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The advent of big data has created opportunities for firms to customize their products and services 

to unprecedented levels of granularity. Using big data to personalize an offering in real time, how-

ever, remains a major challenge. In the mobile advertising industry, once a customer enters the 

network, an ad-serving decision must be made in a matter of milliseconds. In this work, we de-

scribe the design and implementation of an ad-serving algorithm that incorporates machine-learn-

ing methods to make personalized ad-serving decisions within milliseconds. We developed this 

algorithm for Vungle Inc., one of the largest global mobile ad networks. Our approach also ad-

dresses other important issues that most ad networks face, such as user fatigue, budget restrictions, 

and campaign pacing. In an A/B test versus the company’s legacy algorithm, our algorithm gen-

erated a 23 percent increase in revenue per 1,000 impressions. Across the company’s network, this 

increase represents a $1 million increase in monthly revenue. 
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Mobile advertising is a flourishing business. With more than 230 billion application downloads 

from the leading app stores in 2014, and more than a trillion downloads expected by 2020 (Gandhi 

2015), mobile devices have revolutionized the landscape of the advertising industry. The vast 

amount of data available to advertisers and advertising networks creates opportunities for them to 

target customers with a granularity that was impossible before the information age (Balseiro et al. 

2015). However, utilizing the massive amount of available data to implement efficient monetiza-

tion policies is a nontrivial problem. A focal decision problem of mobile advertising networks is 

ad serving (i.e., determining which ad to serve to each of the thousands of ad requests that arrive 

each second from mobile devices worldwide). To ensure a smooth user experience, ad-serving 

decisions need to be made in less than 50 milliseconds (ms), six times less than it takes the human 

eye to blink.  

This is a challenge for Vungle Inc., one of the largest global mobile advertising networks, 

which displays more than 1.5 billion video ads to more than 200 million people per month (Guerin 

2016). Vungle was founded in 2011 by two young entrepreneurs from the United Kingdom, orig-

inally as a video ad production firm. The turning point for Vungle came in 2012, when its two 

founders creatively used their own video production technology to gain the attention of AnglePad, 

the San Francisco-based start-up incubator. In doing so, they surpassed 2,000 other applicants to 

win the final slot in an incubator program. Today, having raised more than $25 million in capital, 

Vungle is frequently listed among the most high-potential start-ups in Silicon Valley (Ha 2014). 

Currently, it employs more than 160 people, many of whom are software engineers, business de-

velopers, and data scientists, located in six countries across the globe.  

The core service that Vungle offers is a platform that enables user acquisition (UA); that 

is, advertisers embed their video ads within popular mobile gaming applications (i.e., publisher 
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apps) to encourage users to download and install new apps. Advertisement slots are generated as 

users interact with the publisher apps, either after predefined events or after user-triggered events. 

For example, an ad slot may be generated when a user has completed a stage in the publisher app, 

and before the new stage is loaded. In other cases, publisher apps allow users to gain some amount 

of virtual currency if they decide to watch a video ad. Regardless of the specific ad generation 

mechanism, Vungle allocates a video ad from a list of eligible candidates for the generated slot. 

Figure 1 shows an overview of the main events that occur during the advertising operation and 

reports the most important performance metrics.  

Figure 1. In This Graphic Of Events And Performance Metrics In Mobile Advertising, The 

Funnel Illustrates The Reduction In The Number Of Generated Events Over Time 

 

Note. The fill rate depends on the network’s ability to fulfill the requested ad slots, while the com-

pletion, click-through, and conversion rates depend on user actions. Pricing models can be based 
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on pay-per-impression (CPM), pay-per-completed-view (CPCV), pay-per-click (CPC), or pay-

per-install (CPI), the latter being most prominent. 

Ads can be monetized across different stages of the advertising funnel: when (1) a video 

impression is loaded and displayed to a user, (2) a user watches at least 80 percent of a video, (3) 

a user clicks on the video impression and is redirected to the app store, or (4) a user installs the 

advertised application. The corresponding performance metrics, that is, the fill, completion, click-

through, and conversion rates, respectively, are linked directly to advertising revenues, measured 

per 1,000 impressions and denoted as expected revenue per mille (eRPM). 

