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Abstract 

Information specialists in enterprises regularly use Distributed Information Retrieval (DIR) 
systems that query a large number of Information Retrieval (IR) systems, merge the retrieved 
results and display them to users. There can be considerable heterogeneity in the quality of 
results returned by different IR servers. Further, since different servers handle collections of 
different sizes, have different processing and bandwidth capacities, there can be considerable 
heterogeneity in their response times. The broker in the distributed IR system has to decide 
which servers to query, how long to wait for responses and which retrieved results to display 
based on the benefits and costs imposed on users. The benefit of querying more servers and 
waiting longer is the ability to retrieve more documents. The costs may be in the form of access 
fees charged by IR servers or user’s cost associated with waiting for the servers to respond. We 
formulate the broker’s decision problem as a stochastic mixed integer program and present 
analytical results for the optimal query set and wait time. Using data gathered from Fedstats – a 
system that queries IR engines of several US federal agencies – we demonstrate that the 
technique can significantly increase the utility from DIR systems. Finally, we present a 
simulation-based optimization technique to solve the broker’s decision problem under more 
complex decision environments. The technique is computationally efficient and can be used to 
generate decision rules for source selection and query termination that are relatively easy to 
implement.  
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1. Introduction 
The burgeoning of the information age has been accompanied by an explosive growth in 

the amount of information being generated and stored electronically. Access to this information 

is crucial to various information-intensive firms. Information specialists use multiple information 

sources to respond to information requests within these firms. For example, a patent metasearch 

system may be used to query several distributed patent databases such as USPTO1 and WIPO2. 

Similarly, a portal called Fedstats3 is often used to access statistics from over 100 US federal 

agencies including NIH, USDA and census bureau. Similar systems are also deployed in law 

firms and financial institutions to provide centralized access to multiple data collections. Other 

examples include library management systems that provide access to multiple distributed digital 

libraries and comparison shopping engines that may query multiple store websites in real time to 

gather price and product information4. These systems belong to a general class of Information 

Retrieval (IR) systems called Distributed IR (DIR) systems. 

In a DIR system, a broker queries multiple distributed data sources to gather relevant 

information in response to a query. These distributed data sources may each be IR systems. 

Given a query, the goal of each of these IR systems is to identify and display the local documents 

most relevant to the query. The objective of the DIR system is to provide a user with unified 

access to all relevant resources on the network but give the impression of a single large IR 

database (Fuhr 1999).  

Key operational issues that must be addressed during a distributed IR task include which 

data sources or IR servers to query, how long to wait for responses, and which results to display 

                                                 
1 US Patent & Trademark Office http://www.uspto.gov/  
2 World Intellectual Property Organization www.wipo.int  
3 http://www.fedstats.gov/  
4 Some comparison shopping engines cache all the price and product information locally and only query a single 
local database, while others may query multiple store websites in real time. There are pros and cons with each 
approach. In this paper, we focus only on distributed Information Retrieval (IR) systems. 

https://www.researchgate.net/publication/2552664_A_Decision-Theoretic_Approach_to_Database_Selection_in_Networked_IR?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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(Baeza-Yates and Ribiero-Neto 1999; Fuhr 1999; Montgomery et al 2004). Data sources need to 

be selected carefully because there can be considerable heterogeneity in the quality of results 

returned by different IR servers and the access fee charged by them. Furthermore, each of the IR 

servers has considerable processing to do locally in response to a query which can result in high 

response times. Hence, a broker may find it optimal to terminate a search even before all queried 

servers have responded if it believes that the user’s benefit from waiting is outweighed by the 

cost of waiting. Finally, the broker must determine which of the retrieved results to display. 

These operational decisions can have a significant impact on user’s utility. For example, a recent 

survey of users of patent metasearch systems identified comprehensive coverage and slow 

response times as two major issues with current systems.5 These are both impacted by the 

broker’s operational decisions. 

 In this paper, we address optimal operational decisions – which servers to query, how 

long to wait for responses and which retrieved results to display - by brokers in distributed IR by 

taking into account user preferences and historical performance of the distributed sources. We 

formulate the broker’s decision problem as a stochastic mixed integer program and present an 

analytical solution. We illustrate its application using data from a real-world DIR context and 

find that the gains from the technique can be significant. Finally, we present an algorithmic 

solution technique to address more complex formulations in which the expected benefit from a 

server is a function of which other servers are queried. The simulation-based technique is 

computationally efficient and offers very good solutions in practice.  

Our research contributes to two distinct streams– the design of distributed IR systems in 

the computer science community and user preference modeling in electronic environments in the 

                                                 
5 Source: Patsnap Inc 

https://www.researchgate.net/publication/2552664_A_Decision-Theoretic_Approach_to_Database_Selection_in_Networked_IR?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/220535188_Designing_a_Better_Shopbot?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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IS/Marketing communities. While a number of interesting technical challenges in the design of 

DIR systems have been addressed by IR researchers, user models are often absent or not very 

sophisticated. Our research represents a novel application of Utility theory to IR and bridges 

utility-centric considerations commonly studied in management/marketing science with 

computational aspects commonly analyzed in IR research. By incorporating information on user 

preferences, the design of DIR systems can be considerably improved. In turn, this will increase 

user satisfaction and help increase usage of these systems.  

The rest of this paper is organized as follows. In Section 2, we review related work. In 

Section 3, we develop a decision theoretic formulation to model the tradeoffs and present an 

analytical solution to the problem. In Section 4, we apply data from a real-world DIR application 

and evaluate the performance improvement that optimal decision-making can provide. Section 5 

presents a simulation-based solution technique for more complex decision environments. Section 

6 concludes the study and discusses future work. 

2. Prior Work 

The IR field has been highly interdisciplinary, drawing from library and information 

sciences, computer science, and statistics. Some areas of interest include IR models for locating 

and ranking relevant documents, distributed IR, human interaction, filtering, clustering, question 

answering, and multimedia IR. Distributed IR is specifically concerned with the challenges of 

retrieval from distributed data sources. Below, we review three streams of work most relevant to 

this paper – 1) Operational decisions in DIR with a special emphasis on decision-theoretic 

approaches 2) Management Science research on user preferences and costs and 3) Management 

Science applications in heterogeneous Information Systems. 
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Operational decisions in DIR: The process of determining the servers to query is termed source 

selection. Callan et al (1995) represent each server by its terms and document frequencies to rank 

order and select the servers. Other popular source selection techniques include gGIOSS resource 

ranking algorithm (Gravano and Garcia-Molina 1995) and ReDDE (Si and Callan 2003). Once 

results have been retrieved from different sources, they need to be merged. When the data 

sources are cooperative, the results can be merged based on the server-specific relevance scores 

and normalizing statistics provided by the servers. In non-cooperative environments, more 

sophisticated techniques including regression based techniques (Le Calve and Savoy 2000; Si 

and Callan 2002) and Bayesian models (Aslam et al 2001) are used. These techniques involve 

offline analysis of the IR servers during a resource representation phase. The analysis is used to 

develop decision rules for merging retrieved results in a fast manner.  

