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The Junta Nacional de Auxilio Escolar y Becas JUNAEB) is an agency of the Chilean government with responsi-
bility for promoting the integration and retention of socially vulnerable children in the country’s school system.
Its services include a school meals program under which private firms bid on supply contracts for territorial
units within Chile. Before 2007, these units were defined manually and their attractiveness to potential sup-
pliers varied. This led to a series of problems for the government, both in the contract tender process and the
service provided. In this paper, we apply operations research methodologies to determine new configurations
of the territorial units to ensure that their attractiveness is similar and that schools in each region of the country
receive meal service of similar, good quality. This homogenization of the units” attractiveness helps reduce the
uncertainty and bankruptcy risk that suppliers face, thus benefitting the entire system. Since 2007, JUNAEB has

used the configurations we proposed.

Key words: combinatorial auctions; operations research; quantitative methods; territorial units.
History: This paper was refereed. Published online in Articles in Advance June 1, 2011.

he Junta Nacional de Auxilio Escolar y Becas

(JUNAEB), an agency of the Chilean government,
is responsible for promoting the integration and reten-
tion of socially vulnerable children in the country’s
school system. The agency runs a series of programs
to ensure equality of opportunity in education. Its
activities reach almost two million children in public
schools throughout the nation.

JUNAEB'’s school meals program currently oper-
ates in approximately 10,000 schools; its yearly cost
to the government is USD 600 million. In an annual
tender organized by the agency, food industry firms
bid on supply contracts to provide the meals. The
supply contracts are auctioned based on a series of
disjoint, compact geographical areas called territorial
units (TUs), which cover the country. A company
that is awarded the contract for a TU must provide
meal services to all schools in that TU. This tender is
the largest competitive procurement process in Chile
in either the public or private sector.

Each agency-defined TU consists of groups of
“comunas” or districts, the smallest administrative
division constituting Chile’s 13 official regions, which
extend from the 1st region (Region I) in the north to
the 12th region (Region XII) in the south, plus the
Metropolitan (Santiago) region. Of Chile’s 346 dis-
tricts, 104 (30 percent) have fewer than 10,000 inhab-
itants (44 have under 5,000), 195 (57 percent) are
populated by 10,000 to 100,000 inhabitants, and 46
(13 percent) are home to more than 100,000.

JUNAEB grouped these districts into 136 TUs
delimited based on geographical criteria plus an
attempted equalization of the number of meals to be
served in each TU within a given region (see Fig-
ure 1). This simplistic procedure led to major prob-
lems in the tender process for both JUNAEB and the
meal suppliers because of significant disparities in the
attractiveness of the TUs. Districts in regions requir-
ing large numbers of meals were assigned to a single
TU, whereas the remaining districts were combined
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4 (3%)

O Less than 15 K

75 (55%)

@ 15K to40 K
B More than 40 K

Figure 1: The pie chart shows the distribution of TUs by number of meals
before 2007.

into TUs requiring a similar quantity independent of
the total area they covered or the number of schools
they contained.

In our study, a TU’s attractiveness is derived in
terms of a score based on four characteristics (i.e.,
criteria) of its constituent districts—number of meals,
number of schools, area, and accessibility. The num-
ber of meals to be served gives a precise measure of
the magnitude of the contract; the number of schools
determines the fixed cost of supplying each establish-
ment; the area covered (in km?) indicates transport
costs; and relatively inaccessible schools (because of
geography or climate) increase supplier costs.

The objective of this paper is to describe how we
applied a series of operations research (OR) method-
ologies to determine new configurations of TUs in
each region and ensure that each unit’s attractiveness
level is similar.

For strategic purposes, JUNAEB established that
the minimum and maximum numbers of meals for
each TU in the new configuration are 15,000 and
40,000, respectively. The lower bound considers cer-
tain agency operating considerations and the mini-
mum quantity required to exploit scale economies; the
upper bound tends to ensure that most regions will
have multiple suppliers.

We use April 2007 data to quantify each of the four
criteria. Although these data may fluctuate monthly,
the results they generate should not differ signifi-
cantly; in the short term, the relative magnitudes for
the districts in a given region vary only slightly, if at
all. For example, if the number of meals increases by
5 percent at the national level, the rise for each district
will also be close to 5 percent.

A region in which more meals per day are served
tends to have more TUs (see Table 1).

Region No. of TUs Total meals/day
I 2 50,350
Il 2 39,844
1 2 35,114
I\ 5 87,777
v 10 186,941
VI 9 104,187
VI 10 157,525
vill 17 286,860
IX 9 158,915
X 11 197,087
Xl 1 10,541
Xl 1 12,177
MR 57 655,429
Total 136 1,982,747

Table 1: The table shows the number of meals and TUs per region before
2007.

For each district, a series of data describes the char-
acteristics of its schools, the number of meals served,
the type of meals, the TU to which it belongs, etc.
Generally speaking, the district will be the basic unit
in homogenizing the TUs, given that this information
completely describes it. If, however, the number of
daily meals served in a district is greater than 10,000,
we divide the district into two or more subdistricts;
the precise number is the lowest that ensures each
serves an equal quantity of meals, but not more than
10,000. We refer to the basic unit in the formulation
of our problem as a cell.

Because we defined the problem in terms of four
criteria that may conflict, we require a multiple-
objective decision technique. We chose a variation on
the analytic hierarchy process (AHP) (Saaty 1980) to
determine the weight to be given to each criterion (see
the Relative Importance of a TU section).

To solve our problem, we began by developing
a local search heuristic that starts with an initial
TU configuration and proceeds to exchange districts
between TUs, trying to minimize the standard devi-
ation of the TU scores. To validate these outcomes a
posteriori, we developed two additional methodolo-
gies: one was based on an integer linear programming
(ILP) model; the second combined this model with
the heuristic.

The ILP approach uses an algorithm that constructs
clusters of districts to configure each TU (Goycoolea
et al. 2009) subject to constraints. For each cluster,
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we calculate a score and enter it into an ILP model
that attempts to minimize the difference between the
highest and lowest scores within each region. In most
cases, this objective yields results concordant with
those generated by the heuristic’s objective of mini-
mizing standard deviation. The combined methodol-
ogy also minimizes the standard deviation using the
heuristic but takes the final result generated by the
ILP model as its initial solution.

