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Abstract

This paper highlights the role of mathematical programming, particularly linear program-
ming, in training neural networks. A neural network description is given in terms of separating
planes in the input space that suggests the use of linear programming for determining these
planes. A more standard description in terms of a mean square error in the output space is also
given, which leads to the use of unconstrained minimization techniques for training a neural
network. The linear programming approach is demonstrated by a brief description of a system
for breast cancer diagnosis that has been in use for the last four years at a major medical facility.

1 What is a Neural Network?

A neural network is a representation of a map between an input space and an output space. A
principal aim of such a map is to discriminate between the elements of a finite number of disjoint
sets in the input space. Typically one wishes to discriminate between the elements of two disjoint
point sets in the n-dimensional real space R™. In this case the input space is R" and the output
space is the binary set {0, 1}. The neural network consists of neuron-like units with threshold
values, connected by weighted arcs. These units are similar to the human neuron in that they fire
when their input exceeds their threshold. The simplest and earliest neural network is the linear
threshold unit (LTU), first proposed by McCulloch and Pitts in 1943 [30] and for which Rosenblatt
[39, 38] proposed his iterative perceptron training algorithm in 1957. Such an LTU represents the
following (nonlinear) step function y from the n-dimensional real space R into {0, 1}:

y(z) = s(wz — 0) := < %) 2]; ZZJ;Z (1)

Here w is some fixed weight vector in R™ and the threshold 8§ is a fixed real number. I'igure 1
depicts the neural network representing this function. Geometrically an LTU can be represented
by the plane wz = 6 in R". Since such a plane divides the space into the disjoint halfspaces
{2 | we < 0} and {z | wz > 0}, it is immediately obvious that an LTU can be used to completely
discriminate between two disjoint sets A and B in R", each of which lying in one of these two
halfspaces. We term such sets linearly separable.

Among the earliest algorithms for obtaining such a separating plane or an LTU was Rosenblatt’s
perceptron algorithm, which turns out to be a version of the Motzkin-Schoenberg iterative algorithm
[33] for solving a system of linear inequalities. This algorithm terminates in a finite number of steps
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Output : y(z) € {0,1}

LTU Threshold 6 € R

w Weight w € R

Input: z € R

Figure 1: The simplest neural network, a perceptron or linear threshold unit (LTU), characterized
by the weight vector w in R™ and threshold 6 in R.



if the sets A and B are linearly separable [32, pages 164-175], [35, Chapter 5], [9]. However if A and
B are linearly inseparable the algorithm need not terminate but the iterates are bounded [32, pages
181-187], [9] and hence merely have an accumulation point. By contrast consider the following
simple linear programming formulation

max {¢ | Aw > e(8+(), Bw<eb, (< 1} (2)

w?”)(

Here A and B are m x n and k X n matrices, representing m and k n-dimensional points of the sets
A and B respectively, and e is a vector of ones of appropriate dimension. It is easy to see that (2)
is always solvable because w =0, § =0, ( =01s feasible and the objective function { is bounded
above by 1. Furthermore, the maximum is 1 if A and B are linearly separable, and is 0 if not.
Obviously the linear program (2) can be solved in a finite number of steps to yield a separating
plane or equivalently an LTU, if one exists. If none exists then, unfortunately, the null solution:
w=0, 0=0, (=0,is an optimal point that does not furnish any information other than the fact
that the sets A and B are linearly inseparable. This is the case even when the sets A and B are
“nearly” linearly separable. However this difficulty can be easily circumvented, in order to obtain
some “approximate” error-minimizing linear separation, by considering a slightly different linear
program (6) as shown by Theorem 2.1 below. The first linear programming formulations for the
linearly separable case were given in 1964 and 1965 [11, 27, but they also suffered from the null-
solution difficulty for the linearly inseparable case. In order to handle the linearly inseparable case
one has to employ a more complex map than that provided by an LTU. This was made evident in the
early days of neural network development by Minsky and Papert in 1969 [32] when they presented
their now-classical exclusive-or (XOR) counterexample which is not linearly separable and hence for
which no LTU will work. (See Figure 2). This essentially brought the early development of neural
networks to a halt until it was realized [47, 41] that a more complex function than that represented
by an LTU was needed to correctly map these simple four points into the set {0, 1}. Curiously
enough, however, it should be noted that even before Minsky-Papert proposed their classical XOR
counterexample, a linear-programming-based piecewise-linear separator was proposed in 1968 [28]
that could easily and correctly handle this problem, and which in fact can be represented as a
neural network [7]. (See Figure 14 and discussion following Algorithm 2.2 below.) We shall now
use this example to motivate a general multisurface method (MSM) for separating the sets A and
B of the XOR example or any other disjoint sets A and B in R” and will present a neural network
representation of this separation.

