
Network Models for Multiobjective Discrete Optimization

David Bergman∗1, Merve Bodur†2, Carlos Cardonha‡3, and Andre A. Cire∗∗4

1Department of Operations and Information Management, University of Connecticut
2Department of Mechanical and Industrial Engineering, University of Toronto

3IBM Research
4Department of Management, University of Toronto Scarborough

September 6, 2018

Abstract

This paper provides a novel framework for solving multiobjective discrete optimization prob-
lems with an arbitrary number of objectives. Our framework formulates these problems as net-
work models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest
path problem in an auxiliary network. We design techniques for exploiting the network model in
order to accelerate the identification of the Pareto frontier, most notably a number of operations
to simplify the network by removing nodes and arcs while preserving the set of nondominated
solutions. We show that the proposed framework yields orders-of-magnitude performance im-
provements over existing state-of-the-art algorithms on five problem classes containing both
linear and nonlinear objective functions.

Keywords. Multicriteria decision making; multiobjective discrete optimization; dynamic pro-

gramming; integer programming; Pareto frontier; network models

1 Introduction

Multiobjective optimization is the study of algorithms for optimization problems associated with two
or more objective functions. Such problems arise naturally in prescriptive decision making, where
decision makers often face conflicting criteria that balance trade-offs associated with a proposed
solution. Practical applications of multiobjective optimization are pervasive and found in a diverse
set of domains. This includes, for example, production planning for supply chains (Dickersbach
2015), radiotherapy optimization in healthcare (Yu et al. 2000), and aerodynamic design (Wang
et al. 2011), which may involve from a few up to potentially hundreds of objective functions.
Furthermore, multiobjective optimization can also be used as an alternative method to solve single-
objective problems (Bodur et al. 2016), expanding even further on the importance of the study of
techniques to tackle these computationally challenging problems.

In this paper, we focus on multiobjective discrete optimization problems (MODOs) that admit
recursive formulations; in such problems, variables may only assume values from a finite set. There

∗david.bergman@business.uconn.edu
†bodur@mie.utoronto.ca
‡carloscardonha@br.ibm.com
∗∗acire@utsc.utoronto.ca

1

ar
X

iv
:1

80
2.

08
63

7v
2

 [
m

at
h.

O
C

]
 5

 S
ep

 2
01

8

is a rich history of the study of techniques for addressing MODOs, often leveraging advances
in integer programming (IP) technology; see, e.g., in-depth surveys by Ehrgott 2006a and Zhou
et al. 2011. Specifically, current state-of-the-art methodologies rely on parametric single-objective
reformulations of MODOs, employing commercial IP solvers as black-boxes of their algorithms. The
Pareto frontier, however, cannot be fully recovered by such linear parametric models in general
(Sayın and Kouvelis 2005). These methods therefore rely on explicit enumeration techniques,
limiting the size of problems that can be solved both in terms of the number of variables and the
number of objective functions.

Contributions. This paper presents a new approach for modeling and solving MODOs that
admit recursive formulations. Our framework reformulates the problem of identifying points in the
Pareto frontier as a multicriteria shortest path problem (Garroppo et al. 2010) over a structured
network. In particular, the network implicitly represents the objective space in a compact way
by exploiting symmetry and dominance relationship between solutions, which can be defined both
generally or in a problem-specific form.

Our first contribution is the design of two approaches for obtaining a valid network for a MODO.
One is based on a recursive model and the other is extracted from a decision diagram represen-
tation of the problem (Bergman et al. 2016). Both techniques leverage construction procedures
already available in the literature, some of which are inspired by early dynamic programming (DP)
approaches for multiobjective optimization (Carraway et al. 1990). Nonetheless, we exploit the
network structure as opposed to the recursive formulation directly, which provides two benefits.
First, network representations do not require linear formulations, thereby broadening modeling ex-
pressiveness over other popular techniques. Second, network models inherently exploit symmetry
by combining subpaths that correspond to common objective function evaluations, decreasing the
enumeration requirements from previous techniques.

As our second contribution, we propose validity-preserving operations (VPOs) designed to re-
duce the size of a network while maintaining validity. A network for a MODO is, in general,
exponentially large in the input size of the problem. Even if the network itself is of manageable
size, computing a multicriteria shortest path may take a prohibitively long time. VPOs simplify
the network without modifying the Pareto frontier, leading to significant reductions on the number
of arcs and nodes and hence computational time. We explore VPOs that are based solely on the
network itself (e.g., removing arcs/nodes, merging nodes) and VPOs that explore domain-specific
features of the problem (e.g., using DP state-based information to identify dominance).

Finally, we present an extensive numerical study on five problem classes to compare our network
model approach with two state-of-the-art MODO algorithms. We consider the knapsack, set cover-
ing, set packing, and the traveling salesperson problem, which are commonly used as benchmarks
in the MODO literature, in addition to a MODO with nonlinear terms in the objective motivated
from an application in regression-based models.

Our experiments indicate that the proposed approach outperforms the state-of-the-art by orders
of magnitude for problem classes where recursive models and state-space relaxations are known to
be effective; in particular, the results show a significant expansion on the size of problems that
can be solved, specifically in terms of the number of objective functions (up to seven). This
is a particularly limiting factor in existing approaches that severely restrict the applicability of
multiobjective optimization in real scenarios beyond a few objectives, as highlighted by Duro and
Saxena (2017). Examples of applications where the Pareto frontier for four or more objectives
is desired include protein structure prediction (Brasil et al. 2013), computational sustainability
(Gomes-Selman et al. 2018), storm drainage and work roll cooling (Duro and Saxena 2017), to
name a few. In practice, the Pareto frontier fully characterizes the trade-offs among solutions
and is post-processed in interactive decision support systems (Stewart et al. 2008). This allows

2

practitioners to prioritize objectives and operational aspects based on their technical expertise,
often on a case-by-case basis, which can be used as opposed to or in conjunction with typical
scalarization techniques when multiple objectives are present.

The remainder of this paper is organized as follows. §?? provides a literature review of MODO,
specifically as it relates to the present paper. §2 and §3 formally define MODOs and network
models, respectively. §4 describes network construction algorithms. §5 presents VPOs, and §6
presents the multicriteria shortest path algorithms we employ for enumerating the Pareto frontier.
§7 describes the results of an experimental evaluation on four problem classes. We conclude and
describe future work in §8. Proofs which do not appear in the main text are presented in the
appendix, §A.

There is an extensive literature on exact algorithms for generating the Pareto frontier of a
MODO. In general, these approaches can be divided into two main classes: those based on criterion-
space search, and those based on decision-space search (Ehrgott et al. 2016, Ehrgott 2006a).

Criterion-space search relies on scalarizations, most commonly based on a combination of
weighted sums and ε-constraints. Weighted-sum methods iteratively solve a single-objective op-
timization version of the problem where the single objective is defined by various positive-weight
combinations of the original objectives. For general MODOs, however, only a portion of the Pareto
frontier (those points referred to as supported efficient points) can be identified by this approach
alone. The remaining points (unsupported efficient points) can be found through the ε-constraint
method, introduced by Haimes et al. (1971), which optimizes one of the original objective functions
with the other constraints transformed into parametrized constraints.

Kirlik and Sayın (2014) and Özlen et al. (2014) provide the state-of-the-art criterion-space
search algorithms for MODOs with an arbitrary number of objectives. Both algorithms are based on
variants of scalarization techniques. These variants build upon the early work by Klein and Hannan
(1982), who suggested an iterative approach to generate a subset of the Pareto frontier while refining
the search space by the addition of disjunctive constraints. Sylva and Crema (2004) extended this
work to an exact algorithm by reformulating the disjunctive conditions as big-M constraints, which
was further improved by Lokman and Köksalan (2013) and Bektas (2016). extended to more than
two objectives by Tenfelde-Podehl (2003) and further enhanced by Dhaenens et al. (2010). Another
generalization of the two-phase method is proposed by Przybylski et al. (2010). Özlen and Azizoğlu
(2009), in turn, developed an alternative approach called the augmented ε-constraint method,
which became one of the state-of-the-art methods after later enhancements by Özlen et al. (2014).
Another improvement to the augmented ε-constraint method is the recursive methodology proposed
by Laumanns et al. (2005, 2006), further refined by Kirlik and Sayın (2014) into a computationally
practical approach. We note that Boland et al. (2016b) developed an extension of the so-called
L-shape search method (specific to triobjective MODOs) that optimizes a linear function over the
set of nondominated points, that can also be used to enumerate the Pareto frontier.

Other scalarization methods include the (lexicographic or augmented) weighted Tchebycheff
scalarization (Steuer and Choo 1983). The majority of the criterion-space search focuses on biob-
jective problems, where the special structure resulting from only having two objectives can be
exploited; see, e.g., Ralphs et al. (2006), Sayın and Kouvelis (2005), Boland et al. (2015), Parragh
and Tricoire (2015). Extensions of these ideas have also been proposed for triobjective MODOs,
which iteratively decompose the search space into smaller regions, and apply efficient ways to
explore and refine these regions (Dächert and Klamroth 2015, Boland et al. 2016a,c).

Decision-space search methods operate over the space defined by the original decision variables.
These techniques are typically based on branch-and-bound search developed for mixed-integer lin-
ear programs. The first of such algorithms was proposed by Mavrotas and Diakoulaki (1998) for
binary MODOs. The algorithm uses an artificial ideal point to define a bounding set, and discovers

3

nondominated points by solving (via a criterion-space search algorithm) the multiobjective linear
programs obtained when all binary variables are fixed. Mavrotas and Diakoulaki (2005) observed
that this branch-and-bound in fact generates a superset of the Pareto frontier, and proposed filter-
ing algorithms to eliminate spurious points. Vincent et al. (2013) later showed that the previous
algorithm is still incomplete, and proposed a corrected and improved version for biobjective prob-
lems. Other branch-and-bound techniques have also been studied by Masin and Bukchin (2008),
Sourd and Spanjaard (2008), who suggested enhancements to the bounding aspects.

The first decision-space algorithm for generic MODO based on branch-and-cut was developed
by Jozefowiez et al. (2012), where discrete sets are used for lower bounds. Recently, Adelgren
and Gupte (2017) developed a new branch-and-bound algorithm which employs multiobjective
extensions of many different aspects of branch-and-bound, such as (primal and dual) presolve,
preprocessing, node processing, and dual bounding via cutting planes.

Alternative methods that avoid scalarizations are based on DP and implicit enumerative meth-
ods for pure binary problems (e.g., Bitran 1977, Bitran and Rivera 1982). DP approaches are
typically focused on variants of the multiobjective knapsack problem, such as Villarreal and Kar-
wan (1981) who employed lower and upper bound sets to eliminate dominated solutions. The au-
thors extended their work to general stage-wise separable MODOs (Villarreal and Karwan 1982).
Klamroth and Wiecek (2000) presented distinct conceptual DP models for several variants of the
multiobjective knapsack problem. Bazgan et al. (2009) developed a new DP approach enhanced
with complementary dominance relations for the 0-1 knapsack case. For the biobjective knapsack,
Delort and Spanjaard (2010) and Rong and Figueira (2014) proposed a two-phase algorithm and a
multiobjective DP algorithm, respectively.

Similar to the above DP approaches, the most relevant works to ours also considered the mul-
tiobjective knapsack problem. Captivo et al. (2003) proposed a transformation of biobjective 0–1
knapsack problem into a biobjective shortest path problem, which is solved via an enhanced version
of the labeling algorithm for MSPs. Figueira et al. (2010) developed a generic labeling algorithm for
the problem that applies existing reformulations from the literature. More recently, state reduction
techniques for the biobjective case have been proposed by Rong et al. (2011) and Rong and Figueira
(2013), with algorithmic enhancements by Figueira et al. (2013).

2 Multiobjective Discrete Optimization Problems

In this section we present the notation and formalism used throughout the text. For a ∈ N+, we let
[a] := {1, 2, . . . , a}. We denote by 0 and 1, a vector of zeroes and ones in appropriate dimention,
respectively. The notation B := {0, 1} indicates the Boolean set, while the operator (·)> denotes
the transpose. For a given v ∈ Rp, we denote the i-th component of v by vi or (v)i, for all i ∈ [p].

A multiobjective discrete optimization problem (MODO) is of the form

max {f(x) := (f1(x), f2(x), . . . , fK(x)) : x ∈ X} , (M)

where X ⊂ Zn, n ∈ N+, is a bounded feasible set and f : X → RK maps each solution x ∈ X into
a K-dimensional objective vector (or image) y :=

(
f1(x), . . . , fK(x)

)
, with fk : X → R, k ∈ [K].

The objective functions are not assumed to have any particular structure, except that they
are well-defined in X . For any two objective vectors y, y′ ∈ RK , we say that y dominates y′ (or,
alternatively, that y′ is dominated by y), or simply yx � y′, if (i) yk ≥ y′k for all k ∈ [K], and (ii)
there exists at least one index k̃ for which yk̃ > y′

k̃
.

The image defined by the set of feasible solutions is denoted by Y := {f(x) : x ∈ X}. An
objective vector y∗ ∈ Y is a nondominated point if there exists no other point y′ ∈ Y for which

4

y′ � y∗. The set of all nondominated points of M is denoted by YN, also referred to as the Pareto
frontier. The typical goal of a MODO, and the focus of this paper, is to enumerate YN.

Example 1. We consider a set packing instance as a running example, with K = 3:

max
x∈B7

(
f1(x) = 4x1 + 5x2 + 3x3 + 4x4 + 2x5 + 1x6 + 2x7,

f2(x) = 8x1 + 7x2 + 1x3 + 5x4 + 3x5 + 3x6 + 8x7,

f3(x) = 2x1 + 6x2 + 8x3 + 4x4 + 6x5 + 5x6 + 2x7

)
s.t. x1 + x2 + x3 ≤ 1, x2 + x3 + x4 ≤ 1, x4 + x5 ≤ 1,

x4 + x6 ≤ 1, x5 + x7 ≤ 1, x6 + x7 ≤ 1.

The nondominated set YN consists of the four points y1 = (6, 7, 19), y2 = (8, 13, 17), y3 = (7, 14, 13),
and y4 = (10, 21, 8). They are the images, respectively, of the feasible solution vectors x1 =
(0, 0, 1, 0, 1, 1, 0), x2 = (0, 1, 0, 0, 1, 1, 0), x3 = (1, 0, 0, 0, 1, 1, 0), and x4 = (1, 0, 0, 1, 0, 0, 1). �

For any Ȳ ⊆ Y, let ND
(
Ȳ
)

:=
{
y ∈ Ȳ : @ y′ ∈ Ȳ with y′ � y

}
be an operator that returns the

set of vectors within Ȳ that are not dominated by any other vector in the same set. Note that
YN = ND (Y). This operator has been studied in the context of relational database systems, where it
is known as the skyline operator (Borzsony et al. 2001). We refer to the work by Gudala (2012) for
a review of algorithms to compute ND (·) and their associated complexity analysis. In particular, for
K = 2, an efficient implementation of ND (S) for a given S ⊆ RK has a worst-case time complexity

of O(|S| log (|S|)). For K > 2, it can be efficiently implemented in O
(
|S| · (log (|S|))K−2

)
.

