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Developing Cost-Effective Inspection Sampling
Plans for Energy-Efficiency Programs

at Southern California Edison
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The Paul Merage School of Business, University of California, Irvine, Irvine, California 92697, rso@uci.edu

Edward Wu
Customer Programs and Services, Southern California Edison, Rosemead, California 91770, edward.wu@sce.com

This paper summarizes the results of the development and implementation of a decision model for a major
California utility company. The company’s program managers use the model to select the most cost-effective
sampling inspection plan for managing a portfolio of energy-efficiency programs. The decision model can be
used to evaluate the performance of possible sampling strategies based on historical data. We illustrate the
application of our decision model to a specific program. We further highlight several key implementation success
factors and discuss the benefits that the utility company accrued from using the decision model.
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Energy efficiency in electricity generally refers to
the replacement of appliances by more efficient

models, home weatherization (e.g., door insulation),
installation of energy control systems, design of build-
ings to incorporate advanced energy-saving technolo-
gies, and other actions that can reduce total electric-
ity consumption. In California, energy efficiency is a
high-priority objective as the state seeks to meet its
growing energy needs in a clean, low-cost manner
and reduce its greenhouse gas emissions. The Califor-
nia Public Utilities Commission (CPUC) has designed
effective market mechanisms to incentivize public
utility companies to encourage consumers to reduce
energy consumption. Under these market mecha-
nisms, public utility companies have developed and
delivered a portfolio of energy-efficiency programs to
their customers.

Southern California Edison (SCE), one of the largest
electric utilities in California, serves more than 14 mil-
lion people in a 50,000 square-mile area of central,
coastal, and Southern California. SCE delivers a port-
folio of energy-efficiency programs to its customers in
various market segments. For example, its statewide
home-energy-efficiency rebate program offers rebates

to residential customers to cover some of the incre-
mental costs of purchasing energy-efficient appliances.

Energy-efficiency programs are established through
a regulatory process under the auspices of the CPUC.
SCE needs to submit its program design and budget
requirements to the CPUC for approval; in addition,
it must periodically submit the outcomes of all its
energy-efficiency programs for review. The funding
for each program comes from an additional charge on
SCE customer bills, which the CPUC must approve.
SCE uses this funding to pay for customer incentives,
marketing costs, and administrative expenses, includ-
ing inspections. Although these energy-efficiency pro-
grams increase the short-term energy cost that SCE
customers pay, the resulting energy savings of the
programs help to reduce future investment costs re-
quired by SCE to serve its customers; hence, customer
energy bills will be lower in the long run.

Customers usually employ contractors to install
energy-efficiency hardware or equipment for these
programs. The contractors, on behalf of their cus-
tomers, submit applications to SCE to request incen-
tive payments based on program requirements. SCE
reviews the applications and then performs onsite,
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post-installation inspections to verify the informa-
tion in the applications. More importantly, the onsite
inspections help SCE to gather information to con-
firm that these programs achieve their stated energy
savings and that customers receive the correct incen-
tives based on the equipment or solutions actually
installed. However, it would be too expensive for SCE
to perform inspections on 100 percent of the equip-
ment installation projects in each program. There-
fore, a key task for SCE program managers is to
select cost-effective sampling plans to monitor pro-
gram performance.

Program managers need a decision support tool
that can help them to quantify and evaluate the trade-
off between the associated risks and costs for the vari-
ous sampling-plan options. Because energy-efficiency
programs are funded by electricity ratepayers under
the auspices of the CPUC, SCE must comply with
many regulations and directives in managing these
programs. Therefore, these program managers need
a tool that provides sufficient flexibility to accommo-
date the specific operating characteristics of each indi-
vidual program, because the programs have many
qualitative attributes that are difficult to incorpo-
rate directly into a quantitative analysis. Furthermore,
energy-efficient programs are constantly evolving to
adapt to new technological advances in the energy
sector; therefore, the decision tool developed must be
easy to maintain and revise by SCE management in
support of their decision-making processes.

To address the aforementioned challenges that SCE
management faces, we developed a decision model
that SCE management can use to evaluate the ex-
pected performance of various sampling plans and to
support it in selecting the most cost-effective method
of inspecting installed projects. The most important
aspect of the decision model is to allow SCE manage-
ment to predict the expected performance for any spe-
cific sampling plan and support program managers in
evaluating the tradeoff in determining cost-effective
sampling plans for managing their energy-efficiency
programs.