As the name implies, MSM uses more than one surface. (Typically planes are used, but any
other surface that is linear in its parameters, such as a quadratic surface, can be used.) For the XOR
example, Figure 3 shows complete separation by two planes which can be described analytically as
follows:

wiz > 0 or w?z > 02 for z € A= {(1,0),(0,1)} 3)
wiz < ' and w?z < 62 for z € B=1{(0,0),(1,1)} ¢

By considering each of the two planes of Figure 3 as an LTU as indicated, we can represent the
separation mapping achieved by those two planes as a neural network depicted in Figure 4.

In the language of neural networks, this is a feedforward neural network (i.e. no information
from a unit is fed back to preceding units) with one hidden layer of 2 LTU’s and one output LTU.
The planes w'z = ¢, ¢ = 1,2, are each represented by an LTU of the hidden layer LTU’s with
threshold @ and incoming arc weight vector w', i = 1,2. For a fixed z in R™, the collective output
of the 2 hidden LTU’s constitutes a vertex of the unit cube C?:i={r|reR,0<r< e} in R
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Figure 2: The sets A = {(1, 0), (0, 1)} and B = {(0, 0), (1, 1)} of the XOR example that cannot
be mapped into {0} and {1} respectively by an LTU, or equivalently cannot be separated by a
single plane: wa = 6.

Figure 3: Separation of the XOR example by two planes.



y(z) = s(s(~2a1 + 205 — 1) + s(2z) — 20, — 1) = 1/2) = < RS et

S(-2.’L'1 + 2(1)2 - 1) € {0,1} S(Qfl)l - 23)2 - 1) € {O, 1}

z € {(1,0),(0,1)}u{(0,0),(1,1)}

Figure 4: A neural network with 3 LTU’s (2 hidden LTU’s and 1 output LTU) representing the
multisurface separation of Figure 3 for the XOR example.
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Figure 5: Mapping of the sets A = {(1,0), (0, 1)} and B = {(0, 0), (1, 1)} by the output of the
hidden layer of the neural network of Figure 4 as vertices of the unit cube in R?, together with the
separating plane representing the output unit and its incoming arcs.

The scalar weights (1 and 1 here) of the outgoing arcs from the 2 hidden units and the threshold 1/2
of the output LTU constitute a plane in R? which strictly separates the vertices of C? representing
A from those representing B. This plane in R? and the vertices of C? to which A and B are mapped
for the XOR example are shown in Figure 5.

The term “hidden layer” refers to units hidden from both the input and output layers. The
presence of such a hidden layer is crucial and endows a neural network with a complexity that
is not possessed by a single layer of LTU’s. In fact, it can be shown [24, 29] that such a neural
network can separate any two disjoint sets in R* given a sufficient number of hidden units. (See
Theorem 2.2 below.) This is equivalent to the multisurface method separating such disjoint sets
given a sufficient number of planes [28].

Hopefully, it should be clear now that the mapping that we are after from R into {0, 1} can be
rather complex depending on the sets A and B. The two representations that have been described,
neural networks and multisurface separation, are both valid representations of this mapping. Math-
ematical programming techniques can be employed to obtain the parameters determining either
representation. In Section 2 of this paper we shall describe how linear programming can be used
to generate a sequence of planes that will separate any two disjoint point sets in R, while Sec-
tion 3 will describe an unconstrained optimization formulation for obtaining the parameters of a
feedforward neural network with one hidden layer. In Section 4 we shall describe a very effective
application of neural network training via linear programming applied to breast cancer diagnosis.
Section 5 concludes the paper.



2 Neural Network Training via Linear Programming

In this section we indicate how linear programming can be used to train neural networks. We begin
by setting up a linear program that works not only for linearly separable sets, but also for sets that
are not, that is linearly inseparable sets. For the latter case, what we expect, of course, is some error-
minimizing linear separation that does not suffer from the shortcoming of the linear program (1.2),
that is a null solution that does not provide any error-minimizing separation. For this purpose,
we utilize the linear program introduced recently in [8] and which has the following desirable
features not all of which are possessed by any other previous linear programming formulation
[11, 27, 28, 45, 20, 19]:

(i) A strict separating plane (that is neither set lies on the separating plane) for linearly separable
sets A and B

(i) An error-minimizing plane is obtained when the sets A and B are linearly inseparable.