3 Network Models

This paper proposes the use of network models to enumerate YN for a MODO M. In our context,
a network model is a layered-acyclic multi-digraph N := (L,A) with node set L and arc set A.
Such a model is equipped with specific structure, properties, and attributes associated with M.

The node set L is partitioned into n+ 1 non-empty layers L :=
⋃̇

j∈[n+1]

Lj . Layers L1 and Ln+1

have cardinality one with L1 := {r} and Ln+1 := {t}. Nodes r and t are referred to as the root node
and the terminal node, respectively. The layer index of a node u ∈ L is ` (u), i.e., u ∈ L`(u). Each
arc a := (r (a) , t (a)) ∈ A is directed from its arc-root r (a) ∈ Lj to its arc-terminal t (a) ∈ Lj+1 for
some j ∈ [n]. The layer of an arc is ` (a) := ` (r (a)). We denote by A+(u) := {a ∈ A : r (a) = u}
the set of outgoing arcs from u and by A−(u) := {a ∈ A : t (a) = u} the set of incoming arcs to u.

We define P (u, v) as the set of arc-specified paths from node u to node v. The arguments
will be omitted when u = r and v = t, i.e., P := P (r, t). Each arc a has an arc-weight vector
w (a) ∈ RK . The arc-weight vectors provide the connection between arc-specified paths in N and
the objective space of M. Any path p = (aj1 , . . . , ajH) has path-weight w (p) =

∑
h∈[1,H]

w (ajh).

The Pareto frontier of a network model N is defined as

PF (N) := ND

⋃
p∈P

w(p)

 .

A network model N is valid for a MODO M if PF (N) = YN. In our structural results, we may
operate on distinct valid network models for the same M, in which case we append a subscript to

5

our notation so as to indicate the network. For example, rN will be used to represent the root node
of N . The subscript will be omitted when N is clear from context.

A network model can be interpreted as a data structure that supports the representation of
a MODO M as a multicriteria shortest path problem (MSP). By negating the arc-weight vectors
(since we consider maximization), one may apply any algorithm for solving MSPs to a network
model N in order to find PF (N) if N is valid for M. Several MSP algorithms are available; see,
e.g., the survey by Garroppo et al. (2010).

Example 2. Figure 1 depicts a network model N for the MODO in Example 1. The arc-weight
vectors are shown (in black text) next to each arc (the additional details provided in the figure, in
red and blue, will be introduced and described in Example 6). There are 14 arc-directed paths from
r to t, and their path-weights are given by⋃

p∈P
w (p) =

{
(8, 13, 17) , (6, 10, 11) , (7, 15, 8) , (6, 7, 19) , (4, 4, 13) , (5, 9, 10) , (3, 6, 11) ,

(1, 3, 5) , (2, 8, 2) , (7, 14, 13) , (6, 13, 6) , (5, 11, 7) , (6, 16, 4) , (10, 21, 8)
}

and results in

PF (N) = ND

⋃
p∈P

w(p)

 =
{

(8, 13, 17) , (6, 7, 19) , (7, 14, 13) , (10, 21, 8)
}
.

�

4 Network Model Construction

This section provides two frameworks for constructing valid network models for MODOs. The first
approach relies on a recursive model of M. The second is a direct transformation from decision
diagrams, which is applicable when the objective functions are additively separable.

4.1 Recursive Formulations

Several classes of single-objective optimization problems admit recursive formulations, often written
as DP models (Bertsimas and Tsitsiklis 1997). These ideas were extended to the case of multiple
objectives in the early work by Villarreal and Karwan (1982), which we build upon in this paper.
In particular, while DP models are intrinsically associated with a state-transition graph, we show
that multiobjective recursive formulations are analogously associated with a valid network model.

Formally, a multiobjective recursive formulation of a MODO M is written in terms of the
following elements as depicted in Figure 2: (i) n+ 1 state variables s0, s1, . . . , sn ∈ S for some state
space S ⊆ Rm, where the initial state s0 is fixed; (ii) n functions V1, . . . ,Vn : S → 2Z that represent
the variable-value assignments that can be applied at a state (i.e., they provide state-dependent
feasible decisions); (iii) n state transition functions τ1, . . . , τn : S × Z → S, each mapping a pair
(s, x) of a state s ∈ S and a variable-value assignment x ∈ Z to another state s′ ∈ S; and (iv) n
reward functions δ1, . . . , δn : S × Z→ RK that map an analogous pair (s, x) to a reward vector in
RK .

6

x1

x2

x3

x4

x5

x6

x7

rX (0, 0, 0)

X (8, 13, 17)

× (7, 15, 8)

X (6, 7, 19)

X (7, 14, 13)

X (10, 21, 8)

u2
1

X (8, 13, 17)

X (7, 15, 8)

X (6, 7, 19)

× (5, 9, 10)

× (6, 13, 6)

X (0, 0, 0) u2
2X (4, 8, 2)

X (3, 6, 11)

X (6, 13, 6)

u3
1X (5, 6, 7)

X (3, 6, 11)

X (2, 8, 2)
u3
2X (0, 0, 0)

X (6, 7, 19)

X (5, 9, 10)

× (3, 6, 11)

X (6, 13, 6)
u3
3X (4, 8, 2)

X (3, 6, 11)

X (6, 13, 6)

u4
1

X (5, 7, 6)

X (3, 1, 8)

X (3, 6, 11)

X (2, 8, 2)
u4
2

X (4, 8, 2)

× (0, 0, 0)

X (3, 6, 11)

× (2, 8, 2)

X (6, 13, 6)

u5
1

X (5, 7, 6)

X (3, 1, 8)

X (4, 8, 2)

X (3, 6, 11)

X (2, 8, 2)

× (1, 3, 5)

u5
2X (8, 13, 6) X (2, 8, 2)

u6
1

X (7, 10, 12)

X (5, 4, 14)

X (6, 11, 8)

X (1, 3, 5) u6
2

X (5, 7, 6)

X (3, 1, 8)

X (4, 8, 2)

X (2, 8, 2)

X (1, 3, 5)
u6
3X (8, 13, 6) X (2, 8, 2)

u7
1

X (8, 13, 17)

X (6, 7, 19)

X (7, 14, 13)

× (6, 10, 11)

× (4, 4, 13)

× (5, 11, 7)

X (0, 0, 0) u7
2

× (5, 7, 6)

X (3, 1, 8)

× (4, 8, 2)

X (8, 13, 6)

X (2, 8, 2)

t

X (8, 13, 17)

X (6, 7, 19)

X (7, 14, 13)

× (5, 9, 10)

X (10, 21, 8)

X (0, 0, 0)

(0, 0, 0) (4, 8, 2)

(5, 7, 6) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (3, 1, 8) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (4, 5, 4)

(2, 3, 6) (0, 0, 0) (0, 0, 0)

(1, 3, 5) (1, 3, 5) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (2, 8, 2)

Figure 1: A valid network model for M in Example 1.

Based on these four components, a multiobjective recursive problem is of the form

max
s,x

n∑
j=1

δj(sj−1, xj) (MR)

s.t. sj = τj(sj−1, xj), for all j ∈ [n],

xj ∈ Vj(sj−1), for all j ∈ [n].

In particular, each objective function evaluation is represented by the k-th index of the total reward
tuple

∑n
j=1 δj(sj−1, xj) for k ∈ [K], i.e.,

fk(s, x) :=

 n∑
j=1

δj(sj−1, xj)


k

,

while the feasible set of MR is

X :=
{

(s, x) ∈ Sn+1 × Zn : sj = τj(sj−1, xj), xj ∈ Vj(sj−1) for all j ∈ [n]
}
.

7

s0 s1 = τ1(s0, x1) s2 = τ2(s1, x2) · · · sn = τn(sn−1, xn)
x1 ∈ V1(s0) x2 ∈ V2(s1) xn ∈ Vn(sn−1)

δ1(s0, x1) δ2(s1, x2) δn(sn−1, xn)

Figure 2: Elements of a recursive formulation

Assume, without loss of generality, that τn(s, x) = st for a fixed st and for all s ∈ S, x ∈ Z.
That is, the final transition always leads to a common terminal state st, which can always be
accomplished by appropriately defining τn(·). If a MODO can be written in the form of MR, it
exposes a recursive structure that can be immediately leveraged for the construction of a network
model. More specifically, the network N = (L,A) is the state-transition graph defined by the
feasible set X , which is composed as follows (see, e.g., Bertsekas 2017 for algorithmic details):

• Node set L: The nodes of N are associated with nodes of the state-transition graph. For any
j ∈ [n+ 1], there exists a node u ∈ Lj for every possible value of the state variable sj−1 in X .
More specifically, at layer j of N , there exists one node for each state in the set Projsj−1

(X),
defined as the projection of the feasible set X into the space of the variable sj−1. With a

slight abuse of notation, we let Lj = {uj1, . . . , u
j
|Lj |} = Projsj−1

(X). Note that since s0 and st

are fixed, layers L1 and Ln+1 are singletons; namely u1
1 = s0 and un+1

1 = st.

• Arc set A: The arcs of N are associated with arcs of the state-transition graph. In other
words, there exists an arc in N for every possible transition in the state-transition graph.
Again with a slight abuse of notation, we represent an arc as a triplet, rather than a pair,
(r (a) , t (a) , x) appending the variable-value information. Then, we have

A =
⋃̇
j∈[n]

{
(uji , u

j+1
i′ , x) : uji ∈ Lj , u

j+1
i′ ∈ Lj+1, x ∈ Vj(uji) with uj+1

i′ = τj(u
j
i , x)

}
.

• Arc weights: The reward functions provide the arc weights forN . That is, if a = (uji , u
j+1
i′ , x) ∈

A, then w (a) = δj(u
j
i , x).

It follows from the definition of arc weights that a path weight corresponds to the objective
function in MR and, by construction of the state-transition graph, that there is a one-to-one
mapping between paths of N and solutions in X . Thus, N is a valid network model for MR.

Example 3. The instance in Example 1 is a set packing instance, so it can be written as

max
{(

(c1)>x, (c2)>x, . . . , (cK)>x
)

: Ax ≤ 1, x ∈ Bn
}

for an m× n matrix A with elements aij ∈ Bn, i ∈ [m], j ∈ [n], and cost vectors cj ∈ Rn, j ∈ [n].
A recursive formulation can be obtained as follows. A state variable s ∈ Bm is defined so that

for any i ∈ [m], si = 1 if and only if the i-th constraint of Ax ≤ 1 is satisfied as an equality or
all the decision variables appearing in the constraint have already been assigned to zero. Therefore,
we have the initial state s0 = 0, whereas any final transition will lead to the terminal state st = 1.
Variable-value assignments xj ∈ B represent the packing of element j. We are not allowed to set a
variable xj = 1 if any constraint which includes xj holds as an equality; i.e.,

Vj(s) := {b ∈ B : si + b ≤ 1 for all i ∈ [m] with aij = 1}.

8

The transition function ensures the consistency of the current state s and the next state s̃ when
setting xj = b, b ∈ Vj(s). Specifically, let mi := arg max{j ∈ [n] : aij = 1} be the maximum index
of the variables with a nonzero coefficient in the i-th constraint. Then, we have τj(s, b) = s̃ where

s̃i =


1, if j = mi

si + b, if j < mi and aij = 1
si, otherwise

for all i ∈ [m],

for any j ∈ [n]. Finally, the reward function for each j ∈ [n] is the contribution of xj to the
objective function vector, which in this particular instance is state independent: δj(s, b) := b ×(
c1
j , c

2
j , . . . , c

K
j

)
.

For our particular instance in Example 1, this recursive formulation yields the network model
depicted in Figure 15 in the appendix. We note that this network model matches the one given in
Figure 1 until layer six (inclusive). The network model in Figure 1 can be obtained from the one
in Figure 15 after applying Theorem 1 and Corollary 1 on layer seven. �

4.2 Transformation from Decision Diagrams

A decision diagram (DD) is a network-based representation of a Boolean or a discrete function
with a large list of applications in mathematical programming, operations research, and circuit
design (see, e.g., Bryant 1992, Behle 2007, Hadzic and Hooker 2007, Bergman et al. 2011). In such
applications, DDs are used to compactly represent or approximate the set of feasible solutions to
a discrete optimization problem. We refer to the work by Bergman et al. (2016) for a survey of
concepts and existing DD methodologies for optimization.

Each layer in a DD D, except the last one, corresponds to a unique decision variable mapped
via the bijective function y : [n]→ [n]; that is, layer l ∈ [n] corresponds to variable xy(l). Let PD be
the set of paths from root to terminal in D. The arc-domains associate each path p = (a1, . . . , an)
in PD with a solution vector x(p) ∈ Zn defined by x(p)y(`(aj)) = d (aj) for all j ∈ [n]. In particular,
for a given feasible set X ⊂ Zn, D is said to be exact for X if and only if x(p) ∈ X for all p ∈ PD
and |PD| = |X |. That is, the paths of D encode X exactly. In summary, decision diagrams are
closely related to network models, but observe that arc-domains are exclusive to the former whereas
arc-weight vectors it is are defined only in the latter.

Assume that, for a given MODO M, the objective function fk(·) is separable for all k ∈ [K];
i.e.,

fk(x) :=
∑
j∈[n]

fk,j(xj)

for an appropriate choice of functions fk,j : Z → R, j ∈ [n]. In that case, we can transform
an exact DD representing M into a network model N simply by defining suitable arc weights
and removing the arc-domain labels. More specifically, for every arc a ∈ A, we define its weight
according to the variable corresponding to the layer of that arc, xy(`(a)), and its assigned value,
d (a), as w (a) :=

(
f1,y(`(a))(d (a)), . . . , fK,y(`(a))(d (a))

)
. The assignment of those weights to arcs

implies that, for any path p = (a1, . . . , an) in the network,

w(p) =
∑
j∈[n]

(
f1,y(`(aj))(d (aj)), . . . , fK,y(`(aj))(d (aj))

)
= f(x(p)),

thus PF (N) is the Pareto frontier of M. This relation was first used in Bergman and Cire (2016).
There exists an extensive number of DD construction algorithms for discrete optimization prob-

lems with a (single) separable objective function (Bergman et al. 2016), some of which will be

9

employed for our numerical study in Section 7. Note, however, that our proposed network models,
after modifications by VPOs, do not necessarily map to valid exact DDs. Indeed, our network
operators are guaranteed only to preserve the Pareto frontier, and as such the diagram is typically
modified to readjust weights, merge nodes, include infeasible paths, or exclude feasible paths to
allow for smaller network sizes (hence not satisfying the basic properties of an exact DD).