Other applications also use the generation of units
or blocks to resolve problems; these include forest
harvest scheduling, in which a maximum contiguous
harvest area must be observed (Goycoolea et al. 2005,
2009; Murray and Weintraub 2002), and assigning stu-
dents to schools based on residence district within a
city (Caro et al. 2004, Taylor et al. 1999).

The final solutions delivered by these three method-
ologies for the 10 (of 13) Chilean regions covered
by our study differ little from each other and sub-
stantially improve the pre-2007 situation. In 2007,
JUNAEB adopted the configuration generated by the
local search heuristic, which was the first part of this
research completed, with slight modifications sug-
gested by the agency for its three-year tender process
(one-third of the country each year). The subsequent
development of the two other methodologies con-
firmed that the solution JUNAEB used provides sub-
stantial benefits.

We did not include Chile’s 11th and 12th regions,
each of which is covered by a single TU, in this study.
The number of daily meals served in each suggests
that neither should be partitioned into more than
a single entity. We also excluded the Metropolitan
(Santiago) region, where the meals program is han-
dled mainly by small and medium-sized businesses.
JUNAEB was satisfied with this region’s existing par-
tition and opted to leave its TUs unchanged. These
three regions cover 59 of the 136 original country-
wide TUs.

The Need for More Equally

Attractive Territorial Units

In 1997, JUNAEB officials and researchers at the Uni-
versity of Chile designed and implemented a com-
binatorial auction that allowed companies to bid on
any set of TUs. The aim was to benefit from potential

scale or density economies or other efficiencies, which
would be reflected in the bidders’ competitive prices
for different TU combinations. Auction participants
could submit thousands of bids, each representing a
different combination of units.

To identify the best solution for the tender, the
academics at the University of Chile developed a
mathematical programming model that delivers the
combination of bids to optimize the objective func-
tion. It incorporates the government’s criteria regard-
ing costs and quality (Epstein et al. 2002), subject
to various economic, technical, and operational con-
straints. Each year, a third of the TUs are contracted
for a three-year period, ensuring that suppliers can
recoup their investments in a reasonable period.

The strategy behind the tender design is based on
three pillars. First, a process of the scope of this meals
program must guarantee potential bidders that it will
be fair and transparent. Therefore, the optimization
model was included in the tender specifications and
was known to all participating suppliers. Further-
more, the bids were made public as soon as bidding
was closed, permitting any company to replicate the
award process to ensure complete transparency. This
practice increased the competitiveness of the tender;
the number of suppliers now participating is 60 per-
cent higher than in 1997.

The second pillar promotes greater supplier opera-
tions efficiency. This was achieved by devising a com-
binatorial mechanism that groups TUs to incorporate
scale economies and other advantages a particular
firm may have for a given TU combination.

The third pillar reduces or eliminates risks that sup-
pliers cannot control or mitigate. For example, bids
must state a price per serving, which is calculated
based on average student attendance. If the effective
average attendance is less than that number, the sup-
plier will incur losses because of the fixed operating
costs. To mitigate this risk, firms must bid different
prices for different levels of average attendance, rec-
ognizing that as this factor falls, the price per serv-
ing rises. This is significant because classes in Chilean
schools are sometimes suspended because of adverse
weather conditions, political demonstrations, or natu-
ral disasters (e.g., the February 2010 earthquake). The
cost of assuming these risks would be higher for sup-
pliers than for JUNAEB, thereby increasing the bid
prices.
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Original annual cost Replacement annual cost

Year TUs affected by bankruptcies (millions of dollars) (millions of dollars) Difference (%)

2004 101,102,1,004, 1,007, 1,005, 1,010 10.56 11.40 8

2004 301, 302 2.58 2.92 13

2005 606, 607, 609, 803, 805, 1,101, 1,321, 605 9.86 10.82 10

Table 2: The data shows the increased costs associated with the replacement contracts.

Another risk-minimization strategy links the bid
price to general price and food price indexes, thus sta-
bilizing supplier operations during the contract period
and mitigating large cost increases (e.g., in 2007 and
2008, world food prices jumped significantly).

Before 1997, the tender process was highly subjec-
tive and open to various pressures because of the
large amounts of money involved. The discontent
of the government and the participating companies
eventually led to a crisis of confidence that seriously
damaged the agency. The method we present was
developed and adopted in response to this situation.

The system based on this method (Epstein et al.
2002) generated cost-reduction and quality-improve-
ment benefits of 22 percent of the tender’s total value.
In 2002, it was awarded the IFORS Prize for OR in
Development as the best application in a developing
country in terms of its social impact (Epstein et al.
2004). To date, it has been used in the tendering of
more than USD 3 billion of services, and is one of the
most successful real-world applications of a combi-
natorial auction (Cramton et al. 2006, Milgrom 2007).
IBM-Cplex has also used it in a case study (IBM 2009,
Catalan et al. 2009).

Beginning in 2004, the Chilean food industry began
to exhibit disturbing bankruptcy levels, eventually
causing serious losses and other problems for the gov-
ernment. First, restoring meal service in TUs in which
suppliers had gone bankrupt was much costlier than
the original contracts, because auctioning a reduced
number of units is a less competitive process; the bid-
ders tended to be the suppliers operating in neigh-
boring areas (Olivares et al. 2010). Moreover, the
contracts are for shorter terms; therefore, the prices
increase because the suppliers have less opportunity
to recoup their investments. Second, any interruptions
in meal service negatively affect students. Many are
from low-income families, and the JUNAEB meals are
a significant part of their diet.

As a result of these bankruptcies, the entire school
meal policy was called into question. Table 2 shows
data on three cases in which services were interrupted
in 2004 and 2005.

In addition, each bankruptcy eliminates a supplier
from the industry, significantly reducing competitive-
ness and increasing costs over the medium term
(Olivares et al. 2010). Five firms declared bankruptcy
between 2004 and 2007.