Performance Variables
To effectively manage the incentive payouts and
achieve the intended energy savings for all its

energy-efficiency programs, SCE monitors, among
other factors, three important quantitative perfor-
mance variables that are closely related to inspection
activities: (1) incentive dollars, (2) annualized energy
savings (measured in kilowatt-hours), and (3) peak
demand reduction (measured in kilowatts). Hence-
forth, we refer to these three performance variables
as incentive dollars, kWh savings, and kW reduction,
respectively.

In this paper, we focus on quantifying the pro-
gram performance associated with these three vari-
ables only. Although other aspects, such as quality
control, process improvement, and contract manage-
ment, are also important decision factors in determin-
ing the success of the programs, we do not cover them
in this paper.

The sampling results associated with any specific
inspection strategy are important in monitoring these
three performance variables. First, SCE management
can use historic data to detect potential abnormali-
ties for future performance. Second, for various rea-
sons, discrepancies between the submitted amount
of a performance variable and the actual amount of
the performance variable upon inspection are com-
monly found. Uncertainty is always present in deter-
mining the actual values of these performance vari-
ables, unless 100 percent of the installed projects are
inspected. The sampling results can thus be used to
provide some confidence range for these performance
variables for each program.

Clearly, selecting a higher percentage of projects
for inspection versus the higher costs associated with
inspecting a greater number of projects requires mak-
ing a tradeoff. The main objective of the decision
model is to provide useful information on the per-
formance of any specific inspection strategy and its
associated inspection cost, so that SCE program man-
agers can use this information, in conjunction with
other program-specific characteristics, to determine
the most cost-effective sampling plan for managing
their energy-efficiency programs.

The Prediction Model
For effective inspection planning, we developed a
decision model that we called the prediction model,
to predict the performance of any given sampling
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plan. The prediction model requires two basic sets of
user input data. The first set allows the model user,
who can be the program manager or one of his (her)
associates, to construct a specific sampling plan for
evaluation. The model user specifies a list of criteria
for selecting a project to be included in the manda-
tory inspection pool, a pool in which every project
is subject to a full inspection. For example, these
criteria may include the project size, project charac-
teristics that are more likely to result in discrepan-
cies, experience of the vendors, and any other factors
based on the program managers’ knowledge of their
programs.

If a project is not selected for inclusion in the
mandatory pool, it is classified into one of several
possible sampling pools. The model user provides the
specific criteria for classifying a project into a par-
ticular pool and the sampling proportion for each
sampling pool. The sampling proportions could differ
among the pools. Finally, the model user provides an
average inspection cost for a project in the program.
For simplicity, the model currently assumes the same
average inspection cost across all projects; however,
it can be extended easily to allow different average
inspection costs for the sampling pools.

The second set of input data allows the model user
to specify several key model parameters that define
the relationships among the performance variables for
the program. Typically, post-installation inspections
are used to determine the actual values of these per-
formance variables, which can differ from the submit-
ted values of the variables in the project applications.
Depending on the approach used to calculate kWh
savings and kW reductions, the volume and type of
information that must be collected during the inspec-
tion differ. For example, a deemed approach corre-
sponds to standard installations in which the unit
values of the three performance variables are fixed
based on a list of qualified hardware or equipment,
and on the location, building type, and nature of the
project. Post-installation inspections are used to ver-
ify the eligibility and quantity of the installed hard-
ware or equipment, and the values of the perfor-
mance variables are determined based on the pre-
determined fixed value per unit and on the num-
ber of units installed. A calculated approach uses an
engineering method based on specific measurement

and verification protocols; using this approach, more
information must be collected during the inspection
for which the kWh savings and kW reductions are
being calculated.

We make two simplifying assumptions in our pre-
diction model. First, we assume the following rela-
tionship between the submitted value (Sj ) and the
inspected value (Ij ) of the performance variable, �j =

Ij/Sj , where �js are independent and identically dis-
tributed (i.i.d.) random variables with mean b and
standard deviation �b. The values of b and �b are
assumed to be the same for all projects within the
same sampling pool, but can differ across sampling
pools. These values of b and �b can be estimated from
historic data in the program, and must be specified
by the model user as model parameters.

Second, the true value of each performance variable
can also differ from the inspected value of the per-
formance variable, because inspections follow strict
inspection protocols that usually do not require in-
spection of every installed element in the project. We
assume the following relationship between the in-
spected value (Ij ) and the true value (Tj ) of the perfor-
mance variable �j = Tj/Ij , where �js are i.i.d. random
variables with mean a and standard deviation �a.
Again, the values of a and �a are assumed to be the
same for all projects within the same sampling pool,
but can differ across sampling pools. These values of a
and �a must be estimated from historic data and spec-
ified by the model user as model parameters. How-
ever, SCE does not have readily available data in an
electronic format to permit a good estimate. As such,
we assume that the true value of each performance
variable is equal to its inspected value in all our cur-
rent applications (i.e., we set a = 1 and �a = 0 in all
our analyses).