The most relevant papers in this stream are the ones applying decision-theoretic 

approaches. These include work by Fuhr (1999) on a decision-theoretic approach to source 

selection and by Voorhees (1995) on an approach to select sources and merge results based on 

historical data. Etzioni et al. (1996) also study the optimal sequence in which to query 

information sources in a sequential query problem where the broker pays each information 

source in order to query it. Si and Callan (2004) propose a deterministic Dynamic Programming 

(DP) based algorithm for source selection.  

Our paper complements this stream of work but introduces an important perspective. We 

develop a model of user preferences and introduce a utility-theoretic framework to guide the 

decisions. Models of user preferences have been largely absent in the IR literature. Montgomery 

et al. (2004) also integrate computational and behavioral considerations to study operational 

decisions made by shopbots. However, the solutions were derived for the case in which servers 

https://www.researchgate.net/publication/3671963_Efficient_information_gathering_on_the_Internet?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/2323046_Searching_Distributed_Collections_With_Inference_Networks?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/221300563_Learning_Collection_Fusion_Strategies?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/220535188_Designing_a_Better_Shopbot?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/220535188_Designing_a_Better_Shopbot?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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have i.i.d response time and i.i.d utilities which is a restrictive assumption for general DIR 

systems where servers can be highly heterogeneous. Further, the work did not focus on 

developing an operational algorithm for decision making and the results were specifically for the 

shopbot context and do not generalize to distributed IR. In contrast, our objective is to solve the 

decision problem for a broker in a DIR system, to account for server heterogeneity and to 

develop an operational algorithm that can be implemented in a computationally efficient manner. 

Management Science research on user preferences and costs: Management Science research 

has a lot to contribute in terms of modeling user preferences for distributed IR tasks. Research in 

marketing has studied the impact of waiting time on consumer perception of services (Hui and 

Tse 1996). User studies have shown that consumers incur costs in waiting for websites to 

respond (e.g., Dellaert and Kahn 1999; Ivory and Hearst 2002). Similarly, consumer research has 

identified that users incur costs in evaluating information and the cognitive resources needed to 

do so influence the amount of information users are able to process. Previous studies (Chase 

1978; Johnson and Payne 1985) have tried to decompose the cognitive effort into units of 

elementary information processes and Shugan (1980) has proposed a metric for the cognitive 

cost based on these elementary processes. While this stream of work has identified and estimated 

waiting and cognitive costs that are highly relevant to web-based systems, there has been very 

limited work that incorporates these considerations into the operational decisions made by a 

system. 

Management Science research on heterogeneous Information Systems (IS): Prior work in IS 

has studied decision models to address operational issues in heterogeneous IS. Krishnan et al 

(2001) propose a cognitively-guided approach to query heterogeneous databases and propose 

mathematical models for optimal source identification. Dey et al (1998) present a decision-
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theoretic model for entity matching across heterogeneous databases, wherein the same entity 

may be represented differently in different databases. Dey (2003) extends that work by 

presenting a decision model and a heuristic solution approach to match entities in a data 

warehouse consisting of several distributed data sources. We complement this stream of work by 

presenting a decision model and analytical solution for optimal source selection and query 

termination in DIR. 

3. Decision Theoretic Framework 

To fix a context, we consider a DIR deployment in an enterprise setting wherein the IS 

manager is interested in maximizing the expected surplus from the system. Specifically, the 

broker makes operational decisions in order to maximize the expected surplus for any given 

query. Further, we assume that each of the individual IR systems index different collections with 

non-overlapping documents. Figure 1 (1a, 1b) illustrates the framework we propose for the 

broker’s operational decisions. First, the broker analyzes past data on distribution of response 

times and relevance scores of documents retrieved from various servers and generates decision 

rules for source selection and query termination (Figure 1a). These rules identify the servers to 

query and the wait time for each query class and user. A query class is a topic area (e.g., “public 

policy”) with query complexity information (e.g., a simple query may be defined as a non-

boolean query with less than five terms per query). The user can be an individual user of the DIR 

system or a class of users that have been identified to be similar. The specific choice of whether 

individual-level or segment-level customization is done will depend on the amount of data 

available per user and computational costs associated with processing user information. We 

discuss this issue further in Section 6. When a query is received, the broker identifies the query 

class and user segment and then determines which servers to query and how long to wait for 
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responses (Figure 1b). These decisions are guided by the decision rules from the prior offline 

analysis. Finally, the broker merges the results and displays the same to the user.  

Figure 1: Decision process for the broker 

 

1a. Offline Analysis  

3.1 Notation and Assumptions 

Let N  denote the total number of servers that can be queried. 1 2( , ,..., )Nq q q=q  is a 

vector that denotes the servers queried, with qi=1 if server i is queried and qi=0 otherwise. it  

denotes the response time of server i. The response time of servers cannot be predicted precisely, 

i.e., it  is a stochastic variable. ()iF  denotes the probability distribution function (i.e. cdf) for the 

response time of server i. T denotes the broker’s wait time. The vector 1 2( , ,..., )Nr r r=r  records 

the servers retrieved, with ri=1 if qi=1 and Tti ≤ . ri=0 otherwise. For any given choice of q and 

T, there exists a probability distribution over r. For example, when N=2 and both servers are 

queried (q = (1,1)), then r can have four possible values, i.e., ∈r  {(0,0), (0,1), (1,0), (1,1)}. The 
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probability of retrieving a vector r with ,, iqr ii ∀≤   (i.e., retrieval vectors that satisfy the 

condition that only queried servers are retrieved) is 1( ) (1 ( ))i ir r
i i

i

F T F T −−∏ . 

id denotes the number of documents returned by server i when it is retrieved. We model 

the retrieval of documents from individual servers as a batch process as is common with most IR 

systems. That is, either all id  documents are retrieved or none are retrieved. The total number of 

servers queried is denoted Q and the total number of documents retrieved is denoted D 

( iq Q N= ≤∑ , D= ii dr ⋅∑ ). The user derives some utility from the information but incurs 

costs associated with waiting for responses and evaluating the results. Further, the servers may 

impose a fee per query. We now introduce notation to model these benefits and costs. 

Utility from Information: The user’s utility from a document is a function of various attributes 

including relevance, novelty and credibility (Moenart and Souder 1996; Larcker and Lessig 

1980). This is consistent with the design of real-world IR systems that compute the relevance 

score accounting for factors such as document relevance and credibility of the source. We 

therefore use the terms relevance score and utility interchangeably. 

At the time the broker queries the servers the utility of documents that will be returned by 

a server are not known and are hence treated as random variables. Once documents are retrieved 

from the servers, the utility i.e. the relevance scores from the retrieved documents, can be 

computed by the broker. Accordingly, we assume that before the documents are retrieved, the 

broker only knows the probability distribution function ( )jiG ⋅  of user j’s utility from a document 

returned by server i ( ( )jig ⋅  is the corresponding pdf). These can be determined by the broker 

based on past queries. Once documents are retrieved, the relevance scores are known. Given D 

retrieved documents, Uj,k:D is used to denote user j’s utility from the document ranked k in a list 

https://www.researchgate.net/publication/229672650_Perceived_Usefulness_of_Information_A_Psychometric_Examination?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/229672650_Perceived_Usefulness_of_Information_A_Psychometric_Examination?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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of documents sorted by relevance score. That is, Uj,D:D ≥  Uj,D-1:D ...≥ ≥  Uj,2:D ≥  Uj,1:D. Uj = 

(Uj,D:D, Uj,D-1:D, …, Uj,1:D) denotes the relevance scores of the retrieved documents. We assume 

that the broker displays the documents in decreasing order of relevance score. This reflects a 

common practice in IR systems and is consistent with the Probability Ranking Principle (PRP) in 

IR (Robertson 1977). Finally, in order to evaluate the user’s benefit from the displayed 

information, we need to understand the user’s stopping criterion when evaluating the displayed 

results. Here, as in Fuhr (1999), we assume that the user views the top P documents sequentially. 