In this paper, we describe the conceptualization, development, and deployment of an ad-

serving algorithm, which we developed for Vungle and which resulted in an estimated increase in 

monthly revenues of around $1 million. The backbone of our system is a family of regularized 

logistic regression models, which predict, for each candidate ad, the probability of a revenue-gen-

erating user action. The system then calculates the expected profit from displaying each ad and 

makes an allocation decision, all in less than 50 ms to enable an instantaneous response. Because 

our implementation considers subtle user features, such as user fatigue, installation history, and 

that user’s interaction history with publisher applications, it significantly improves performance. 

Our approach includes the following innovative features.  

• It incorporates a user-specific, real-time procedure that strikes a balance between sending 

a large variety of ads and sending ads of high quality, considering the user’s level of en-

gagement with the host application. This diversification mechanism exposes users who are 

highly engaged with the host application to a larger variety of ads, by taking into account 

their recent interactions with ads and signs of fatigue. For a user with lower engagement, 
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our procedure rotates ads at a lower speed, and gives higher selection probabilities to 

higher-quality ads. 

• It addresses fast-pacing ad popularity and network dynamism by reducing training times. 

The popularity of mobile games might change rapidly, and classification algorithms should 

consider fresh data that represent those changes. By implementing a two-stage training 

approach and by subsampling the negative class (Chapelle et al. 2015), we can shorten 

training times and therefore incorporate more frequent data updates. We first train our 

model using generic (publisher-independent) features; for each publisher, we retrain our 

model to include publisher-specific information (i.e., interaction terms). This approach al-

lows us to perform more frequent data updates and helps when new publishers are added, 

because we use the publisher-independent model until we gather enough data to incorpo-

rate publisher-dependent information. 

• Its software infrastructure uses an array of technologies, thus allowing us to retrieve, 

cleanse, and utilize data that account for more than 150 million ad requests per week, while 

we retrieve more than 40 days of user history data to train our models. 

Our models also incorporate policy restrictions posed by advertisers. Before elaborating on 

the specificities of our approach, we provide a concise outline of related research. 

 
Related Research 

Research related to online and mobile advertising has proliferated in recent years, addressing a 

diverse range of topics. However, to the best of our knowledge, our work is the first to consider 

the dynamic allocation of video advertisements that are displayed within mobile applications (i.e., 

in-app ads). This context poses some unique characteristics that influence the design of the serving 
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algorithms and have not been addressed previously, such as the small time window during which 

an ad should be displayed, and the high user engagement with the host application.  

Related research focuses on traditional advertising environments and problems, such as 

scheduling television commercials and sales plans (Bollapragada et al. 2002, Bollapragada et al. 

2004, Popescu and Crama 2016) and scheduling promotional ad text messages, which are sent to 

customers in shopping centers (De Reyck and Degraeve 2003). Andrews et al. (2016) measure the 

effectiveness of ad text messages that are sent to consumers in crowded places. The authors demon-

strate that, perhaps counterintuitively, being in a crowded subway train increases consumers’ pur-

chase rates, a behavior likely attributable to mobile immersion. Our problem is similar to this 

stream, because we allocate ads to users, and advertisers require their campaigns to be of specific 

duration. In our setting, however, users are more engaged with the host application and dynami-

cally generate advertisement slots. As a result, the ad-allocation decisions must be made instanta-

neously.  

Display advertising is an important category of computational advertising, where advertis-

ers pay publishers for placing graphic ads (banners) on their Web pages. Online ad serving is a 

focal problem of computational advertising; examples of the topics studied include the allocation 

of combined sales and brand ads (Saeed et al. 2009), targeted display advertising (Perlich et al. 

2014, Turner 2012, Hojjat et al. 2014), impression pricing (Cohen et al. 2016), capacity allocation 

of online ads (Araman and Fridgeirsdottir 2011), firm competition with respect to targeting indi-

viduals on social networks (Bimpikis et al. 2016), and online auctions (Muthukrishnan 2009, 

Balseiro et al. 2015). Although Web and mobile ads are both based on high-frequency ad-alloca-

tion algorithms, Web ad slots are generated in batches (e.g., when a user visits a Web page), while 

only one mobile ad slot is generated per user visit. Moreover, mobile video ads may interrupt user 

activity and degrade user experience to a greater degree than Web banners. Some recent studies 
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have focused on the use of click-through rates (CTRs), a focal performance metric in online ad-

vertising, and how they can be adjusted to better capture profitable user actions that are triggered 

by sequences of clicks (Wu et al. 2012, Xu et al. 2014, Besbes et al. 2016). Mobile advertising 

networks use a variety of simple CTR-related metrics, because users do not trigger subsequent 

actions; therefore, advertiser profits can be attributed to unique events. The recent work of Hao et 

al. (2016), who investigate optimal contract structures in in-app mobile advertising is also relevant.  

