matrix.

Third, the existing methods penalize inequality constraints, while our method penalizes

equality constraints. Thus, our augmented Lagrangian function is different from the exist-

ing methods. Lastly, the existing methods compute p-efficient points repeatedly by mixed-

integer programming techniques, while the proposed method reduces the work to the level

of solving a 0-1 knapsack subproblem per iteration. Meanwhile, another referee points

us to a paper by Ahmed et al. (2017) that proposes two new Lagrangian dual problems

for chance constrained stochastic programs with discrete distribution. Both approaches in

Ahmed et al. (2017) and the proposed method are applied to the integer reformulation of

chance-constrained problems. The major difference between approaches of Ahmed et al.

(2017) and the proposed method is that the methods in Ahmed et al. (2017) focus on the
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strength of the dual bounds, while the proposed method focus on finding the high quality

feasible solution of the primal problem.

The remainder of the paper is organized as follows. In Section 2, we derive the augmented

Lagrangian decomposition formulation of (P) and study the two subproblems obtained by

fixing some variables. In Section 3, we describe the augmented Lagrangian decomposition

method and prove its convergence to a first-order stationary point of (P). We conduct

computational experiments in Section 4 on test problems from the aforementioned real-

world application models. Finally, we make a few concluding remarks in Section 5.

2. Augmented Lagrangian Decomposition Formulation and
Subproblems

We start this section by introducing an augmented Lagrangian reformulation for the mixed-

integer program (MIP for short) formulation of problem (P). We then explore the special

structure of this reformulation that eventually leads to an efficient numerical scheme for

solving problem (P).

Let di ∈ <m be a lower bound vector of g(x, ξi) over X for i = 1, . . . ,N . Since X is

compact and g(x, ξi) is affine in x, di is finite for i= 1, . . . ,N . Without loss of generality,

we assume that di ≤ 0. By introducing a binary variable zi ∈ {0,1} for each scenario ξi,

i= 1, . . . ,N , the probabilistic constraint P{g(x, ξ)≥ 0} ≥ 1−α can be expressed as

g(x, ξi)≥ zidi, i= 1, . . . ,N,
N∑
i=1

pizi ≤ α, z ∈ {0,1}N .

Hence, problem (P) can be reformulated as the following mixed-integer problem

(Ruszczyński 2002):

min f(x)

s.t. g(x, ξi)≥ zidi, i= 1, . . . ,N,
N∑
i=1

pizi ≤ α, z ∈ {0,1}N ,

x∈X.

(MIP0)
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By introducing yi = g(x, ξi) (i= 1, . . . ,N), we can rewrite the problem (MIP0) as

min f(x)

s.t. yi = g(x, ξi), i= 1, . . . ,N,

yi ≥ zidi, i= 1, . . . ,N,
N∑
i=1

pizi ≤ α, z ∈ {0,1}N ,

x∈X.

(MIP1)

The constraints yi = g(x, ξi) (i= 1, . . . ,N) can be viewed as linkage constraints, which

can be enforced approximately by an augmented Lagrangian approach. Consider the fol-

lowing augmented Lagrangian function for problem (MIP1):

L(x, y,λ) := f(x) +
N∑
i=1

λTi [yi− g(x, ξi)] +
ρ

2

N∑
i=1

‖yi− g(x, ξi)‖2, (2)

where each λi ∈<m is a multiplier vector and ρ > 0 is a penalty parameter. The resulting

augmented Lagrangian decomposition formulation is

min L(x, y,λ)

s.t. (y, z)∈Ω,

x∈X,

(ALP)

where

Ω =

{
(y, z)∈<m×N ×{0,1}N | yi ≥ zidi,

N∑
i=1

pizi ≤ α, i= 1, . . . ,N

}
. (3)

The structure of (ALP) suggests to apply the alternating direction method of multipliers

for solving it. When applying the alternating direction method, however, an issue arises.

We notice that for given λ = λ̄, when the variables (y, z) = (ȳ, z̄) ∈ Ω are fixed, problem

(ALP) becomes

min L(x, ȳ, λ̄) s.t. x∈X. (4)

If f(x) is non-convex, the function L(x, ȳ, λ̄) may be non-convex, and then we can not

guarantee that problem (4) is convex, which will bring complications in the analysis of the

algorithm. As a remedy, we introduce a proximal term to the objective function of problem

(4) to make the resulted subproblem be convex.
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For a continuously differentiable and strictly convex function φ(x) on <n, the Bregman

distance Dφ associated with φ(x) for points x1, x2 ∈<n is defined as

Dφ(x
1, x2) = φ(x1)−φ(x2)−∇φ(x2)T (x1−x2). (5)

According to the property of the strictly convex function, we have φ(x1) > φ(x2) +

∇φ(x2)T (x1 − x2) if x1 6= x2. Thus, the function Dφ is nonnegative when φ(x) is strictly

convex. By adding the function Dφ(x, x̄), named as the Bregman proximal term, to the

objective function of problem (4), we obtain the following problem

min L(x, ȳ, λ̄) +Dφ(x, x̄) s.t. x∈X. (6)

If f(x) is convex, we can choose φ(x) = 1
2
‖x‖2H with H � 0, where ‖x‖2H := xTHx, then

Dφ(x, x̄) = 1
2
‖x − x̄‖2H . On the other hand, if f(x) is non-convex, we can choose φ(x)

properly to make the problem (6) be convex. For example, since the Hessian of f(x) is

bounded on X, we can choose φ(x) = 1
2
‖x‖2H − f(x) with H ∈H, where

H= {H � 0 |H −∇2f(x)� 0, ∀x∈X}.

It it obvious that φ(x) is strictly convex. Then the objective function of problem (6)

becomes

L(x, ȳ, λ̄) +Dφ(x, x̄) =
N∑
i=1

λ̄Ti [ȳi− g(x, ξi)] +
ρ

2

N∑
i=1

‖ȳi− g(x, ξi)‖2

+f(x̄) +∇f(x̄)T (x− x̄) +
1

2
‖x− x̄‖2H .