As mentioned in Example 3, our running Example 1 is a set packing instance. §4 of Bergman
et al. (2016) provides a DD representation for the set packing problem that can be readily trans-
formed into a network model by applying the methodology described above.

5 Validity-preserving Operations

This section is devoted to the study of generic algorithms, denoted by validity preserving operations
(VPOs), to transform a network N into a smaller network N ′ such that PF (N) = PF (N ′). For the
structural results below, we assume that an initial valid network model N = (L,A) is available.

5.1 Weight Shifting and Node Merging

We extend the classical concept of reduction proposed by Bryant (1986) as a VPO for network
models. Reduction is an operation applied to DDs that merge nodes which share isomorphic
subgraphs. Hooker (2013) later extended this notion for DPs with state-dependent rewards, showing
that further merging can be achieved for single-objective problems by considering isomorphism with
respect to arc weights.

Based on this concept, we define a weight-shifting operation that, given a node u, transfers
weights from the arcs directed out of u (i.e., A+(u)) to those directed into u (i.e., A−(u)).

Proposition 1 (Weight shift). Let u ∈ L be a node in N such that u /∈ {r, t}. For any c̃ ∈ RK ,
the operations defined by (1) and (2) below is a VPO:

1. w (a) := w (a)− c̃ for all a ∈ A+(u); and

2. w (a) := w (a) + c̃ for all a ∈ A−(u).

Proof. Arc-weight w(p) remains unchanged for all p ∈ P and thus PF (N) is unchanged.

Example 4. Consider the network model in Figure 1. Let c̃ = (2, 8, 2). The network model
resulting from subtracting c̃ from arc-weight w

(
u7

2, t
)

and adding c̃ to arcs w
(
u6

2, u
7
2

)
and w

(
u6

3, u
7
2

)
corresponds to the operations in Proposition 1. The last three layers of N are reproduced in Figure 3.
The result of applying the weight shift is depicted in Figure 4. �

We now present a sufficient condition for when merging nodes is a VPO.

Theorem 1 (Node merge). Let u1, u2 ∈ L, u1 6= u2, be two nodes in N for which there exists a
one-to-one mapping between the arcs in A+(u1) and A+(u2) satisfying that, for every pair of arcs
(a1, a2) such that a1 ∈ A+(u1) maps to a2 ∈ A+(u2), we have t (a1) = t (a2) and w(a1) = w(a2).
Then, the following sequence of operations characterizes a VPO:

1. Delete all arcs in A+(u2);

2. Redefine t (a) = u1 for all a ∈ A−(u2); and

3. Delete u2,

10

u6
1 u6

2 u6
3

u7
1 u7

2

t

(1, 3, 5) (1, 3, 5) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (2, 8, 2)

Figure 3: Original arc-
weights

u6
1 u6

2 u6
3

u7
1 u7

2

t

(1, 3, 5) (1, 3, 5) (2, 8, 2) (2, 8, 2)

(0, 0, 0) (0, 0, 0)

Figure 4: Weight shift by
c̃ = (2, 8, 2) at node u7

2

u6
1 u6

2 u6
3

u7
1

t

(1, 3, 5)
(1, 3, 5) (2, 8, 2)

(2, 8, 2)

(0, 0, 0)

Figure 5: Result of merge
operation on nodes u7

1 and u7
2

Example 5. Figure 5 depicts the result of merging nodes u7
1 with u7

2 in Figure 4. Note that the
resulting network model has fewer arcs and nodes, but the same number of paths. Such an operation
thereby decreases the size of the network model without altering PF (N). �

Proposition 1 and Theorem 1 define a strategy for simplifying a network model. In particular,
starting from the penultimate layer and moving upwards in the network, we process each node
in the layer in the following way. We construct the vector c̃(u) for each node u in the inspected
layer by taking the component-wise minimum arc-weight among arcs in A+(u). Once c̃(u) has
been obtained, the arc-weights are shifted up as prescribed in Proposition 1. After repeating this
operation to all nodes in a layer, the conditions of Theorem 1 and its VPO are applied to the nodes
of the same layer in the transformed network. Node-merge operations can be performed in any
order, in the sense that any sequence will lead to the same reduced network.

Proposition 2. The component-wise minimum arc-weight shift and node merge VPO have worst-
case time complexity of O(K|L|2 log(|L|)).

5.2 Arc removal

In this section, we investigate algorithms and structural results of VPOs that eliminate arcs of the
network model. For an arc a ∈ A, let N − a be the network model resulting from the removal of a
from N . By definition, removing arc a is a VPO if and only if PF (N) = PF (N − a). The following
theorem shows that identifying when such condition holds in general is an NP-Hard problem.

Theorem 2. Given a valid network model N = (L,A) for a MODO M, let Ã ⊆ A be a subset of
arcs of N . Deciding whether there exists an arc a ∈ Ã such that PF (N) = PF (N − a) is NP-hard.

Despite the hardness of determining whether an arc can be safely removed without changing
the Pareto frontier, we can still exploit strong sufficient conditions for designing arc-removal VPOs.
Additional notation is in order. Given a network model N = (L,A) and two nodes u, v ∈ L such
that ` (u) < ` (v), let N [u, v] be the network model containing only nodes and arcs in N that lie
on some path which starts at node u and ends at node v. We introduce the following concept:

Definition 1. A pair of nodes u, v ∈ L is isolating in N when, for every arc a ∈ AN \AN [u,v],

(i) t (a) ∈ LN [u,v] implies that t (a) = u; and

(ii) r (a) ∈ LN [u,v] implies that r (a) = v.

11

According to Definition 1, nodes u and v are isolating in N if N [u, v] contains all arcs from N
that are directed to nodes in LN [u, v]\{u} and all arcs that are directed out of nodes in LN [u, v]\{v}.
(For example, any pair of nodes are isolating in Figure 14(a).) Note that one can check whether
two nodes u and v are isolating in N in polynomial time, in the size N , with a breadth-first search.

Pairs of isolating vertices yield a sufficient condition for an arc-removal operation to be a VPO.

Theorem 3. Let u and v be isolating nodes in a network model N . For any a ∈ AN [u,v], if
PF (N [u, v]) = PF (N [u, v]− a), then PF (N) = PF (N − a). That is, if the removal of arc a is a
VPO in N [u, v], then it is also a VPO in N .

The proof of Theorem 3 is provided in Section A.4.

Theorem 3 shows that pairs of isolating nodes in an arbitrary network model N define subnet-
works whose VPOs involving the removal of arcs are also VPOs for N . The simplest case reduces
to two arcs with the same endpoints, which yields the following immediate corollary.

Corollary 1. Let a1 and a2 be any two arcs of a network model N for which r (a1) = r (a2) and
t (a1) = t (a2). If w (a1) ≺ w (a2) or w (a1) = w (a2), then the removal of a1 is a VPO.

Theorem 3 can also be applied directly by choosing two nodes u, v such that N [u, v] is sufficiently
small so that all associated arcs can be removed efficiently. Specifically, given ∆ := ` (v) − ` (u),
the number of paths in N [u, v] is bounded by O(2∆), and hence for small ∆ the Pareto frontier
(and arc to be removed) can be identified quickly using, e.g., the procedures from Section 6, which
we discuss next. For our numerical evaluation, we fixed ∆ = 2. That is, (i) we find a pair (u, v) of
isolating nodes that are distant by at most two layers, (ii) obtain the network model N [u, v], (iii)
compute its Pareto frontier, and finally (iv) apply Theorem 3 to remove arcs that are VPOs in N .

6 Generating the Pareto Frontiers from a Network Model

Given a valid network model, finding the Pareto frontier generally reduces to solving an MSP (by
multiplying arc-weights by −1) in a layered-acyclic multi-digraph, for which an extensive literature
exists; see, e.g., surveys by Tarapata 2007 and Garroppo et al. 2010.

In this section, we propose two methodologies for enumerating the Pareto frontier based on
our network model structure. The first is a direct modification of the unidirectional recursion by
Henig (1986), also applied, e.g., in Figueira et al. (2013) and Rong and Figueira (2014). The second
technique is an extension of Galand et al. (2013) and performs a bidirectional search that combines
the partial Pareto frontiers of each layer using a coupling operator. Both methodologies assign a
set (or a collection of sets) of K-dimensional vectors to nodes of the network. Each K-dimensional
vector is henceforth referred to as a label, as is done in the MSP literature.

6.1 Unidirectional Pareto frontier generation

The unidirectional algorithms process one layer at a time, computing the partial nondominated
solutions at a node based on either the incoming arcs or the outgoing arcs. It is a direct application
of the recursion by Henig (1986) but using the underlying structure of the network model, similar
to the version presented by Rong and Figueira (2014).

The procedure works as follows. When processed from the root node r to the terminal node t,
the algorithm assigns a single set of top-down labels ZTD (u) to each node u. The label set of each
node is initialized as the empty set, except the root node, where ZTD (r) is initialized as {0}. For
each layer j from one to n, having constructed ZTD (u) for all u ∈ Lj , the labels are constructed

12

for the nodes in Lj+1 by considering the arcs directed from nodes in Lj to Lj+1, one by one. For
each such arc a (i.e., a ∈

⋃
u∈Lj A

+(u)) and every label z ∈ ZTD (r (a)), the label z+w(a) is added

to ZTD (t (a)). After all arcs directed out of nodes in Lj are processed, ZTD (u) is re-assigned to
ND
(
ZTD (u)

)
, to remove any labels that are dominated by other labels in the set. Note that one

can also do a simple check each time a label is added to see if it is dominated by another label
already existing for the node. At the culmination of the algorithm, ZTD (t) will be PF (N).

One can also run the algorithm in the opposite direction, starting from t and flipping the
direction of the arcs. The terminal node is initialized as {0}, and the nodes are processed in the
opposite direction. We refer to the labels constructed in this direction as bottom-up labels ZBU (u).
The set of labels ZBU (r) coincides with ZTD (t) and is therefore equal to PF (N).

Example 6. Consider Figure 1. The labels on the left of the nodes (shown in red) correspond to
the top-down labels (i.e., for every node u, they list ZTD (u)). A “X” is drawn next to labels that
remains in ZTD (u) after the application of the ND () operator, and a “×” is drawn otherwise. To
the right of each node u, ZBU (u) is listed (in blue), with symbols “X” and “×” indicating whether
the labels remain or are discarded after the application of the ND () operator, respectively. �

6.2 Bidirectional Pareto frontier generation

We now provide a compilation method that extends the work of Galand et al. (2013) for network
models. Namely, one may obtain the elements composing the Pareto frontier by constructing labels
in both directions simultaneously and coupling the top-down and bottom-up labels. Given two sets
of vectors Z1,Z2 ⊆ RK , define the coupling of Z1 and Z2 as

CP (Z1,Z2) := ND
({
z : z = z1 + z2, z1 ∈ Z1, z

2 ∈ Z2

})
.

The coupling function CP (Z1,Z2) returns the nondominated set of vectors that result from every
pairwise sum of vectors from the two sets Z1 and Z2.

Let us fix a layer j′ and suppose we created the labels ZTD (u) for every node u ∈ Lj , j ≤ j′,
and the labels ZBU (u) for every node u ∈ Lj , j ≥ j′. We define the operation of coupling on layer
j′ as

CPL
(
Lj′
)

:= ND

 ⋃
u∈Lj′

CP
(
ZTD (u) ,ZBU (u)

) .

This yields the nondominated set that results from the coupling of the top-down and the bottom-up
labels on each node. Note that CPL (Lj) = YN for any j ∈ [n+ 1].

Example 7 shows that this approach can significantly reduce the number of operations required
to find the Pareto frontier of a network model. Since the nondominated frontier of any set S
of K-dimensional vectors can be found in time O

(
|S| · (log (|S|))K−2

)
(Borzsony et al. 2001), the

coupling operation of sets Z1 and Z2 can be completed in timeO
(
|Z1| · |Z2| · (log (|Z1| · |Z2|))K−2

)
.

Example 7. Consider the network model in Figure 1. Suppose we fix L5, composed of nodes u5
1

and u5
2, as the coupling layer. Only 14 top-down labels need to be created to find ZTD

(
u5

1

)
and

ZTD
(
u5

2

)
, and only 11 bottom-up labels need to be created in order to find ZBU

(
u5

1

)
and ZBU

(
u5

2

)
.

The coupling of these sets results in

CP
(
ZTD

(
u5

1

)
,ZBU

(
u5

1

))
= {(8, 13, 17) , (6, 7, 19) , (7, 14, 13) , (7, 15, 8) , (6, 16, 4)}

CP
(
ZTD

(
u5

2

)
,ZBU

(
u5

2

))
= {(10, 21, 8)} ,

13

and, finally, CPL (L5) = {(8, 13, 17) , (6, 7, 19) , (7, 14, 13) , (10, 21, 8)} , as desired. Note that using
either unidirectional approach requires the creation of a total of 36 labels, as opposed to the 25
required using coupling. �

Determining the best layer to couple on (i.e., the one in which the number of labels that need to
be created is minimized) is a non-trivial. In particular, a unidirectional Pareto frontier compilation
may require the creation of fewer labels than the bidirectional variant. We therefore propose
the following heuristic procedure. Starting from r and t, we first create ZTD (u′) and ZBU (u′′),
respectively, for all u′ ∈ L2 and for all u′′ ∈ Ln. Then, having constructed top-down labels for each
node up to Lj1 , 2 ≤ j1, and bottom-up labels for each node on or below Lj2 , j2 ∈ [j1 + 1, n], we
pick among j1 and j2 the layer with the fewer number of total labels in order to proceed with the
extension operations. Namely, if

∑
u∈Lj1

|ZTD (u) | ≤
∑

u∈Lj2
|ZBU (u) |, extension of the top-down

labels to Lj1+1 is completed and j1 is set to j1 + 1. Otherwise, extension of the bottom-up labels
to Lj2−1 is completed, and j2 is set to j2− 1. This procedure is repeated until j1 = j2, upon which
coupling on layer Lj1 is used to calculate the Pareto frontier of the network model.

6.3 Label Removal Algorithms

Given a network model, the complexity of finding the Pareto frontier is largely determined by
the cardinality of ZTD (u) and ZBU (u). Thus, having a VPO for the reduction of |ZTD (u) | and
|ZBU (u) | is relevant for computational purposes.