If a project is selected for inspection, the approved
value of each performance variable is equal to the
inspected value of the variable. Otherwise, the ap-
proved value of each performance is simply equal to
the contractor’s submitted value of the variable.

Using these two relationships, the prediction model
can evaluate the performance of a specific sampling
plan as defined by the first set of input data provided
by the model user. The appendix includes the techni-
cal analysis that the prediction model uses.
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Model Output
Based on the input data previously described, the pre-
diction model estimates the expected performance of
the sampling plan and provides an output summary
of the results. Table 1 shows a sample output sum-
mary of the prediction model.

First, the output summary shows that the selected
sampling plan would require a total inspection cost
of $200,500. For this sampling plan, the model pre-
dicts that the expected total incentives approved for
the program would be $220,000 above the true total
incentives that should be paid out for the program,
the expected total kWh savings approved for the
program would be 3,200,000 kWh above the true
total kWh savings achieved by the program, and the

Total inspection cost $2001500
Average over-approved amount

Incentive: $2201000
kWh: 312001000
kW: 11000

Realization ratio
Average Lower range Upper range

Incentive: 0.97 0.96 0.99
kWh: 0.98 0.96 1.00
kW: 0.99 0.98 1.00

Projects
Total # # inspected % inspected

Mandatory pool: 500 500 100
Sampling pool A: 900 90 10
Sampling pool B: 2,500 375 15
Sampling pool C: 100 30 30
Total: 4,000 995 25

TRUE kWh savings (in MWh)
Average Lower range Upper range

Mandatory pool: 881500 861200 901800
Sampling pool A: 161600 161200 171000
Sampling pool B: 511700 501700 521700
Sampling pool C: 41600 41400 41800
Total: 1611400 1581900 1631900

APPROVED kWh savings (in MWh)
Average Lower range Upper range

Mandatory pool: 881500 861200 901800
Sampling pool A: 171300 171200 171400
Sampling pool B: 541000 531600 541400
Sampling pool C: 41800 41700 41900
Total: 1641600 1621300 1661900

Table 1: A sample output summary of the prediction model shows the total
inspection cost, average of the three performance variables, and 95 per-
cent confidence ranges of kWh savings. All numbers shown in the tables
are for illustrative purposes only and do not correspond to any specific
program.

expected total kW reduction approved for the pro-
gram would be 1,000 kW above the true total kW
reduction achieved by the program.

The output summary also provides the realiza-
tion ratio for each performance variable, including
a 95 percent confidence range, where the realization
ratio of a performance variable (i.e., incentive dol-
lars, kWh savings, or kW reduction) is defined as the
ratio of the total expected approved value to the total
submitted value of the performance variable for the
program. For this sampling plan, the expected total
incentive approved for the program gives an average
realization ratio of 0.97, with a 95 percent confidence
range from 0.96 to 0.99, the expected total kWh sav-
ings gives an average realization ratio of 0.98, with a
95 percent confidence range from 0.96 to 1.00, and the
total kW reduction gives an average realization ratio
of 0.99, with a 95 percent confidence range from 0.98
to 1.00.

The output summary also provides detailed infor-
mation on the total number of projects and the num-
ber of projects inspected, and additional information
on the three performance variables for the projects in
each sampling pool. This example has four sampling
pools: the mandatory pool (with 100 percent inspec-
tion), and sampling pools A, B, and C.

In Table 1, the prediction model estimates that the
expected true total kWh savings for the 500 projects
in the mandatory pool are equal to 88,500 MWh,
with a 95 percent confidence range from 86,200 MWh
to 90,800 MWh. Similarly, the expected true total
kWh savings for the 900 projects in sampling pool A
is estimated to be 16,600 MWh, with a 95 percent
confidence range from 16,200 MWh to 17,000 MWh.
Overall, the expected true total kWh savings for all
4,000 projects in the program are estimated to be
161,400 MWh, with a 95 percent confidence range
from 158,900 MWh to 163,900 MWh.

The prediction model also estimates that the ex-
pected approved total kWh savings for the 500
projects in the mandatory pool is 88,500 MWh, with
a 95 percent confidence range from 86,200 MWh
to 90,800 MWh. Note that these numbers are the
same as those for the expected true total kWh sav-
ings; all projects in the mandatory pool must be
inspected, because we assume that the inspected val-
ues are equal to the true values (i.e., with the user-
specified model parameters of a = 1, and �a = 0).
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Also, the expected approved total kWh savings for
the 900 projects in sampling pool A is estimated to
be 17,300 MWh, with a 95 percent confidence range
from 17,200 MWh to 17,400 MWh. These numbers
differ from those for the expected true total kWh
savings, because only 10 percent of the 900 projects
in this sampling pool will be inspected. Overall, the
expected true total kWh savings for all 4,000 projects
in the program is estimated to be 164,600 MWh, with
a 95 percent confidence range from 162,300 MWh to
166,900 MWh.