Since gj(x, ξ
i) (j = 1, . . . ,m) are affine functions of x for each i, the objective function of

problem (6) is a convex function of x. Thus, problem (6) is a convex programming problem

of variables x over the compact convex set X.

Next, we consider the subproblem of problem (ALP) when x= x̄∈X is fixed. For given

λ= λ̄, problem (ALP) becomes

min L(x̄, y, λ̄) s.t. (y, z)∈Ω, (7)

where Ω is defined in (3). Let δ̄ denote the optimal value of problem (7). Then

δ̄ = f(x̄)− τ +
ρ

2
min

{
N∑
i=1

‖yi−wi‖2 | (y, z)∈Ω

}
, (8)



Bai, Sun and Zheng: ALDM for CCOP
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2018-10-OA-201 9

where wi = g(x̄, ξi)− λ̄i/ρ∈<m and τ = 1
2ρ

∑N
i=1 ‖λ̄i‖2 is a constant. Let

ri = min
yi≥0
‖yi−wi‖2, qi = min

yi≥di
‖yi−wi‖2, i= 1, . . . ,N. (9)

It follows from (3) and (8) that

δ̄ = f(x̄)− τ +
ρ

2
min

{
N∑
i=1

qizi + ri(1− zi) |
N∑
i=1

pizi ≤ α, z ∈ {0,1}N
}

= f̄ +
ρ

2
min

{
N∑
i=1

(qi− ri)zi |
N∑
i=1

pizi ≤ α, z ∈ {0,1}N
}
, (10)

where f̄ = f(x̄)− τ + ρ
2

∑N
i=1 ri. Since di ≤ 0, we have qi ≤ ri for each i. Thus, the minimiza-

tion problem in (10) is equivalent to the following 0-1 linear knapsack problem.

max

{
N∑
i=1

(ri− qi)zi |
N∑
i=1

pizi ≤ α, z ∈ {0,1}N
}
. (11)

Although problem (11) is still NP-hard in theory for general finite discrete distribution,

it is more tractable in computation than a general MIP approach as it can be solved

by dynamic programming approaches very efficiently when pi (i = 1, . . . ,N) are rational

numbers.

We now consider an important case of the 0-1 linear knapsack problem (11) when pi =

1/N for i = 1, . . . ,N . Let K = bNαc, where bNαc is the maximum integer number less

than or equal to Nα. The constraint in the 0-1 linear knapsack problem (11) reduces

to
∑N

i=1 zi ≤K. Thus, problem (11) is equivalent to the sum of the K largest entries of

{ri− qi}Ni=1, which can be computed in O(N log(N)) by ranking the sequence {ri− qi}Ni=1.

Finally, we see that ri and qi defined in (9) can be calculated in the following way:

ri =
m∑
j=1

rij, qi =
m∑
j=1

qij, i= 1, . . . ,N,

where

rij = min
yij≥0

(yij −wij)2 =

w2
ij, if wij < 0,

0, if wij ≥ 0,
(12)

qij = min
yij≥dij

(yij −wij)2 =

 (dij −wij)2, if wij <dij,

0, if wij ≥ dij.
(13)



Bai, Sun and Zheng: ALDM for CCOP
10 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2018-10-OA-201

Therefore, the optimal yi in the subproblem (7) can be easily determined by using (9),

(12) and (13) via the optimal solution of problem (11).

In summary, we have shown that the two subproblems obtained by respectively fixing x

or (y, z) in the augmented Lagrangian decomposition formulation can be solved efficiently.

In the next section, we present the detailed algorithm and prove a convergence result.

3. An Augmented Lagrangian Decomposition Method

In this section, we propose an augmented Lagrangian decomposition method for problem

(P) and prove its convergence to a first-order stationary point of problem (P).

The alternating direction method, also known as the block coordinate descent methods,

has been successfully applied to structured convex programming problems arising from

image processing and matrix optimization (see for examples, Yin et al. 2008, Goldstein and

Osher 2009, Sun and Zhang 2010, He et al. 2012, Zhang et al. 2013, Shen et al. 2014). Here,

we present an augmented Lagrangian decomposition method by applying the alternating

direction method of multipliers with a proximal term, which appears to be new.

The basic idea of the proposed method is to solve the two subproblems (6) and (7)

alternatively while updating the Lagrangian multipliers so as to enforce the least square

penalty term to diminish during the iterations. By doing so, we are able to “isolate” the

probabilistic constraint from other deterministic constraints, thus alleviating the difficulty

of handing the probabilistic constraint. A detailed description of the method is as follows.

Algorithm 1 (The Augmented Lagrangian Decomposition Method).

Step 0. Choose tolerance parameter ε > 0, multiplier vector λ0, penalty parameter ρ > 0

and step-size κ> 0. Choose x0 ∈X and φ(x). Set the iteration counter k= 0.

Step 1. Solve the subproblem problem (7) with x̄= xk and λ̄= λk to obtain an optimal

solution (yk+1, zk+1).

Step 2. Solve the convex programming subproblem (6) with (x̄, ȳ, λ̄) = (xk, yk+1, λk) to

obtain an optimal solution xk+1.

Step 3. If
∑N

i=1 ‖y
k+1
i − g(xk+1, ξi)‖2 ≤ ε, stop, xk+1 is an approximate optimal solution.

Otherwise, go to Step 4.

Step 4. Update the multipliers by

λk+1
i = λki +κρ

[
yk+1
i − g(xk+1, ξi)

]
, i= 1, . . . ,N. (14)

Set k := k+ 1, and go to Step 1.
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Before establishing the convergence properties of Algorithm 1, we need to present the

local optimality conditions for (P). To simplify the proof of the lemmas and the convergence

theorem, we make the following assumption in the sequel.

(A3) The probabilities of each scenario ξ = ξi (i= 1, . . . ,N) are equal, i.e.,

pi = P(ξ = ξi) = 1/N, i= 1, . . . ,N.

Assumption (A3) has been used in the literatures, see Luedtke et al. (2010), Luedtke

(2014), and some references therein. The scenarios can be obtained from the observation of

the historical data, or Monte Carlo based samples from some given probability distribution.