An investigation into the reasons behind the
bankruptcies found two central causes. First, a “price
war” between the companies was driven by a tender
system that strongly promoted competition. Because
few suppliers survived these wars, the medium-term
result was less competition and higher prices. To
eliminate this predatory practice, a procedure was
adopted to discard tender offers that are well below
the average bid. Decarolis (2009) discusses the the-
oretical basis of this concept. However, because of
their combinatorial nature, the bids generally differed,
thus complicating the task of comparing and identi-
fying inordinately low bids. Second, some suppliers
did not know that operating conditions in some TUs
were significantly worse than the national average.
This phenomenon is the primary motivation for our
study, which attempts to demonstrate the importance
of homogenizing the characteristics of the different
TUs to minimize the bankruptcy risk.

The central problem is that some firms did not
accurately evaluate these “bad” TUs; they submit-
ted unrealistically low bids, leaving them unable to
fulfill their contracts. Suppliers who were successful
in a given sector of the country often made offers
on TUs in regions they knew little about; some TUs
turned out to be “bad” because of unforeseen factors
(e.g., local labor costs, obtaining fresh produce, school
densities, school size, and school accessibility). This
asymmetry is known in the literature as the “win-
ner’s curse” (Thaler 1988). In addition, school meal
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Category TUs

Below average
Average
Above average

101, 1,004, 1,007, 1,005, 1,010, 302, 609, 803, 805, 1,101
102, 301, 605
606, 607, 1,321

Table 3: The attractiveness of TUs in bids leading to bankruptcy is based
on definitions given ahove.

contracts involve high volumes and low margins (2 to
3 percent of sales); thus, relatively minor problems
can trigger bankruptcy.

Yet another aspect is the “limited liability” effect.
This phenomenon has received much attention in risk
theory, especially since the start of the financial crisis
in late 2008. Applied to this case, this analysis sug-
gests that even when suppliers are fully conscious of
the high risks involved, they may submit aggressive
bids to win a contract. Such firms assign one probabil-
ity to a healthy and profitable operation and another
to an unsustainable situation that could end up in
bankruptcy. In the second scenario, an entrepreneur
assumes only the costs stipulated in the contract, leav-
ing all other costs to be borne by the system—thus,
the notion of “limited liability” (Parlane 2003). The
supplier calculates the expected value of the contract
and, in a situation of uncertainty, takes on risks that
are greater than are desirable for JUNAEB. Clearly,
this market imperfection imposes significant costs on
the entire school meal program, driving fundamen-
tally viable companies into bankruptcy.

Two appendices (Appendix A: TU Criterion Weights
in Local Search Heuristic and Appendix B: Cluster
Weights on Each Criterion in the ILP Model) are
included in an electronic companion to this paper,
which is available as part of the online version at
http://interfaces.pubs.informs.org/ecompanion.html.

Table 3 categorizes the attractiveness levels of the
TUs involved in the bankruptcies described in Table 2.
The “average” category groups units whose attrac-
tiveness index deviates no more than 3 percent from
the mean. The bids that led to bankruptcy evidence a
strong tendency to include relatively bad TUs.

Auction theory stresses the possibility of the win-
ning bidder’s bankruptcy or nonperformance, espe-
cially when the object of the tender is a service.
Milgrom (2007) analyzes a well-known case involving
a radio spectrum auction in the United States.

The effects we describe above underscore the apt-
ness of JUNAEB'’s strategy to reduce the risk and
uncertainty levels that potential bidders face. This
shows the desirability of a method for homogeniz-
ing the operational characteristics of TUs as a way of
lowering the risks and uncertainties that result in high
costs for the entire system.

A configuration that generates similar TUs would
also avoid distortions in the values of proposals sub-
mitted by firms bidding on combinations of attractive
and unattractive units. In the past, bidders sometimes
won the contract for a very attractive TU with a poor
offer merely because that TU was combined with an
unattractive unit that received few bids (as we noted
above, the tender process awards TUs in complete sets
or not at all). Because this process is a combinato-
rial auction, an appropriate definition of these units
is essential. Olivares et al. (2010) provide an in-depth
treatment of strategies for drawing up bids that bun-
dle attractive and unattractive TUs.

Relative Importance of a TU

In this section, we describe the procedure for finding
an indicator that quantifies the attractiveness to bid-
ding meal suppliers of all possible TUs constructed by
the algorithm for a given region. The degree of attrac-
tiveness of any TU is given by the following formula:

uj, r= aRachac,j, r + bCoGCol, j.r + CSupxSup,j, r + dAcchcc, jore
In this formula,

U; , = total score for TU j in region r;
g, = importance of number of meals within the
set of criteria;
Xpee, j,» = Weight of TU j in region r on number-of-
meals criterion;
bc,; = importance of number of schools within the
set of criteria;
weight of TU j in region r on number-of-
schools criterion;
Csup = importance of size of TU area within the set
of criteria;
Xsyp, j,» = weight of TU j in region r on area criterion;
d .. = importance of type of access to school within
the set of criteria;

xCol,j, r=
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Level of preference Value

Equally preferred

Equally to moderately preferred
Moderately preferred

Moderately to strongly preferred
Strongly preferred

Strongly to very strongly preferred
Very strongly preferred

Very strongly to extremely preferred
Extremely preferred

O oo ~NO O whN =

Table 4: The data show the scale of preference for pairwise compar-
isons, which Saaty (1980) proposed.

Xpc,j,» = weight of TU j in region r on accessibility
criterion.

As we explained in general terms above, we ob-
tained the values for ag,, b, Cs,, and d . used with
all of the methodologies by applying a variation on the
AHP (Saaty 1980). The steps in the process are given
below:

1. Develop pairwise comparisons of the decision
criteria (see Table 4).

2. Create a pairwise criteria comparison matrix
using the following procedure:

a. Sum the values in each matrix column.

b. Normalize the matrix by dividing each ele-
ment by the sum of the numbers in its column.

c. Calculate the average of the values in each row
of the normalized matrix. The result is the criteria pref-
erence vector.

Once the scores on each criterion for each TU in each
region (Xgac, j, 1 Xcol, j, rr Xsup,j,r» ANd Xae ; ) have been
obtained, the total score for each TU can then be cal-
culated (see Appendices A and B).