An Application
We next describe the implementation for a specific
program to illustrate the application of our decision
model for selecting a cost-effective sampling plan for
this program. This energy-efficiency program aims
to improve home-energy efficiency for SCE’s resi-
dential customers by offering financial incentives for
installing approved energy upgrades in the home.
Qualified customers can receive incentives from avail-
able funds up to a maximum amount. To receive these
incentives, a customer needs to make multiple home
improvements that work together to increase overall
energy efficiency and maximize the long-term energy
savings in their homes.

In the most recent program year with post-inspec-
tions, the data set included 782 projects. It provides
the following key information for the three perfor-
mance variables (i.e., incentive dollars, kWh savings,
and kW reduction): (1) submitted variables before
installation, (2) approved variables before installa-
tion, (3) submitted variables after installation, and
(4) approved variables after installation. The data set
also tracks a number of project characteristics, in-
cluding gross or unit measure cost, facility-floor area,
climate zone of the facility, and the vendor perform-
ing the installation.

One main objective of our data analysis was to
study the amount of discrepancy between the vendor-
submitted value of each performance variable and the
approved value of that variable upon inspection. In
particular, we used the realization ratio of a perfor-
mance variable, which we defined as the ratio of the
approved value to the submitted value of the per-
formance variable, as the key metric of this discrep-
ancy. That is, the approved value of a variable is

greater than the submitted value when the realiza-
tion ratio of the variable is greater than one, and the
approved value is smaller than that of the submitted
value when the ratio is less than one.

We analyzed the realization ratios for the three
variables (kWh savings, kW reduction, and incen-
tive dollars) for the 782 projects with post-inspections.
However, we excluded a number of outliers in our
analysis. In particular, we removed those data points
with realization ratios greater than five. We found that
most of these outliers resulted from data entry errors.

We further analyzed how different project character-
istics might significantly affect the realization ratios.
We performed various statistical tests to identify
potential risk factors that can lead to high-discrepancy
ratios, and any other important implications that
would be of interest to the program manager. For
example, we observed that the climate zone of the
facility can have a significant impact on the realiza-
tion ratios of kWh savings and kW reduction. In par-
ticular, the realization ratios of kWh savings and kW
reduction for two specific climate zones are signifi-
cantly lower than those for the other climate zones.
Climates zones are the 16 geographic areas (defined by
zip code) in California for which the California Energy
Commission has established typical weather data, pre-
scriptive packages, and energy budgets; see California
Energy Commission (2015) for details.

For this program, we were particularly interested
in whether there was a learning effect on the vendors
such that the discrepancy ratios would improve with
experience among these vendors. If so, we would ex-
pect the realization ratios for the performance vari-
ables to stabilize after the first several projects that
these vendors installed. The data set included many
vendors. For our data analysis, we focused only
on a set of key vendors that had installed at least
20 projects. To study this effect, we examined the real-
ization ratio of each performance variable by project
sequence for each vendor, and compared the real-
ization ratios for the first several projects with those
of the remaining projects. Overall, we found that a
learning effect on the vendors exists. Furthermore, the
learning effect diminishes after the first three to five
projects for each of the three performance variables.
In view of these findings, we recommended perform-
ing mandatory inspections for each vendor’s first five
projects.
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We also explored a number of other factors or indi-
cators that could possibly affect the realization ratio of
each performance variable. For example, our results
suggest that when the submitted incentive dollars
after installation are much higher than the reserved
incentive dollars before installation, the approved in-
centive dollars upon inspection are more likely to
be smaller than the submitted incentive dollars after
installation. Consequently, we recommended that SCE
perform a mandatory inspection when the ratio of
submitted incentive dollars after installation to the
reserved incentive dollars from a project is above a
specific threshold value (e.g., 2.0).

Sampling Plan Recommendations
Based on our data analysis, we recommended that
SCE management use a stratified random sampling
approach to perform inspections for this program.
(We refer the readers to Cochran 1977 for background
information on stratified sampling techniques.) For
example, projects are automatically selected for man-
datory inspection if the submitted value of a vari-
able exceeds a certain user-specified threshold value.
We also considered mandatory inspections for the
first several projects from each contractor to take into
account any possible learning effect. We then con-
sidered mandatory inspections when the ratio of the
amount submitted after installation to the amount re-
served before installation for any of the three vari-
ables exceeds a threshold value, because discrepancies
are more likely in such projects.