In such cases, the resulted scenarios often have the same probability.

For y= (y1, . . . , yN)∈<m×N , where yi = (yi1, . . . , yim)T , define s(y) = (s(y)1, . . . , s(y)N)T ,

where

s(y)i = min
j=1,...,m

yij, i= 1, . . . ,N.

Let G(x) = [g(x, ξ1), . . . , g(x, ξN)] ∈ <m×N . Then, g(x, ξi) ≥ 0 if and only if s(G(x))i ≥ 0.

Since each gj is a linear function of x, s(G(x))i (i= 1, . . . ,N) are concave functions of x.

Let a[k] denote the kth smallest entry of a vector a ∈<N . Then, by Assumption (A3), we

have

P{g(x, ξ)≥ 0} ≥ 1−α ⇐⇒ s(G(x))[K] ≥ 0, (15)

where K = bNαc. For convenience, we denote in the sequel that χ(x) := s(G(x))[K].

Therefore, problem (P) can be rewritten as

min f(x) (16)

s.t. χ(x)≥ 0, x∈X.

Lemma 1. The function χ(x) is locally Lipschitz on <n.

Proof. Note that each χ(x) = s(G(x))[K] is a composite function of u= s(G(x)) and u[K].

Since s(G(x))i = minj=1,...,m gj(x, ξ
i) is concave and hence locally Lipschitz on <n, it suffices

to show that u[K] is a locally Lipschitz function of u ∈ <N (Clarke 1983). Note that u[K]

can be expressed as

u[K] =

N∑
j=K

u[j]−
N∑

j=K+1

u[j]. (17)
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Let ψt(u) =
∑N

j=t u[j]. Then, u[K] =ψK(u)−ψK+1(u). Since ψt(u) is the sum of the N− t+1

largest components of u, it is a convex function of u (see, e.g., Example 3.6 in Boyd and

Vandenberghe 2004). Thus, u[K] is the difference of two convex functions and hence is

locally Lipschitz function since convex functions and concave functions are locally Lipschitz

and the sum of two locally Lipschitz functions is a locally Lipschitz function. �

By Lemma 1, the Clarke generalized gradient of χ(x) exists for any x ∈ <n. Moreover,

χ(x) can be viewed as a composite of y = G(x) and s(y)[K]. By the chain rule (Clarke

1983), we have

∂χ(x) = conv

{
N∑
i=1

∇g(x, ξi)θi : θi ∈ ∂yi(s(y)[K]) |y=G(x)

}
, (18)

where ∇g(x, ξi) ∈ <n×m is the Jacobian matrix of g(x, ξi) and ∂yi(s(y)[K]) |y=G(x) denotes

the partial generalized Clarke gradient of s(y)[K] at y = G(x) with respect to yi ∈ <m,

i= 1, . . . ,N .

We have the following first-order stationary condition for (16) (Clarke 1983): If x∗ is a

local minimizer of problem (16), then there exists π∗ ≥ 0 such that

0∈∇f(x∗)−π∗∂χ(x∗) +NX(x∗), (19)

π∗χ(x∗) = 0, (20)

where NX(x∗) := {y ∈<n | ∀x∈X, 〈y,x−x∗〉 ≤ 0}, which is the normal cone of X at x∗.

We are now ready to state the convergence theorem of Algorithm 1.

Theorem 1. Let (x∗, y∗, λ∗) be any accumulation point of {(xk, yk, λk)} generated by

Algorithm 1. Assume that {λk} is bounded and

∞∑
k=1

‖λk+1−λk‖2 <∞. (21)

Then, x∗ satisfies the first-order stationary conditions (19)-(20).

Before proceeding to the proof of Algorithm 1, a few remarks are in order. The assump-

tion on the boundedness of the multiplier vectors in Theorem 1 is a standard condition in

the convergence analysis of augmented Lagrangian methods for non-convex optimization

problems (Bertsekas 1982, Luo et al. 2007). Roughly speaking, the condition (21) is to

ensure that the difference of multipliers between two iterations shrinks faster than 1/
√
k
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as the iteration proceeds. Similar conditions have been used in the convergence analysis of

alternating direction methods for non-convex optimization problems (Shen et al. 2014).

We need the following lemma.

Lemma 2. Under the assumptions of Theorem 1, it holds that

‖xk−xk+1‖→ 0, ‖yk− yk+1‖→ 0, k→∞. (22)

Proof. Since xk+1 solves (6) at the kth iteration and xk−xk+1 is a feasible direction with

respect to X, we have

[∇xL(xk+1, yk+1, λk) +∇φ(xk+1)−∇φ(xk)]T (xk−xk+1)≥ 0. (23)

From (2) and (5), we see that L(x, y,λ) +Dφ(x,x
k) is a strongly convex function (with

certain parameter ρ̄/2) of variable x, we have

L(xk, yk+1, λk)−L(xk+1, yk+1, λk)−Dφ(x
k+1, xk)

≥ [∇xL(xk+1, yk+1, λk) +∇φ(xk+1)−∇φ(xk)]T (xk−xk+1) +
ρ̄

2
‖xk−xk+1‖2.

This together with (23) gives rise to

L(xk, yk+1, λk)−L(xk+1, yk+1, λk)−Dφ(x
k+1, xk)≥ ρ̄

2
‖xk−xk+1‖2. (24)

On the other hand, since yk+1 solves (7) at the k-iteration and yk is feasible to (7), we have

L(xk, yk, λk)−L(xk, yk+1, λk)≥ 0. (25)

Moreover, by (2) and (14), we have

L(xk+1, yk+1, λk)−L(xk+1, yk+1, λk+1)

=

N∑
i=1

(λki −λk+1
i )T (yk+1

i − g(xk+1, ξi))

= − 1

κρ
‖λk−λk+1‖2. (26)

Combining with (24)-(26), we obtain

L(xk, yk, λk)−L(xk+1, yk+1, λk+1)

= L(xk, yk, λk)−L(xk, yk+1, λk) +L(xk, yk+1, λk)

−L(xk+1, yk+1, λk) +L(xk+1, yk+1, λk)−L(xk+1, yk+1, λk+1)