From a methodological point of view, our work is closest to the machine-learning frame-

work of Chapelle et al. (2015), in which the authors train logistic regression models that predict 

CTRs. Our models are also based on logistic regressions; however, we address two additional 

challenges: (1) ad allocations should conform to advertiser budgets, and (2) users might exhibit 

fatigue if they are exposed to the same ad multiple times, which is the defining attribute of in-app 

mobile advertising. We address these extra characteristics through an online heuristic that ensures 

the smooth consumption of ad inventories and utilizes a rotation allocation mechanism that con-

siderably improves CTRs. Until now, little attention has been given to the problem of ad fatigue 

in mobile advertisements, despite evidence that consumers strongly feel these ads are more inva-

sive than ads in other media (Upstream and YouGov 2012). 

 
Vungle’s Legacy Ad-Allocation Algorithm 

Since its infancy, Vungle has strived to deliver the best possible customer experience. Responding 

efficiently to thousands of ad requests per second takes considerable effort; because Vungle’s pri-

ority was to build a stable and reliable ad network, the first version of its ad-serving algorithm was 

robust but straightforward: given a publisher app, Vungle would calculate, for each advertiser, the 

probability of a revenue-generating user action and corresponding expected revenue, and would 
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then display the ad that will provide the most profit to the advertiser and to Vungle. That proba-

bility was based on the average response of all previous impressions of that ad. A significant ad-

vantage of this approach is its speed and robustness. However, it does not utilize the multitude of 

user-related data that are now available with each request, and which can significantly affect the 

likelihood of a user taking a revenue-generating action. Vungle subsequently implemented a more 

advanced ad-allocation algorithm, which included geo-targeting; that is, it takes into account the 

country from which each request originates, resulting in a probability of a profitable user action 

for each ad video, for each {publisher, country} pair. See Appendix A for a formal description of 

the legacy algorithm. This additional granularity significantly improved Vungle’s eRPM, and we 

used this algorithm as the benchmark for our new model, which uses more user-specific data to 

increase the likelihood of a user taking a revenue-generating action. 

Improving Estimations of Revenue-Generating Actions: A Machine-Learning 

Framework  

The core component of an ad-serving algorithm is a classification model that computes, for each 

candidate ad video, the probability that it will generate a profitable action (i.e., a view, click, or 

installation. Recognizing that the serving algorithm should utilize accurate, and therefore sophis-

ticated, classification models, but simultaneously run almost instantaneously, we adopted a two-

stage approach; we trained and validated classification models, tested them offline, and entered 

them into a real-time algorithm that incorporates budget restrictions and user-fatigue issues.  

Classifier Selection 

For prediction accuracy, sophisticated ensemble methods, such as random forests, boosted trees, 

and bagged trees, tend to outperform other methods, such as support vector machines, uncalibrated 

neural networks, and logistic regression (Caruana and Niculescu-Mizil 2006, Wu et al. 2012). In 
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a production environment, however, a trade-off between prediction accuracy and speed of serving 

or robustness of implementation cannot be made. Although ensembles of trees (e.g., random for-

ests) can create predictions in a reasonable time, the training time they require is usually higher 

than that of individually trained classifiers, and training them using datasets with hundreds of mil-

lions of cases could be time consuming. This is particularly important in an environment such as 

mobile advertising, where popularity trends change rapidly, because a model that does not use the 

most recent data can result in predictions of inferior quality. Therefore, to the best of our 

knowledge, the dissemination of ensemble methods into large-scale production systems is yet to 

realize the full potential of these methods, at least in the mobile advertising industry. Another 

important limitation of ensemble methods is that they are nontrivial to update incrementally; that 

is, models may have to be retrained and tested from scratch when new data are obtained. Building 

the prediction model anew as soon as possible requires considerable investment in software infra-

structure, is hard and expensive to scale to larger volumes of data, and amplifies the impact of long 

training times.  