(ili) No extraneous constraints are used to exclude the null solution for linearly inseparable sets.
(Such constraints inevitably fail on certain problems.)

The proposed linear programming formulation is based on the fact that when the sets A and B are
linearly separable, there exists a “dead zone” consisting of an open slab: {¢ | § —1 < wa < §+ 1}
surrounding the separating plane {z | wz = 6} which contains no points from either set A and B.
(The numbers +1 and -1 can be replaced by any other positive and negative numbers. However, a
simple rescaling gives back +1 and -1.) Thus, for linear separation we have the following inequalities
satisfied by the separating plane {z | wz = 6} :

Aw > e(0+ 1) ,
Buw < e(f—1) (4)

Recalling that A represents the m points of the set A, and B the k points of 53, an obvious
error-minimizing problem one wishes to consider would be:

i Sl Aw 0 10.], 4 Hfcon o0 g

where |-||, denotes the I-norm and (z), denotes ((2)4); = max{z;, 0}, i =1,...m, for z € R™.
Here the average error of violating (4) is minimized, and a zero minimum is obtained if and only
if the sets A and B are linearly separable. It is easy to show that (5) is equivalent to the linear
program [8]

w,8,y,2

min {%-}-%|Aw—eﬁ—l—yze,—Bw+60+zZe,y20,220} (6)

Important properties of the linear program (6) are summarized in the following theorem.

Theorem 2.1 Ezact and approzimate separation of sets by linear programs [8]. Let A
and B be represented by the m X n and k x n matrices A and B respectively.

(a) The sets A and B are linearly separable if and only if the linear program (6) has a zero
minimum in which case {z | wz = 0} is a separating plane, where (w, 8, y, z) is any solution

of (6).
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Figure 6: An optimal separator wa = 7 for linearly inseparable sets: A and B.

(b) If A and B are linearly inseparable, the linear program (6) always provides an error-minimizing

plane {z | wz = 0} that approzimately separates A from B, where (w, 0, y, z) is a solution

of (6) with w # 0. The point (w =0, 8, y, 2) is a solution of (6) if and only if—e;-;—;£ = —e—kﬁ, in

which case it is never unique in w = 0. That is, there always exists a solution to (6) with a
nonzero w.

Figure 6 depicts an actual approximate linear separation obtained by solving the linear program
(6) for two linearly inseparable sets in R? shown in Figure 6. In this case the dead zone {z | -1 <
wz < @+ 1} does contain points from both sets because the sets are not linearly separable. The
importance of obtaining an approximate separating plane lies in the fact that such plane is a
computational building block for a multisurface method of pattern separation which, as shown in
the previous section for the XOR example, is equivalent to a neural network with a hidden layer.
We shall demonstrate this application by obtaining the multisurface separation depicted in Figure
3 for the XOR example and hence the equivalent neural network of Figure 4. By letting

[3e] a=[o1]

and solving the linear program (6) using MINOS 5.3 [34] we obtain the solution
w=(-2 +2),8=1y=(4 0),z=(0 0) (7)
(We note in passing that

w=(0 0),0=0,y=(1 1),z2=(1 1) (8)



is also a solution but is neither unique in w nor is it the one given by MINOS.) The multisurface
method tree (MSMT) [4] can be employed to obtain the complete separation of Figure 3 as follows.
Note that the plane wz =  for this problem

— 2%, + 23, = 1, (9)

obtained from the solution (7) and depicted in Figure 3 as wlz = 0, separates R? into halfspaces
one of which contains the point (0, 1) € A only while the other halfspace contains points from both
A and B. MSMT now repeats the application of the linear program (6) to the halfspace containing
the unseparated points: (1, 0) € A, (0, 0) € B and (1, 1) € B by solving (6) with

A=(1o)am,3=(gg>

and obtaining the optimal solution
w=(2 -2),0=1,y=0,2=(0 0) (10)

This generates the plane wz = 6 :

depicted in Figure 3 as w2z = 6%. This plane completely separates the remaining points: (1, 0)) € A
from {(0, 0), (1, 1)} = B. As was shown in Section 1, the two-plane separation depicted in Figure
3 is equivalent to the neural network of Figure 4.