The utility to the user from the top P results given D documents are retrieved is given by  

, 1:
1

P

j D k D
k

U − +
=
∑ . The sum of individual utilities specification is commonly assumed in the literature 

(Si and Callan 2004; Fuhr 1999). However, P is endogenously determined in our model, i.e., it 

depends on the quality of the documents displayed.  

Cost of Waiting for Responses: The total waiting time for the user is primarily composed of the 

broker wait time and network latency. The network latency cannot be significantly influenced by 

the broker’s operational decisions.6 Thus, we drop network latency for the purposes of our 

decision model as it is a constant that does not influence our decision variables. Also, we ignore 

the time to merge retrieved results as most merging algorithms rely on offline analysis to 

generate decision rules for merging that are relatively fast in real time. The few that require the 

broker to download documents from the IR servers and process them in real time are considered 

too time consuming and inefficient (Si and Callan 2003). Thus, the user’s waiting cost is 

modeled as Tjξ , where jξ  denotes the user’s disutility of waiting 1 second and T is the broker’s 

wait time. The above function models a linear waiting cost. Other models with linear delay costs 

                                                 
6 Although the latency can increase with the number of results displayed, the actual influence of brief text-based 
metadata on latency is lower than that of other factors such as network conditions and speed of user’s and broker’s 
connections. 

https://www.researchgate.net/publication/2552664_A_Decision-Theoretic_Approach_to_Database_Selection_in_Networked_IR?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
https://www.researchgate.net/publication/221613316_Unified_utility_maximization_framework_for_resource_selection?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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include Mendelson and Whang (1990) and Montgomery et al. (2004). Nonlinear cost functions 

can be incorporated into our framework in future work.  

Cost of Evaluating Information: The user’s cognitive cost associated with comparing P results, 

each with A attributes, is modeled as j APλ  where jλ  is the user’s cost of evaluating one result 

along one attribute. This function is based on the metric for the cost of thinking proposed by 

Shugan (1980) that has previously been applied to measure cost of evaluating online information 

(e.g., Montgomery et al 2004).7 The metric is based on the number of elementary information 

processes (EIPs) involved in processing information. Different users incur the same number of 

EIPs. Heterogeneity in user cognitive costs is captured by heterogeneity in jλ . Our use of a 

cognitive cost function that is linear in P is due to its common use in marketing and the 

tractability it affords our analytical model. In Section 5, we consider more complex information 

evaluation criteria and nonlinear cognitive cost functions. 

Server Querying Fee: Lastly, the cost incurred in querying the servers is given by ∑
= Ni

ii q
..1
η , 

where iη  is the cost of querying server i. Note that this cost can be zero ( iη =0) for one or more 

servers.8 Even though the organization rather than the specific user incurs the query fee, we 

incorporate the server querying fee in the surplus function to capture the IS manager’s objective 

of maximizing the net surplus from the DIR system. 

                                                 
7 Shugan (1980) proposed the metric 1)-1)(P-(A (P) C λ=  for the cognitive cost associated with comparing P 
alternatives, each with A attributes. He does not explicitly consider the option of not evaluating the information. 
Accounting for the additional alternative of not evaluating, the cost of thinking is better modeled in our context as 

AP (P) C λ=  
8 For example, the Consolidated Tape Association (CTA), the administrative body that oversees the distribution of 
financial market data in the US, recommends that vendors offer both per query and fixed pricing plans. Financial 
data providers like Nasdaqtrader and Amexdata offer per query pricing as also plans with fixed fees. Usage-based 
pricing is commonly preferred by firms. 

https://www.researchgate.net/publication/24099361_The_Cost_of_Thinking?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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 Given these different terms, the net surplus (S) given the query set (q), wait time (T) and 

documents evaluated (P) is 

, 1:
1.. 1..

j j D k D i i j j
k P i N

S U q T APη ξ λ− +
= =

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠
∑ ∑       (1) 

 The surplus function assumes piecewise separability of the individual components (utility 

from information, costs of querying, waiting and of evaluating information). Given a query, the 

broker makes operational decisions to maximize the expected surplus.  

Table 1: Summary of Notation 

N Total number of servers 

qi Variable that records if server i is queried (qi=1) or not (qi=0)  

q Vector indicating which servers are queried ( 1 2( , ,..., )Nq q q=q ) 

Q Total number of servers queried ( ∑= iqQ ) 

T Broker’s wait time 

ti Response time of server i 

( )iF ⋅  cdf of the response time distribution of server i. 

ri Variable that records if server i is retrieved (ri=1) or not (ri=0)  

r Vector indicating which servers are retrieved ( 1 2( , ,..., )Nr r r=r ) 

di Number of documents returned by server i assuming it is retrieved 

D Total number of documents retrieved (D= ii dr ⋅∑ ) 

( )jig ⋅  pdf of user j’s utility from a document returned by server i 

Uj,k:D Utility from document ranked k among D documents sorted in increasing utility  

Uj Vector recording utilities of retrieved documents (Uj = (Uj,D:D, Uj,D-1:D,…, Uj,1:D)) 

P Number of results evaluated by the user 

jξ  User j’s disutility of waiting 1 second 

jλ  User j’s cognitive cost of evaluating one result along one attribute 

iη  Cost of querying server i 
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3.2. Decision Problem 

We now proceed to formulate the decision problem. We model it as a two-stage 

sequential process. In the first stage, the broker determines which servers to query (q) and how 

long to wait for responses (T). At the time these two decisions are made, the server response 

times ( it ) and document relevance scores are stochastic variables. The broker sorts the retrieved 

results in descending order of relevance scores. In the second stage, we determine the number of 

documents the user will evaluate which in turn influences the net surplus. At this decision time, 

the documents have already been retrieved and thus relevance scores of documents are known. 

We solve this sequential optimization problem in reverse order. That is, we first determine the 

number of documents evaluated by the user (P) given the set of retrieved results. Based on the 

user’s response, we then determine q and T. 