Using the model results, we quantified the tradeoff
between an increase in accuracy in the approved val-
ues for each variable against the associated increase
in total inspection costs. Our objective was to select
a cost-effective sampling plan for the program. For
example, Figure 1 summarizes the trade-off between
incentive dollars at risk versus the required inspec-
tion cost for implementing a specific sampling plan.
We define the incentive dollars at risk as the expected
amount of overpayment in incentive dollars using this
specific sampling plan as compared to performing a
100 percent inspection. This illustrates that the pro-
gram manager can choose to use a sampling plan with
higher inspection proportions to potentially reduce

-
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Figure 1: (Color online) A tradeoff analysis between incentive dollars at
risk and inspection cost under different inspection rates indicates that a
minimum total cost of $449,000 is achieved under a sampling plan with a
30.5 percent inspection rate.

the expected overpayment in incentive dollars; how-
ever, this choice comes at the expense of a higher
inspection cost.

We used the information shown in Figure 1 to select
a cost-effective operating point. Both the incentive
amount and inspection cost are paid out of the pro-
gram budget; therefore, we can consider an optimal
operating point as the one that minimizes the com-
bined incentive dollars at risk and inspection cost.
In particular, the results in Figure 1 suggest that this
combined cost is minimized at $449,000 under a sam-
pling plan with a 30.5 percent inspection rate, which
corresponds to an inspection cost of $237,000 and in-
centive dollars at risk of $212,000.

However, other factors should be considered in
evaluating the effectiveness of a specific sampling
plan. For example, having an accurate estimate of
the true energy savings (in terms of kWh savings
and (or) kW reduction) is important. For this factor,
the 95 percent confidence range needs to be taken
into account in evaluating the performance of a sam-
pling plan. In addition, the program managers need
to assess the potential impact of inspections on overall
customer satisfaction, because inspections can disrupt
customer operations or require customer time and
resources to coordinate the inspection schedule. We
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discussed these factors with the program managers
and assigned different weights to these factors in our
evaluation of possible inspection strategies. Based on
these discussions, we agreed on a sampling plan for
the future implementation of this program.

Achieved Benefits
As we previously discuss, the decision model has
provided SCE management with useful information
about the predicted performance of individual sam-
pling plans, which are important in selecting cost-
effective strategies for managing specific energy-
efficiency programs. Conversely, the model does not
consider other qualitative decision factors. Precisely
quantifying the economic benefits of the model is
difficult.

To provide a rough estimate of quantifiable ben-
efits, we performed the following simple analysis
of a hypothetical scenario. We selected one popular
energy-efficiency program, and compared the results
of the actual sampling plan used for this program
prior to the implementation of the decision model
with that of a sampling plan, which would achieve a
similar level of performance based on our prediction
model. In particular, the actual sampling plan used
prior to the model implementation specified conduct-
ing mandatory inspections on all projects greater than
$15,000 and randomly inspecting 20 percent of the
remaining projects in the program. We used the pre-
diction model to estimate the incentive dollar at risk
for the program under this sampling plan. We then
used the prediction model to evaluate a number of
other possible sampling plans, and selected the most
cost-effective plan, which could achieve similar per-
formance. This selected sampling plan (with manda-
tory inspection for all projects greater than $12,000
and random inspection of 11 percent of the remaining
projects in the program) could achieve the same level
of incentive dollar at risk, but reduces the expected
inspection cost by 32 percent as compared to the
actual sampling plan used. Using this 32 percent as
an average inspection-cost reduction with the imple-
mentation of the decision model and multiplying this
32 percent by the total annual inspection costs for
all the energy-efficiency programs of $4.5 million, we

estimate that the decision model could have pro-
vided an annual savings in inspection costs of approx-
imately $1.4 million, while achieving a similar level
of incentive dollars at risk for all programs in SCE’s
energy-efficiency portfolio.

The aforementioned simple analysis can provide
only a very rough estimate, because the true cost sav-
ings are arguably a complex function of many fac-
tors, including the portfolio mix, specific program
characteristics, inspection costs, project sizes, targeted
realization ratios, budgeted incentive amount, and
kWh and kW goals. Using the performance infor-
mation provided by our decision model, program
managers can compare various performance targets
to select sampling plans that are most appropriate
for their specific program objectives. As compared
with their prior decision process, our model also pro-
vides valuable intangible benefits to SCE, including
an improved level of assurance of its energy-efficiency
program performance, and direct tangible benefits,
including inspection-cost reduction.