More generally, we can think of a feedforward neural network with a single hidden layer of
h LTU’s as a representation of h planes in R™ that divide the space into p polyhedral regions,

n
p < Z < ’; ) [18], each containing elements of only one set A or B. These planes, which are
=0

reprezs;nted by the vector-weighted incoming arcs to the hidden LTU’s together with their threshold
values, map each polyhedral region into the vertices of the unit cube C* = {r | re R", 0 < r<e}.
The scalar-weighted outgoing arcs from the hidden LTU’s to the output LTU together with its
threshold, represent a plane in R" which separates vertices of C* to which A has been mapped
from those to which B has been mapped. Figure 7 depicts an example in R? of two disjoint point
sets A and B which have been compartmentalized into 7 polyhedral regions by 3 LTU’s labeled
1 to 3. Each region is tagged by a 3-digit binary number determined (from left to right) by
whether the region lies on the 1-side or 0-side of the LTU planes 1 to 3, as determined by the
normals to these planes. Figure 8 depicts the 7 vertices of the unit cube to which the 7 polyhedral
regions have been mapped as well as the plane 3ry + 7o + 73 = 1.5 that separates the points
(1,1, 0), (0,1, 1) (1,0,1), (1,0, 0) representing A from the points (0,0, 0), (0,0,1), (0,1,0)
representing B. Figure 9 depicts the feedforward neural network corresponding to the composite
mapping of Figures 7 and 8.

We describe now in more detail the greedy linear-programming-based algorithm MSMT (mul-
tisurface method tree), for constructing polyhedral regions in R" similar to those of Figure 7, that
will discriminate between two disjoint point sets A and B in R [4]. The essence of the method
consists of applying the linear program (6) first to points contained in R™ and then in succession
to points contained in appropriate intersections of complementary halfspaces. These intersections
of halfspaces are generated by the planes w¥z = 69, i = 0,...,A, j = 1,.. ., 2%, where A + 11is
the number of levels in the decision tree representing groups of successive splits, ¢ is the tree level
and j is the specific node at level 5. The splitting of an intersection of halfspaces terminates when

9



Figure 7: Compartmentalization of R? by 3 LTU’s: w'z = 0, w'z = 6% and w3z = 62 into seven
polyhedral regions, each containing elements of only one set A or B. Each polyhedral region is
tagged by a binary number denoting whether the ith digit of which the region is on the 1-side or
0-side of ILTUi, 2 = 1,2, 3.

(0,0l &B  (0,1,1)€ A

37‘1 +T2+T3 = 1.5

(1,0,1) e A

(1,0,0) € A .~

(1,1,0)€ A

T1

Figure 8: The vertices of the unit cube into which the sets A and B of Figure 7 are mapped,
together with the plane separating them.
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LTU 1

Qutput 1 forxz € A
Qutput 0 forz € B

Input z

Qutput Unit

Threshold = 1.5

Weights

Hidden Units
Thresholds 6*,6°,6°

Weights € R?

Input z € R*

Figure 9: The feedforward neural network corresponding to the composite mapping of Figures 7

and 8.
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n LTU 1 : wiz =61

Figure 10: Splitting of R? by the greedy LP-based algorithm MSMT.

the intersection contains mostly elements of one set only to some desired percentage. Figure 10
depicts how MSMT is applied to the example of Figure 7. First the space R’ is split into the
complementary halfspaces H! = {z | w'z > 6'} and Hj = {2 | w'z < 0'}. Since H} contains
points of A alone, it is not split further. H} is split into HZ, which contains only points of 5,
and HZ. The latter is finally split into HZ containing points of B only and H 3 containing points
of A only. The decision tree corresponding to this splitting of R? is shown in Figure 11. We now
formally describe MSMT. We use the notation A% = ¢ to denote that the matrix AY is empty or
nearly empty according to some prescribed tolerance, that is it contains no rows or very few rows
relative to m, the number of rows in A. Here A" is the submatrix of rows of A representing the
remaining points of the set A (at node j at level 7 of the decision tree, i=0,...,\75=1,...,29
that need to be separated from the corresponding remaining points of the submatrix B of B.