Stage 2: Determining Documents Evaluated by User  

We now determine the number of documents (P) that will be evaluated by the user given 

the retrieved documents. It is important to determine P in order to compute the user’s benefit 

from the information, which in turn influences the broker’s choice of q and T. The user’s 

decision problem in stage 2 (i.e. given r and Uj) is 

, 1:
1..

max | ,j D k D jP k P
U APλ− +

=

⎧ ⎫⎛ ⎞ −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
∑ jr U           (2) 

Note that the costs 
1..

i i
i N

qη
=
∑  and jTξ  are already sunk at this stage and are not relevant to 

the user’s decision P. The first term in equation (2) , 1:
1..

j D k D
k P

U − +
=
∑  is concave and monotonically 

increasing in P. The cost  APλ  is linear in P. Thus, equation 2 is concave in P. This leads to a 

very simple algorithm to determine the size of the evaluation set. We estimate P by first sorting 
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the retrieved documents by relevance score. Starting with the document with the highest 

relevance score, we repeatedly add documents into the evaluation set as long as the documents 

offer utility greater than  j Aλ .  

The screening strategy above is also consistent with the level cutoff strategy studied by 

Feinberg and Huber (1996) in which only the alternatives that offer a minimal level of utility are 

evaluated. This screening strategy is an outcome of a linear cognitive cost function in our model. 

In Section 5, we study a compound stopping rule that models a nonlinear cost of evaluating the 

documents.  

At the time of issuing a query, the broker does not know the utilities of documents that 

will be returned by the different servers and therefore does not know the exact documents that 

will be evaluated. The a priori estimate of the number of documents from server i that will 

eventually be evaluated by user j is (1 ( ))i ji jd G Aλ− . Further if server 1i  stochastically dominates 

server 2i  (
1 2
( ) ( ),ji jiG x G x x≤ ∀ ) then the probability that a document from 1i  will be in the 

evaluation set given that 1i  has been retrieved is greater than the corresponding probability for 2i .  

We now proceed to study how the broker can integrate the user’s stage 2 decision into its 

operational decisions in stage 1 when the utility and response times are unknown. 

Stage 1: Determining Servers to Query and Query Termination Time 

There are clear tradeoffs in choosing the servers to query and the wait time. If the broker 

does not query a good server, the server is not retrieved and user surplus is unnecessarily reduced. 

Alternatively, if the broker queries irrelevant servers, access fees may be unnecessarily imposed. 

Similarly, the broker may decide to terminate a search but a highly relevant document may have 

been retrieved half a second later. Alternatively, the broker may choose to wait for a server’s 

response, but may find that it ends up taking too long to respond or that the actual relevance of 

https://www.researchgate.net/publication/227446833_A_Theory_of_Cutoff_Formation_Under_Imperfect_Information?el=1_x_8&enrichId=rgreq-2f188fab33339e3c2d599ae5c47ad039-XXX&enrichSource=Y292ZXJQYWdlOzIyODI5NjE2NTtBUzoxMDEyOTI2MTM1NzA1NjJAMTQwMTE2MTQ0OTE3NA==
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the documents is considerably lower than anticipated. We now formulate the problem of 

determining q and T to address these tradeoffs. 

Given r and Uj, the expected surplus of the user can be determined from the solution to 

equation 2. If ( , )jP jr U  denotes that solution computed in stage 2, then the surplus given r and Uj 

is  

( , )

, 1:
1 1..

| , ( , )
jP

j j D k D i i j j j
k i N

S U q T APη ξ λ− +
= =

⎧ ⎫⎛ ⎞⎪ ⎪= − − −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑

jr U

j jr U r U     (3) 

At the time the broker decides on the query set and wait time, neither r nor Uj are known due to 

the uncertainty in the response times, ti and relevance scores Uj,k:D. The expected surplus can be 

computed by multiplying the probability of retrieving a vector r with the expected surplus from 

the associated evaluation set (evaluated over all possible Uj) and then summing over all the 2Q 

combinations of r:  

( , )
1

, 1:
1 1..

( , ) ( ) (1 ( )) ( , )
j

i i

P
r r

j i i j D k D j j i i j
k i Ni

ES T F T F T E U AP q Tλ η ξ−
− +

= =

⎛ ⎞⎡ ⎤⎛ ⎞
= − ⋅ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠
∑ ∑ ∑∏

r U

U r
r

q r U    

(4) 

where ( , )jES Tq  denotes the expected surplus, 1( ) (1 ( ))i ir r
i i

i

F T F T −−∏  is the probability of 

retrieving the random vector r given q and T and | []E
jU r  denotes an expectation over all possible 

values of Uj given the set of servers retrieved r. Note that the cost of querying the servers and of 

waiting for responses are independent of the realized value of r and Uj and are hence not within 

the ∑
r

expression. Thus, the optimization problem in stage 1 (when r and Uj are not known) is 

given by: 

 { }
,

max ( , )jT
ES T

q
q           (5) 
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The optimization problem in (5) is a stochastic mixed integer program. In addition to the 

uncertainty with regard to the relevance scores and response times, the evaluation of (4) is 

complicated by the large number of combinations of r. 30 servers imply 230 (i.e., over a billion) 

combinations of r. Thus it is important that any acceptable solution technique is able to solve (5) 

in a computationally fast manner.  

By applying the assumption that the response times and document relevance scores are 

independent across servers, it is possible to simplify (4) and separate out the impact of each 

server. This yields the following decision problem (derivation is in online appendix A): 

* *

, 1.. 1..
( , ) max ( )i i ji i i jT i N i N

T q F T U q Tη ξ
= =

⎧ ⎫⎛ ⎞
= − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ∑q

q       (6) 

In (6), iq  indicates whether server i is queried, ( )iF T is the probability that the server is 

retrieved given that it has been queried and ( ) ( )
j

ji i j jiA
U d x A g x dx

λ
λ

∞⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  is the expected 

surplus from the id  documents returned by server i given i is retrieved (recollect that only 

documents that offer utility greater than j Aλ  are evaluated). Because the servers are independent 

and the screening strategy in stage 2 does not involve inter-server interactions, equation (6) 

nicely separates out each server’s net contribution to the overall surplus.  

Computing the first order condition of (6) with respect to T, we get 

*

1..
( )i i ji j

i N
q f T U ξ

=

=∑           (7) 

At the same time, the expected benefit from querying server i is ( )i jiF T U  while the cost of 

querying it is  iη .Thus, 

* i1 if ( )  
0 otherwise

i ji
i

F T U
q

η⎧ ≥
= ⎨
⎩

         (8) 
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The optimal query set and wait time can be determined by jointly solving (7) and (8). 

Note that the objective function need not be globally concave so it may not be straightforward to 

identify the optimal joint solution of (7) and (8). We investigate the concavity below and present 

an algorithm to determine the optimal decision variables. 

Note that server i is queried if i( ) /i jiF T Uη≥ . Let { }i( ) /i jiF T U
I

η≥
 be an indicator variable 

that denotes whether i is queried. Then (6) may be rewritten as follows: 

{ } { }i i( ) / ( ) /
1.. 1..

max ( )
i ji i ji

i ji i jF T U F T UT i N i N
I F T U I T

η η
η ξ

≥ ≥
= =

⎧ ⎫⎛ ⎞
− −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ∑      (9) 

Consider the derivative of (9) with respect to T: 

{ } { }i i( ) / ( ) /
1.. 1..