Therefore, we opted for logistic regression methods, which have a straightforward proba-

bilistic interpretation, are easier to interpret and communicate to management, are easy to paral-

lelize, scale, and update, and can be adapted to incorporate exploration and exploitation strategies, 

such as Thompson sampling (Chapelle and Li 2011). The training of logistic regression models 

can be parallelized not only at the cross-validation phase, but also at the lower level of solving the 

associated optimization problem, with solving techniques such as parallelized stochastic gradient 

descent (Zinkevich et al. 2010). This parallelization leads to substantially faster training times, 

thereby allowing more frequent data updates. In addition, the Bayesian interpretation of logistic 

regression (Bishop 2006) allows incremental data updates; that is, the models do not need to be 

trained from scratch, but only to incorporate new data as soon as these data become available. 
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Finally, using logistic regression makes possible subsampling the negative class (i.e., cases in 

which no profitable user action results). In our application, this class forms 99.9 percent of the 

dataset, and therefore leads to substantial computational gains (Chapelle et al. 2015). These factors 

mean that logistic regression models are faster to train, and easier to update, maintain, scale, ex-

tend, and interpret, in contrast to more advanced methods, which typically require more time to 

train, more resources to maintain, and more software infrastructure to sustain and extend. For these 

reasons, we selected logistic regression as the core prediction model of our approach. At the time 

of this writing, the latest version of our system incorporates both incremental updates and Thomp-

son sampling, although subsampling the negative class was part of our first implementation. See 

Appendix B for the details of our prediction model. 

Data Diversity and Model Granularity  

To predict the likelihood of a user taking a revenue-generating action, we utilize a multitude of 

user features that are part of each ad request. These include (1) user-specific features, such as 

language, device type, orientation, and sound level; (2) geographical and temporal features, such 

as time of the day, day of the week, country, time zone, and city; (3) advertisement-specific fea-

tures, such as the length of time each campaign has been active and when it will conclude, and the 

number of views, clicks, and installations during the previous five days; and (4) interaction fea-

tures, such as the number of times a user has seen each candidate ad and the last time that user saw 

the ad, which relate to possible user fatigue. In total, we used 40 features; see Appendix C for 

details.  

Coping with User Fatigue: Service Randomization 

Measuring and predicting user fatigue is complicated: showing an ad to the same user repeatedly 

might have both positive and negative effects. In television advertising, for example, repetition is 
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key to inducing consumers to buy a product or service (Krugman 1965); however, excessive rep-

etition can have the opposite effect. Perhaps more importantly, displaying the same ad prevents 

the display of other candidate ads (i.e., ads from the same advertiser or from a competitor), which 

could have been more effective had they been aired with enough frequency to overcome the user’s 

initial inertia.  

To cope with these issues, we use a randomization algorithm, which dynamically alters the 

ranking of candidate ads by considering (1) a user’s level of engagement with the publisher app, 

and (2) the user’s reactions to recently displayed ads. Our intention is to more rapidly alter the 

ranking of candidate ads when a user generates ad requests at a high rate, and to become less 

aggressive in altering the ranking when a user generates ad requests at a lower rate. Specifically, 

our algorithm displays the ad with the highest eRPM with probability 1-p, and applies the follow-

ing procedure with probability p, which we set equal to 70 percent after experimentation: For each 

candidate video, we record the elapsed time (in minutes) that has passed since it was last displayed 

to that user. If the video has been recently displayed to that user, we push it to the bottom of the 

candidate-video list; otherwise, we calculate its corresponding eRPM. A video is classified as re-

cently displayed if its recency score is less than the number of candidate videos. The recency score 

is a strictly increasing affine function of each video’s elapsed time. Contrary to other randomiza-

tion algorithms that randomize based on relative scores (e.g., randomized first choice), our algo-

rithm achieves randomization by adapting to user reactions. Appendix B shows an example that 

includes three candidate videos. 

Note that the longer the list of candidate videos, the more likely that the top videos rotate, 

therefore diversifying the selection process. Also, when a user is very engaged with the host mobile 

application and generates frequent requests, the result is a low recency score for each previously 
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displayed ad, excluding it from immediate selection. Although Vungle does not control the fre-

quency with which ads requests are generated, we have found that our rule strikes a good balance 

between displaying high-eRPM ads when user engagement is moderate and diversifying the se-

lected ads when user engagement is high. In extreme cases in which a user has rotated the entire 

list of candidate ads, we stop serving ad requests until the recency scores improve. This process 

has proved helpful in maintaining the good experience of users who are highly engaged with their 

publisher app. 