Pairwise criteria comparisons (see Table 5) were
established in consultation with JUNAEB personnel
and supplier officials. As an example, the value of 3
in the element (1, 3) of the matrix (row 1, column 3)
indicates that the number-of-meals criterion is “mod-
erately preferred” to the area criterion (see Table 4).
When the comparisons have been made, the values for
each criterion are summed (row Sum). To obtain the
final percentage weight factor by criterion, we average
the relative importance of the various comparisons, as

Criterion Meals Schools Area Access Weight (%)
Meals 1.00 1.00 3.00 3.00 38.07
Schools 1.00 1.00 2.00 3.00 34.22
Area 0.33 0.50 1.00 2.00 16.94
Access 0.33 0.33 0.50 1.00 10.77
Sum 2.67 2.83 6.50 9.00 100.00

Table 5: The data show comparisons of criteria and their final weight
factors.

the following example shows, for the calculation of the
number-of-meals criterion weight (see Table 5):

38.07
. (1.00/2.67+1.00/2.83+3.00/6.50+3.00/9.00> «100
= 1 .

In Table 5, the Weight column shows the final val-
ues for each criterion. The weighted importance of the
number of meals is 38.07 percent, higher than for any
other criterion; thus, it is the most important criterion,
because it already was in the view of JUNAEB and
the suppliers. These weights were validated by con-
trasting the attractiveness values of the TUs derived
on these criteria for the years prior to 2007 with the
agency’s analysis of TU preference levels. That is, the
values for these criteria based on the pre-2007 scenario
are consistent with the assumptions of JUNAEB and
the suppliers regarding TU attractiveness.

A criterion is said to be directly proportional if the
greater its proportion, the more attractive the TU is.
By contrast, with an inversely proportional criterion,
the greater the proportion, the less attractive the TU is.
The number of meals and the school accessibility (i.e.,
an index obtained by dividing the number of easy-
access schools by the number of difficult-to-access
schools) are directly proportional criteria; the area and
the number of schools are inversely proportional.

The criteria weights, Xg. j v Xcol,j, 1 Xsup,j,»» and
Xac, j,» for each TU in each region, analyzed in detail
in the appendices, are calculated in different ways
depending on which methodology (heuristic or ILP)
is used; however, they maintain similar proportions
under the two approaches. To obtain the weights for
the criteria, data (e.g., number of schools, school char-
acteristics, number of meals, and area) are needed for
each district.
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Methodology 1: Local Search Heuristic

The objective of the local search heuristic is to find a set
of homogeneously attractive TUs within each region.
A TU'’s attractiveness is calculated using the weights
defined in Appendix A and the final values shown in
Table 5. The degree of homogeneity is the standard
deviation, which measures the dispersion of TU attrac-
tiveness levels by quantifying the divergence of each
TU in a region from the regional average. The heuristic
attempts to minimize this measure.

The heuristic starts with different initial solutions;
in each case, it seeks a local minimum by exchanging
districts between TUs within a given region. For this
procedure, we define a concept of neighboring solu-
tions and select the best local optimum as the final
solution of each region.

Districts that serve more than 10,000 meals in any
region are partitioned (the heuristic then works with
these subdistricts as if they are complete districts) to
achieve a more even distribution of meals and a set
of TUs with more homogeneous attractiveness lev-
els. In such cases, the district is partitioned into the
smallest number of equal subdistricts, such that each
serves an equal quantity of meals totaling no more
than 10,000. A 24,000-meal district, for example, would
be partitioned into three subdistricts of 8,000 meals
each. Area and number of schools must also be dis-
tributed equally among these subdistricts.

For each region, the first factors to be identified are
the minimum and maximum number of TUs it can
contain. The calculation is made as a function of the
total number of meals and must satisfy the upper and
lower bounds for meals per TU, which were prede-
termined as 15,000 and 40,000, respectively. Thus, if a
region serves 100,000 meals, it will have at least three,
and not more than six, TUs.

Once this range has been established, an initial fea-
sible (in terms of contiguity and number of meals)
solution is constructed for each possible value of the
number of TUs in the region. The local search heuristic
is then launched with each initial solution. The con-
struction of the initial solutions is performed indepen-
dently of the heuristic using the programmer’s expert
knowledge and in consultation with JUNAEB officials.
In cases in which the value for the number of TUs
equals the number before 2007, the configuration used

as the initial solution will be that of the former config-
uration to the extent it is feasible relative to contiguity
and number of meals. For values that differ from the
one under the pre-2007 configuration, or values that
are the same but where the configuration is not feasi-
ble, an initial solution must be constructed.

As the heuristic proceeds from each initial solu-
tion, it searches for local minima, advancing toward
the “best” (in terms of standard deviation) neighbor-
ing solution. A solution is said to neighbor another
solution if the latter is obtained from the former by
transferring a district from one TU to another, while
preserving both units’ contiguity and maintaining the
number of meals in each between 15,000 and 40,000.
A local mimimum is reached when no neighboring
solution will lower the current standard deviation; the
definitive solution is the one with the lowest standard
deviation of all the local minima.

Figures 3 and 4 illustrate the heuristic’s operation
for Chile’s 1st region, showing the standard deviation
and attractiveness of the TUs for each iteration. The
final solution maintains the number of TUs in the pre-
2007 configuration. Because the region serves some-
what more than 50,000 meals, the solution must have
at least two and no more than three TUs (see Table 6).

For the two-TU configuration, the initial solution
used is the one JUNAEB used before its adoption of
this heuristic in 2007, given that it satisfies the con-
tiguity and number-of-meals conditions. Its standard
deviation is 5.93. As Figure 2 shows, TU 1 covers the
districts of Arica (which must be partitioned into three
subdistricts), Camarones, Putre, and General Lagos;
TU 2 contains the rest of the 1st region districts.

In the first iteration, the Huara district is trans-
ferred from TU 2 to TU 1 and the standard deviation
drops 77 percent to 1.37. The second iteration switches
the Camifa district from TU 2 to TU 1 and finds a
local minimum for the resulting configuration with a
standard deviation of 0.33, or 94 percent below that
calculated for the initial solution. At this point, the
heuristic stops because no additional district transfers
will lower the value.