Implementation Success Factors
We successfully demonstrated the value of the pre-
diction model in providing useful information to help
SCE management select cost-effective sampling plans
for a number of energy-efficiency programs. Next,
based on our experience, we summarize a number of
important factors that we believe were critical for our
successful implementation of the prediction model as
a useful decision support tool.

First, gaining user acceptance during the early
phase of this project was important. During the first
phase of the project, we selected two programs for
implementation as a pilot study. We carefully ana-
lyzed the most recent available data in each program
to understand the operating characteristics of each
program, and the impact of various factors on the
inspection outcome of all inspected projects in these
programs. We discussed our findings with two pro-
gram managers to ensure that our data analyses were
correct and that our findings were consistent with
the knowledge and experience of program manage-
ment. After we were satisfied with our findings, we
used these historic data to estimate the model param-
eters and applied the prediction model to estimate
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the expected performance for a number of sampling
plans for each program. Finally, we discussed the
model results and worked with each program man-
ager to select a cost-effective sampling plan for each
program. Throughout the development process, we
worked very closely with the program managers to
gain their acceptance.

Second, maintaining accurate historic data for each
program was critical. We used this historic data to
define appropriate sampling pools, and to estimate
the values of model parameters used in the predic-
tion model. Poor data quality, such as missing val-
ues or extreme outliers, would obviously skew the
results of our data analysis and reduce their accu-
racy. To ensure data accuracy, we recommend that
users work closely with the relevant frontline person-
nel responsible for collecting and entering data, and
we emphasize the importance of high-quality data. A
good understanding of the data-collection process is
useful in deciding how to handle those data points
deemed unreasonable.

Third, the operating characteristics of each pro-
gram, such as delivery channel, incentive level, or
product offers, could change during a program cycle
for various reasons, including changes in external
market conditions and the introduction of new energy
technologies. Therefore, providing the capability to
adapt the prediction model to accordingly handle
these changes can be a challenge. This requires that
personnel have a good understanding of the under-
lying statistical analysis of the model and thor-
ough knowledge of the individual energy-efficiency
programs.

Finally, developing a close working relationship
with system users is essential. We explained the
model to users with diverse backgrounds, although
many of these users did not have enough time to fully
understand the details of the model. Through a num-
ber of interactive sessions, we worked closely with
key users to demonstrate the model capabilities, and
showed them how to use the model results to address
issues that might arise in managing their programs.
It is important that users gain a high level of confi-
dence in the model capability, before they use it in
their decision-making processes.

Concluding Remarks
The prediction model we describe in this paper pro-
vides a useful decision support tool that allows SCE
management to select an appropriate sampling plan
based on individual program objectives and resource
constraints. Program managers might also need to
consider other qualitative factors that cannot be incor-
porated directly into the prediction model in evaluat-
ing the effectiveness of any specific inspection plan.
Such factors include program maturity, collective pro-
gram team experience, vendor and authorized agent
experience, interruption to customer business opera-
tions, and relative importance of the programs to the
entire energy-efficiency portfolio.

One possible extension of our decision model is to
build an optimization framework in which we can
(1) assign weights (or scoring criteria) to various per-
formance variables, such as inspection cost, incentive
dollars at risk, and accuracy of the energy savings,
and (2) construct the objective function to maximize
the overall weighted score of the sampling plans sub-
ject to various operating constraints, including inspec-
tion budget, risk tolerance (in terms of dollar, kWh,
and kW), regulatory requirements. The optimization
framework can then be applied to select the optimal
plan over a feasible set of sampling plans (e.g., sys-
tematically constructed at an incremental inspection
rate of one percent). However, it remains a practical
challenge to incorporate other qualitative attributes
into such an optimization framework.

In conclusion, we note that professional judgment
and expert knowledge of the overall energy indus-
try is inevitably required during the decision-making
process, even with the support of rigorous quantita-
tive analysis and well-defined qualitative attributes.
A clearly defined process is necessary to incorporate
and manage different internal opinions and make the
discussion productive to ensure that SCE manage-
ment arrives at a final decision. Overall, the use of
the prediction model has increased the rigor of SCE’s
inspection planning process; as a result, it increased
SCE managers’ confidence in their decision-making
processes.