( ) ( )
i ji i ji

i ji j i ji iF T U F T U
i N i N

I f T U F T U I
η η

ξ η
≥ ≥

= =

⎛ ⎞ ⎛ ⎞′⎡ ⎤− + −⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
∑ ∑     (10) 

Thus, a small increase in T can be associated with three effects. First, for the servers that are 

already in the query set ( { }i( ) /i jiF T U
I

η≥
), it increases the probability that they will respond by ( )if T  

and thus there is a marginal benefit of of ( )i jif T U  from each of these servers. Next, there is a 

cost jξ−  which is the user cost of waiting an additional time unit. Finally, a small increase in T 

can result in an additional server being added to the query set if there exists a server with ( )iF T  

i / jiUη= −Δ . Otherwise, there is no change in the set of servers in the query set. That is, 

{ }i( ) /i jiF T U
I

η≥
′  is generally zero except at ( )1

i /i i jiT T F Uη−= =  when server i gets added into the 

query set. Note that even though a new server enters the query set at this T and { }i( ) /i jiF T U
I

η≥
′  is 

non-zero, that server makes no immediate contribution to the surplus because ( )iF T  i / jiUη=  
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for that server and thus term 3 in (10) remains zero. However, the server is now in the query set 

and will help increase the marginal benefit of waiting (i.e., term 1 in (10)) for higher values of T.  

 We illustrate this effect in Figure 2. Initially when T is small, no server satisfies (8) and 

the query set is empty. Thus there is only a marginal cost of waiting ( jξ− ) but no marginal 

benefit. At some [1]T T= , a server satisfies (8) and enters the query set resulting in a 

discontinuous change in the slope of the expected surplus jES . Specifically, the marginal benefit 

once the server has entered the query set is now given by the increase in the probability that the 

server responds multiplied by the expected surplus from the server (term 1 in equation (10)) and 

the marginal cost remains jξ− . If we continue to increase the broker wait time, then at some 

[2] [1]T T T= ≥ , another server enters the query set. The marginal benefit from an increase in T 

now consists of the expected surplus times the change in the response probability for two servers. 

The marginal cost remains jξ− . As we increase T, this process repeats. Clearly, the derivative of 

the objective function with respect to T is not defined at the boundary points [1] [2] [ ]{ , ,..., }NT T T  

and the objective function need not be locally concave either. 

Figure 2: Expected Surplus against Broker Wait Time, T 
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Fortunately, it is possible to exploit some properties of the problem to formulate a 

computationally scalable algorithm to determine the optimal q and T. To do this, we first prove 

the following proposition in online appendix B. 

Proposition 1: Suppose ( )1
i / , {1,2,..., }i i jiT F U i Nη−= ∀ ∈ . If server l is in the optimal query set, 

then all servers with i lT T≤ are also in the optimal query set. 

Corollary 1: The optimal query set is non-decreasing in the broker wait time T. 

 Based on Proposition 1, we first compute ( )1
i /i i jiT F Uη−=  for all servers and sort them 

in an ascending order. Let [ ]lT  be the thl  lowest iT  for {1,2,..., }l N∈ . For example, 

( ){ }1
[1] i

{1,2,.. }
arg min /i ji
i N

T F Uη−

=
= . For [1]T T< , the query set  is empty as no server satisfies (8). For 

[1] [2][ , )T T T∈ , the query set consists only of the server with the lowest iT . For [2] [3][ , )T T T∈ , the 

query set consists of the two servers with [3]iT T<  and so on. This observation allows us to 

reduce the search space. For each value of T, we do not need to evaluate all 2N query sets. Rather 

the specific query set associated with T is identified as described above. 

Proposition 2: The maximum expected surplus cannot be realized at any of the boundary points 

( )1
i /i i jiT F Uη−= . 

The proof is in online appendix B. Based on Proposition 2, we now search for local 

maxima in each of these N regions. That is, in each of the regions [ ] [ 1][ , )i iT T T +∈  wherein the 

expected surplus and its derivative are continuous in T, we identify local maxima that satisfy the 

following necessary and sufficient conditions, 

* *

{ | , , } { | , , }
( ) AND ( ) 0

i i

i ji j i ji
i i i N T T i i i N T T

f T U f T Uξ
∈ ≤ ≤ ∈ ≤ ≤

′= <∑ ∑
N N

    (11) 
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The solution to (6) is given by computing the maximum among these local maxima. When the 

properties of fi() do not permit direct computation of the local maxima, one can use numerical 

techniques such as iterating through T with a small step size. An algorithm is provided in Figure 

3. Notice that the technique requires the evaluation of N query sets rather than a search over all 

2N query sets. Thus, it scales rather well with the number of candidate servers.  

Figure 3: Algorithm for determining the query set and wait time 

1. Input i , ,ji iU Fη  for all N servers and jξ  for user 

2. Sort N servers in ascending order of ( )1
i /i i jiT F Uη−= . [ ]lT  is thl  lowest iT . [ 1]N MaxT T+ =  

3. Set Optimum_Surplus to 0 and q to (0,0,…,0) 
4. Set Optimum_T to 0 and Optimum_q to (0,0,…,0) 
5. Set l to 1 
6. While [ ]MaxT T≤ do 

7.           Update q and set qi = 1 for server with thl  lowest iT   

8.           Set [ ]lT T=  

9.           While [ 1]lT T +≤  

10.                  If 
{ | 1} { | 1}

( )
i i

i ji i j
i q i q

F T U Tη ξ
= =

⎛ ⎞
− − >⎜ ⎟

⎝ ⎠
∑ ∑  Optimum_Surplus 

11.                           Set Optimum_Surplus to 
{ | 1} { | 1}

( )
i i

i ji i j
i q i q

F T U Tη ξ
= =

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
∑ ∑  

12.                           Set Optimum_T toT  
13.                           Set Optimum_q to q 
14.                EndIf 
15.                Set T T T= +∇  
16.         EndWhile 
17. Set l to l + 1 
18. Endwhile 
19. Output Optimum_q and Optimum_T 
20. Halt 

 

Proposition 3: If all ( )if ⋅  are decreasing, then jES  is locally concave in each of the regions 

[ ] [ 1][ , )i iT T T +∈ . 
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Response times of web servers often follow an exponential distribution which has a 

decreasing probability density function. Thus, it is possible to employ more efficient techniques 

for computing the local maxima in each of the regions [ ] [ 1][ , )i iT T T +∈  given the local concavity.  

3.3. Comparative Statics 

Several additional properties of the optimal solution can be analytically derived. The 

most important property in order to derive the comparative statics is supermodularity. 

Proposition 4: The broker’s objective function is supermodular in its decisions (q, T). 

The proof is in online appendix B. Supermodularity implies complementarity between the 

decision variables. That is, having more of one variable increases the marginal returns to having 

more of the other. This is reflected in equations (7) and (8). Querying more servers increases the 

marginal return from waiting longer. Simultaneously, a longer wait time increases the returns 

from querying a server. Using the properties of supermodular functions, we can show the 

following results regarding the impact of exogenous variables on the optimal query set and wait 

time.  

Proposition 5: The optimal query set and wait time are non-increasing in waiting cost, ξ . 

Proposition 6: The optimal query set and wait time are non-increasing in user cognitive cost, λ . 

Proposition 7: The optimal query set and wait time are non-increasing in access fee iη , for all i. 