For the three-TU configuration, a new feasible initial
solution with a standard deviation of 3.37 is created
(see Figure 3). The first iteration reduces this figure by
50 percent by transferring the Colchane district from
TU 2 to TU 1. In the second (and last) iteration, the Pica
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Region District Meals Schools Area (km?) Easy access Difficult access
1st Region Arica 25,726 62 4,799 62 0
Camarones 54 8 3,927 7 1
Putre 248 6 5,903 6 0
General Lagos 180 9 2,244 9 0
Iquique 9,155 38 2,262 38 0
Alto Hospicio 11,387 25 573 25 0
Huara 460 12 10,475 12 0
Camifia 404 9 2,200 9 0
Colchane 252 5 4,016 5 0
Pica 799 5 8,934 5 0
Pozo Almonte 1,685 10 13,766 10 0
Total 50,350 189 59,099 188 1

Table 6: The table summarizes the district-level data used to calculate the TU scores for the 1st region.

district moves from TU 3 to TU 1, and the heuristic
finds a local minimum with a standard deviation of
0.88, a 74 percent reduction from the initial situation.

Finally, the standard deviations of the two local
minima are compared; the lowest value indicates the
definitive TU configuration for the region. In this
example, the final solution is the two-TU configuration.

We programmed the heuristic in Java and compiled
the source code using the Java Standard Edition Devel-
opment Kit (Java SE JDK) 1.5.0.06. We ran it on an Intel
Pentium dual core 1.8 gigahertz processor with four
gigabytes of RAM.

Methodologies 2 and 3: Using an
Integer Programming Model

The ILP model lies at the heart of the second solu-
tion methodology, which is aimed at finding a set

of homogeneously attractive TUs within each region.
The methodology begins with the generation by an
algorithm of all possible TUs (i.e., clusters) formed
by contiguous districts or subdistricts and subject to
the condition discussed earlier—that each cluster must
serve at least 15,000 and not more than 40,000 meals.
An attractiveness score is then defined for each clus-
ter (see Appendix B) using concepts similar to those
developed in Appendix A. Finally, the ILP model is
used to select, for each region, a set of clusters consti-
tuting a partition of the region that minimizes the dif-
ference between the most and least attractive clusters.
This set is the final solution for this methodology’s TU
partition.

The third methodology applies the heuristic (i.e., the
first methodology) using the final solution generated
by the ILP model as its starting point.
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Initial situation Iteration 1 Iteration 2
TU 1: 55.9% TU 2: 441% TU 1: 51.4% TU 2: 48.6% TU 1: 49.7% TU 2: 50.3%
Arica A lquique Arica A lquique Arica A lquique
Arica B Pozo Almonte Arica B Pozo Almonte Arica B Pozo Almonte
Arica C Huara :> Arica C Pica :> Arica C Pica
General Lagos Pica General Lagos Alto Hospicio A General Lagos Alto Hospicio A

Putre
Camarones

Std. deviation

Alto Hospicio A
Alto Hospicio B
Camifia
Colchane

5.9261

Putre
Camarones
Huara

Std. deviation

Alto Hospicio B
Camifia
Colchane

1.3646

Putre
Camarones
Huara
Camifia

Std. deviation

Figure 2: The tables illustrate the heuristic operation in the 1st region using a two-TU configuration.

Alto Hospicio B
Colchane

0.3324
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Initial situation Iteration 1 Iteration 2

TU 1: 38.05% TU 2: 30.37%  TU 3: 31.58% TU 1: 35.69% TU 2: 32.35%  TU 3: 31.96% TU 1: 33.05% TU 2: 32.43%  TU 3: 34.52%

Arica A Arica C Alto Hospicio B Arica A Arica C Alto Hospicio B Arica A Arica C Alto Hospicio B
Arica B Camarones lquique Arica B Camarones lquique Arica B Camarones lquique
General Lagos Huara Pozo Almonte General Lagos Huara Pozo Almonte General Lagos Huara Pozo Almonte
Putre Camifia Pica Putre Camifia Pica Putre Camifia

Colchane Colchane Alto Hospicio A Colchane Alto Hospicio A

Alto Hospicio A Pica
Std. deviation 3.3722 Std. deviation 1.6709 Std. deviation 0.8785
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Figure 3: The tables illustrate the heuristic operation in the 1st region using a three-TU configuration.

Cluster Enumeration Algorithm

The generation of the clusters is performed by a cluster
enumeration algorithm that incorporates ideas used in
solving forest harvest planning problems (Goycoolea
et al. 2005, Murray and Weintraub 2002). The design of
these problems involves a region that is divided into
blocks, the equivalent of our clusters, that are subdi-
vided into cells, equivalent to our districts or subdis-
tricts. The algorithm proceeds by enumerating a priori
all clusters that are feasible as regards district conti-
guity and number of meals. It is based particularly
on the algorithm that Goycoolea et al. (2009) present,
which constructs blocks of contiguous stands or zones
of forested land subject to a maximum area restriction.
Our approach is partially analogous to this procedure
in that it uses a contiguity constraint, but replaces the
area restriction with the permitted range for the num-
ber of meals.

Thus, the basic unit in our problem, a cell, is either a
district or a subdistrict. As with the heuristic method-
ology, subdistricts are created from districts serving
more than 10,000 meals by partitioning them into the
smallest number of divisions, such that each serves
an equal quantity no more than the mentioned fig-
ure. Also, because clusters are subject to a 15,000-meal
lower bound, each will contain at least two cells. Each
cell must be assigned in its entirety to a single cluster,
which may include only contiguous cells. This ensures
that each cluster will be connected in the graph-theory
sense of connectivity—a path can always be found
from one cell to any other in the same cluster without
going outside the cluster.

The algorithm begins by defining all possible one-
cell clusters, placing them in set S(1). When the algo-
rithm starts the (k 4+ 1)th iteration, the set S(k) will

contain all feasible clusters (satisfying the upper and
lower meal-number bounds) of k contiguous cells. The
set S(k + 1) is constructed by adding every possible
cell that is contiguous to any cluster in S(k).

The recursion ends when no feasible clusters are
left or the preset maximum number of iterations has
been reached. This preset figure thus determines the
maximum number of cells a cluster can contain. We
found it by adding a “comfort margin” of approxi-
mately 25 percent (based on computations) to the final
result generated by the heuristic method. For example,
for the 1st region, because the largest TU contained
eight cells, the maximum number of iterations was
fixed at 10.

The data inputs to the algorithm for each region are:
the cells making up the region; the maximum number
of cells that a single cluster can contain (equal to the
maximum number of possible algorithm iterations);
a spatial contiguity matrix (a binary matrix indicating,
for any pair of cells, whether or not they are contigu-
ous); and a meals vector for each cell that gives the
number of meals for each a priori cluster.