≥ ρ̄

2
‖xk−xk+1‖2− 1

κρ
‖λk−λk+1‖2 +Dφ(x

k+1, xk)

≥ ρ̄

2
‖xk−xk+1‖2− 1

κρ
‖λk−λk+1‖2. (27)
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Since {xk} ⊂X and by assumption X and {λk} are bounded, we deduce from (14) that

{yk} is also bounded. Thus, {L(xk, yk, λk)} is bounded. Summing up both sides of (27)

over all k yields

ρ̄

2

∞∑
k=1

‖xk−xk+1‖2− 1

κρ

∞∑
k=1

‖λk−λk+1‖2 <∞. (28)

By assumption,
∑∞

k=1 ‖λk−λk+1‖2 <∞, thus (28) implies that

‖xk−xk+1‖→ 0, k→∞. (29)

Since λk−λk+1→ 0 (k→∞), it follows from (14) that

‖yk+1
i − g(xk+1, ξi)‖=

1

κρ
‖λki −λk+1

i ‖→ 0, k→∞. (30)

This together with (29) and the continuity of g(x, ξi) with respect to x implies that

yki − yk+1
i = [yki − g(xk, ξi)] + [g(xk, ξi)− g(xk+1, ξi)]

+[g(xk+1, ξi)− yk+1
i ]→ 0, k→∞.

Therefore, (22) holds. �

Proof of Theorem 1. Let (x∗, y∗, λ∗) be an accumulation point of {(xk, yk, λk)}. Then,

there exists a subsequence {(xk, yk, λk)}k∈I that converges to (x∗, y∗, λ∗). We first note that

under Assumption (A3), (y, z)∈Ω is equivalent to s(y)[K] ≥ 0. Hence, the subproblem (7)

with x̄= xk ∈X can be rewritten as

min L(xk, y, λk) (31)

s.t. s(y)[K] ≥ 0.

Since yk+1 solves (31), there exists πk ≥ 0 such that

∇yiL(xk, yk+1, λk)−πkζki = 0, i= 1, . . . ,N, (32)

πks(yk+1)[K] = 0, (33)

where ζki ∈ ∂yi(s(yk+1)[K]) and

∇yiL(xk, yk+1, λk) = λki + ρ̄(yk+1
i − g(xk, ξi)). (34)
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It is easy to verify that ∂yis(y) = conv{ej | yj = s(y), j = 1, . . . ,m}, where ej is the jth unit

vector in <m, and ∂i(u[K]) = conv{ei : ui = u[K]}, where ei is the ith unit vector in <N .

Hence, the set ∂yi(s(y
k+1)[K]) is bounded away from zero. Consequently, there exists some

constant δ0 > 0 such that ‖ζki ‖ ≥ δ0 for all k and i= 1, . . . ,N . It then follows from (32) that

{πk}k∈I is bounded. Also, since the Clarke generalized gradient is a lower semi-continuous

set-valued mapping (see Proposition 2.4.4 in Clarke 1983), {ζk}k∈I is bounded. Without

loss of generality, we assume that πk→ π∗ and ζk→ ζ∗ (k→∞, k ∈ I). Taking limits in

(32)-(34) for k ∈ I and using Lemma 2, we get

λ∗i −π∗ζ∗i = 0, i= 1, . . . ,N, (35)

π∗s(y∗)[K] = 0, (36)

where ζ∗i ∈ ∂yi(s(y∗)[K]), π
∗ ≥ 0, y∗i = g(x∗, ξi), i= 1, . . . ,N .

On the other hand, since xk+1 solves the subproblem (6) when (x̄, ȳ, z̄) = (xk, yk+1, zk+1),

the first-order optimality condition of (6) is

0∈∇xL(xk+1, yk+1, λk) +∇φ(xk+1)−∇φ(xk) +NX(xk+1), (37)

where

∇xL(xk+1, yk+1, λk) =∇f(xk+1)−
N∑
i=1

∇g(xk+1, ξi)[λki + ρ̄(yk+1
i − g(xk+1, ξi)].

Since the normal cone of a compact set is a lower semi-continuous set-valued mapping (see

Proposition 2.4.4 in Clarke 1983), taking limits for k ∈ I on (37) and using Lemma 2 and

(30), we obtain

0∈∇f(x∗)−
N∑
i=1

∇g(x∗, ξi)λ∗i +NX(x∗). (38)

Note that χ(x∗) = s(G(x∗))[K] = s(y∗)[K]. Combining (35), (36) and (38), and noting the

chain rule (18), we conclude that x∗ is a first-order stationary point satisfying conditions

(19) and (20).

�
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4. Numerical Results

We conduct computational experiments to evaluate the performance of Algorithm 1. The

main purpose of the computational experiments is to test the capability of the proposed

method for finding a high quality solution within a given time limit. We first consider the

class of problems with random technology matrices. The test problems are chosen from

VaR-constrained portfolio selection problem and the chance-constrained transportation

problem. For this class of problems, we compare our method with the greedy method

(Reich 2013), the bisection-based CVaR approximation (suggested by a referee), the DC

method (Hong et al. 2011), the trust-region-based sequential quadratic approximation

method (Curtis et al. 2018), and the CPLEX package applied to the mixed-integer program

reformulation (MIP0). We also consider the class of problems with random right-hand-

side vector and non-convex objective function. This class of problems arises from the

chance-constrained supply chain problem. We compare our method with the progressive

augmented Lagrangian method in Dentcheva and Martinez (2013) and the trust-region-

based sequential quadratic approximation method in Curtis et al. (2018). All the data files

of the test problems are available at https://sem.tongji.edu.cn/semch_data/faculty_

cv/xjz/ccop.html.

The numerical tests are run on a personal computer equipped with Intel Core i5

CPU(3.3GHz) and 16GB RAM under Windows 7. All the algorithms are implemented

in MATLAB R2013b. All linear and convex quadratic subproblems in Algorithm 1 and

the mixed-integer linear and quadratic reformulations are solved by the quadratic pro-

gramming solver and mixed integer programming solver in CPLEX 12.6.3 with MATLAB

interface. We use CPLEX default settings and set the time limit to 1800 seconds1. The non-

convex quadratic programming subproblems in progressive augmented Lagrangian method

are solved by SNOPT (Gill et al. 2005, 2018), which is called from a driver program in

MATLAB.