Algorithm 2.1 MSMT (Multisurface Method- Tree) [4]. Let A and B be disjoint points in
R™, represented by the m X n and k X n matrices A and B respectively. Denote the linear program
(6) by LP(A, B) and its solution set by argmin LP(A, B).

(a) Initialization: Set tree level i =0, A = A, B®' = B
(b) At tree level iz For j =1,2,...,2°:
o Stop if AV ~ ¢ or B = ¢ forall j
e Solve at most 2! LP’s: LP(A%, B¥) for all j for which A% % ¢ & BY # ¢
o Let (w', 09, y¥, 2) € argmin LP(A%, BY) for all j
o Define the 2 “descendents” of each A and BY such that AY % ¢ & BY # ¢
AGHDEI=1) = [ AT | A i < eff},  BUHDEI-D .= {B¥ | By w'l < e}
AGHDE) = {Aij l Afzj'wij > efii}, BO+DEH .= {B,’;j l B?w” > ef}

where AY denotes row £ of A%

12



Figure 11: The 3-level decision tree corresponding to the splitting of R? by three LTU’s.
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Figure 12: Separation of A and B by a piecewise-linear surface generated by MSM.

(c) Increment tree level: i 4+ 1 — i & go to (b).

We describe now another multisurface method that is a variant of the original MSM method
[28, 29], which is based on solving the single linear program (6) at each step instead of solving 2n
linear programs as originally proposed [28, 29]. We first give a geometric description of the method
and refer to Figure 12. The method obtains the piecewise-linear separator, depicted by a heavy line
in Figure 12, as follows. First, the pair of parallel planes zw' = 6} and zw' = 6§} are constructed
from the solution of the linear program (6) such that 6} > 6} and the halfspace {a | zw' > 61}
contains points from A only while the halfspace {z | zw' < 63} contains points from B only. The
separated points in these halfspaces are now discarded and the process is repeated for the points
between the planes zw! = 6} and zw! = 63, thus obtaining the parallel planes zw® = 67 and
zw? = 02, which again separate part of A from part B. Discarding these separated points again,
the final remaining points between the planes zw? = 6% and zw? = 02 are separated by the plane
zw? = 6%, The piecewise-linear separation of Figure 12 is depicted as a decision tree in Figure 13.
We now formally describe the MSM algorithm, omitting a rarely needed antidegeneracy procedure
[28, 29] that guards against the cases when some pair of planes does not separate any points, that
is A"t = A and B! = B’ for some ¢ in the terminology of the MSM algorithm below.

Algorithm 2.2 MSM (Multisurface Method) [28, 29] Let A and B be disjoint point sets in
R™, represented by the m X n and k x n matrices A and B respectively. Denote the linear program

14
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zw' < 6} <. + zw! > 6}

zw? < 62 | zw? > 63

zw® < 63 C.T + zwd > 63

Figure 13: Decision tree representation of the MSM piecewise-linear separation of Figure 12.
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y(z)

LTU :

Figure 14: Neural network representation of the MSM piecewise-linear separation of Figure 12.

(6) by LP(A, B) and its solution set by argmin LP(A, B).
(a) Initialization: Set tree level i =0, A°= A, B° =B
(b) At tree level i:

o Stopif Aix ¢ or B ¢

o Solve LP(A, B') & let (w, ¢, 4, 2*) € argminLP(A’, B'). Define 6} := min; Aiw', 6] :=
max; B;w'

e Define the descendents of A* and B*:

o Aitl:={Ai | Aw' <6}, B+ :={Bi| Biw' > 6;}

(c¢) Increment tree level: i +1 — i & go to (b).

We remark that the separation achieved by the MSM algorithm and depicted in Figure 12 and
13 can also be represented as a single-hidden layer neural network [7] that is depicted in Figure
14, which we interpret now. The first pair of hidden LTU’s with their incoming arcs represent the
planes w'z = A and wz! = 6}. Because 01 > 63, only one of them can be activated by a specific ©.
Hence when LTU1 fires, LTU2 does not, and since 4 > 2 -+ 1, it follows that & € A no matter what
the other LT'U’s do. Similarly when LTU? fires it follows that € 5. When neither LTU1 or 2 fire,
the decision is relegated to LTU3 and LTU4 which again determine in a similar manner whether
z € A or z € B. If neither fires, the decision is relegated to LTU5 which fires if z € A and does not

16



if € B. Note that in the more general case, it is possible that 8} = 6; in which case LTU1 and
LTU2 can fire simultaneously and thus canceling each other in which case the decision is relegated
to LTU3 and LTU4. A similar remark applies to §? and 62. See [7] for more explanation of this
neural network representation of MSM.