Table 7 brings together various data relating to
the algorithm. The cells and clusters formed and the
scores for each cluster will be entered into the ILP
model (see Appendix B).

Like the local search heuristic, we programmed the
cluster enumeration algorithm in Java and compiled
its source code using Java SE JDK 1.5.0.06. We ran it an
Intel Pentium Dual Core 1.8 gigahertz processor with
four gigabytes of RAM.

Formulation of an Integer Programming Model

We formulated an ILP model in which the clusters
formed a priori by the algorithm are used as deci-
sion variables. Each cluster also has a calculated score
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Clusters formed

Region Cells Iterations (algorithm)
| 14 10 3,143
Il 11 9 347
1l 11 9 701
I\ 19 10 17,875
v 34 9 68,894
Vi 31 9 607,495
VI 32 8 142,002
Vil 45 8 366,866
IX 35 8 185,706
X 34 8 62,028

Table 7: The table shows cluster enumeration algorithm data for 10
regions.

(see Appendix B). The objective function of the model
attempts to minimize the difference between the low-
est and highest scores for the TUs in any given region.
This objective is a linear approximation to the non-
linearity of the standard deviation formula. The opti-
mization model functions as a tool for comparing the
goodness of the results generated by the local search
heuristic, given that their respective objective func-
tions (for minimizing the gap between best and worst
TUs and for minimizing standard deviation) have sim-
ilar characteristics. We also use the model in our third
methodology to generate good initial solutions for the
heuristic (see the Integer Programming Model + Heuristic
section). We describe the model formulation below.

e Variables

a = minimum score of a TU in a given region.
b = maximum score of a TU in a given region.

1 if cluster j is selected to be a TU,
Y=

0 otherwise.

¢ Parameters

v; = score of cluster j, derived from the four criteria.

Q; = set of clusters containing cell i.
P = average score of selected TUs in a given region.

* Objective function

min(b — a). 1)

¢ Constraints

Yy=1 Vi @)

jeq;
a<vixy;+(1—y)*xP<b Vj (3)
y;€{0,1} Vj (4)
a,b>0. (5)

The aim of the objective function (1) is to obtain rel-
atively homogeneous TUs within each region by min-
imizing the gap between their highest (b) and lowest
(a) scores.

As for the constraints, Equations (2) state that of all
the clusters containing a given cell, exactly one must
be chosen as a TU. Inequalities (3) set the permitted
range of the TU scores. The parameter P is the aver-
age score of the selected TUs; we include it here to
maintain the logical validity of Equation (3) in the
case in which cluster j is not selected. Because nei-
ther this average nor the number of TUs in a region is
known a priori, different values of P are initially used
for each region and the final value eventually chosen
will be the optimal one giving the best objective func-
tion. Note also that the value of P can be estimated if
the number of TUs is known, given that the TU val-
ues in any partition add up to a figure close to 100
(see Appendix B). For example, if we estimate that a
region will have between two and five TUs, the P val-
ues used will be 20 (100/5), 25 (100/4), 33 (100/3), and
50 (100/2).

Finally, Constraint (4) ensures that y; is a binary
variable, whereas Constraint (5) requires that 4 and b
are positive real numbers.

We programmed the ILP model in GAMS 22.1 and
solved it to optimality by CPLEX 10.0. We used the
same hardware setup that we used for running the
heuristic and the cluster enumeration algorithm.

Integer Programming Model + Heuristic
In our third methodology, the solution generated by
the ILP model, which minimizes the gap between best
and worst TUs, is used as the initial solution for the
local search heuristic, which minimizes their standard
deviation. The TU scores are calculated using the pro-
cedure described in Appendix A.

The reasoning behind this approach is that the ILP
model and the heuristic complement each other well
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Standard deviation Percentage improvement (%)
Region Original Heuristic Model M+H Ov/sH Ov/isM 0v/s M+H
I 5.93 0.33 0.29 0.29 94.40 95.11 95.11
Il 0.18 0.18 0.18 0.18 0.00 0.00 0.00
1l 0.74 0.19 0.19 0.19 74.57 74.57 74.57
% 5.94 1.81 0.88 0.88 69.49 85.26 85.26
\ 1.47 0.68 0.99 0.93 53.45 32.79 36.85
Vi 3.27 0.47 0.16 0.16 85.75 95.19 95.19
Vil 4.05 0.41 0.53 0.27 89.88 86.81 93.33
Vi 2.44 0.60 0.87 0.53 75.48 64.24 78.31
IX 3.90 0.40 0.03 0.03 89.85 99.14 99.14
X 1.04 0.84 0.88 0.88 19.21 15.28 15.28

Table 8: The table shows a comparison of standard deviations for TUs generated by the three methodologies
and the pre-2007 configuration. It also shows the percentage improvement over the original configuration,
obtained by dividing the modulus of the difference between the two standard deviations being compared
by the highest standard deviation. In each case, the TU attractiveness levels were calculated for each final

solution using Methodology 1 (see Appendix A).

when the objectives to be satisfied by the solution
are similar. Because the initial solution provided by
the model is optimal for minimizing the difference
between the best and worst TU scores, the heuristic
should not significantly change it for regions in which
we can improve the standard deviation of the TUs.

Results

In this section, we present the results obtained from
applying the three methodologies described above.
For some regions, the distribution of districts gener-
ated by any of the three diverges greatly from the pre-
2007 distribution because of the highly heterogeneous
nature of their TUs, whereas for other regions the dif-
ference is very small because the TUs were already
relatively homogeneous.

Table 8 analyzes the standard deviations and uses
the following headings:

¢ Original (O): the standard deviation of the pre-
2007 TU configuration.

¢ Heuristic (H): the standard deviation of the con-
figuration generated by the heuristic, whose objective
is to minimize the standard deviation between the TUs
within a single region.

* Model (M): the standard deviation of the config-
uration generated by the ILP model, whose objective
is to minimize the difference between the highest and
lowest TU scores within a single region.

e M+H (model + heuristic): the standard deviation
of the configuration generated by using the ILP model
result as the initial solution of the heuristic, whose
objective is to minimize the standard deviation.