The parameters in Algorithm 1 are set as follows. The tolerance parameter is set as

ε = 10−6; the step length κ = 0.1; the initial Lagrangian multiplier λ0 = 0, and x0 =

arg min{f(x) | x ∈X}. It is possible to strengthen the values of the lower bound di (i =

1, . . . ,N) by using the techniques proposed in Qiu et al. (2014) and Song et al. (2014).

1 Since we only check the time limit at the starting point of each iteration, the actual finishing time of an algorithm
may be longer than this limit.

https://sem.tongji.edu.cn/semch_data/faculty_cv/xjz/ccop.html
https://sem.tongji.edu.cn/semch_data/faculty_cv/xjz/ccop.html
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However, such strengthening procedure is very time consuming and have no obvious effect

in our test. Therefore we simply set di = min{g(x, ξi) | x∈X}, i= 1, . . . ,N . For all the test

problems, we set pi = 1/N for i= 1, . . . ,N . In order to get the accumulation point of the

sequence generated by our algorithm, the number of iterations of our method should be as

large as possible. In our numerical test, we set the stop criteria as
∑N

i=1 ‖yk−g(xk, ξi)‖2 ≤ ε.

Since the test problems are non-convex, none of the tested instance obtained provable

local optimal solutions within the time limit. Instead, we use the achieved objective values

(“fval” in the tables) as a quality indicator of the solutions.

The notations used in Tables 2-5 are listed in Table 1.
Table 1 Notations used in Tables 2 - 5

ALDM: the augmented Lagrangian decomposition method (Algorithm 1);

Greedy: the greedy method proposed in Reich (2013)

BiCVaR: the bisection-based CVaR approximation described in subsection 4.1

DC: the DC method proposed by Hong et al. (2011)

CPLEX: the CPLEX mixed-integer programming solver applied to (MIP0)

SQP-TR: the trust-region-based sequential quadratic programming

proposed in Curtis et al. (2018)

PAL: the progressive augmented Lagrangian method proposed in

Dentcheva and Martinez (2013)

fval: the average objective value (upper bound) for the 5 test problems

time: the average computing time in seconds for the 5 test problems

iter: the average number of iterations of ALDM for the 5 test problems

4.1. Bisection-based CVaR approximation

The idea of using CVaR as a convex conservative approximation of the chance constraint

is due to Rockafellar and Uryasev (2000). Under assumption (A1)-(A2), the CVaR approx-

imation of problem (P) can be expressed as

min f(x)

s.t. t+ 1
αN

N∑
i=1

yi ≤ 0,

yi ≥ 0, yi ≥−gj(x, ξi)− t, i= 1, . . . ,N, j = 1, . . . ,m,

x∈X, t∈R.

(PCVaR)
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The CVaR approximation is the “best” convex approximation of the chance constraint,

but it is sometimes too conservative for the problem (P). As suggested by one of the referees,

we use a bisection-based CVaR approximation to compute a approximation solution. The

algorithm is described as follows.

Algorithm 2 (Bisection-based CVaR approximation for (P)).

Step 0. Given tolerance ε1 > 0. Let αl = α, αu = 1, and α0 = (αl +αu)/2. Set the iteration

counter k= 0.

Step 1. Solve the problem (PCVaR) with α= αk to obtain an optimal solution xk.

Step 2. If P{g(xk, ξ)≥ 0} ≥ 1−α, let αl = αk. Otherwise, let αu = αk.

Step 3. If αu−αl ≤ ε1, goto Step 4. Otherwise, let αk = (αl +αu)/2 and goto Step 1

Step 4. Solve the problem (PCVaR) with α = αl to obtain an optimal solution xCV aR as

the approximation solution of problem (P).

4.2. The VaR-constrained portfolio selection problem

In this subsection, we consider the VaR-constrained mean-variance portfolio selection prob-

lem of following form.

min βxTΣx−µTx

s.t. P(ξTx≥R)≥ 1−α,

eTx= 1, 0≤ x≤ u,

(VaR-MV)

where ξ is the random vector of returns of n risky assets, Σ and µ are the covariance matrix

and expectation of these returns, β is the risk aversion factor, x= (x1, x2, . . . , xn)T is the

vector of portfolio weights, R is the prescribed minimal level of return, e is the all-one

column vector and 0 < u ≤ e is an upper bound vector for x. This model has been used

and studied widely in the field of risk management. For more details, readers are referred

to Steinbach (2001) and the reference therein.

In our test, we set β = 2, u= 0.5e and α= 0.05 or 0.10, respectively. To build the test

problems for (VaR-MV), we use both real market data and simulated data to construct

the asset return samples ξ, the covariance matrix Σ and the expectation µ.

• Real data set. We use 2523 daily return data of 435 stocks included in Standard

& Poor’s 500 index between March 2006 and March 2016. The covariance matrix Σ is

calculated by the sample covariance using the 2523 historical data. We generate the test

problems with n ranged from 50 to 400. For each n, we generate 5 instances by randomly

selecting n stocks from the 435 stocks and N = 3n samples ξi (i= 1, . . . ,N) from the 2523
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Table 2 Comparison results for (VaR-MV) with different number of stocks using real data set

ALDM Greedy BiCVaR DC SQP-TR CPLEX
α N fval time iter fval time fval time fval time fval time fval time