It should be pointed out here that the MSM Algorithm 2.2 is stated in its simplest form above for
exposition purposes. In order to cover possible degenerate cases that are not usually encountered
in practice, one has to provide for the possibility of both A* = A**! and B = B'*! for some 1
[28, 29]. One such procedure is given below.

2.4 Degeneracy Procedure for MSM Algorithm Insert before step (c) of MSM Algorithm
2.2 the following step:

(b1) If At = A% and B*! = B, find new v, 6}, 6 satisfying
Alw' > e, B'w' < ebi, 6 < 6}

and
Ait? # AP or BT 4 B
and go to (c).

We note that step (b) of the Degeneracy Procedure can be achieved in a number of ways, the
simplest of which is to construct a plane zw’ = 8 that chops off one or more points from A* but
no points from B¢, or to construct a plane zw’ = 6§} that chops off one or more points from B* but
no points from A*.

With the Degeneracy Procedure in place, one can assert, as was done in [28, 29] that MSM can
discriminate between any two disjoint point sets in R", provided that a sufficient number of planes
are used. In terms of neural network terminology this is equivalent to the following.

Theorem 2.2 Neural Network as Universal Separator [2, 29] A neural network with «
single hidden layer and sufficient number of hidden LTU’s can completely separate any two disjoint
points sets in R".

We note that MSM is a greedy algorithm that generates various pieces of a separating surface
between the sets A and B sequentially. Although MSM has produced very effective practical
results [49, 29, 7], optimality of the separating surface, as measured by the number of planes
constituting it, cannot be guaranteed. Unfortunately, the problem of deciding whether two sets are
separable by as few planes as two is NP-complete [31, 10]. Although there are effective bilinear
programming algorithms for solving the bilinear separability problem [5], there are no methods
for directly obtaining piecewise-linear separators other than the proposed greedy MSM algorithms
[28, 29, 8]. We note that in these greedy MSM algorithms, each piece of the separating surface can
be nonlinear as long as it is linear in its parameters such as a quadratic surface for instance. The
separation can still be achieved by solving a linear program [27, 40] for each piece.

We turn now to the case of multicategory discrimination, that is, discriminating between the
elements of k disjoint point sets in R™, and show how it can be set as a single linear program.
Smith [46] proposed solving k linear programs separating each set from the remaining & — 1 sets.
However, in [6] a single linear program is solved to obtain a convex k-piece piecewise-linear sur-
face that exactly separates k disjoint sets under certain conditions, otherwise an error-minimizing
approximate separation is obtained. Separation is achieved by having the ith linear piece of the
surface exceed in value all other linear pieces over the set A’, for i = 1,...,k. We give this linear
programming formulation below.

17
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A4

Figure 15: Separation of the sets A', A%, A® and A* by a piecewise-linear surface.

Theorem 2.3 (Multicategory Separation) The disjoint sets At in R*,i=1,...,k, represented
by the m* x n matrices A*, i = 1,...,k, are piecewise-linear separable if and only if the solvable
linear program

k k I3
. ey® ii ir 4 . . . Iy . L , )
o ZZ%{' | 47 > —Al(w' —wi) +e(v' ~ 1) +e 39 20, i#4,5=1,..,ky (12)
T i=l j=1

J#i
has a zero minimum in which case, any solution (w', ¥/ y¥), i,7 = 1,...,k, i # j, provides a
piecewise-linear separation as follows:

Aw' —ev' > Alw! —eyi +e, t,5=1,..,k i #] (13)

Figure 15 depicts a typical separation of 4 sets A", A?, A® and A? by a piecewise-linear surface
obtained by solving the single linear program (12). For more details see [6].

3 Neural Networks as Unconstrained Minimization Problems

In this section we cast the problem of determining the weights and thresholds of a feedforward
neural network with a single hidden layer as an unconstrained optimization problem, and relate
this problem to the standard backpropagation algorithm [41, 44, 23] for training such a neural
network.

We consider the neural network depicted in Figure 16 with an input vector z in R, h hidden
LTU’ with threshold values # € R, incoming arc weights w* € R", outgoing arc weights v* €

18



y(z)

Figure 16: A typical feedforward neural network with a single layer of A hidden LTU’s, input 2 € R"
and output y(z) € {0, 1}.