In all regions except the second (whose original con-
figuration was already homogeneous), our proposed
methodologies generate better solutions, satisfying the
main objective of the study, which was to identify a
homogeneously attractive set of TUs in each region.
Table 9 compares the differences between best and
worst TU scores and uses the following headings:

* Original (O): differences between best and worst
TU scores of the .pre-2007 TU configuration.

e Heuristic (H): differences between best and worst
TU scores of the configuration generated by the
heuristic, whose objective is to minimize the standard
deviation between the TUs within a single region.

* Model (M): differences between best and worst
TU scores of the configuration generated by the ILP
model, whose objective is to minimize the difference
between the highest and lowest TU scores within a
single region.

e M + H (model + heuristic): differences between
best and worst TU scores of the configuration gener-
ated by using the ILP model result as the initial solu-
tion of the heuristic, whose objective is to minimize
the standard deviation.

Recall that we could not use the Appendix A me-
thodology to calculate the attractiveness of an isolated
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Differences (max-min) Percentage improvement (%)
Region Original Heuristic M-+H Model Ov/sH 0v/s M+H Ov/isM
I 12.70 0.55 0.04 0.04 95.67 99.69 99.69
Il 0.20 0.20 0.20 0.20 0.00 0.00 0.00
I 2.55 1.02 1.02 1.02 60.14 60.14 60.14
\Y 46.49 3.36 1.58 1.58 92.77 96.60 96.60
\ 12.62 4.82 1.47 1.26 61.83 88.39 89.99
Vi 40.84 2.58 0.37 0.37 93.68 99.10 99.10
VI 63.48 1.14 1.53 017 98.20 97.59 99.73
VI 72.86 2.87 2.49 2.49 96.06 96.59 96.59
IX 47.09 1.37 0.13 0.13 97.10 99.72 99.72
X 3.81 2.51 2.25 2.25 34.04 40.89 40.89

Table 9: The table shows a comparison of the differences between best and worst TU scores for results
generated by the three methodologies and the pre-2007 configuration. The percentage improvement is derived
by dividing the modulus of the difference between the two gaps being compared by the highest gap. We
calculated the TU attractiveness levels for each final solution using the second methodology (see Appendix B).

cluster, given that it calculates the attractiveness of a
TU with a known global configuration of the region; in
the ILP model, we calculated a cluster’s attractiveness
without knowing the rest of the region’s configuration.
The best solutions are clearly those obtained using the
integer programming model. Again, in every region
except the second, the three proposed methodologies
generate solutions that are superior to the pre-2007
configuration.

Also worth noting is that under any analysis, the
three methodologies yield more homogeneous scores
for the TUs in every region than those for the original
configuration (except the 2nd region) and thus demon-
strate the robustness of our models.

The number of TUs obtained for the majority of
regions was the same in all the methodologies (see
Table 10). This minimal variation was to be expected
given that an estimate of this factor is easily obtained
by calculating the average number of meals per TU.
Knowing the TU meal numbers’ upper and lower
bounds helps in making this calculation. Note also that
the total number of TUs for the country generated by
our methodologies dropped by 25 units—18 percent
compared to the 136 TUs in the pre-2007 configuration,
including the three regions excluded from this study.

The lower number of TUs was an additional benefit
of our study. In JUNAEB's view, a slight reduction was
desirable for administrative reasons because it facili-
tates management control and improves the function-
ing of the tender process.

The solution times of the proposed methodologies
varied considerably. The heuristic’s run times for each
initial solution were a few milliseconds for regions
with a small number of districts, increasing to a few
seconds for the larger ones. This performance is influ-
enced by the configuration of the initial solution, the
number of districts in the region, and their distribu-
tion within it. The impact of districts serving many
meals differs greatly, depending on whether they are
bunched together or widely dispersed.

The cluster enumeration algorithm also generated
its results rapidly. For most regions, the run times for
creating the feasible clusters were under one minute.
They reached 20 minutes for only three regions; in

Region TUs (original configuration) TUs (heuristic) TUs (ILP model)
I 2 2 2
Il 2 2 2
Il 2 2 2
vV 5 3 3
\ 10 8 7
Vi 9 5 5
Vil 10 5 6
Vil 17 10 10
IX 9 7 7
X 1 8 8
Total 77 52 52

Table 10: The table shows the number of TUs in the pre-2007 config-
uration and under our methodologies. Note that M + H is not shown
because the number of TUs will always equal that of the ILP model.
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one case, they reached two hours. The run times for
the integer programming model (for each fixed P, the
average TU attractiveness score) did not exceed one
hour, with the exception of the 8th region, in which, for
certain P values, they extended to five hours because
of the number of cells and the many possible combina-
tions. For the 1st, 2nd, and 3rd regions, solutions were
generated in no more than 60 seconds.

Finally, when the ILP model result is used as the
initial solution of the heuristic, run times are similar
to those for the model because the heuristic yields its
results in seconds.

Conclusions and Practical Impact

This paper applied different OR methodologies to
determining a new configuration of the geographi-
cal divisions (TUs). The goal was to create a set of
such units in each region of the country that would be
equally attractive to bidding suppliers, thereby low-
ering the bankruptcy risk and uncertainty they faced.
This homogenization of the TUs would also guaran-
tee that schools in each region received similar quality
meals. The combinatorial nature of the tender process
makes an appropriate definition of the units essential.

The TU configurations that the three proposed me-
thodologies generated for any given region were, for
the majority of regions, highly similar. The heuristic-
based approach in particular yielded satisfactory
results very rapidly. The pre-2007configuration caused
major problems in the regions in which very attractive
districts were awarded by the tender process as single
TUs. Bidders focused their interest on those districts
at the expense of the other districts in these regions,
whereas less attractive units were assigned to suppli-
ers who later ran into serious problems in providing
the contracted services.

The configurations our methodologies produced
distributed attractive districts among more than one
TU so that various units would have a significant
number of meals on which the firms could bid. By
eliminating unattractive TUs, supplier bankruptcy risk
declined appreciably. This is the main contribution
of our study. Lizette Vega, an official in charge of
school meal programs at JUNAEB, has confirmed its
success. “Five companies that were awarded meal-
supply contracts went broke between 2004 and 2007,”

she noted, adding that “the new configuration should
help ensure this does not happen again. In fact,
since 2007 no bankruptcies have occurred” (L. Vega,
pers. comm.).