The following proposition introduces such an operation. Given two nodes u, v in a same layer
Lj , the intuition behind the proposition is to identify when the subnetwork associated with N [u, t]
is dominated by N [v, t], in which case we can remove labels in u that are dominated by v.

Proposition 3 (Label filtering). Let u and v be two nodes in Lj for some j ∈ [n]. Suppose

ND (PF (N [u, t]) , PF (N [v, t])) = PF (N [v, t]) .

If there exists a pair of labels `u ∈ ZTD (u) and `v ∈ ZTD (v) for which `u ≺ `v (or `u = `v), then
removing `u from ZTD (u) is a VPO. Similarly, if

ND (PF (N [r, u]) , PF (N [r, v])) = PF (N [r, v]) ,

and there exists `u ∈ ZBU (u) and `v ∈ ZBU (v) for which `u ≺ `v (or `u = `v), then removing `u

from ZBU (u) is a VPO.

Proof. We provide a proof of the first case, as the proof of the other case follows by inverting the
network model. By the condition in the statement of the proof, for each path p in N[u,t], it must
be that w(p) + `u is dominated by w(p′) + `v, for some path p′ in N[v,t]. Thus w(p) + `u does not
belong to PF (N) for any such p. It follows that the removal of `u is a VPO.

Proposition 3 generalizes the concept of state-based dominance in DP (Bertsekas 2017) to net-
work models. In particular, we can incorporate domain-specific information into a network model
to identify cases where the conditions of Proposition 3 are satisfied. We provide an example in-
stantiation in Section 7 which results in significant speedups in enumerating the Pareto frontier.

7 Numerical Study

In this section, we provide a detailed numerical evaluation of the effectiveness of the proposed
algorithm on five different classes of problems. For each class, we discuss how the initial network

14

model is constructed, explain the best algorithmic configuration, and compare with existing state-
of-the-art approaches for general MODOs. In particular, we consider the methodologies proposed
by Kirlik and Sayın (2014) and Özlen et al. (2014), hereafter denoted by algorithms K and O,
respectively. The source codes of these algorithms were kindly provided by the respective authors.

Experimental Design and Evaluation. All experiments ran on an Intel(R) Xeon(R) CPU
E5-2680 v2 at 2.80GHz. Each experiment was limited to one thread and subject to a time limit of
3,600 seconds and a memory limit of 16GB. The algorithms K and O depend on the resolution of
integer linear programs; we employed IBM ILOG CPLEX 12.7.1 with default settings for this task
(IBM ILOG 2017). The paired Wilcoxon signed-rank test was used to estimate p-values comparing
pairs of algorithms (Wilcoxon 1945) (this is a nonparametric test that will be used to compare if
population mean ranks of solution times differ between algorithms).

Data was generated following previous literature guidelines; details of the random generation
procedure for each problem class are presented in the appendix. Direct comparisons between the
algorithms are presented in cumulative distribution plots, which show the number of instances
solved by each algorithm (y-axis) within a given time limit (x-axis). We use the integral of the
curve associated with an algorithm to estimate its relative performance so that the quality of
an algorithm depends both on the running time and on the number of instances solved. The
order in which algorithms are listed in the legends reflect this metric, with the best-performing
algorithms appearing on the top. Additionally, we present scatter plots to compare the best-
performing network model algorithm against the best previous state-of-the-art algorithm. These
plots are presented in logarithmic scale and represent the amount of time the algorithms require
to solve each instance of the given benchmark. We also employ a color code to indicate the size of
the Pareto frontier of each instance.

The network model-based algorithms employing the bottom-up, top-down, and bidirectional
Pareto frontier compilation are represented by BU, TD, and Coup, respectively. For applications
where the domain-specific label filtering given in Proposition 3 has been applied, we denote the
extensions of BU, TD, and Coup by BU+, TD+, and Coup+, respectively.

7.1 Multiobjective 0-1 Knapsack Problem

Given n items, a capacity W > 0, and for each item i ∈ [n], a weight wi > 0 and K profits
p1
i , p

2
i , . . . , p

K
i > 0, the multiobjective 0-1 knapsack problem (MKP) is

max
{

((p1)>x, (p2)>x, . . . , (pK)>x) : w>x ≤W, x ∈ Bn
}
.

Network model construction. The initial network is constructed via a recursive formulation
using a single dimensional state variable s ∈ R+, which corresponds to the total weight of the
knapsack at a certain stage. The root state is s0 = 0. We cannot set a variable xj = 1 if it
weighs more than the available capacity, i.e., Vj(s) := {v ∈ B : s + v · wj ≤ W}. The transition
functions update the total weight of the knapsack: τj(s, v) = s + v · wj for all j ∈ [n − 1] and
τn(s, v) = W . Lastly, for any j ∈ [n], the reward function is the profit vector of item j, i.e.,

δj(s, v) := v ×
(
p1
j , p

2
j , . . . , p

K
j

)
.

We incorporate the label filtering of Proposition 3 by exploiting the classical DP state dominance
for knapsack problems. For any j ∈ [n], let uji , u

j
i′ ∈ Lj be two possible states obtained at layer j

using the aforementioned recursive model. If uji ≥ u
j
i′ , we have

ND
(
PF
(
N [uji , t]

)
, PF

(
N [uji′ , t]

))
= PF

(
N [uji′ , t]

)
.

15

The equality above follows since each path (i.e., partial feasible solution) in N [uj , t] has a path
in N [uji′ , t] of same path-weight, given that we have more capacity available at uji′ than uji . That

is, we can assign the same variable values in a path starting at uji′ and incur the same objective

function contribution. Thus, we can remove labels at uji if they are dominated by a label at uji′ .

Computational evaluation. We experimented on 450 instances with K ∈ {3, 4, . . . , 7} objec-
tives and n ∈ {20, 30, . . . , 100} variables. The detailed results are presented in Table 2 of the
appendix. We provide an analysis of the results and summarize our findings.

 0

 50

 100

 150

 200

 250

 300

 350

0 900 1800 2700 3600

N
um

be
r s

ol
ve

d

Time (seconds)

Coup+
Coup

TD
TD+
BU+

BU
O
K

Figure 6: Knapsack cumulative distribution plot

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

n=20
n=100

C
ou

p+
 ti

m
e

(s
ec

on
ds

)

O time (seconds)

K=3
K=4
K=5

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

Figure 7: Knapsack scatter plot

The cumulative distribution plot for the knapsack instances is presented in Figure 6. The results
show a clear dominance of all network model algorithms over O and K. Overall, Coup+ delivered the
best results, solving 370 instances, whereas the configurations BU and BU+ were relatively weaker
and solved 280 and 279 and instances, respectively. O and K solved 154 and 149, respectively. The
figure also shows that the network model algorithms are considerably faster, as they solve more
instances within seconds than O and K in one hour.

Figure 7 shows a scatter plot comparing Coup+ with O for instances with up to five objective
functions. We removed from the plot instances with K = 6 and K = 7, since O and K have
considerably worse performance and the results do not provide much insight. Coup+ was at least as
efficient as O and K in every knapsack instance tested, and only three instances that could not be
solved by this network model configuration were solved by the others (one by TD and two by Coup).
The sizes of the Pareto frontier do not seem to affect the relative performance between Coup+ and O;
namely, Coup+ and the other network model algorithms perform better than the previous state of
the art in all cases, perhaps even more so in instances with smaller solution sets.

With respect to Pareto frontier compilation, the bidirectional strategy had the best results while
bottom-up was relatively poor, independently from the inclusion of the label filtering VPO. Filtering
affected network model algorithms in different ways, depending on the Pareto frontier compilation
strategy used. The solution time differences between BU and BU+ are statistically significant (p-
value of 10−9), although in practical terms they perform similarly; the number of solved instances
is almost the same (280 vs 279) and the average running time goes from 252 to 244 with filtering, a
gain of 3% on average. The inclusion of filtering decreased the quality of the top-down algorithm,
with 310 instances solved (as opposed to 323) and almost 40 seconds of additional computational
time, on average, to solve instances solved by both algorithms (from 184 to 221, with p-value of
10−13). Finally, Coup+ is significantly better than Coup (p-value of 10−40); more instances were

16

solved (370 in comparison with 362) in less time (average running time reduced from 318 to 228)
and less variability (standard deviation reduced from 710 to 525).

7.2 Multiobjective Set Covering and Set Partitioning Problems

We consider the multiobjective variants of the classical set covering and set partitioning problems.
Namely, let A ∈ Bm×n be a binary constraint coefficient matrix, and let c1, . . . , cK be K cost vectors
in Rn. The multiobjective set covering problem (MSCP) is defined as

min
{

((c1)>x, (c2)>x, . . . , (cK)>x) : Ax ≥ 1, x ∈ Bn
}
.

The multiobjective set packing problem (MSPP) replaces “min” by “max” and the inequality sign
from “≥” to “≤” in the definition above.

Network model construction. The original networks are produced by employing the DD trans-
formation discussed in Section 4.2. In particular, we used the set covering DD by Bergman et al.
(2011) and the set packing DD by Bergman et al. (2014). In our experiments, label filtering for
both applications did not impact performance, so we omit the corresponding results.

Computational evaluation. We experimented on 150 random instances with n ∈ {100, 150, 200}.
Detailed results for the MCSP and the MSPP are presented in Tables 3 and 4, respectively.

For the MSCP, Coup delivered the best results among the network model algorithms, solving
90 instances with an average running time of 81 seconds (and a standard deviation of 188). TD

solved more instances (91), but its average runtime was higher (122 with a standard deviation of
263). Moreover, for the 88 instances solved by both, Coup had an average running time of 64 (with
a standard deviation of 127), against 104 (standard deviation of 229) for TD.

 0

 25

 50

 75

 100

0 900 1800 2700 3600

N
um

be
r s

ol
ve

d

Time (seconds)

Coup
TD
BU

O
K

Figure 8: Set covering cumulative distribution plot

 1

 10

 100

 1000

 1 10 100 1000

n=100
n=200

C
ou

p
tim

e
(s

ec
on

ds
)

O time (seconds)

K=3
K=4
K=5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Figure 9: Set covering scatter plot

Algorithms K and O solved 48 and 50 instances, respectively. Among these, there were instances
that the network model configurations could not enumerate the Pareto frontier (between 9 and 11,
depending on the configuration employed). These instances were relatively large, typically of size
n = 200, resulting in large network models that could not be solved within the given limits.

Figure 9 depicts the relative performance of O and Coup on the MSCP, in particular elucidating
the one configuration for which O significantly outperformed Coup (200 variables, K = 3). However,

17

the same plot also suggests that Coup is far more efficient for instances with relatively large Pareto
frontiers. This suggests that the performance of the network models are less sensitive to the size
of the Pareto frontier than K and O.

The results for the MSPP are presented in the cumulative distribution plot in Figure 10 and
in the scatter plot in Figure 11. Coup also delivered the best results for this problem class, slightly

 0

 25

 50

 75

 100

0 900 1800 2700 3600

N
um

be
r s

ol
ve

d

Time (seconds)

Coup
TD
BU

K
O

Figure 10: Set packing cumulative distribution plot

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

n=100
n=200

C
ou

p
tim

e
(s

ec
on

ds
)

K time (seconds)

K=3
K=4
K=5

 0

 5000

 10000

 15000

 20000

 25000

Figure 11: Set packing scatter plot

outperforming TD; Coup solved one more instances than TD (102 vs 101) and had smaller running
times (averages of 71 versus 123 and standard deviation of 170 versus 322). Coup and TD solved more
instances of the MSPP than the MSCP, whereas BU, K, and O had the inverse behavior. Algorithms
K and O again solved fewer instances (41 and 42) and, among these, between 9 and 10 instances
(depending on the configuration) were not solved by the network models. The size of the instances
played a role in the efficiency of the algorithms. Figure 11 shows that K outperforms Coup in some
instances, but in relatively fewer cases than in the MSCP. Moreover, the Pareto frontier sizes have
the same impact on the relative performance of the algorithms, as in the case of the MSCP, showing
the robustness of network models.

7.3 Multiobjective Traveling Salesperson Problem

The multiobjective traveling salesperson problem (MTSP) is a generalization of the classical TSP
where arcs are associated with multiple (often conflicting) distance measures. That is, given a
graph G = (V,E) with vertex set V = {1, . . . , n} and where each edge e ∈ E is associated with
costs c1

e, . . . , c
K
e , MTSP asks for the nondominated Hamiltonian tours in G with respect to edge

costs.

Network model construction. The initial network is constructed using the classical dynamic
programming model for the TSP (Bertsekas 2017). Each state s := (V̄ , v) is composed by a
set V̄ ⊆ V , representing the vertices that are still left to be visited, and a vertex v ∈ V \ V̄ ,
representing the last visited vertex. The initial state is s0 := (V \ {1}, 1) (assuming we start
and end at vertex 1). The variable xj denotes the vertex that is visited at the j-th position of
the Hamiltonian tour; thus, Vj((V̄ , v)) = xj . The transition function updates the set of visited
vertices, τj((V̄ , v), xj) = (V̄ \ {xj}, xj), and the reward function is the negative of the distance
travelled (since we are maximizing), δj((V̄ , v), xj) = (−c1

v,xj , · · · ,−c
K
v,xj), for j = 1, . . . , n. Finally,

18

we establish a special terminal state with δn+1((∅, v), xj) = (−c1
v,1, · · · ,−cKv,1) that represents the

return to vertex 1.

Computational evaluation. We experimented on 150 instances, with 10 instances for each
configuration of n ∈ {5, 10, 15} and K ∈ {3, 4, 5, 6, 7}. We only depict results by Coup, which dom-
inated all other network-based configurations, and K, which also was superior to O in all scenarios
tested. In particular, K uses the Miller-Tucker-Zemlin formulation of TSP (Miller et al. 1960) as in
Özlen et al. (2014). Table 1 depicts the results, where column P gives the average size of the Pareto
frontiers (taking into account only closed instances), S gives the number of problems solved for the
associated technique, and t provides the average time (out of 10 instances with the configuration);
small running times were rounded up to 1 second.