0.05 50 1.9065 2.02 690 1.9192 0.71 2.1611 0.09 2.0039 0.30 1.9545 0.16 1.9049 0.49
0.05 100 1.8562 2.74 730 1.8586 5.93 2.1796 0.28 1.9681 1.32 1.8928 2.49 1.8421 376.29
0.05 150 1.7230 3.67 736 1.7345 20.61 2.0037 0.67 1.8166 5.49 1.7546 16.68 1.7094 1799.92
0.05 200 1.6754 5.36 727 1.6925 57.71 1.9758 1.23 1.7842 16.57 1.7139 271.65 1.6673 1799.94
0.05 250 1.7126 7.50 715 1.7202 141.83 1.9932 2.25 1.8121 38.20 1.9010 1631.03 1.7172 1799.97
0.05 300 1.6878 9.29 722 1.7032 275.14 1.9838 3.38 1.7875 407.40 1.9146 1801.93 1.6897 1799.97
0.05 350 1.6599 12.48 730 1.6883 479.06 1.9507 5.29 1.7763 103.54 1.8921 1803.10 1.6775 1800.01
0.05 400 1.6621 16.05 720 1.6830 848.17 1.9684 7.25 1.7915 182.56 1.9399 1804.72 1.6818 1800.07

0.10 50 1.7845 1.86 655 1.7866 1.07 1.9046 0.08 1.8661 0.42 1.8026 0.14 1.7813 0.44
0.10 100 1.6341 2.62 721 1.6548 9.93 1.8864 0.27 1.6957 2.43 1.6834 1.23 1.6227 557.79
0.10 150 1.5241 3.45 708 1.5389 35.67 1.7176 0.64 1.5989 9.86 1.5340 17.38 1.5140 1586.34
0.10 200 1.4623 5.02 690 1.4888 94.40 1.6539 1.14 1.5430 28.73 1.4863 21.42 1.4559 1799.91
0.10 250 1.4996 7.10 713 1.5208 242.18 1.7098 2.13 1.6098 68.69 1.5865 1282.94 1.4961 1799.96
0.10 300 1.4607 8.69 705 1.4954 454.80 1.6656 3.16 1.5508 118.31 1.4810 1040.13 1.4631 1799.96
0.10 350 1.4374 11.92 727 1.4663 809.06 1.6308 4.51 1.5347 207.04 1.5769 1818.16 1.4398 1800.00
0.10 400 1.4435 15.14 716 1.4662 1443.84 1.6489 6.03 1.5303 371.85 1.6071 1804.09 1.4624 1800.02

daily return data. For each instance, the prescribed annualized return level is set equal to

5%, so the daily return level is R= 5%/250 = 0.02%.

• Simulated data set. To evaluate the performance of the method for large-scale

problems, we also construct test problems of (VaR-MV) with n up to 1000 and N = 3000,

using simulation data generated in a similar fashion as in Nemirovski and Shapiro (2006a).

The first asset has deterministic return r1 ≡ 1 and the returns of the remaining n−1 assets

are random variables with expectations E[ri] = 1 + r̄i, where the nominal profits r̄i vary in

[0, 0.1]. The random returns of assets are generated by the following factor model:

ri =
8∑
l=1

γilζl + ηi, i= 2, . . . , n, (39)

where log ζl ∼ N (0,0.12), log ηi ∼ N (µi, σ
2
i ) with σi = µi, and γil ≥ 0 are deterministic

influence coefficients. The coefficients γil and the parameters µi are chosen in such a way

that E[
∑8

l=1 γilζl] = r̄i/2 and E[ηi] = 1 + r̄i/2 for all i. For each n, we construct 5 instances

by randomly generating N samples of ξi = (r1, . . . , rn)T by the factor model (39). The

covariance matrix Σ is calculated using (39). The return level is set as R= 1.06.

Table 2 summarizes the comparison results for test problems (VaR-MV), where n ranges

from 50 to 400 and N = 3n. A real data set is used. From Table 2, we see that the greedy

method, ALDM and CPLEX can find solutions with significantly better objective values

than those found by the BiCVaR approximation, the DC method and SQP-TR. ALDM can

achieve better objective values than the DC method, while it spends less computing time
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Table 3 Comparison results for (VaR-MV) with different number of stocks using simulated data set

ALDM Greedy BiCVaR DC SQP-TR CPLEX
α N fval time iter fval time fval time fval time fval time fval time

0.05 500 -0.8521 31.38 436 -0.8318 1816.40 -0.8485 99.32 -0.8453 66.15 -0.8512 1605.25 -0.8490 1804.18
0.05 600 -0.8768 48.61 416 -0.8603 1811.49 -0.8739 130.87 -0.8712 79.06 -0.8729 1856.39 -0.8742 1803.79
0.05 700 -0.8953 70.22 412 -0.8806 1819.00 -0.8929 169.30 -0.8909 107.59 -0.8947 1571.27 -0.8925 1802.82
0.05 800 -0.9108 102.22 403 -0.9001 1830.58 -0.9088 217.84 -0.9073 125.32 -0.9102 1889.66 -0.9087 1803.54
0.05 900 -0.9220 146.50 385 -0.9130 1831.99 -0.9202 279.36 -0.9188 118.50 -0.9211 1912.72 -0.9193 1804.72
0.05 1000 -0.9294 187.05 365 -0.9214 1822.50 -0.9279 347.32 -0.9268 132.22 -0.9287 1940.99 -0.9265 1807.54

0.10 500 -0.8571 31.66 427 -0.8298 1819.85 -0.8544 118.89 -0.8492 71.57 -0.8559 1178.94 -0.8527 1801.06
0.10 600 -0.8815 48.03 414 -0.8604 1816.46 -0.8793 154.61 -0.8752 85.62 -0.8806 1550.00 -0.8786 1802.30
0.10 700 -0.8992 69.06 411 -0.8814 1824.01 -0.8974 200.36 -0.8940 86.41 -0.8986 864.67 -0.8966 1801.91
0.10 800 -0.9137 101.77 395 -0.8991 1832.58 -0.9120 264.45 -0.9094 148.16 -0.9132 1254.97 -0.9115 1804.11
0.10 900 -0.9245 135.30 376 -0.9123 1816.85 -0.9231 332.62 -0.9208 111.33 -0.9241 943.95 -0.9220 1807.60
0.10 1000 -0.9313 177.29 366 -0.9209 1833.09 -0.9300 372.87 -0.9283 135.77 -0.9310 1152.32 -0.9274 1807.55

than the DC method when n≥ 150. We observe that when n= 50 and n= 100, CPLEX

can find the global optimal solution within 1800 seconds, while ALDM and other methods

can only find a feasible solution, but the relative gap between the value found by ALDM

and global optimal value is less than 1%. We also observe that ALDM can find slightly

better solutions than CPLEX within 1800 seconds for larger size problem. As expected,

the computing time of the BiCVaR approximation is much less than the other five methods

because it only solves a few convex quadratic programming problem. Note also from Table

2 that the solution time for the greedy method grows sharply when the sample size N

increases. This is mainly because the number of quadratic subproblems to be solved in the

greedy method is in the order of O(N 2α).