SCE management has widely adopted this deci-
sion model in selecting effective inspection sampling
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strategies for managing its portfolio of energy-effi-
ciency programs. The model has provided demon-
strable economic benefits (e.g., inspection cost, incen-
tive dollars at risk) and other intangible benefits (e.g.,
more accurate energy-savings estimates).
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Appendix A. Prediction Model for
SCE Inspection Planning
We present a mathematical model to evaluate the perfor-
mance of a given sampling plan for SCE inspection plan-
ning. Specifically, the prediction model provides confidence
intervals for a performance variable, including incentive
dollars, kWh savings, and kW reduction, given the submit-
ted values of the variable for all projects in the program
under any selected sampling plan. This appendix provides
the technical details for deriving these confidence intervals.

Model Input and Notation
Assume that there are a total of N projects in the program,
and data set provides the submitted value of the variable of
each project. In addition, the user has specified a sampling
plan under which each project in the program is classified
in one of the stratified sampling clusters based on some pre-
determined criteria, and the model specifies the sampling
proportion for each cluster. For example, the sampling pro-
portion for the mandatory pool is equal to 100 percent.

If a project is selected for inspection, the value of the
variable will be determined based on the inspection out-
come. We call this the inspected value of the variable. In
this case, the approved value of the variable is equal to
the inspected value. Otherwise, the approved value of the
variable is assumed to be equal to the submitted value. Fur-
thermore, the true value of each performance variable can
also differ from the inspected value of the performance vari-
able, because inspections follow strict inspection protocols
that usually do not require the inspection of every installed
element in the project.

We use the following notation in our model.

Sj = Submitted value of the variable for project j .
Ij = Inspected value of the variable for project j .
Aj = Approved value of the variable for project j .
Tj = True value of the variable for project j .
pj = Sampling probability of project j .

Model Assumptions
For each project j , we assume the following relationship be-
tween the submitted value of the variable and the inspected
value of the variable

�j =
Ij

Sj
1 (1)

where �js are i.i.d. random variables with mean b and stan-
dard deviation �b . The values of b and �b can be estimated
from historic data in the program, and must be provided as
model parameters. We further assume that �j is indepen-
dent of Sj . We conducted a statistical analysis to support this
independence assumption. We collected recent historic data
for six programs and computed the correlation coefficient
of �j and Sj for each of the three performance variables.
The values of these 18 correlation coefficients range from
− 0002 to 0.06, and none of these 18 values is statistically
significant at the 0.05 level.

We also assume that the inspected value and the true
value of the variable has the following relationship:

�j =
Tj

Ij
1 (2)

where �j ’s are i.i.d. random variables with mean a and stan-
dard deviation �a. The values of a and �a can be estimated
from historic data, and must be provided as model param-
eters. To simplify the analysis, we further assume that �j is
independent of both �j and Sj . We also set a= 1 and �a = 0
in all our applications because of the lack of data on �j .

Confidence Interval for the Approved Value
Define the indicator function 1inspect as

1inspect =

{

11 if the project is selected for inspection3

01 if the project is not selected for inspection0

Then, the approved value of the variable for project j is
given by

Aj = 1inspectIj + 41− 1inspect5Sj 0

That is, the approved value is equal to the inspected value if
the project is inspected, and is equal to the submitted value
if the project is not inspected. Using Equation (1), we can
express the approved value as

Aj = 1inspect�jSj + 41− 1inspect5Sj 0 (3)

Therefore,

E4Aj5= pjE4�j5Sj + 41− pj5Sj = 6pjb+ 41− pj57Sj 0 (4)
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From Equation (3),

A2
j = 61inspect�jSj + 41− 1inspect5Sj 7

2

= 12
inspect�

2
j S

2
j + 241inspect541− 1inspect5�jS

2
j + 41− 1inspect5

2S2
j

= 1inspect�
2
j S

2
j + 41− 1inspect5S

2
j 0

Therefore,

E4A2
j 5= 6pjE4�

2
j 5+ 41− pj57S

2
j = 6pj4�

2
b + b25+ 41− pj57S

2
j 1

and

Var4Aj5 = E4A2
j 5− 6E4Aj57

2

= 86pj4�
2
b + b25+ 41− pj57− 6pjb+ 41− pj57

29S2
j

= 8pj�
2
b + pj41− pj541− b529S2

j 0 (5)

The approved value of the variable for the program is
given by

∑N
j=1 Aj , which follows from Equations (4) and (5),

has a mean of

�A =

N
∑

j=1

E4Aj5=
N
∑

j=1

6pjb+ 41− pj57Sj1 (6)

and a standard deviation of

�A =

√

Var
( N
∑

j=1

Aj

)

=

√

N
∑

j=1

Var4Aj5

=

√

N
∑

j=1

8pj�
2
b + pj41− pj541− b529S2

j 0 (7)

Then, an approximate 95 percent confidence interval for
the approved value of the program can be expressed as
4�A − 2�A1�A + 2�A5.