Table 1: Multiobjective Traveling Salesperson Problem Results

Coup K

n K P S t S t

5 3 6.9 10 1.0 10 1.0

4 8.7 10 1.0 10 1.0

5 8.1 10 1.0 10 1.2

6 11.0 10 1.0 10 2.8

7 10.9 10 1.0 5 11.4

10 3 163.1 10 1.0 10 57.1

4 675.7 10 1.0 7 2021.4

5 2040.2 10 1.0 0 -

6 20080.5 10 1.0 0 -

7 9716.7 10 1.9 0 -

15 3 670.7 10 3.2 7 2338.9

4 8328.5 10 41.2 0 -

5 55875.0 10 543.9 0 -

6 190447.3 8 2462.1 0 -

7 - 0 - 0 -

Our results show a complete dominance of Coup over K. Namely, Coup was superior to K by at
least one order of magnitude in all instances; for some configurations, K could not solve a single
instance, whereas Coup closed all scenarios within seconds (see e.g., n = 10 and K = 7). Instances
with 15 cities are very challenging for current state-of-the-art techniques; note that neither K

nor Coup managed to solve any instance with n = 15 and K = 7; observe also that the size
of the Pareto frontiers increase significantly with n and K. Nevertheless, Coup shows significant
superiority in these scenarios as well; whereas K could not close any instances where K ≥ 4, Coup
solved all instances with up to 5 objective functions in less than 10 minutes in average, and 8 out
of 10 instances with K = 6.

7.4 Multiobjective Cardinality-Constrained Absolute Value Problem

The multiobjective cardinality-constrained absolute value problem (MCCAVP) is defined as

min
{(∣∣∣(a1)>x− b1

∣∣∣ , ∣∣∣(a2)>x− b2
∣∣∣ , . . . , ∣∣∣(aK)>x− bK

∣∣∣) : 1>x ≤ C, x ∈ Bn
}
,

19

where a1, . . . , aK ∈ Zn, b ∈ ZK , and C ∈ Z+. The MCCAVP is a multiobjective variant of the
discrete L1-norm minimization problems, classically applied in statistical data fitting and circuit
optimization (Jong 2012, Narula and Wellington 1982). For instance, in data fitting problems each
linear function represents a residual, and in the multiobjective case we wish to evaluate the Pareto
frontier of nondominated fitting configurations according to each residual.

The MCCAVP illustrates how the procedure generalizes to multiobjective nonlinear applica-
tions. If any of the K objective functions is instead written as a linear function raised to the power
of α ∈ Z≥1, the outer function can be replaced by the absolute value (if α is even) or simply ignored
(if α is odd) without affecting the Pareto frontier. The MCCAVP therefore provides a modeling
framework for a wide-range of objective functions.

Network model construction. The initial network is constructed via a multiobjective recursive
formulation as presented in Section 4.1. The recursive formulation is obtained by using a (K + 1)-
dimensional state variable s := (θ, γ) ∈ RK × R, where θ1, . . . , θK represent the partial evaluation
of each (ak)>x for all k ∈ [K], and γ is the number of variables that are set to one at that stage.
The root state is s0 = (b, 0). We cannot set a variable xj = 1 if it exceeds the available capacity,
i.e., Vj(s) := {v ∈ B : γ+v ≤ C}. The transition functions update the partial evaluation of (ak)>x
and the number of variables that are set to one; i.e.,

τj(s, v) = (θ1 + a1
j · v, θ2 + a2

j · v, . . . , θK + aKj · v, γ + v).

for all j ∈ [n]. The reward function is the change in each objective function when transitioning
from state s = (θ, γ) to another, that is, the k-th component of δj(s, v) is given by(

δj(s, v)

)
k

:= |θk + akj · v − bk| − |θk − bk|,

for k ∈ [k]. To verify its validity, fix k ∈ [K] and consider any feasible x = (v1, . . . , vn) and
the associated state transitions s0 = (θ0, γ0), s1 = (θ1, γ1), . . . , sn = (θn, γn). Observe that, by
definition,

n∑
j=1

(
δj(sj−1, vj)

)
k

= | θ0
k + ak1 · v1︸ ︷︷ ︸

θ1
k

−bk| − |θ0
k − bk|+ | θ1

k + ak2 · v2︸ ︷︷ ︸
θ2
k

−bk| − |θ1
k − bk|

+ | θ2
k + ak3 · v3︸ ︷︷ ︸

θ3
k

−bk| − |θ2
k − bk|+ · · ·+ | θn−1

k + akn · vn︸ ︷︷ ︸
θnk

−bk| − |θn−1
k − bk|

= |θnk − bk| − |θ0
k − bk|︸ ︷︷ ︸

0

=

∣∣∣∣∣∣
n∑
j=1

akj vj − bk

∣∣∣∣∣∣ ,
which is the original objective for the k-th function.

Mixed-Integer Linear Programming Reformulation. Since the original formulation for the
MCCAVP is nonlinear, it cannot be directly input to K and O. We consider the following linear
reformulation of the MCCAVP for K and O:

min
x∈Bn,1>x≤C

{y1, . . . , yK}

s.t. yk ≥ (ak)>x− bk, k ∈ [K],

yk ≥ −(ak)>x+ bk, k ∈ [K].

20

Computational evaluation. We experimented on 6,250 random instances. The detailed results
for the MCCAVP are presented in Table 5. In particular, all cases were solved by each network-
based configuration. For this section, we restrict the analysis of the results to 450 of these instances,
which have M = 250, n ≥ 15, and C ≥ 30, as the others were solved within a few seconds.

The cumulative distribution plot is presented in Figure 12. Whereas K and O solved less than
200 instances each, the network algorithms enumerated the Pareto frontier in less than 10 minutes
in each case. Over the complete benchmark set, BU delivered the best results. For the restricted
set of 450 instances, BU was also the best, although its results (average running time of 18 seconds
with standard deviation of 41) were not different from those obtained by TD (average of 24 and
standard deviation of 69) in a statistically significant way (p-value of 0.026).

Algorithm O solved more instances than K in the extended dataset (4,118 vs. 4,108), albeit with a
higher runtime (on average 30% larger). Alternatively, for the restricted family of instances, K solved
more instances (178 vs. 172) with a much shorter runtime (average of 258 and standard deviation
of 492 vs. average of 432 and standard deviation of 801), thus suggesting that K outperforms O for
harder instances. We therefore select K for further comparison.

 0

 100

 200

 300

 400

0 900 1800 2700 3600

N
um

be
r s

ol
ve

d

Time (seconds)

BU
TD

Coup
K
O

Figure 12: Absolute value cumulative distribution plot

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

n=15
n=25

BU
 ti

m
e

(s
ec

on
ds

)

K time (seconds)

K=3
K=4
K=5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Figure 13: Absolute value scatter plot

Figure 13 shows a scatter plot comparing the performance of BU with K. Algorithm K out-
performs BU in 5 instances by one order of magnitude (2 vs 30 seconds was the largest relative
difference). All instances solved by K were also successfully addressed by BU, with an average run-
ning time of 8 seconds and standard deviation of 17. Furthermore, similar to what was observed
for the MSCP and MSPP, there is a positive correlation between the size of the Pareto frontiers
and the relative superiority of network model procedures over K and O.

8 Conclusion

This paper presents a novel framework for solving multiobjective discrete optimization problems
(MODOs) through a reformulation into network models, enhanced by validity-preserving operations
that reduce the size of the network while preserving the Pareto frontier. The generality of the
framework is established through application to five distinct problem classes, including a nonlinear
multiobjective optimization problem. The experimental evaluation suggests that the proposed
algorithm outperforms exisiting state-of-the-art general MODO solvers in several multiobjective
variants of classical operations research problems.

Our methodology assumes memory availability exceeds memory requirements for constructing

21

and storing network models. Since multiobjective optimization problems become rapidly more
challenging as problem size grows, this was only a limiting factor for the largest of instances
generated, most of which were beyond the scope of other algorithms we tested against. As memory
availability in modern-day CPUs continues to grow, investigating algorithms specifically designed
to exploit this resource is of great interest, and this paper provides an aimed step in this direction.

References

N. Adelgren and A. Gupte. Branch-and-bound for biobjective mixed integer programming, 2017. https:

//arxiv.org/pdf/1709.03668.pdf.

C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0-1 multi-objective knapsack problem.
Comput. and Oper. Res., 36(1):260–279, 2009.

Markus Behle. On threshold bdds and the optimal variable ordering problem. Journal of Combinatorial
Optimization, 16(2):107–118, 2007.

T. Bektas. Disjunctive programming for multiobjective discrete optimisation, 2016. http://www.

optimization-online.org/DB_FILE/2016/05/5442.pdf.

D. Bergman, W.-J. van Hoeve, and J.N. Hooker. Manipulating MDD Relaxations for Combinatorial Opti-
mization. In Tobias Achterberg and J. Beck, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 6697 of Lecture Notes in Computer
Science, chapter 5, pages 20–35. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2011.

D. Bergman, A. A. Cire, W.-J. Jan van Hoeve, and T. H. Yunes. BDD-based heuristics for binary optimiza-
tion. Journal of Heuristics, 20(2):211–234, 2014.

D. Bergman, A.A. Cire, W.J. van Hoeve, and J. Hooker. Decision diagrams for optimization. Springer, 2016.

David Bergman and Andre A. Cire. Multiobjective optimization by decision diagrams. In Michel Rueher,
editor, Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016,
Toulouse, France, September 5-9, 2016, Proceedings, pages 86–95. Springer International Publishing,
Cham, 2016.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 4th edition,
2017.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to Linear Optimization, volume 6. Athena Scientific,
1997.

G.R. Bitran. Linear multiple objective programs with zero-one variables. Math. Program., 13(1):121–139,
1977.

G.R. Bitran and J.M. Rivera. A combined approach to solve binary multicriteria problems. Naval Res. Logist.,
29(2):181–201, 1982.

M. Bodur, S. Ahmed, N. Boland, and G.L. Nemhauser. Decomposition of loosely coupled integer programs: A
multiobjective perspective, 2016. http://www.optimization-online.org/DB_FILE/2016/08/5599.

pdf.

N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biobjective integer
programming: The balanced box method. INFORMS J. Comput., 27(4):735–754, 2015.

N. Boland, H. Charkhgard, and M. Savelsbergh. The L-shape search method for triobjective integer pro-
gramming. Math. Program. Comput., 8(2):217–251, 2016a.

N. Boland, H. Charkhgard, and M. Savelsbergh. A new method for optimizing a linear function over the
efficient set of a multiobjective integer program. European J. Oper. Res., 2016b.

N. Boland, H. Charkhgard, and M. Savelsbergh. The quadrant shrinking method: A simple and efficient
algorithm for solving tri-objective integer programs. European J. Oper. Res., 2016c.

S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In Data Engineering, 2001. Proceedings.
17th International Conference on, pages 421–430. IEEE, 2001.

22

https://arxiv.org/pdf/1709.03668.pdf
https://arxiv.org/pdf/1709.03668.pdf
http://www.optimization-online.org/DB_FILE/2016/05/5442.pdf
http://www.optimization-online.org/DB_FILE/2016/05/5442.pdf
http://www.optimization-online.org/DB_FILE/2016/08/5599.pdf
http://www.optimization-online.org/DB_FILE/2016/08/5599.pdf

Christiane Regina Soares Brasil, Alexandre Claudio Botazzo Delbem, and Fernando Lus Barroso da Silva.
Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction.
Journal of Computational Chemistry, 34(20):1719–1734, 2013.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers,
C-35:677–691, 1986.

R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing
Surveys, 24:293– 318, 1992.

M.E. Captivo, J. Clımaco, J. Figueira, E. Martins, and J.L. Santos. Solving bicriteria 0-1 knapsack problems
using a labeling algorithm. Comput. and Oper. Res., 30(12):1865–1886, 2003.

R.L. Carraway, T.L. Morin, and H. Moskowitz. Generalized dynamic programming for multicriteria opti-
mization. European J. Oper. Res., 44(1):95–104, 1990.

K. Dächert and K. Klamroth. A linear bound on the number of scalarizations needed to solve discrete
tricriteria optimization problems. J. Global. Opt., pages 1–34, 2015.

C. Delort and O. Spanjaard. Using bound sets in multiobjective optimization: Application to the biobjective
binary knapsack problem. Lecture Notes in Computer Science, 6049:253–265, 2010.

Clarisse Dhaenens, Julien Lemesre, and El-Ghazali Talbi. k-ppm: A new exact method to solve multi-
objective combinatorial optimization problems. European J. Oper. Res., 200(1):45–53, 2010.

Jörg Thomas Dickersbach. Supply Chain Management with APO: Structures, Modelling Approaches and
Implementation of MySAP SCM 4.1. Springer, Berlin, 2 edition, 2015.

João A. Duro and Dhish Kumar Saxena. Timing the decision support for real-world many-objective optimiza-
tion problems. In Heike Trautmann, Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret
Wiecek, Yaochu Jin, and Christian Grimme, editors, Evolutionary Multi-Criterion Optimization, pages
191–205. Springer International Publishing, 2017. ISBN 978-3-319-54157-0.

M. Ehrgott. A discussion of scalarization techniques for multiple objective integer programming.
Ann. Oper. Res., 147(1):343–360, 2006a.

M. Ehrgott. Multicriteria optimization. Springer Science & Business Media, 2006b.

M. Ehrgott, X. Gandibleux, and A. Przybylski. Exact methods for multi-objective combinatorial optimisa-
tion. In Multiple Criteria Decision Analysis, pages 817–850. Springer, 2nd edition, 2016.

J.R. Figueira, G. Tavares, and M.M. Wiecek. Labeling algorithms for multiple objective integer knapsack
problems. Comput. and Oper. Res., 37(4):700–711, 2010.

J.R. Figueira, L. Paquete, M. Simões, and D. Vanderpooten. Algorithmic improvements on dynamic pro-
gramming for the bi-objective {0, 1} knapsack problem. Comp. Opt. and Appl., 56(1):97–111, 2013.

Lucie Galand, Anisse Ismaili, Patrice Perny, and Olivier Spanjaard. Bidirectional preference-based search for
state space graph problems. In Proceedings of the Sixth Annual Symposium on Combinatorial Search,
SOCS 2013, Leavenworth, Washington, USA, July 11-13, 2013., 2013.

R. G. Garroppo, S. Giordano, and L. Tavanti. A survey on multi-constrained optimal path computation:
Exact and approximate algorithms. Computer Networks, 54(17):3081 – 3107, 2010.

Jonathan M. Gomes-Selman, Qinru Shi, Yexiang Xue, Roosevelt Garćıa-Villacorta, Alexander S. Flecker,
and Carla P. Gomes. Boosting efficiency for computing the pareto frontier on tree structured networks.
In Willem-Jan van Hoeve, editor, Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, pages 263–279. Springer International Publishing, 2018. ISBN 978-3-319-93031-2.

Satyaveer Goud Gudala. Skyline queries for multi-criteria decision support systems. Master’s thesis, Kansas
State University, 2012.

T. Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1 programming. In E. Loute
and L. Wolsey, editors, Proceedings of the International Workshop on Integration of Artificial Intelli-
gence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2007), volume 4510 of Lecture Notes in Computer Science, pages 84–98. Springer,
2007.

23

Y.Y. Haimes, L.S. Lasdon, and D.A. Wismer. On a bicriterion formulation of the problems of integrated
system identification and system optimization. IEEE Trans. Syst. Man and Cybern., 1(1):296–297,
1971.

M. I. Henig. The shortest path problem with two objective functions. European Journal of Operational
Research, 25(2):281 – 291, 1986.

John N. Hooker. Decision diagrams and dynamic programming. In Carla Gomes and Meinolf Sellmann, edi-
tors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems: 10th International Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22,
2013. Proceedings, pages 94–110. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

IBM ILOG. CPLEX Optimization Studio 12.7.1 user manual, 2017.

Yunchol Jong. An augmented smoothing method of l1 -norm minimization and its implementation by neural
network model, 2012. https://arxiv.org/abs/1207.1931.

N. Jozefowiez, G. Laporte, and F. Semet. A generic branch-and-cut algorithm for multiobjective optimization
problems: Application to the multilabel traveling salesman problem. INFORMS J. Comput., 24(4):
554–564, 2012.

G. Kirlik and S. Sayın. A new algorithm for generating all nondominated solutions of multiobjective discrete
optimization problems. European J. Oper. Res., 232(3):479–488, 2014.

K. Klamroth and M.M. Wiecek. Dynamic programming approaches to the multiple criteria knapsack prob-
lem. Naval Res. Logist., 47(1):57–76, 2000.

D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming problem.
European J. Oper. Res., 9(4):378–385, 1982.

M. Laumanns, L. Thiele, and E. Zitzler. An adaptive scheme to generate the pareto front based on the
epsilon-constraint method. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2005.

M. Laumanns, L. Thiele, and E. Zitzler. An efficient, adaptive parameter variation scheme for metaheuristics
based on the epsilon-constraint method. European J. Oper. Res., 169(3):932–942, 2006.

B. Lokman and M. Köksalan. Finding all nondominated points of multi-objective integer programs.
J. Global. Opt., 57(2):347–365, 2013.

M. Masin and Y. Bukchin. Diversity maximization approach for multiobjective optimization. Oper. Res., 56
(2):411–424, 2008.

G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objective linear
programming. European J. Oper. Res., 107(3):530–541, 1998.

G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization algorithm for
mixed 0-1 multiple objective linear programming. Appl. Math. Comput., 171(1):53–71, 2005.

C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulation of traveling salesman prob-
lems. Journal of the ACM (JACM), 7(4):326–329, 1960.

Subhash C. Narula and John F. Wellington. The minimum sum of absolute errors regression: A state of the
art survey. International Statistical Review / Revue Internationale de Statistique, 50(3):317–326, 1982.

M. Özlen and M. Azizoğlu. Multi-objective integer programming: a general approach for generating all
non-dominated solutions. European J. Oper. Res., 199(1):25–35, 2009.

M. Özlen, B.A. Burton, and C.A.G. MacRae. Multi-objective integer programming: An improved recursive
algorithm. J. Optim. Theory Appl., 160(2):470–482, 2014.

Ö. Özpeynirci and M. Köksalan. An exact algorithm for finding extreme supported nondominated points of
multiobjective mixed integer programs. Management Sci., 56(12):2302–2315, 2010.

S.N. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer programming, 2015. http://www.
optimization-online.org/DB_FILE/2014/07/4444.pdf.

A. Przybylski, X. Gandibleux, and M. Ehrgott. A two phase method for multi-objective integer programming
and its application to the assignment problem with three objectives. Discrete Optim., 7(3):149–165,
2010.

24

https://arxiv.org/abs/1207.1931
http://www.optimization-online.org/DB_FILE/2014/07/4444.pdf
http://www.optimization-online.org/DB_FILE/2014/07/4444.pdf

T.K. Ralphs, M.J. Saltzman, and M.M. Wiecek. An improved algorithm for solving biobjective integer
programs. Ann. Oper. Res., 147(1):43–70, 2006.

A. Rong and J.R. Figueira. A reduction dynamic programming algorithm for the bi-objective integer knap-
sack problem. European J. Oper. Res., 231(2):299–313, 2013.

A. Rong and J.R. Figueira. Dynamic programming algorithms for the bi-objective integer knapsack problem.
European J. Oper. Res., 236(1):85–99, 2014.

A. Rong, J.R. Figueira, and M.V. Pato. A two state reduction based dynamic programming algorithm for
the bi-objective 0–1 knapsack problem. Comp. & Math. with Appl., 62(8):2913–2930, 2011.

S. Sayın and P. Kouvelis. The multiobjective discrete optimization problem: A weighted min-max two-stage
optimization approach and a bicriteria algorithm. Management Sci., 51(10):1572–1581, 2005.

F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application to the biobjective
spanning tree problem. INFORMS J. Comput., 20(3):471484, 2008.

R.E. Steuer and E.U. Choo. An interactive weighted tchebycheff procedure for multiple objective program-
ming. Math. Program., 26(3):326–344, 1983.

T. Stewart, O. Bandte, H. Braun, N. Chakraborti, M. Ehrgott, M. Göbelt, Y. Jin, H. Nakayama, S. Poles,
and D. Di Stefano. Real-world applications of multiobjective optimization. Multiobjective Optimization,
pages 285–327, 2008.

Thomas Stidsen, Kim Allan Andersen, and Bernd Dammann. A branch and bound algorithm for a class of
biobjective mixed integer programs. Management Science, 60(4):1009–1032, 2014.

J. Sylva and A. Crema. A method for finding the set of non-dominated vectors for multiple objective integer
linear programs. European J. Oper. Res., 158(1):46–55, 2004.

Zbigniew Tarapata. Selected multicriteria shortest path problems: an analysis of complexity, models and
adaptation of standard algorithms. International Journal of Applied Mathematics and Computer Sci-
ence, 17(2):269287, 2007.

D. Tenfelde-Podehl. A recursive algorithm for multiobjective combinatorial optimization problems with Q
criteria. Technical report, Institut für Mathematik, Technische Universität Graz, 2003.

B. Villarreal and M.H. Karwan. Multicriteria integer programming: A (hybrid) dynamic programming
recursive approach. Math. Program., 21(1):204–223, 1981.

B. Villarreal and M.H. Karwan. Multicriteria dynamic programming with an application to the integer case.
J. Optim. Theory Appl., 38(1):43–69, 1982.

T. Vincent, F Seipp, S Ruzika, A Przybylski, and X Gandibleux. Multiple objective branch and bound
for mixed 0-1 linear programming: Corrections and improvements for biobjective case. Comput. and
Oper. Res., 40(1):498–509, 2013.

Wei Wang, Rong Mo, and Yan Zhang. Multi-objective aerodynamic optimization design method of com-
pressor rotor based on isight. Procedia Engineering, 15(Supplement C):3699 – 3703, 2011.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, 1(6):80–83, 1945.

Yan Yu, J.B Zhang, Gang Cheng, M.C Schell, and Paul Okunieff. Multi-objective optimization in radio-
therapy: applications to stereotactic radiosurgery and prostate brachytherapy. Artificial Intelligence
in Medicine, 19(1):39 – 51, 2000. Evolutionary Computation in Medicine.

A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang. Multiobjective evolutionary algo-
rithms: A survey of the state of the art. Swarm and Evol. Comput., 1(1):32 – 49, 2011.

25

A Proofs

In this section we present the proofs for the structural results presented in the main text.

A.1 Proof of Theorem 1

Let N ′ be the network model that results from the application of the three operations stated in
Theorem 1 on nodes u1, u2 of N . We claim that there exists a one-to-one mapping between path-
weights in PN and path-weights in PN ′ ; i.e., for each path in PN , there is a path in PN ′ with same
path-weight and vice-versa.

First, every path p ∈ PN that does not cross u2 remains unchanged in PN ′ , thus the equivalence
follows in this case. Let us assume now that p = (a1, . . . , ai, ai+1, . . . , an) is a path in PN such that
t (ai) = r (ai+1) = u2. After the sequence of operations specified in the statement of the theorem,
arc ai is substituted for an arc a′i in N ′ such that r (a′i) = r (ai), t (a′i) = u1, and w(a′i) = w(ai),
whereas arc ai+1 is substituted for an arc a′i+1 in N ′ such that r

(
a′i+1

)
= u1, t

(
a′i+1

)
= t (ai+1),

and w(a′i+1) = w(ai+1). These operations yield a one-to-one relationship between p and the path
p′ = (a1, . . . , a

′
i, a
′
i+1, . . . , an) in N ′ which, by construction, is such that w(p′) = w(p). Finally, as

no additional paths are introduced, each path in PN ′ is also a path in PN , so the result follows.

A.2 Proof of Proposition 2

Weight-shift and node-merge operations can be implemented in a bottom-up iterative procedure as
follows. Starting from the penultimate layer, we construct the vector c̃(u) for each node u ∈ Ln by
taking the componentwise minimum arc-weight among arcs in A+(u). Once c̃(u) has been obtained,
the arc-weights can then be shifted up according to the VPO described in Proposition 1. Each arc
is inspected twice (for the identification of the minimum first and for the shift operation afterwards)
and each node is visited once; thus, this operation can be performed over the complete network in
time O(K(|L|+ |A|)).

Checking whether nodes u1, u2 in layer Li satisfy the merging conditions of Theorem 1 is an
operation that can be performed in time O(K|Li+1|) if an adequate data structure is employed.
Let π be an (arbitrary) ordering associated with the nodes of layer Li+1 and let πj denote the j-
th node of Li+1 according to this ordering, with the first position starting from zero. Given π,
one can construct a K|Li+1|-dimensional vector ξ(u) associated with each node u of layer Li such
that (ξ(u))Kj+k = w((u, πj))k, i.e., entry Kj + k contains the value of the k-th coordinate of
the arc-weight associated with the arc connecting u to vertex πj in Li+1; some arbitrary value,
such as −∞, may be employed for entries associated with absent arcs. If the verification above is
performed for each pair of nodes composing layer Li, all merging operations can be verified in time
O(K|Li|2|Li+1|). As each pair of nodes in the network is compared at most once, we have a total
running time of O(K|L|3).

A.3 Proof of Theorem 2

We consider a reduction from the following NP-Hard problem, written in terms of our notation and
objective sense:

Unconstrained Biobjective (Ehrgott 2006b, Proposition 8.12): Given c1, c2 ∈ Zn and d1, d2 ∈
Z, does there exist x ∈ Bn such that

∑n
j=1 c

1
jxj ≥ d1 and

∑n
j=1 c

2
jxj ≥ d2?

26

Let c1, c2, and d := (d1, d2) define the parameters of an instance of the unconstrained biobjective
problem. Equivalently, the problem asks if the given vector d is dominated by a point in the image
space of the MODO defined as

max
{

(c1)>x, (c2)>x : x ∈ Bn
}
. (UCB)

We construct a network Ñ where deciding if d ∈ YN(Ñ) is equivalent to applying an arc-removal
VPO for an appropriate subset of the arcs of Ñ . To this end, let us first consider a valid network
model N = (L,A) for UCB. Since there are no constraints, we can construct a straightforward
valid network model with one node per layer Lj , j ∈ [n + 1], and two arcs a1, a2 connecting the
node u1 from layer Lj to node u2 in layer Lj+1, j ∈ [n]. In particular, w (a1) = 0 (representing the

assignment xj = 0) and w (a2) =
(
c1
j , c

2
j

)
(representing the assignment xj = 1). The network N is

depicted in Figure 14(a). Note that it has size polynomial in n, consisting of n + 1 nodes and 2n
arcs.

rN

tN

(c11, c
1
2)

(c1n, c
2
n)

0

0

(a) N

rN′

rN

tN

tN′

w(a′) = 0 d = w(a′′)

0

00

(b) N ′

Figure 14: A network model N of a binary unconstrained MODO (a), and an extended network
model Ñ of N (b), used in the proof of Theorem 2.

We now design a new network model Ñ by extending N as depicted in Figure 14(b). The root
node rÑ is the arc-root of two arcs a′ and a′′. Arc a′ has arc-weight w(a′) = 0 and connects rÑ
to the corresponding rN in the new network. Arc a′′ has arc-weight w(a′′) = d, and Ñ contains a
single path p′′ = (rÑ , t (a′′) , . . . , tÑ) connecting rÑ to tÑ that traverses node t (a′′); the arc-weight
of all arcs in p′′ (except a′′) is equal to zero. Finally, a single arc with arc-weight 0 connects tÑ to
the associated tN in the new node.

Let A′ be the subset of AÑ containing all arcs that compose path p′′. If d is dominated

by YN(Ñ), any arc a in A′ may be removed from Ñ without changing its Pareto frontier, i.e.,

PF
(
Ñ
)

= PF
(
Ñ − a

)
. Otherwise, by construction, d necessarily belongs to PF

(
Ñ
)

, thus d ∈
PF (N). Hence, no arc is removed from A′. Since all steps are polynomially bounded on n, the
result follows.

27

A.4 Proof of Theorem 3

Suppose by contradiction that there exists a pair of nodes u and v that are isolating in N , together
with an arc a whose removal is a VPO forN [u, v] but not forN . By definition, if such an arc a exists,
then there is a path p in PN from rN to tN containing a such that w(p) ∈ PF (N); additionally,
PN shall not contain any other path p′′ in PN such that w(p′′) � w(p).

Since a ∈ AN [u,v], and u and v are isolating, p must traverse u and v. Let p′ be the subpath
of p directed from u to v. Additionally, let p1 be the portion of p from rN to u, and let p2 be
the portion of p from v to tN . As the removal of a from N [u, v] does not alter PF (N [u, v]), there
must exist a path p′′ from u to v for which w(p′) ≺ w(p′′). Let p̃ be the path in N constructed
from concatenating p1, p′′, and p2. Then, w(p̃) � w(p) (as w(p̃) 6= w(p) by assumption), which
contradicts that w(p) ∈ PF (N).