These bankruptcies had endangered the normal
functioning of the food industry and posed a serious
threat to the contracting model that JUNAEB used.
Restoring meal service in each case resulted in addi-
tional annual costs to the government of approxi-
mately USD 1 million over the original winning bid
price (see Table 2) and enormous social costs because
of the temporary interruptions in meal service.

The agency also pointed out that the main objec-
tive of the TU configuration solution has been fully
met, given that the new configuration generated by
the heuristic methodology has triggered greater inter-
est among potential suppliers in bidding on the new
TUs, and the bids submitted have been more compet-
itive and less risky.

Although improving the attractiveness of one TU
necessarily implies worsening the attractiveness of
another, we expect an overall increase in the efficiency
of both JUNAEB and the suppliers. The key objective
is to ensure that no TU is unattractive because this sig-
nificantly increases the risk of bankruptcy, thus jeop-
ardizing the entire auction.

The creation of equally attractive TUs is also advan-
tageous to the suppliers because it simplifies calculat-
ing the cost of the different bids they submit. With
homogeneous TUs, a calculation can be made for any
single TU and then extended almost directly to all
other TUs in the same region, in contrast to the previ-
ous situation in which costs among TUs varied widely.
Furthermore, homogenized TUs mean that bidders no
longer have to submit offers on units whose condi-
tions are difficult to evaluate, a situation that added
considerably to supplier risks.

Amalia Cornejo, head of JUNAEB'’s Social Program
Department, remarked,

In our view, the homogenization of the TUs has helped
reduce the overall cost to the Chilean government of
the tender process. It’s true that the quantitative impact
of the reconfiguration is difficult to measure in terms
of countrywide unit meal costs because at the same
time this change was implemented JUNAEB signifi-
cantly increased its budget and improved meal qual-
ity, which caused this cost factor to rise. What we can



o~
&,
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
© ©
nQ
i
b
58
O ®©
2
£y
32
=
._gQ.
= C
® 9
S 3
o2
2 E
T O
o2
o2
T ©
T
12
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Duran et al.: Quantitative Methods for a New Configuration of Territorial Units

276

Interfaces 41(3), pp. 263-277, ©2011 INFORMS

report, however, is that 25 percent more suppliers par-
ticipated in the 2008 tender compared to 2005, when
contracts for the same regions were tendered, and both
the quantity and quality of the bids have gone up.
(A. Cornejo, pers. comm.)

The key factors in the creation of the new TU con-
figurations that would satisfy the objectives of both
JUNAEB and the supplier firms were the definition of
the principal criteria that make a TU attractive and low
risk, the quantification of these criteria, and the use of
OR techniques to produce configurations with homo-
geneous attractiveness levels. A manual approach to
defining TU configurations, such as JUNAEB used
before 2007, could not achieve the same results.

Electronic Companion

An electronic companion to this paper, which includes
Appendices A and B, is available as part of the online
version that can be found at http://interfaces.pubs
.informs.org/ecompanion.html.
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Amalia Cornejo, Head of the Social Programs
Department, JUNAEB-CHILE, writes: “The purpose of
this letter is to describe the impact of the Operations
Research techniques developed by the researchers of
the Universidad de Chile’s Operations Management
Center (CGO) in order to determine a new configura-
tion of the country in territorial units to be used in auc-
tions for the school meal program of our organization.

“Junta Nacional de Auxilio Escolar y Becas
(JUNAEB) is the Chilean Government entity whose
purpose is to help socially vulnerable children and
teenagers to enter and remain in the school system.
To this effect, this entity has programs in many areas,
such as meals, school health, mental health, den-
tal health, housing, recreation, school materials and
grants intended to provide comprehensive assistance



o~
&,
p .

o
23
=

5 E
© o
L
o c
=
©
2
=
@2
23
= 2
O +
o <
=
© ©
n 2
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
® 9
S 3
o2
2 E
T O
o2
o2
T ©
T
12
0 £
c .2
e

o
==
— O
£ 3

o) O
= £
E -
c
(]
8 e
S =
o O
<E
‘n_

[
= C
e o

=
Q35
z-c
=<

Duran et al.: Quantitative Methods for a New Configuration of Territorial Units

Interfaces 41(3), pp. 263277, ©2011 INFORMS

277

making effective equality of opportunity at educa-
tional level. These actions benefit around two million
students throughout the country.

“JUNAEB’s school meal program consists of pro-
viding different kinds of meals for school children.
JUNAEB holds annual auctions to choose the cater-
ing companies which are going to provide the service.
For this purpose, the country is divided into Terri-
torial Units (TU). These are the items of the auction,
meaning that a company which awards a TU will pro-
vide the catering service in all the schools contained in
that TU. In practice, companies can present multiple
combinatorial bids, including more than one TU, thus
this process is a combinatorial auction. The Chilean
Government invests about 500 million dollars a year
in this program.

“The main problem with the territorial configu-
ration that was used until 2007, affecting both the
companies and the JUNAEB, was the disparity of
incentives among the TU, since only the use of a geo-
graphical criterion and some equity as per the number
of meals in each one of the territories were taken into
account.

“This is why we decided to design a new territo-
rial structure to obtain an homogeneous configura-
tion, with relatively similar units. That is, to decrease

the gap between attractive territories and those not
so attractive to the companies. This way, each school
within a single region may receive proper meals of a
similar quality.

“To address this problem, we consulted special-
ists in Operations Research of Universidad de Chile
(who have worked with us since 1997 developing
a mathematical model which helps us to award the
auctions year after year), to design a model which
could allow us to obtain a new territorial config-
uration. As result of their research, they proposed
this new configuration to us in 2007 that meets our
goals and companies’ requirements. They used Opera-
tions Research methods to consider the different incen-
tives the companies have to bid on a TU, and car-
ried out a new configuration, much more homoge-
neous than the one we used before. Clearly, if we
had approached this problem manually, it would
not have been possible to obtain such an excellent
result.

“Since 2007, we have used the new configuration
of TU proposed by the academic team of Universidad
de Chile. In addition, since the market is dynamic, we
have asked them to repeat this analysis on a periodical
basis in order to update the territorial configuration
when significant changes are reported.”