Incorporating Advertiser Restrictions: Budget Capping 

Budget or frequency capping (i.e., restricting the number of times a video ad is displayed) is com-

monplace in online advertising. Companies use it to avoid user burnout, and to ensure that a cam-

paign’s budget is not consumed too fast. For example, an advertiser might initiate a $1 million 

campaign over two months, with a daily cap of $25,000. Although advertisers control the capping 

requirements, Vungle is responsible for their implementation.  

A challenge specific to mobile advertising is that some pricing models exhibit uncertainty 

on whether the user has generated a profitable action. In pay-per-install pricing, the predominant 

pricing model, the advertiser is billed only when the user downloads and opens the corresponding 

app. Thus, at any given moment, there are users who have downloaded but not yet opened the app. 

To address this, we calculate the expected budget spent during the past hour by prorating the av-

erage budget spend rate of the past five days, which is the most recently available data. We made 

our decision to calculate the expected budget spent during the previous hour because more than 90 

percent of installs occur one hour after the user has watched the corresponding video. Despite its 

simplicity, our approach results in a more accurate representation of the unobserved budget spent 

when we compare it with Vungle’s legacy policy (Figure 2).  
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Figure 2. Our Algorithm Approximates The Cumulative Spend During The Past Hour To 

Determine If Capping Should Be Applied 

 

New Customers and New Users 

Vungle’s customer base includes approximately 250 million unique users and 25,000 publishers 

and advertisers, with thousands of new users acquired each day. This poses challenges to the pre-

diction models, because no data are available on these new users. Incorporating new advertisers is 

straightforward, because the only advertiser-dependent feature in the model is the number of times 

a user has seen a given ad (i.e., zero for new advertisers). Considering new publishers, however, 

is not straightforward, because the logistic regressions include a set of parameters based on inter-

actions between publishers. Therefore, we use publisher-independent features to determine install 

probabilities for a publisher if the number of ad slots that publisher has generated is less than 5,000; 

otherwise, we train a new model that includes publisher-specific information. Finally, our model 

includes features that depict user history, such as user installations, the number of ads that a user 

has seen, and the corresponding timestamps of these ads. The model then predicts the “average” 

user behavior, which is updated as the user takes specific actions (e.g., views and installs). 
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Implementation and Adoption 

To ensure the scalability and robustness of our model, we used an array of diverse technologies 

that (1) retrieve and cleanse the data; (2) train and validate the models; and (3) implement the 

frequency capping and randomization components. Figure 3 depicts a high-level representation of 

the ad-serving architecture we adopted. 

 

Figure 3. Our Model Has Three Components: Data Cleansing (SQL Queries), Model Train-

ing (In R), And Algorithm Implementation (In NodeJS)   

 
 

First, we gathered data from Vungle’s data warehouse (Amazon’s Redshift) using SQL 

queries. The data-collection horizon is crucial, because it affects the predictive power of the clas-

sification models. We utilized recent big-volume data to ensure that (1) we adequately capture the 

popularity of each video, and (2) a substantial combination of features is present. To this end, we 

used data from a prior one-week period, which accounted for more than 150 million ad requests. 

Specifically, we used one week of ad-request data to train the model; for each ad request in that 
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training set, we considered 40 days of user-history data. The collection procedure was repeated 

daily.  

Following the data-collection step, we trained logistic regression models using the R pro-

gramming language and the glmnet library (Friedman et al. 2010). To ensure model parsimony 

and good out-of-sample performance, we tested alternative configurations of the elastic-net regu-

larization method, which is a generalization of LASSO and ridge regression (Zou and Hastie 2005, 

Hastie et al. 2009). We decided to use LASSO regularization to impose some sparsity on the esti-

mated coefficients to improve the interpretability of the models (because LASSO tends to drive 

less-significant coefficients values to zero). To cope with the computational burden of training our 

model, we adopted a two-stage approach; we first trained the first-order features, and then kept 

them fixed to train the interaction features. In addition, like Chapelle et al. (2015) and Breslow and 

Cain (1988), we subsampled the negative class (i.e., no user actions), which allowed us to reduce 

the training time of our models by an order of magnitude. Appendix D provides details.  