To see the performance of different methods for large-scale problems, we report in Table

3 the comparison results for (VaR-MV) with n up to 1000 and N = 3000 using simulation

data set. For these large test problems, ALDM appears to perform better than the other

methods tested in this paper in terms of the objective values, and the performance of

ALDM and DC is robust. We observed that BiCVaR approximation can find a slightly

better solution than DC method at the price of using significantly more time, while ALDM

can find slightly better solution than BiCVaR in less time. We also observed that for

all large-scale instances, due to the large input sample size N , Greedy and CPLEX was

terminated because of reaching the CPU time limit (1800 seconds).

In summary, the above comparison results suggest that the proposed augmented

Lagrangian decomposition method is effective in finding solutions of good quality for large-

scale problems of (VaR-MV) in a reasonable time limit and is favorable compared to the
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other methods for the tested problems in terms of the trade-off between the solution quality

and the computing time.

4.3. The chance-constrained transportation problem

We next consider a probabilistic version of the conventional transportation problem. Sup-

pose there are n suppliers and m customers. The transportation cost for shipping one unit

product from supplier k to customer j is ckj. Suppose that the kth supplier’s capacity ξk

is random, while the jth customer’s demands dj is deterministic. The problem is how to

make decision on the shipment strategy such that the expected production transportation

cost is minimized without the exact knowledge about the supplier capacity.

The chance-constrained transportation problem in our test has the following form:

min
n∑
k=1

E[ξk]
m∑
j=1

ckjxkj

s.t. P
{

n∑
k=1

ξkxkj ≥ dj, j = 1, . . . ,m

}
≥ 1−α,

m∑
j=1

xkj ≤ 1, xkj ≥ 0, k= 1, . . . , n, j = 1, . . . ,m,

(STP)

where xkj is the percentage of production shipped from supplier k to customer j. When ξ

have finite discrete distributions, problem (STP) is a special case of problem (P).

We randomly generate instances of (STP) with (n,m) = (40,100) and N = 500, 750,

1000, 1250, 1500, 1750, 2000, respectively. The cost coefficients ckj are from the uniform

distribution U [1,5] for k = 1, . . . , n and j = 1, . . . ,m. To generate the samples or scenarios

of ξ, we first generate µk from U [100,120] and σk from U [0,10] (k= 1, . . . , n). The samples

ξi (i = 1, . . . ,N) are then generated from N (µ,Σ), where Σ = diag(σ2
1, . . . , σ

2
n). Similarly,

we generate dj from N (µ,Σ) with µj ∼ U [30,40] and σj ∼ U [0,5] (j = 1, . . . ,m). For each

sample size N , we generate 5 random instances and the average computational results are

recorded. The risk level is set as α= 0.05 and 0.10, respectively.

The comparison results for problem (STP) are summarized in Table 4. The number in

brackets in the column “fval” denotes the number of problems which have been solved by

SQP-TR. The hyphen “−” in Table 4 indicates that the method can’t find any feasible

solution for all test problems in the time limit. Comparing the results in Table 4, we see

that the average objective values achieved by ALDM, CPLEX and SQP-TR are much

better than those achieved by the other methods for the cases with smaller scenarios. The

proposed ALDM performs better than the other methods for test problems with a large
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Table 4 Comparison results for (STP) with different number of samples

ALDM Greedy BiCVaR DC SQP-TR CPLEX
α N fval time iter fval time fval time fval time fval time fval time

0.05 500 4.3097 15.41 635 4.3230 1801.55 4.3339 14.04 4.3189 23.93 4.3088 1802.12 4.3067 1801.55
0.05 750 4.3122 20.09 664 4.3360 1801.31 4.3380 22.57 4.3259 16.90 4.3124 1803.45 4.3106 1802.56
0.05 1000 4.3172 26.28 688 4.3537 1804.73 4.3445 42.00 4.3370 41.30 4.3217 1804.69 4.3168 1803.91
0.05 1250 4.3614 32.04 699 4.4001 1816.56 4.3860 57.45 4.3781 60.50 4.3713 1806.04 4.3603 1805.02
0.05 1500 4.3191 39.12 709 4.3621 1808.25 4.3408 81.51 4.3367 60.36 4.3512 1807.72 4.3355 1806.43
0.05 1750 4.3354 42.72 701 4.3845 1807.43 4.3548 104.55 4.3478 109.70 4.3911(4) 1808.95 4.3658 1811.94
0.05 2000 4.3523 51.68 737 4.4005 1823.18 4.3683 142.77 4.3699 160.75 4.4287(2) 1810.51 4.3915 1810.13

0.10 500 4.3049 15.94 654 4.3380 1801.10 4.3369 14.05 4.3279 19.78 4.3103 1802.09 4.3082 1801.60
0.10 750 4.3124 21.09 686 4.3577 1801.39 4.3418 24.38 4.3279 28.63 4.3177 1803.40 4.3151 1802.55
0.10 1000 4.3587 25.62 700 4.4217 1803.79 4.3848 39.94 4.3796 53.15 4.3794 1804.70 4.3598 1803.79
0.10 1250 4.3217 30.77 727 4.3844 1804.18 4.3431 56.92 4.3380 118.82 4.3719 1805.96 4.3250 1805.04
0.10 1500 4.3060 39.54 734 4.3772 1807.96 4.3267 83.89 4.3229 174.32 4.3469(4) 1807.57 4.3323 1806.54
0.10 1750 4.3097 43.70 748 4.3769 1808.98 4.3259 100.72 4.3300 227.40 4.3181(1) 1808.73 4.3658 1808.20
0.10 2000 4.3242 52.75 776 4.3937 1811.80 4.3332 128.66 4.3336 371.86 – 1812.99 4.3894 1810.02

Note: The magnitude of ‘fval’ is 103

number of scenarios. Compared with CPLEX, the ALDM can obtain feasible solutions in

much less time. When the number of scenarios is less than 1250 and α= 0.05, ALDM is

slightly worse than CPLEX. When the number of scenarios grows larger, the ALDM can

find better solution than CPLEX. For all instances, greedy method, CPLEX and SQP-TR

are terminated when reaching the CPU time limit (1800 seconds). We also observe that the

computing time of the ALDM method is slightly less than that of BiCVaR and DC method.