 All proofs are in online appendix B. An increase in ξ  increases the marginal cost of 

waiting. This results in a decrease in the optimal wait time (setting the marginal benefit equal to 

the marginal cost as in Figure 4a). The decrease in the wait time reduces the expected benefit 

from querying each server. This can result in a decrease in the number of servers queried in 

accordance with (8). If fewer servers are queried, this in turn can result in a second order effect. 

A decrease in the number of servers queried reduces the marginal benefit of waiting as identified 
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in (7). This can further reduce T as shown in Figure 4b and in turn affect the number of servers 

queried. Thus, both the first order and lower order effects act in the same direction such that the 

net effect is that the optimal query set and wait time are non-increasing in waiting cost ξ  

(Proposition 2). An increase in λ  results in a decrease in the number of documents evaluated by 

a user. This reduces the marginal value of waiting as also that of querying the servers. Thus, the 

wait time and query set are non-increasing in λ  (proposition 3). Similarly, an increase in any 

server’s access fee can result in the elimination of that server from the broker’s query set, which 

in turn would reduce the optimal wait time as highlighted above. Using properties of 

supermodular functions, comparative statics with respect to other parameters can be similarly 

derived.  

Figure 4a: Direct Effect of an Increase in 

Marginal Cost of Waiting (ξ ) 

Figure 4b: Indirect Effect Due to a Decrease 

in the Marginal Benefit of Waiting 

 

4. Empirical Illustration of Gain from Optimal Decision-Making 

In this Section, we use simulations to measure gains from optimal decision-making. In 

order to instantiate the simulation parameters, we use data from FedStats which is a real-world 

DIR application. Our choice of this application context is due to its prior use in DIR research and 

by the availability of data.  
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4.1. Federated Search (FedStats) 

 Fedstats is a portal that provides unified access to information and statistics from over 

100 federal agencies including NIH, USDA and census bureau. Fedstats was previously designed 

as a single-database architecture with information from all agencies replicated in a central 

database. Since 2003, Fedstats has adopted a distributed architecture wherein the broker forwards 

the query to IR servers of different agencies and merges the results. Avrahami et al (2006) 

provide a good review of the advantages of the DIR architecture. 

In order to apply our techniques, we calibrated the relevance score and response time 

distributions using data gathered over 33 days in February/March 2006. Each day, our software 

agent queried the IR servers of 15 federal agencies and gathered server response times for 26 

queries. The queries and IR servers are the same as in Avrahami et al (2006). The mean and 

standard deviation of the response time of the IR servers is in Table 2. The response time of the 

IR servers is modeled very well as a Gamma distribution, the parameters of which were 

estimated using Maximum Likelihood Estimation (MLE). We also extracted the top 20 

documents that the servers returned in response to a query and computed the centralized 

relevance score of each document.9 The centralized relevance score reflects the expected utility 

of a document. Since these are computed in a centralized manner, comparison of document 

relevance scores across IR servers is meaningful. In the following analysis, we only focus on 

relevance scores computed for the following queries: {crime rates, domestic violence, hate crime, 

homeless, suicide, unemployment rate} as they are broadly from the same topic area. The 

analysis for the entire query set is available upon request. Table 2 lists the mean and standard 

                                                 
9 The scores were computed using the Lemur toolkit, an open source IR toolkit. The scores are not personalized 
based on any user characteristics but such personalized scores can be computed as in personalized IR systems. 
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deviation of the relevance scores of retrieved documents at the servers. The relevance scores for 

the top 6 servers are well described as Gamma distributions whereas the remaining servers have 

Normally distributed relevance scores. The parameters of these distributions were also estimated 

by MLE. 

Table 2: Summary Statistics for Server Response Time and Document Relevance Scores 

 Agency Response Time Relevance Score 
  Mean Std. 

Dev 
Mean Std 

Dev 
1 Bureau of Justice 0.41 0.81 0.2 0.12 
2 Housing and Urban Development 1.8 4.00 0.17 0.07 
3 ChildStats 1.7 4.50 0.2 0.04 
4 Social Security Administration 0.27 1.09 0.1 0.07 
5 National Science Foundation 1.14 0.33 0.06 0.06 
6 Bureau of Economic Analysis 1.38 2.78 0.05 0.04 
7 Economic Research Service 1.14 2.06 0.18 0.03 
8 Bureau of Labor 0.39 1.39 0.15 0.02 
9 National Institute of Drug Abuse 0.6 0.48 0.18 0.04 
10 National Center for Education Stats 1.21 1.24 0.24 0.09 
11 National Center for Health Stats 0.87 0.74 0.20 0.04 
12 Environmental Protection Agency 0.4 1.77 0.17 0.04 
13 Federal Reserve 1.48 0.95 0.14 0.03 
14 National Inst. for Child Health & Development 0.61 0.38 0.16 0.03 
15 Energy Information Administration 0.88 0.41 0.02 0.004 

The heterogeneity among the servers is worth noting. Some servers such as the NSF IR 

server (server #5) respond fast and have low variance in the response time. The NSF server took 

greater than 5 seconds to respond in zero out of 858 searches. Unfortunately, the documents 

returned by NSF do not generally have high relevance scores for queries in our topic area. In 

contrast, some other IR servers such as those of Housing and Urban Development (HUD) and 

Bureau of Economic Analysis (BEA) take much longer to respond. The HUD server took more 

than 10 seconds to respond in 1.63% of the searches. However, HUD documents are generally 

very relevant. The BEA server took more than 10 seconds to respond in 3.2% of the searches. At 

the same time, BEA documents are not very relevant for queries in the chosen topic area. Hence, 

the broker may be better off not querying the BEA server.  
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4.2. Optimal Decisions 

We now illustrate how to compute the optimal operational decisions using the above 

dataset. Even though server response time and relevance score distributions ( ( )if T , ( )jig ⋅ ) are 

obtained from real-world data, servers’ query fees and the user’s waiting cost and cognitive cost 

need to be additionally specified. Our analytical model permits arbitrary values for these 

variables but for the purposes of the simulation we use some plausible values in our base case 

and conduct additional sensitivity analysis. In Section 6, we additionally discuss how these 

parameters can be estimated. For our base case, we assume that the cost of evaluating a 

document is two and a half times the cost of waiting a second ( ξλ 5.2= ). This choice replicates 

the setting in Montgomery et al (2004). We also bootstrap the value of 1.0=ξ  so that the realized 

values of P in our simulations are typically between 5 and 25. Finally, we set the cost of 

querying the servers to 0.1 for all the servers in the base case (i.e., iη = 0.1 for all i) which 

implies that the per-query fee charged by a server is of the same order of magnitude as the cost 

of waiting one second and the cost of evaluating one document.10 Note that the querying fees are 

typically known a priori and the modeler can easily plug in appropriate values during 

implementation. 