When we completed the training phase, we uploaded the model coefficients on Redis, a 

key-value database (Redislabs 2017). The prediction, randomization, and frequency-capping pro-

cedures are implemented in JavaScript using the Node.JS framework (Surhone et al. 2010). We 

made this choice because Node.JS exhibits good network scalability and is compatible with Vun-

gle’s code base, therefore enabling Vungle’s engineers to maintain, enhance, and adapt our algo-

rithm to new business rules. 

Adoption 

To test the performance of the algorithm, Vungle routed about one-sixteenth of its ad requests, an 

average of 1.3 million user views per day, to our new algorithm in the spring of 2014. After a 

successful test, Vungle rolled out the new algorithm in the fall of 2014 and is still using it. Alt-

hough the company is continually modifying the algorithm, it has retained the core aspects. 
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Benchmarking Performance: Benefits and Insights 

A/B Testing 

To assess the efficacy of the new algorithm, we performed several A/B tests to compare the algo-

rithm’s performance with that of Vungle’s legacy algorithm. Figures 4 and 5 compare the perfor-

mance of our algorithm with the performance of Vungle’s best legacy algorithm for one A/B test 

that was performed in spring 2014. Figure 6 shows a detailed hourly overview and the correspond-

ing eRPM. The results indicate a consistent 20 percent eRPM lift across all randomized buckets 

of users.  

 

Figure 4. Our Algorithm (Top Line) Consistently Outperformed Vungle’s Best Legacy Al-

gorithm (Bottom Line) In Terms Of Expected Revenue Per Mille (eRPM)
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Figure 5. A Second A/B Test, Which We Conducted In June 2014, Shows The eRPM Evolu-

tion Of Our Algorithm And Vungle’s Legacy Algorithm 

 

Note. Our algorithm (top line) outperforms Vungle’s legacy algorithm (bottom line) by 30 percent.   

 



 18 

Figure 6: Our Algorithm Outperforms Vungle’s Legacy Algorithm With Respect To Pub-

lisher eCPM And eRPM  

Note. The smaller number of impressions allocated to our algorithm (bottom graph, Impressions, 

bottom line) accounts for its more volatile behavior (middle graphs, jagged lines) and for the rev-

enue difference (top graph, bottom line).  

 
 

Insights and Follow-Up Projects 

The detailed data exploration and analyses that were required for us to develop our new algorithm 

revealed several key managerial insights. They allowed us to detect the effects of higher-order 

interactions among features that have significant predictive power. For example, the probability of 

a user responding to an ad video has a positive linear relationship with the volume level of the 
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device. Although this seems intuitive in hindsight, it was not a factor that mobile advertising com-

panies were considering at the time, principally because there is no ability to modify the sound 

volume; however, this inability (by advertisers) to modify the volume level might imply that ad-

vertising companies were not paying attention to the levels of sound-volume data. However, a 

closer analysis revealed that some ads were strongly affected by sound volume, whereas others 

were not; once Vungle knew the sound volume, it could display the best ad for each volume setting; 

Appendix E shows an example. This and similar insights led Vungle to systematically characterize 

the video contents, and to then seek other configurations that exhibit predictive power.  

At the time of this writing, Vungle has set up an independent data science team, which has 

established a robust algorithmic environment and a stable testing environment. Moreover, it has 

introduced several video features, which interact with publisher apps, that exhibit significant pre-

dictive power. This has led to refining the prediction algorithm to the video creative level (i.e., 

generating estimates for specific variants of videos, called creatives, and capturing individual char-

acteristics of each video creative, thus leading to predictions that are more powerful). Perhaps 

unexpectedly, having data on the predictive power of videos allows Vungle to determine the fea-

tures that are most relevant for each user, and therefore contributes to the design of new video 

creatives. Vungle’s creative designers now combine their creative stimuli with insights from data 

to improve the appeal of their video creatives. 