Overall, it appears that the ALDM is efficient for finding good suboptimal solutions of

problem (STP) and compare favorably with the greedy method, BiCVaR approximation,

the DC method, CPLEX and SQP-TR in terms of the objective value and the computing

time.

4.4. The chance-constrained supply chain problem

In this subsection, we consider the class of chance-constrained problems with non-convex

objective function and random right-hand-side vector. This class of problems arises from

the chance-constrained supply chain problem, which requires the decision maker to build

a product supply chain before the customer demands are known exactly. The model in

our test is same as the one used in Dentcheva and Martinez (2012, 2013), which has the

following form:

min
n∑
k=1

m∑
j=1

ckjxkj + akjx
2
kj

s.t. P
{

n∑
k=1

xkj ≥ ξj, j = 1, . . . ,m

}
≥ 1−α,

m∑
j=1

xkj ≤Mk, xkj ≥ 0, k= 1, . . . , n, j = 1, . . . ,m,

(SCP)
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where xkj is the supply quantities delivered from the kth supplier to the jth customer,

and ckj > 0 is associated with transporting usually a unit of product from supplier k to

customer j. In the objective function, the linear term ckjxkj is the normal transportation

cost, and the quadratic term akjx
2
kj (akj < 0) can be viewed as the cost discount. The kth

supplier’s total supply quantity is Mk, and the jth customer’s demand ξj is random. When

the random vector ξ = (ξ1, . . . , ξm)T has finite discrete distributions, problem (SCP) is a

special case of problem (P) with a random right-hand-side vector.

Different from the previous examples, since the objective function is non-convex, we com-

pare only the proposed method with the progressive augmented Lagrangian method pro-

posed in Dentcheva and Martinez (2013), and the trust-region-based sequential quadratic

programming proposed in Curtis et al. (2018). In our test, we set (n,m) = (40,100), akj =

− ckj
2Mk

, and use the data (ckj, ξj,Mk) proposed in Luedtke et al. (2010), which is downloaded

from the author’s home page http://homepages.cae.wisc.edu/~luedtkej/.

Table 5 Comparison results for (SCP) with different number of samples

ALDM PAL SQP-TR
α N fval time iter fval time fval time

0.05 500 3.4017 141.58 1571 3.5991 1335.72 3.3884 1193.63
0.05 1000 3.4781 323.98 3340 3.9048 1617.24 3.5160 1865.56
0.05 1500 3.6721 407.85 3783 3.8773 1631.15 3.8532 1905.80
0.05 2000 3.6891 560.98 4988 3.9153 1711.99 4.1479 1926.68
0.10 500 3.3609 141.13 1574 3.5660 1574.22 3.3445 959.87
0.10 1000 3.4172 347.56 3582 3.8630 1611.93 3.4469 1836.30
0.10 1500 3.6054 398.77 3702 3.8113 1567.82 3.7397 1879.26
0.10 2000 3.6167 667.27 5965 3.9524 1722.89 3.9680 1914.82

Note: The magnitude of ‘fval’ is 107

The comparison results for problem (SCP) are summarized in Table 5. From Table

5, we observe that the proposed ALDM performs better than the other two methods

in terms of the quality of solution and the computing time. According to the columns

“fval”, the objective value of our ALDM is the smallest except the case N = 500. That

implies that the quality of solution obtained by the ALDM is better than that by the other

two methods. According to the columns “time”, SQP-TR are often stopped due to the

maximal computing time (1800 seconds). Note that the subproblems in PAL and SQP-TR

are concave programming and mixed-integer programming, respectively, and thus are time

consuming. That might be one of the reason why ALDM perform better than PAL and

SQP-TR in our test. The most computing time for the ALDM is less than 700 seconds.

http://homepages.cae.wisc.edu/~luedtkej/
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Particularly, when the number of scenarios grows from 500 to 2000, the computing time

increases linearly. It is mainly because that the proposed method only requires to solve a

convex subproblem and a 0-1 knapsack subproblem at each iteration. The dimension of

the convex subproblem is independent of the number of scenarios and the dimension of the

0-1 knapsack subproblem is exactly the number of scenarios. Since we can solve the 0-1

knapsack subproblem very efficiently by the ranking method as shown in Section 2, the

ALDM is advantageous in dealing with chance-constrained problems with larger number

of scenarios.

5. Conclusions

We have presented an augmented Lagrangian decomposition method for solving the joint

linear chance-constrained optimization problem under finite discrete distributions. The

objective function of the studied problem can be non-convex and the left-hand side technol-

ogy matrix and the right-hand side vector in the chance constraints can be both random.

Different from other approximation methods in the literature, the proposed method is

an iterative algorithm applied to the augmented Lagrangian decomposition reformulation

of the mixed-integer program formulation of problem (P). The special structure of the

probabilistic constraint motivated us to derive tractable subproblems by fixing certain

variables and alternatively solving them at each iteration of the algorithm. We estab-

lished the convergence of the method to the first-order stationary point of the original

(possibly non-convex) problem. Preliminary computational results on several real-world

chance-constrained models show that the proposed method is promising for finding approx-

imate solutions of good quality. In particular, the proposed method compares favorably

with some popular existing methods in terms of the quality of the best feasible solution

obtained within a certain time for large size problems, especially when the objective func-

tion of the test problem is non-convex or the left-hand-side matrix of the constraints is

random.
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