In Table 3, we compute the expected surplus ( ) ( )
j

ji i j jiA
U d x A g x dx

λ
λ

∞⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  from each 

of the servers if it is retrieved. In addition, we compute the waiting time ( ( )1
i /i i jiT F Uη−= ) at 

                                                 
10 It is also possible to express these values in dollar terms. For example, an annual wage of $70,000 translates to a 
value of time of approximately $0.01/second. Because we assume that 1.0=ξ , this implies that our unit above is 
approximately a tenth of a dollar. Correspondingly, our assumptions imply that the cost of evaluating a document is 
$0.025 and the cost of querying a server is $0.01 per query (vendors of Nasdaq data charge close to $0.005 per 
query so these are close to reality). Finally, the unit also suggests the value of documents in dollar terms. For 
example, the average value of a document returned by the Bureau of Justice in response to a query in our topic area 
is 0.2 units or approximately $0.02. 
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which it is optimal for the broker to add the server into the query set.  Interestingly only three 

servers, namely those of the Bureau of Justice, Housing and Urban Development, and National 

Center for Educational Stats, have a finite iT  for the topic area and above parameters. For all 

other servers the expected surplus is not sufficient to offset the querying fee even if the broker 

wait time is high enough. If the query fees are reduced to iη = 0.025, then servers 3, 4, and 11 

may also be worth querying if the broker wait time is reasonably high (i.e. jiU > 0.025 for these 

servers). The table can be used to quickly identify the which servers to query for any arbitrary set 

of querying costs { }1 2, ,..., Nη η η . In addition, the technique not only helps in identifying the 

optimal operational decisions but can also shed light on the vendor pricing plans that are 

acceptable to an IS manager. 

Table 3: Expected Surplus and Minimum Wait Time to Consider Querying a Server 

 Agency Expected 
Surplus 
( jiU ) 

Minimum Wait Time 
Needed to Query 

( ( )1
i /i i jiT F Uη−= ) 

1 Bureau of Justice 0.583 0.001 
2 Housing and Urban Development 0.128 2.076 
3 ChildStats 0.051 ∞ 
4 Social Security Administration 0.045 ∞ 
5 National Science Foundation 0.019 ∞ 
6 Bureau of Economic Analysis 0.001 ∞ 
7 Economic Research Service 0.002 ∞ 
8 Bureau of Labor 0.000 ∞ 
9 National Institute of Drug Abuse 0.013 ∞ 
10 National Center for Education Stats 0.622 0.198 
11 National Center for Health Stats 0.040 ∞ 
12 Environmental Protection Agency 0.007 ∞ 
13 Federal Reserve 0.000 ∞ 
14 National Inst. for Child Health & Development 0.000 ∞ 
15 Energy Information Administration 0.000 ∞ 
Figure 5 plots the expected surplus against the wait time. For T < 0.001, the query set is 

empty and the expected surplus is negative. For [0.001,0.198)T ∈ , the query set consists of only 
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server 1. At T = 0.198, server 10 also enters the query set and we observe a sudden increase in 

the slope of the expected surplus function. Similarly, at T = 2.076, server 2 also enters the query 

set. The query set does not change subsequently. The expected surplus is maximized at T* = 

2.318 and the corresponding optimal query set consists of servers 1, 2 and 10. These operational 

decisions can be easily computed given data on past performance of the servers and the user 

parameters. 

Figure 5: Expected Surplus against Broker Wait Time (assuming optimal query set q*(T)) 

 

We now conduct some sensitivity analysis to determine the impact of exogenous 

parameters on the expected surplus at the optimal operational decisions. Figure 6 presents the 

impact of the waiting cost and the query fee. First we compute the expected surplus obtained 

from the operational algorithm derived in Section 3 (this is labeled “Algorithm”). 

Simultaneously, we also compute the expected surplus obtained from a simple but reasonable 

heuristic in which we query all servers and wait for 5 seconds for the servers to respond (labeled 

“heuristic”). Clearly, an increase in the waiting cost or the query fee decreases the expected 

surplus even if the operational decisions are optimally adjusted. At the same time, we observe 

that the decay in the expected surplus under optimal operational decisions is not as drastic as that 
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observed with the naïve heuristic. The algorithm is successful in responding to an increase the 

user waiting cost or server fees and ensures that the expected surplus continues to remain 

positive. In contrast, the naïve heuristic quickly deteriorates in performance when there are non-

trivial costs.  

Figure 7 presents a similar plot of the expected surplus against the cognitive cost of 

evaluating information and the user waiting cost. It is evident that the cognitive cost can have a 

significant impact on the expected surplus. This is because the parameter jλ  impacts the value 

realized from each and every document that is retrieved as opposed to the waiting cost (incurred 

once for the entire query) and the query fees (once per server). Yet again, the expected surplus 

under optimal operational decisions can be significantly higher than that under the naïve 

heuristic when the costs are non-trivial.  

Figure 6: Impact of Waiting and Querying Costs on Expected Surplus  
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Figure 7: Impact of Waiting and Cognitive Costs on Expected Surplus under Optimal 

Operational Decisions and Naïve Heuristic 

 

5. A Simulation Based Technique under Convex Cognitive Cost 

In our model in Section 3, the expected surplus jiU from server i was independent of the 

other servers queried. However, complex models of user preferences can generate inter-server 

dependencies even when server response time and relevance score distributions are independent. 

For example, consider the case in which user cognitive cost is convex in the number of 

documents evaluated (P). Under convex cognitive costs, the marginal cost of evaluating a 

document from server i depends on the rank of that document in the display set which in turn 

depends on the quality of documents returned by the other servers. As a result, the expected 

surplus from querying i ( jiU ) does not have a fixed value but is a function of the query set itself. 

The techniques of Section 3 are not directly applicable when a fixed jiU cannot be computed for 

each of the candidate servers. 
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We develop a simulation based technique to determine the broker’s optimal query set and 

wait time. April et al. (2001) and Glover et al. (1999) provide a useful primer on the merits of 

combining simulation and optimization in managing the complexity and uncertainty posed by 

many real-world problems. Our simulation-based technique builds on the results from Section 3 

but additionally incorporates the notion that the expected surplus from a server ( jiU ) is a 

function of the query set. 

To illustrate the use of simulations, we consider a compound stopping rule that generates 

inter-server dependencies. It has been suggested that even if there is an unlimited supply of 

relevant documents, users are unlikely process all of them. For example, Kraft and Buell (1984) 

suggest a fatigue stopping rule that assumes there is an upper bound (PMAX) on P. Feinberg and 

Huber (1996) call this the quota cutoff criteria. We model this by assuming 

( ) Max

Max

AP if P P
C P

if P P
λ ≤⎧

= ⎨∞ >⎩
. This compound stopping rule can be treated as an extreme case of the 

convexity in cognitive costs described above. 

5.1 Determining Optimal q and T 

First, we discuss determination of the optimal wait time given the query set q. We then describe 

how to determine q. Simulation parameters are based on the Fedstats dataset. 

Optimal Query Termination Given Query Set 

Given a query set q, the expected surplus associated with any given choice of broker wait time 

can be determined using Monte Carlo simulations. In each run of the simulation, we draw the 

document relevance scores and server response times from distributions specified in Table 2. 