Discussion 

Although the advent of big data has brought numerous opportunities to improve the service level 

and economic efficiency of firms, their incorporation into decision-making procedures is yet to 

mature (Bertsimas and Kallus 2014). Our work suggests that the use of machine-learning models 

in mobile advertising, a relatively new field, can lead to fruitful research and to applications that 

provide significant impacts and important insights.  
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We believe that the key drivers of the success of our project are (1) the enhanced predictive 

ability of our classification algorithms, and (2) the incorporation of budget-capping requirements 

and user fatigue in real time. The implementation of these components led to a model that signifi-

cantly improved eRPMs and increased monthly revenues by more than $1million. In addition, 

Vungle engineers have extended and enhanced our algorithms with additional features, which the 

firm’s video designers also use when they launch new video creatives. This has led Vungle to 

embrace the value of scientific modeling, and to be confident that it is providing the best quality 

service to its customers and users. 
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Appendix A: Vungle’s Legacy Algorithm 

Figure A1. Below, We Display Vungle’s Legacy Algorithm 

 
Note. Vungle’s legacy algorithm considers the average eRPM of each advertiser in each publisher-

country pair and returns the eRPM-maximizing ad. For new advertisers, their eRPM estimates 

default to the publishers’ estimates with whom they form pairs. 

Appendix B: Logistic Regression and Service Randomization 

Our logistic regression classifier takes the form , where  is 

the vector of coefficients and  is the vector of features for case i, including the 

constant term and the interaction terms with publisher. Large positive components of  increase 

the probability of the positive class (i.e., the probability of an installation). We calculate the eRPM 

of each ad using , where p is the price the advertiser pays per installation. 

Service Randomization 

Figure B1 shows an example of how the service randomization heuristic works when three candi-

date ad videos exist. In this case, we assume that Video 1 has the highest eRPM, followed by 

Videos 2 and 3, respectively. The recency function is f (Δti) = α Δti + β with α = 1 and β = 0. 
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Ioannis Fragkos

June 2016

1 Introduction

Algorithm 1 Vungle’s legacy algorithm

Input: Ads, Publisher, Country

Output: Ad

eRPM  0

for a 2 Ads do . Average eRPM for this (publisher, country) pair

a.eRPM  a.Revenue(Publisher,Country)
1000

if a.eRPM > eRPM then
eRPM  a.eRPM

Ad a

end if
Return Ad

end for

1

Ε[Yi =1|X i ]=
1

1+ e−βXi
T

n ],...,[ 1 bbb =

X i = [xi1,...,xin ]

β

pΕ[Yi =1|X i ]
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Therefore, Video 1 will be blocked with 70 percent probability if it has not been displayed during 

the previous three minutes, but its eRPM will be reactivated as soon as three or more minutes have 

elapsed since it was last selected. The heuristic is activated only for ads that the use has previously 

seen. 

Figure B1. The Service Randomization Heuristic Produces A Video Recommendation When 

A User Generates Four Requests, One Minute Apart From Each Other 

 

Note. The video selected in each scenario is placed on top of the list. Video 1 has the highest 

eRPM, followed by Video 2 and Video 3. A linear recency score function implies that when Video 



 23 

1 has not been displayed for three minutes (which is the length of the candidate list), its eRPM is 

reactivated and it returns to the top of the candidate list. 

Appendix C: Feature Description 

Table C1 describes the features we utilized. Note that each feature was utilized both individually 

and at the time that it interacts with each publisher app. The number of user installs and ad views 

is discretized using breakpoint sets {1, 2, 5} and {1, 2, 5, 10}, respectively, which were determined 

via preliminary analysis (i.e., visualizations and hypothesis tests). We found that, ceteris paribus, 

users with a large number of user installs (i.e., 40 or more) do not seem to exhibit different behavior 

than users with 5 or more installs. This motivated us to discretize this feature, as opposed to adopt-

ing other alternatives, such as, introducing higher-order terms. 

Table C1. We Use A Multitude Of Logistic Regression Features That Allow Us To Capture 

Refined Information About Each Ad Request 

Feature Name Category Description 
Country Discrete categorical Country of request origin 

device_make Discrete categorical Device brand 
device_connection Discrete categorical Device connection (WiFi, 3G, etc.) 

left1os Discrete categorical Distinguishes iOS devices 
Dowviewed Discrete categorical Day of week the request was sent 
Hourviewed Discrete categorical Date range in which the request falls 

(morning, midday, afternoon, etc). 
device_volume_disabled Discrete categorical =1 if device is muted, 0 otherwise 

Isipod Discrete categorical =1 if device is an ipod 
Isipad Discrete categorical =1 if device is an ipad 