B Recursive Model Example

X = {x ∈ B7 : x1 + x2 + x3 ≤ 1, x2 + x3 + x4 ≤ 1, x4 + x5 ≤ 1, x4 + x6 ≤ 1, x5 + x7 ≤ 1, x6 + x7 ≤ 1}.

s0 = (0, 0, 0, 0, 0, 0)

u2
1 = (0, 0, 0, 0, 0, 0) u2

2 = (1, 0, 0, 0, 0, 0)

u3
1 = (1, 1, 0, 0, 0, 0) u3

2 = (0, 0, 0, 0, 0, 0) u3
3 = (1, 0, 0, 0, 0, 0)

u4
1 = (1, 1, 0, 0, 0, 0) u4

2 = (1, 0, 0, 0, 0, 0)

u5
1 = (1, 1, 0, 0, 0, 0) u5

2 = (1, 1, 1, 1, 0, 0)

u6
1 = (1, 1, 1, 0, 1, 0) u6

2 = (1, 1, 1, 0, 0, 0) u6
3 = (1, 1, 1, 1, 0, 0)

u7
1 = (1, 1, 1, 1, 1, 1) u7

2 = (1, 1, 1, 1, 1, 0) u7
3 = (1, 1, 1, 1, 0, 1) u7

4 = (1, 1, 1, 1, 0, 0)

st = (1, 1, 1, 1, 1, 1)

x1 = 0 x1 = 1

x2 = 1 x2 = 0 x2 = 0

x3 = 0 x3 = 1 x3 = 0 x3 = 0

x4 = 0 x4 = 0 x4 = 1

x5 = 1 x5 = 0 x5 = 0

x6 = 1 x6 = 0 x6 = 1 x6 = 0 x6 = 0

x7 = 0 x7 = 0 x7 = 0 x7 = 0 x7 = 1

Figure 15: A valid network model for M in Example 1 obtained by recursive formulation given
in Example 3.

28

C Data Generation

Multiobjective 0-1 Knapsack Problem. We experimented on 450 instances of the knapsack
problem with K ∈ {3, 4, . . . , 7} and n ∈ {20, 30, . . . , 100}. Instances were generated as in Kirlik
and Sayın (2014): each profit pkj and weight wj was randomly draw from the interval [1, 1000], for
j ∈ [n] and k ∈ [K]. The capacity of the knapsack was set to W := d0.5

∑n
i=1wie. Ten instances

were generated for each (n,K) pair.

Multiobjective Set Covering and Set Partitioning Problems. We generated 150 random
instances based on the previous work by Stidsen et al. (2014). Specifically, we considered n ∈
{100, 150, 200} variables, m = n/5 constraints, and fixed 10 variables per constraint (i.e., for every
k = 1, . . . ,m, we pick 10 elements of the k-th row of A to be 1 uniformly at random). We considered
K = 3, . . . , 7 objectives. We sampled 10 instances per (n,K) pair. Each matrix was used both for
the MSCP and the MSPP by selecting the appropriate inequality direction in the ensuing constraint
system.

Multiobjective Traveling Salesperson Problem. We experimented on 150 instances with
n ∈ {5, 10, 15} vertices and K ∈ {3, 4, 5, 6, 7}. These instances are generated as in Özpeynirci and
Köksalan (2010): for each K, we generated integer coordinates for n cities on a 1000× 1000 square
(uniformly at random) and used Euclidean distances to create the distance matrix.

Multiobjective Cardinality-Constrained Absolute Value Problem. We experimented on
6,250 instances of the problem. Each was randomly generated with K ∈ {3, 4, 5, 6, 7} and n ∈
{5, 10, 15, 20, 25}. For all k ∈ [K], we drew the components of ak uniformly at random from the set
[−M,M], where we considered M ∈ {50, 100, 150, 200, 250}. We let bk = b1>ak/2c for all k ∈ [K].
For the cardinality constraints, we let C = bnδc for which we considered δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

D Detailed Computational Results

In this section we provide a comprehensive reporting of the computational results. Each line in each
table presents the aggregated results of instances whose dimensions are described in the leftmost
column: n indicates the number of variables and K gives the number of objective functions. The
other columns are arranged in groups of three and present the results for the algorithm indicated on
the top. Column S gives the number of instances that were solved within the predefined memory
and time limits, and t̄ is the average runtime of the algorithm to solve these instances. Column
(M, T) report pairs (m, t), indicating that the algorithm could not solve m and t instances of that
particular configuration because it exceeded the predefined memory and time limits, respectively.

29

T
a
b

le
2
:

K
n

ap
sa

ck
re

su
lt

s

K
O

T
D

B
U

C
o
u
p

T
D
+

B
U
+

C
o
u
p
+

n
K

S
t̄

(M
,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)

2
0

3
1
0

0
.9

3
(0

,0
)

1
0

1
.2

6
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

2
0

4
1
0

3
4
.4

1
(0

,0
)

1
0

6
1
.4

5
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

2
0

5
6

2
0
0
.7

9
(0

,4
)

8
7
6
6
.9

1
(0

,2
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

2
0

6
0

-
(2

,8
)

0
-

(0
,1

0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

4
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

2
(0

,0
)

2
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

0
.0

4
(0

,0
)

1
0

0
.0

7
(0

,0
)

1
0

0
.0

4
(0

,0
)

1
0

0
.0

5
(0

,0
)

1
0

0
.0

5
(0

,0
)

1
0

0
.0

4
(0

,0
)

3
0

3
1
0

5
.2

2
(0

,0
)

1
0

6
.9

8
(0

,0
)

1
0

0
.1

4
(0

,0
)

1
0

0
.2

2
(0

,0
)

1
0

0
.1

6
(0

,0
)

1
0

0
.1

3
(0

,0
)

1
0

0
.2

1
(0

,0
)

1
0

0
.1

3
(0

,0
)

3
0

4
1
0

6
7
6
.2

5
(0

,0
)

1
0

4
5
2
.1

8
(0

,0
)

1
0

0
.1

8
(0

,0
)

1
0

0
.5

3
(0

,0
)

1
0

0
.2

(0
,0

)
1
0

0
.1

8
(0

,0
)

1
0

0
.5

4
(0

,0
)

1
0

0
.1

8
(0

,0
)

3
0

5
0

-
(1

,9
)

0
-

(0
,1

0
)

1
0

0
.3

(0
,0

)
1
0

1
.4

2
(0

,0
)

1
0

0
.3

4
(0

,0
)

1
0

0
.3

8
(0

,0
)

1
0

1
.2

7
(0

,0
)

1
0

0
.2

6
(0

,0
)

3
0

6
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

0
.7

2
(0

,0
)

1
0

4
.7

8
(0

,0
)

1
0

0
.8

7
(0

,0
)

1
0

0
.9

7
(0

,0
)

1
0

4
.2

2
(0

,0
)

1
0

0
.5

(0
,0

)
3
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

1
.7

5
(0

,0
)

1
0

6
.2

4
(0

,0
)

1
0

1
.6

3
(0

,0
)

1
0

2
.8

(0
,0

)
1
0

5
.2

5
(0

,0
)

1
0

0
.9

7
(0

,0
)

4
0

3
1
0

2
2
.0

7
(0

,0
)

1
0

3
0
.8

1
(0

,0
)

1
0

0
.6

7
(0

,0
)

1
0

1
.6

9
(0

,0
)

1
0

0
.6

4
(0

,0
)

1
0

0
.6

6
(0

,0
)

1
0

1
.6

4
(0

,0
)

1
0

0
.5

2
(0

,0
)

4
0

4
4

1
6
8
5
.9

6
(0

,6
)

5
1
9
8
8
.9

9
(0

,5
)

1
0

3
.2

2
(0

,0
)

1
0

2
0
.5

7
(0

,0
)

1
0

3
.1

6
(0

,0
)

1
0

3
.7

9
(0

,0
)

1
0

2
0
.4

2
(0

,0
)

1
0

1
.8

8
(0

,0
)

4
0

5
0

-
(1

,9
)

0
-

(0
,1

0
)

1
0

1
1
.6

6
(0

,0
)

1
0

4
6
.4

1
(0

,0
)

1
0

8
.0

5
(0

,0
)

1
0

1
6
.5

4
(0

,0
)

1
0

4
0
.9

5
(0

,0
)

1
0

4
.4

4
(0

,0
)

4
0

6
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

3
7
.1

6
(0

,0
)

1
0

2
5
1
.2

2
(0

,0
)

1
0

3
9
.2

5
(0

,0
)

1
0

5
5
.5

3
(0

,0
)

1
0

2
4
0
.7

1
(0

,0
)

1
0

2
0
.8

3
(0

,0
)

4
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

8
9
.5

8
(0

,0
)

9
2
8
1
.2

1
(0

,1
)

1
0

8
6
.9

9
(0

,0
)

1
0

1
3
0
.2

7
(0

,0
)

9
2
5
0
.8

9
(0

,1
)

1
0

6
3
.0

2
(0

,0
)

5
0

3
1
0

3
6
.9

7
(0

,0
)

1
0

5
2
.2

(0
,0

)
1
0

2
.2

5
(0

,0
)

1
0

5
.1

7
(0

,0
)

1
0

1
.7

1
(0

,0
)

1
0

2
.1

7
(0

,0
)

1
0

5
.3

3
(0

,0
)

1
0

1
.5

2
(0

,0
)

5
0

4
0

-
(0

,1
0
)

2
2
8
4
1
.4

2
(0

,8
)

1
0

2
3
.4

6
(0

,0
)

1
0

1
3
4
.5

7
(0

,0
)

1
0

1
1
.0

4
(0

,0
)

1
0

2
8
.5

9
(0

,0
)

1
0

1
2
5
.9

2
(0

,0
)

1
0

6
.7

4
(0

,0
)

5
0

5
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

1
1
0
.5

(0
,0

)
1
0

1
1
2
2
.2

9
(0

,0
)

1
0

6
4
.7

6
(0

,0
)

1
0

1
3
6
.5

9
(0

,0
)

1
0

9
9
6
.6

9
(0

,0
)

1
0

3
8
.8

(0
,0

)
5
0

6
0

-
(1

,9
)

0
-

(0
,1

0
)

9
4
8
4
.9

5
(0

,1
)

5
1
3
0
5
.4

7
(0

,5
)

1
0

5
0
7
.2

3
(0

,0
)

9
7
2
4
.1

6
(0

,1
)

5
1
2
4
9
.0

5
(0

,5
)

1
0

4
0
0
.6

3
(0

,0
)

5
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

9
1
7
3
7
.9

4
(0

,1
)

2
1
6
5
4
.8

2
(0

,8
)

9
1
1
9
5
.0

3
(0

,1
)

6
1
5
1
4
.5

2
(0

,4
)

2
1
7
1
6
.3

5
(0

,8
)

1
0

9
7
1
.7

3
(0

,0
)

6
0

3
1
0

1
0
7
.9

6
(0

,0
)

1
0

1
4
3
.6

8
(0

,0
)

1
0

9
.0

4
(0

,0
)

1
0

2
5
.5

1
(0

,0
)

1
0

4
.6

(0
,0

)
1
0

9
.0

7
(0

,0
)

1
0

2
3
.4

5
(0

,0
)

1
0

3
.9

7
(0

,0
)

6
0

4
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

1
6
9
.1

3
(0

,0
)

1
0

7
9
2
.2

7
(0

,0
)

1
0

5
1
.0

3
(0

,0
)

1
0

1
9
1
.1

5
(0

,0
)

1
0

7
8
4
.7

(0
,0

)
1
0

3
4
.0

5
(0

,0
)

6
0

5
0

-
(1

,9
)

0
-

(0
,1

0
)

8
1
4
3
9
.7

1
(0

,2
)

2
2
1
5
8
.8

6
(0

,8
)

1
0

6
0
1
.9

2
(0

,0
)

6
1
0
0
7
.8

9
(0

,4
)

1
8
3
4
.2

9
(0

,9
)

1
0

4
1
6
.3

1
(0

,0
)

6
0

6
0

-
(1

,9
)

0
-

(0
,1

0
)

6
2
7
2
2
.7

1
(0

,4
)

0
-

(0
,1

0
)

6
1
3
8
9
.0

4
(0

,4
)

2
1
9
0
0
.2

8
(0

,8
)

0
-

(0
,1

0
)

7
1
1
2
4
.3

7
(0

,3
)

6
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
2
7
6
2
.7

5
(0

,9
)

0
-

(0
,1

0
)

3
2
4
5
4
.8

4
(0

,7
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

5
2
1
7
4
.3

4
(0

,5
)

7
0

3
1
0

2
7
1
.7

7
(0

,0
)

1
0

3
4
0
.9

5
(0

,0
)

1
0

2
8
.8

5
(0

,0
)

1
0

1
2
5
.0

2
(0

,0
)

1
0

1
1
.8

5
(0

,0
)

1
0

2
8
.4

3
(0

,0
)

1
0

1
2
6
.1

2
(0

,0
)

1
0

9
.0

8
(0

,0
)

7
0

4
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
0

1
0
9
2
.5

2
(0

,0
)

4
1
6
0
5
.4

6
(0

,6
)

1
0

2
5
7
.0

9
(0

,0
)

9
9
0
3
.0

7
(0

,1
)

4
1
5
5
6
.9

(0
,6

)
1
0

1
6
3
.7

1
(0

,0
)

7
0

5
0

-
(1

,9
)

0
-

(0
,1

0
)

2
3
4
1
9
.1

8
(0

,8
)

0
-

(0
,1

0
)

6
2
0
5
2
.8

5
(0

,4
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

8
1
5
5
4
.5

3
(0

,2
)

7
0

6
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

2
1
9
9
8
.6

2
(0

,8
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

2
1
1
6
5
.7

6
(0

,8
)

7
0

7
0

-
(1

,9
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
3
3
3
8
.9

1
(0

,9
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

2
2
2
5
4
.7

6
(0

,8
)

8
0

3
1
0

4
0
1
.4

9
(0

,0
)

1
0

4
8
9
.4

5
(0

,0
)

1
0

9
5
.6

2
(0

,0
)

1
0

3
5
6

(0
,0

)
1
0

2
9
.4

6
(0

,0
)

1
0

9
8
.8

9
(0

,0
)

1
0

3
5
1
.5

6
(0

,0
)

1
0

2
3
.8

4
(0

,0
)

8
0

4
0

-
(0

,1
0
)

0
-

(0
,1

0
)

4
8
4
6
.3

6
(0

,6
)

1
2
2
8
5
.8

(0
,9

)
1
0

9
9
7
.9

3
(0

,0
)

4
9
1
2
.5

(0
,6

)
1

2
3
9
6
.7

9
(0

,9
)

1
0

1
0
1
2
.9

9
(0

,0
)

8
0

5
0

-
(3

,7
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

4
2
6
7
6
.0

8
(0

,6
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

4
2
2
2
5
.3

5
(0

,6
)

8
0

6
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(1
,9

)
0

-
(0

,1
0
)

8
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(1
,9

)
0

-
(0

,1
0
)

9
0

3
1
0

7
7
8
.1

5
(0

,0
)

1
0

8
5
0
.5

1
(0

,0
)

1
0

2
8
3
.7

3
(0

,0
)

1
0

7
4
8
.6

9
(0

,0
)