Confidence Interval for the True Value
Using Equations (1) and (2), the true value of the variable
for project j is given by

Tj = �j Ij = �
j
�jSj 0

Therefore,
E4Tj5= E4�j5E4�j5Sj = abSj (8)

and

Var4Tj5

= 6Var4�j5Var4�j5+4E4�j55
2Var4�j5+4E4�j55

2Var4�j57S
2
j

= 6�2
a�

2
b +b2�2

a +a2�2
b 7S

2
j 0 (9)

The true value of the variable for the program is given
by

∑N
j=1 Tj , which follows from Equations (8) and (9), has a

mean of

�T =

N
∑

j=1

E4Tj5= ab
N
∑

j=1

Sj1 (10)

and a standard deviation of

�T =

√

Var
( N
∑

j=1

Tj

)

=

√

N
∑

j=1

Var4Tj5

=

√

6�2
a�

2
b + b2�2

a + a2�2
b 7

N
∑

j=1

S2
j 0 (11)

Then, an approximate 95 percent confidence interval for
the true value of the variable of the program can be ex-
pressed as 4�T − 2�T 1 �T + 2�T 5.

Confidence Interval for the Realization Ratio
We define the realization ratio of the variable for the pro-
gram as the ratio between the total inspected value and the
total approved value of the variable for the program; that is,

R=

∑N
j=1 Ij

∑N
j=1 Aj

0

If all projects are inspected, then Aj = Ij for all j and R= 1.
Thus, R represents the discrepancy, expressed as a ratio to
the total approved value of the variable for the program,
associated with the given sampling plan.

One possible approach for deriving an approximate con-
fidence interval for a ratio of two random variables is to use
Taylor expansions to find approximations for the mean and
variance of the ratio; see Kendall et al. (1987, pp. 410–413),
for details. We use the following simple approach to find an
approximate confidence interval for R.

Using Equations (1) and (3), we can write R as

R =

∑N
j=1 �jSj

∑N
j=181inspect�jSj + 41− 1inspect5Sj9

=

∑N
j=1 �jSj

∑N
j=1 �jSj +

∑N
j=1 41− 1inspect541−�j5Sj 0

We can further rewrite the realization ratio R as

R=X/4X+Y 51

where X =
∑N

j=1 �jSj and Y =
∑N

j=1 41− 1inspect541−�j5Sj .
Then,

�X = E4X5= b
N
∑

j=1

Sj1

and

�X =
√

Var4X5= �b

√

N
∑

j=1

S2
j 0

It is also straightforward to derive that

�Y = E4Y 5= 41− b5
N
∑

j=1

41− pj5Sj
1

and

�Y =
√

Var4Y 5=

√

N
∑

j=1

841− pj5�
2
b + pj41− pj541− b529S

2

j
0
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Using the previous analysis, we provide an approximate
95 percent confidence interval for the realization ratio R as
follows:
(

�X − 2�X

6�X − 2�X7+ 6�Y + 2�Y 7
1

�X + 2�X

6�X + 2�X7+ 6�Y − 2�Y 7

)

0
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Verification Letter
Nancy C. Jenkins, former Principal Manager of Planning
and Compliance at Southern California Edison, writes:

“As requested, I write this letter of support for your
project (with Edward Wu) in developing a decision support
system for determining cost-effective sampling inspection
plans in managing energy efficiency programs at SCE.

“SCE has been managing energy efficiency programs for
more than two decades, and has achieved significant energy
savings to help alleviate the growing electricity demand
of California. SCE managers collectively have extensive
experience in developing and managing dynamic programs
tailored to meet the customers’ needs in our changing
markets. As new emerging technologies evolve and more
data become available, SCE management wants to further
enhance our inspection planning process by quantifying the
potential risks and benefits in choosing inspection plans.

“The Prediction Model developed by you and Edward
provides us a great planning tool that helps to balance
the sampling accuracy and inspection costs, which are
the most important quantitative aspects in evaluating the
effectiveness of a sampling plan. The model results are
extremely helpful for us to understand the risk and cost
tradeoffs among different sampling strategies, and allow

SCE management to make the informed inspection deci-
sions with the support of appropriate quantitative analysis.

“SCE has now applied the Prediction Model to its energy
efficiency programs in selecting inspection plans. We have
achieved significant cost savings with the use of the Predic-
tion Model, together with other inspection process improve-
ments. We are also exploring the applicability of this model
to other demand side management programs, such as De-
mand Response programs.

“We would like to thank you for your great efforts in de-
veloping this decision support system for SCE, and will keep
you posted on any latest developments in the applications
of the Model.”
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