R,i=1,...,h, and an output LTU with a threshold 7 € R and output y(z) € {0, 1}. We define
our problem as follows.

Problem 3.1 Neural Network Training Problem Given the disjoint point sets A and B in
R™, determine a positive integer h, w' € R*, ¢ € R,v' € R, i =1,...,h, and 7 € R, such that the
output y(z) of the neural network of Figure 16 satisfies y(z) = 1 for v € A and y(z) = 0 for z € B.

Theorem 2.2 tells us that for sufficiently large &, Problem 3.1 is completely solvable. However, it
is not easy to determine what h should be, nor is it desirable to make h large enough to completely
solve Problem 3.1. This latter point has its analog in approximation theory where one always tries
to approximate a given set of data points by the simplest possible function, typically a lowest order
polynomial. In fact this point touches on a broad topic in the machine learning field that goes
under the name of “generalization”, that is how well a trained neural network does on unseen data.
One approach is to obtain a least value of h for which an approximate solution to Problem 3.1
is satisfactory in the sense that y(z) has a tolerable error in it [26, 23]. Note that both of our
Algorithms MSMT 2.1 and MSM 2.2 essentially take this approach. In the sequel, however, we
shall assume that h is fixed. An interesting empirical study of generalization in machine learning
has been carried out on several real world data sets in [43)].

For the neural network depicted in Figure 16 we can define the mean square error for a given
set of weights and thresholds w’ € R*, v' € R, ## € R, i=1,...,h, T € R as follows:
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f(w,8,v,7):= Z: (s (Z s(ziw! — 677 — ‘r) - ti> (14)

j=1

where
h = fixed integer number of hidden LTU’s
k = fixed integer number of given samples z* in R"
# = 0 or 1 target value for %, i =1,...,k
T = real number threshold of output LTU
v} = real number weights of outgoing arcs from hidden LTU’s, j = 1,...,h
# = real number thresholds of hidden LTU’s, j =1,...,h
w! = n-vector weights of incoming arcs to hidden LTU’s, j = 1,...,h
2* = given n-dimensional vector samples, ¢ = 1,..., k

s(¢)=1if (> 0else 0

for some a > 0

s()=a(() =

1
14 ea¢
The differentiable activation sigmoid function o(¢) is typically used as an approximation of the
discontinuous step function s(¢) in order to render the function f differentiable. We shall assume
from now on that s(¢) = o(¢). Once this is done the problem reduces to that of finding a stationary
point of the nonconvex but differentiable function f. The classical backpropagation (BP) method
[41, 23] for solving this problem is a gradient-type method applied to its k components sequentially
(online BP) or to the whole function f (batch BP). If we define the ith component of f as f;,
that is

2
h
filw,0,v,7):= (s (E s(ziw — 6 — 7') ~ti> =1,k (15)

i=1

and if we let
z=(w,0,v,7) (16)

then a step of the online BP consists of
A = 2t~V Fi(2Y), i =Lfmod k, (=1,2,... (17)
whereas a step of the batch BP consists of
A= - VY, £=1,2,... (18)

The stepsize ¢, referred to as the learning rate, is adjusted heuristically and typically held at
some small value or allowed to approach zero. Since the online BP direction —V fi(z%) may not
even be a descent direction, that is Vf(2)V fi(2%) > 0, there are, to the best knowledge of the
author, no published convergence proofs for the method. This is a curious fact in view of the wide
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acceptability and success of the method. Recently, however, Grippo [21] has proposed a promising
convergence proof under certain assumptions and based on line search techniques similar to those
of [22]. Batch BP on the other hand can be treated as an ordinary unconstrained minimization
gradient method, and all the machinery of search methods [12] can be applied to it. In fact, by
considering the whole objective function f instead of its components f; separately, one can apply a
whole variety of first and second order methods to the problem of minimizing f. First and second
order methods for various BP algorithms are given in [2, 3, 36].