Isportrait Discrete categorical = 1 if device is in portrait orientation 
Intercept Discrete categorical Constant term 

user_installs_1 Discrete categorical =1 if user has viewed and installed at least 
one app, 0 otherwise 

user_installs_2 Discrete categorical Similar to user_installs_1 
user_installs_5 Discrete categorical Similar to user_installs_1 
user_ad_views_1 Discrete categorical =1 if user has viewed the add before, 0 oth-

erwise. 
user_ad_views_2 Discrete categorical Similar to user_ad_views_1 
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user_ad_views_5 Discrete categorical Similar to user_ad_views_1 
user_ad_views_10 Discrete categorical Similar to user_ad_views_1 
Adviewedpenalty Discrete categorical Penalty added if user has watched that par-

ticular add before (sample levels: 
first_time_watched, less_than_5_min, 

less_than_2_days, etc). 
Anyadviewedpenalty Continuous Penalty added if user has watched an ad be-

fore, defined similar to recentinstall-
bonus (see below) 

Recentinstallbonus Continuous Bonus added if user has installed recently 
an app, =  

device_volume Continuous Device sound level, normalized 
Note. We modified some data in the table for confidentiality. In “recentinstallbonus,” 𝚫𝒕 represents 

the time difference between the request and when the user last installed an app. The positive con-

stant 𝒂 is kept confidential. 

Appendix D: Implementation Details: Model Training 

To find the logistic regression coefficients, we solve the following optimization problem:  

     (D1) 

Zou and Hastie (2005) developed elastic net regression, (D1), to combine the benefits of the 

LASSO and RIDGE models, which use the one and two norms, respectively. In our computational 

experiments, LASSO balanced stable numerical behavior (i.e., convergence to the optimal solu-

tion) and good performance; therefore, we adopted it. It also imposes sparsity on the estimated 

coefficients, and therefore improves the interpretability of the models (since it tends to drive less-

significant coefficients values to zero). By adopting a two-stage approach, we heuristically solve 

this problem. First, we solve a variant of (D1); we do not consider any interaction with publishers. 

Thus, the size of vector  equals the number of features (i.e., 40). Once we solve this optimization 

problem, we fix these values of  and solve a new optimization problem for each publisher. The 

new optimization problems (one for each publisher) are the same size as the previous generic 

exp(−Δt / a)

min
β∈Rn

{∥y −Xβ∥2
2
+ λ1∥β1∥1 + λ2∥β2∥

2

2
}.

β
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problem. To reduce the computation time, we subsample the negative class (i.e., no installation) 

at a rate of 2 percent. By using subsampling, we can adjust each resulting coefficient, including 

the intercept (Donkers et al. 2003, Chapelle et al. 2015). This technique reduced the computation 

time by an order of magnitude, while the corresponding accuracy loss was negligible. 

Appendix E: Feature Visualization 

In this section, we present the visualization of some important features, and their interactions.  

Figure E1. The Device Sound Volume Is Normalized From 0 To 10, While The Average 

Download Click Rate (Download Probability) Varies Between 3 Percent And 7.6 Percent 

 

 

Note. The download probability improves as the device sound increases. 
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Figure E2. Device Sound Volume (X Axis, Measured From 1 To 10) Has A Strong Effect On 

The Downloaded Click Rate (Y Axis) For Some Videos, But Not For Others 

 

Note. On closer examination, we found that videos with narratives (e.g., Battle Camp) are sensitive 

to the sound level, while videos with music only (e.g., Dragon City Mobile) are not. 

Figure E3. Time of The Day (Horizontal Axis) And Location (Here: London) Have A Strong 

Interaction Effect, On Both The Number Of Views (Vertical Axis) And On The Download 

Probability (Download Click Rate, Indicated By The Percentage Labels Along The Line) 
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Figure E4. Location Appears To Be A Differentiating Feature Relative The Average Number 

Of Daily Views (Size Of Each Square), And More Importantly To The Probability Of A 

Download (Download Click Rate) 

 

Note. As an example, the large dark squares in Emirates indicate a large number of views and a 

high download click rate. The small dark squares across the United States indicate a low number 

of views and a low download click rate. The dark square in China indicates a very high download 

click rate, while the dark square in Hong Kong indicates a very low download click rate. 
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