1
0

7
1
.7

4
(0

,0
)

1
0

2
8
9
.5

(0
,0

)
1
0

7
5
0
.2

(0
,0

)
1
0

5
9
.8

4
(0

,0
)

9
0

4
0

-
(0

,1
0
)

0
-

(0
,1

0
)

1
2
4
2
1
.4

4
(0

,9
)

0
-

(0
,1

0
)

7
1
5
9
7
.3

8
(0

,3
)

1
2
7
2
0
.1

6
(0

,9
)

0
-

(0
,1

0
)

8
1
4
9
9
.2

2
(0

,2
)

9
0

5
0

-
(3

,7
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

9
0

6
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(1
,9

)
0

-
(0

,1
0
)

9
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0
0

3
8

1
6
3
1
.2

7
(0

,2
)

8
1
5
3
0
.5

5
(0

,2
)

1
0

9
6
7
.4

7
(0

,0
)

7
1
6
8
4
.1

1
(0

,3
)

1
0

2
6
2
.5

3
(0

,0
)

1
0

1
0
4
8
.7

(0
,0

)
7

1
6
8
8
.6

8
(0

,3
)

1
0

2
1
2
.6

4
(0

,0
)

1
0
0

4
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
7
4
5
.2

4
(0

,9
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

2
1
7
6
4
.2

8
(0

,8
)

1
0
0

5
0

-
(2

,8
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0
0

6
0

-
(2

,8
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0
0

7
0

-
(0

,1
0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(0
,1

0
)

0
-

(3
,7

)
0

-
(0

,1
0
)

30

Table 3: Set covering results

K O TD BU Coup

n K S t̄ (M,T) S t̄ (M,T) S t̄ (M,T) S t̄ (M,T) S t̄ (M,T)

100 3 10 8.33 (0,0) 10 10.81 (0,0) 10 10.14 (0,0) 10 10.34 (0,0) 10 10.18 (0,0)
100 4 10 326.36 (0,0) 10 427.21 (0,0) 10 10.7 (0,0) 10 11.32 (0,0) 10 10.61 (0,0)
100 5 1 105.35 (0,9) 1 553.49 (0,9) 10 11.27 (0,0) 10 15.26 (0,0) 10 10.82 (0,0)
100 6 0 - (0,10) 0 - (0,10) 10 11.91 (0,0) 10 35.35 (0,0) 10 11.17 (0,0)
100 7 0 - (0,10) 0 - (0,10) 10 24.09 (0,0) 10 54.9 (0,0) 10 16.01 (0,0)

150 3 10 34.6 (0,0) 10 44.22 (0,0) 10 36.82 (0,0) 10 59.11 (0,0) 10 36.27 (0,0)
150 4 7 1290.86 (0,3) 9 1485.95 (0,1) 10 83.76 (0,0) 8 197.08 (0,2) 9 62.88 (0,1)
150 5 0 - (0,10) 0 - (0,10) 7 196.1 (0,3) 5 652.01 (0,5) 7 136.13 (0,3)
150 6 0 - (0,10) 0 - (0,10) 8 539.84 (0,2) 5 803.55 (0,5) 9 315.13 (0,1)
150 7 0 - (0,10) 0 - (0,10) 4 783.5 (0,6) 3 1392.27 (0,7) 4 454.3 (1,5)

200 3 10 97.47 (0,0) 10 124.17 (0,0) 1 63.42 (0,9) 1 202.83 (0,9) 1 158.17 (0,9)
200 4 0 - (0,10) 0 - (0,10) 1 292.97 (0,9) 0 - (0,10) 0 - (0,10)
200 5 0 - (2,8) 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10)
200 6 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10)
200 7 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10)

Table 4: Set packing results

K O TD BU Coup

n K S t̄ (M,T) S t̄ (M,T) S t̄ (M,T) S t̄ (M,T) S t̄ (M,T)

100 3 10 9.38 (0,0) 10 14.34 (0,0) 10 0.09 (0,0) 10 0.12 (0,0) 10 0.08 (0,0)
100 4 10 518.46 (0,0) 10 954.85 (0,0) 10 0.15 (0,0) 10 0.23 (0,0) 10 0.13 (0,0)
100 5 0 - (0,10) 0 - (0,10) 10 0.28 (0,0) 10 0.56 (0,0) 10 0.24 (0,0)
100 6 0 - (0,10) 0 - (0,10) 10 0.77 (0,0) 10 0.86 (0,0) 10 0.57 (0,0)
100 7 0 - (0,10) 0 - (0,10) 10 3.6 (0,0) 10 3.73 (0,0) 10 1.28 (0,0)
150 3 10 23.21 (0,0) 10 36.33 (0,0) 10 12.11 (0,0) 10 17.94 (0,0) 10 12.41 (0,0)
150 4 1 2916.26 (0,9) 2 3057.22 (0,8) 10 27.97 (0,0) 10 75.58 (0,0) 10 23.16 (0,0)
150 5 0 - (2,8) 0 - (0,10) 10 87.74 (0,0) 5 155.74 (0,5) 10 65.68 (0,0)
150 6 0 - (1,9) 0 - (0,10) 10 203.97 (0,0) 5 318.31 (0,5) 10 125.62 (0,0)
150 7 0 - (0,10) 0 - (0,10) 10 888.75 (0,0) 2 196.25 (0,8) 10 475.53 (0,0)
200 3 10 76.47 (0,0) 10 111.18 (0,0) 1 121.92 (0,9) 0 - (0,10) 1 137.78 (0,9)
200 4 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10) 1 336.82 (0,9)
200 5 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10)
200 6 0 - (1,9) 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10)
200 7 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10) 0 - (0,10)

31

T
a
b

le
5
:

A
b

so
lu

te
va

lu
e

re
su

lt
s

K
O

T
D

B
U

C
o
u
p

n
K

C
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)
S

t̄
(M

,
T

)

1
5

3
3
0

1
0

1
.2

1
(0

,0
)

1
0

1
.7

1
(0

,0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
5

4
3
0

1
0

8
.3

1
(0

,0
)

1
0

2
5
.9

(0
,0

)
1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
5

5
3
0

4
1
8
8
2
.3

(0
,6

)
9

2
1
6
6
.9

(0
,1

)
1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
5

6
3
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
5

7
3
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
0

0
(0

,0
)

1
5

3
4
0

1
0

2
.0

5
(0

,0
)

1
0

2
.8

5
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
5

4
4
0

1
0

2
3
.0

2
(0

,0
)

1
0

6
5
.8

7
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
5

5
4
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
5

6
4
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
5

7
4
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

0
.0

4
(0

,0
)

1
0

0
.0

4
(0

,0
)

1
0

0
.0

4
(0

,0
)

1
5

3
5
0

1
0

2
.7

6
(0

,0
)

1
0

3
.7

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
5

4
5
0

1
0

3
1
.5

8
(0

,0
)

1
0

8
7
.6

2
(0

,0
)

1
0

0
.0

1
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
5

5
5
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
0

0
.0

2
(0

,0
)

1
5

6
5
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
.0

3
(0

,0
)

1
0

0
.0

4
(0

,0
)

1
0

0
.0

3
(0

,0
)

1
5

7
5
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

0
.0

7
(0

,0
)

1
0

0
.0

9
(0

,0
)

1
0

0
.0

5
(0

,0
)

2
0

3
3
0

1
0

7
.8

6
(0

,0
)

1
0

9
.8

4
(0

,0
)

1
0

0
.1

4
(0

,0
)

1
0

0
.1

4
(0

,0
)

1
0

0
.1

7
(0

,0
)

2
0

4
3
0

1
0

8
9
.8

2
(0

,0
)

1
0

2
2
2
.0

9
(0

,0
)

1
0

0
.1

5
(0

,0
)

1
0

0
.1

4
(0

,0
)

1
0

0
.1

8
(0

,0
)

2
0

5
3
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
.1

7
(0

,0
)

1
0

0
.1

9
(0

,0
)

1
0

0
.2

1
(0

,0
)

2
0

6
3
0

0
-

(2
,8

)
0

-
(0

,1
0
)

1
0

0
.2

4
(0

,0
)

1
0

0
.2

8
(0

,0
)

1
0

0
.2

9
(0

,0
)

2
0

7
3
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
.4

(0
,0

)
1
0

0
.4

9
(0

,0
)

1
0

0
.3

8
(0

,0
)

2
0

3
4
0

1
0

3
2
.8

5
(0

,0
)

1
0

4
0
.0

7
(0

,0
)

1
0

0
.6

3
(0

,0
)

1
0

0
.7

4
(0

,0
)

1
0

0
.9

4
(0

,0
)

2
0

4
4
0

1
0

5
5
3
.7

7
(0

,0
)

1
0

1
0
4
6
.7

(0
,0

)
1
0

0
.7

(0
,0

)
1
0

0
.7

6
(0

,0
)

1
0

1
.0

6
(0

,0
)

2
0

5
4
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

0
.8

(0
,0

)
1
0

0
.9

(0
,0

)
1
0

1
.0

9
(0

,0
)

2
0

6
4
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

1
.2

8
(0

,0
)

1
0

1
.4

3
(0

,0
)

1
0

1
.5

6
(0

,0
)

2
0

7
4
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

2
.6

2
(0

,0
)

1
0

2
.6

7
(0

,0
)

1
0

2
.4

1
(0

,0
)

2
0

3
5
0

1
0

4
2
.5

5
(0

,0
)

1
0

5
5
.9

2
(0

,0
)

1
0

1
.3

7
(0

,0
)

1
0

1
.5

6
(0

,0
)

1
0

1
.9

8
(0

,0
)

2
0

4
5
0

1
0

9
3
3
.7

7
(0

,0
)

1
0

1
8
3
5
.4

(0
,0

)
1
0

1
.4

7
(0

,0
)

1
0

1
.6

9
(0

,0
)

1
0

2
.4

7
(0

,0
)

2
0

5
5
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

1
.8

4
(0

,0
)

1
0

2
.1

5
(0

,0
)

1
0

2
.7

8
(0

,0
)

2
0

6
5
0

0
-

(2
,8

)
0

-
(0

,1
0
)

1
0

3
.2

9
(0

,0
)

1
0

3
.5

(0
,0

)
1
0

3
.9

5
(0

,0
)

2
0

7
5
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

7
.0

8
(0

,0
)

1
0

7
.0

3
(0

,0
)

1
0

6
.2

6
(0

,0
)

2
5

3
3
0

1
0

5
7
.6

1
(0

,0
)

1
0

6
9
.5

2
(0

,0
)

1
0

3
.1

2
(0

,0
)

1
0

3
.2

6
(0

,0
)

1
0

4
.2

1
(0

,0
)

2
5

4
3
0

1
0

1
2
0
9
.4

(0
,0

)
9

2
0
3
7
.7

(0
,1

)
1
0

3
.3

5
(0

,0
)

1
0

3
.5

9
(0

,0
)

1
0

4
.4

3
(0

,0
)

2
5

5
3
0

0
-

(1
,9

)
0

-
(0

,1
0
)

1
0

3
.7

8
(0

,0
)

1
0

3
.9

8
(0

,0
)

1
0

5
.0

5
(0

,0
)

2
5

6
3
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

5
.6

9
(0

,0
)

1
0

5
.3

7
(0

,0
)

1
0

7
.0

8
(0

,0
)

2
5

7
3
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

1
0
.5

4
(0

,0
)

1
0

8
.9

7
(0

,0
)

1
0

1
1
.0

3
(0

,0
)

2
5

3
4
0

1
0

8
6
.1

5
(0

,0
)

1
0

8
9
.8

8
(0

,0
)

1
0

2
4
.7

6
(0

,0
)

1
0

2
5
.6

8
(0

,0
)

1
0

4
1
.7

6
(0

,0
)

2
5

4
4
0

8
2
9
7
4

(0
,2

)
2

3
4
6
1
.5

(0
,8

)
1
0

2
6
.5

8
(0

,0
)

1
0

2
7
.5

1
(0

,0
)

1
0

4
3
.8

4
(0

,0
)

2
5

5
4
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

3
2
.4

9
(0

,0
)

1
0

3
3
.6

6
(0

,0
)

1
0

5
1
.7

5
(0

,0
)

2
5

6
4
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

6
0
.9

8
(0

,0
)

1
0

5
1
.1

(0
,0

)
1
0

7
7
.3

7
(0

,0
)

2
5

7
4
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

1
4
8
.4

5
(0

,0
)

1
0

9
5
.4

(0
,0

)
1
0

1
4
4
.3

4
(0

,0
)

2
5

3
5
0

1
0

8
7
.7

5
(0

,0
)

1
0

8
6
.7

8
(0

,0
)

1
0

4
9
.2

1
(0

,0
)

1
0

5
3
.7

3
(0

,0
)

1
0

9
9
.7

2
(0

,0
)

2
5

4
5
0

6
2
1
4
4
.1

(0
,4

)
2

2
1
3
5
.3

(0
,8

)
1
0

5
4
.9

1
(0

,0
)

1
0

6
0
.5

8
(0

,0
)

1
0

1
0
6
.5

2
(0

,0
)

2
5

5
5
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

6
7
.7

9
(0

,0
)

1
0

7
2
.8

8
(0

,0
)

1
0

1
2
8
.7

8
(0

,0
)

2
5

6
5
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

1
3
7
.1

2
(0

,0
)

1
0

1
1
1
.4

1
(0

,0
)

1
0

1
7
1
.1

8
(0

,0
)

2
5

7
5
0

0
-

(0
,1

0
)

0
-

(0
,1

0
)

1
0

4
2
7
.1

(0
,0

)
1
0

2
2
2
.5

1
(0

,0
)

1
0

3
5
8
.0

4
(0

,0
)

32

	1 Introduction
	2 Multiobjective Discrete Optimization Problems
	3 Network Models
	4 Network Model Construction
	4.1 Recursive Formulations
	4.2 Transformation from Decision Diagrams

	5 Validity-preserving Operations
	5.1 Weight Shifting and Node Merging
	5.2 Arc removal

	6 Generating the Pareto Frontiers from a Network Model
	6.1 Unidirectional Pareto frontier generation
	6.2 Bidirectional Pareto frontier generation
	6.3 Label Removal Algorithms

	7 Numerical Study
	7.1 Multiobjective 0-1 Knapsack Problem
	7.2 Multiobjective Set Covering and Set Partitioning Problems
	7.3 Multiobjective Traveling Salesperson Problem
	7.4 Multiobjective Cardinality-Constrained Absolute Value Problem

	8 Conclusion
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 2
	A.3 Proof of Theorem 2
	A.4 Proof of Theorem 3

	B Recursive Model Example
	C Data Generation
	D Detailed Computational Results