More recently Gaivoronski [16] gave a convergence proof for online BP (17) under minimal
conditions using stochastic gradient ideas [15] in which he established convergence of {|| V f(2*) ||}
to zero as well as the stationarity of each accumulation point Z of {2*}, that is Vf(Z) = 0. The
principal assumption of the stochastic gradient proof is that the learning rate sequence {e'} of (17)
goes to zero at a sufficiently slow rate, that is

eb—0, > =00, {"/e}—1 (19)

This condition appears to be one of the simplest conditions under which a rigorous mathematical
convergence of the online BP has been established. The complete result will appear in [17]. We
note also that, in a little known paper, Kibardin [25] used similar conditions to (19) for establishing
convergence of (17) for convex f;(z), i = 1,...k. Unfortunately the convexity assumption does not
hold here.

We can relate the unconstrained minimization of the error function f of (14) to the linear
programming approach of the previous section by considering the neural network of Figure 9 and
the mapping it represents as generated by the planes of Figures 7 and 8. Here the number of hidden
units h is 3. The three planes in R : w'z = 6, i = 1,2,3 of Figure 7, together with the plane in
R3: v'r; +v2ry+73r3 = T of Figure 8, will generate a global minimum of zero for the error function
f of (14). One can therefore think of f as a measure of the failure of a particular set of weights
and thresholds in achieving complete linear separation between the vertices of a unit cube in R"
into which the two categories have been mapped. We turn our attention now to an application of
neural networks trained via linear programming.

4 Breast Cancer Diagnosis via Linear Programming

Neural networks have been applied to diverse classes of problems such as robot control, character
and speech recognition, finance problems such as bank failure prediction and credit evaluation, oil
drilling as well as medical and prognosis problems. See for example [44, 23], references therein
and [43, 13]. Most of these applications use neural networks trained by backpropagation or vari-
ants thereof. We shall describe here a successful linear programming-based application to breast
cancer diagnosis that is in current operation at University of Wisconsin Hospitals. Its cu mulative
correctness rate has been 98% over the past four years [49, 29, 7.

The diagnosis system consists of an LP-trained neural network made up of seven hidden units
that was originally trained on 369 samples, each consisting of a 9-dimensional vector, and retrained
once. The weights of the incoming arcs to the hidden units and the thresholds of the hidden units
correspond respectively to the normals and distance from the origin of 4 pairs of parallel planes in R®
and their relative distance from the origin [29, 7]. The first pair of planes separates some malignant
points from some benign points but leaving a mixture of benign and malignant points between
the planes. The second pair of planes repeats the process for the points between the first pair of
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planes, and the third pair repeats it for the points between the second pair. The fourth and last
pair of planes which coalesce into a single plane, completely separate the mixture of points between
the third pair of planes [28], thus giving a compete separation of the training set. These planes
which generate a piecewise-linear separator, were obtained by a linear programming approach
[28, 29] slightly different from MSM described in Section 2. The 9-dimensional vector consists
of 9 cellular attributes measured microscopically by a surgical oncologist on a needle aspirate
taken from the patient’s breast. Malignant diagnosis is confirmed by subsequent biopsy of breast
tissue. Benign diagnosis is similarly confirmed if the patient so desires, otherwise it is confirmed by
subsequent examination. Although this system has been quite successful, it requires the services of
an experienced oncologist for making the measurements. An automated system has been developed,
and recently put into use, that completely eliminates the subjective assessment by the oncologist
[48]. Tnstead vision techniques are used to draw boundaries around the nuclei of a few cells from
which 30 numerical features are extracted. Three of these features enable a neural network, as simple
as a single LTU, to diagnose between benign and malignant samples with an average accuracy of
96% both on a training set as well as on a randomly selected testing set not included in the training
set. We are also applying the automated system to the more difficult problem of breast cancer
prognosis and plan further applications to other medical diagnosis and prognosis problems.

5 Conclusion

We have shown how a fundamental tool of machine learning, a neural network, can be trained using
mathematical programming techniques. There are basically two approaches to this problem: one
based on linear programming where a succession of planes is used to divide the input space into
polyhedral regions each of which containing points of mostly one category. The other approach
reduces the problem to an unconstrained minimization problem of a nonconvex but differentiable
error function that can be optimized by gradient-type methods that use either first or second order
information. We also gave a brief description of a real-world application of the linear-programming-
based approach to an important medical diagnosis problem. We conclude that optimization theory
and algorithms play a significant role in the algorithmic and applied development of the burgeoning
neural network field of machine learning [42]. Whether the converse is also true, is an interesting
but not completely settled question [23, pages 76-79], even though there have been a number of
interesting applications of neural networks to optimization problems, for example [37, 1, 14] and
[23, pages 71-87).
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