Next, we evaluate the expected surplus for a range of values of T selected from a grid (e.g., T 

={0.1, 0.2, …, 10}). Given the simulated relevance scores and response times and choice of T, 
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we identify the servers retrieved and compute the surplus from the evaluated documents. Finally, 

the expected surplus associated with each T is obtained by averaging the surplus realized in 

10,000 runs of the simulation. Figure 8 plots the expected surplus against the broker’s wait time 

for the Fedstats data assuming all servers are queried (qi=1, for all i), 0.1iη =  for all i, 1.0=ξ , 

PMAX = 15 and 25.0=λ . The expected surplus is maximized when T* = 3.0 seconds.  

Figure 8: Expected Surplus versus T (Q=15) 

 

Determining the Query Set  

The analysis in Section 3 indicated that the critical score to determine the query set under 

independence in the servers’ expected contribution is ( )1
i /i i jiT F Uη−= . Our simulation heuristic 

extends that insight while incorporating the fact that the expected surplus from a server evolves 

with the query set. The heuristic works as follows. Initially, all servers are queried in the first 

stage of the simulations (Q=N). The optimal wait time is computed as described above. Next, we 

compute the average contribution of each server to the user surplus. The contribution of a server 

in an individual simulation run is obtained by summing the utility from all those documents from 

the server that are evaluated by the user and subtracting the marginal cost of evaluating each 

document. The average contribution is simply the average over all simulation runs. We denote 
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this contribution by ( )jiU q . Unlike Section 3 the average contribution of a server depends on the 

query set q. Next we compute iT = ( )1 / ( )i i jiF Uη− q  for all servers. We identify the server with 

the highest ( )1 / ( )i i jiF Uη− q and set the corresponding qi=0. Next, with the new set of (N-1) 

servers, we again compute the optimal wait time and the average contributions of each of the 

servers. We again identify the server with the highest ( )1 / ( )i i jiF Uη− q and eliminate that server. 

We proceed in this manner until we are left with just one server. In this manner, we evaluate N 

possible choices for q. Finally, we select the option that yields the highest expected surplus 

among these N options.  

In Table 4, we demonstrate this process for the 15 servers identified in Table 2. All 

parameter values are the same as the ones used to generate Figure 8. We begin by querying all 15 

servers. Given this query set, the optimal wait time is 3.0s and the expected surplus is -0.49 units. 

Server 8 has the highest iT  and is eliminated.11 In the next stage, we query the 14 remaining 

servers (second row of Table 4). The optimal wait time is 3.1s, associated expected surplus is -

0.40 and the server with the highest iT  is server 15. Server 15 is now eliminated and we are left 

with 13 servers. This process repeats until we have evaluated all 15 combinations. In the last 

stage, server 1 is the only server that is queried. The optimal wait time is 2s and expected surplus 

is 0.29 units. Among the 15 combinations, the algorithm recommends querying 2 servers, 

namely servers 1 and 10 (i.e., IR servers of Bureau of justice and National center of educational 

statistics). The corresponding optimal wait time is 4.0s and the expected surplus under these 

decisions is 0.57 units. Note that the recommended servers are those that contain the most 

                                                 
11 In case of ties, we eliminate the server with the lowest ( ) /ji iU ηq . Any additional ties are broken randomly. All 

values in Table 4 are rounded to two decimal places. Ties in ( ) /ji iU ηq  were rarely observed. 
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relevant documents and also highly likely to respond within the broker’s waiting period. Unlike 

the results in Section 4, the optimal query set no longer includes server 2. This is because very 

few of server 2’s documents appear among the top 15 documents as long as servers 1 and 10 are 

in the query set and therefore do not enter the evaluation set. This in turn reduces the 

contribution ( ( )jiU q ) of server 2 and therefore increases its iT . The net result is that it is no 

longer optimal to query server 2. 

Table 4: Determining the Optimal Query Set (optimal solution shaded gray) 

 # of  Optimal  Expected   Sever
 Servers  Wait Time  Surplus     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 3 -0.49 U ji(q ) 0.56 0.09 0.03 0.04 0.02 0.00 0.00 0.00 0.01 0.53 0.02 0.00 0.00 0.00 0.00
       T i 0.00 Inf Inf Inf Inf Inf Inf Inf Inf 0.24 Inf Inf Inf Inf Inf

14 3.1 -0.40 U ji(q ) 0.55 0.10 0.03 0.04 0.02 0.00 0.00  - 0.01 0.54 0.02 0.00 0.00 0.00 0.00
       T i 0.00 Inf Inf Inf Inf Inf Inf  - Inf 0.23 Inf Inf Inf Inf Inf

13 3.1 -0.30 U ji(q ) 0.56 0.09 0.03 0.04 0.02 0.00 0.00  - 0.01 0.54 0.02 0.00 0.00 0.00  - 
       T i 0.00 Inf Inf Inf Inf Inf Inf  - Inf 0.23 Inf Inf Inf Inf  - 

12 2.9 -0.19 U ji(q ) 0.55 0.10 0.03 0.04 0.02 0.00 0.00  - 0.01 0.53 0.02 0.00  - 0.00  - 
       T i 0.00 Inf Inf Inf Inf Inf Inf  - Inf 0.24 Inf Inf  - Inf  - 

11 3 -0.09 U ji(q ) 0.56 0.09 0.03 0.04 0.02 0.00 0.00  - 0.01 0.54 0.02 0.00  -  -  - 
       T i 0.00 Inf Inf Inf Inf Inf Inf  - Inf 0.23 Inf Inf  -  -  - 

10 2.9 0.02 U ji(q ) 0.56 0.09 0.03 0.04 0.02 0.00  -  - 0.01 0.54 0.02 0.00  -  -  - 
       T i 0.00 Inf Inf Inf Inf Inf  -  - Inf 0.23 Inf Inf  -  -  - 
9 2.7 0.12 U ji(q ) 0.55 0.09 0.03 0.04 0.02  -  -  - 0.01 0.52 0.02 0.00  -  -  - 
       T i 0.00 Inf Inf Inf Inf  -  -  - Inf 0.24 Inf Inf  -  -  - 
8 2.9 0.21 U ji(q ) 0.55 0.09 0.03 0.04 0.02  -  -  - 0.01 0.54 0.02  -  -  -  - 
       T i 0.00 Inf Inf Inf Inf  -  -  - Inf 0.23 Inf  -  -  -  - 
7 3.3 0.28 U ji(q ) 0.55 0.10 0.03 0.04 0.02  -  -  -  - 0.55 0.03  -  -  -  - 
       T i 0.00 Inf Inf Inf Inf  -  -  -  - 0.23 Inf  -  -  -  - 
6 3.1 0.38 U ji(q ) 0.55 0.10 0.03 0.04  -  -  -  -  - 0.54 0.03  -  -  -  - 
       T i 0.00 Inf Inf Inf  -  -  -  -  - 0.23 Inf  -  -  -  - 
5 3.6 0.44 U ji(q ) 0.56 0.10 0.03 0.04  -  -  -  -  - 0.56  -  -  -  -  - 
       T i 0.00 Inf Inf Inf  -  -  -  -  - 0.22  -  -  -  -  - 
4 3.9 0.49 U ji(q ) 0.57 0.10  - 0.04  -  -  -  -  - 0.58  -  -  -  -  - 
       T i 0.00 23.25  - Inf  -  -  -  -  - 0.22  -  -  -  -  - 
3 3.8 0.56 U ji(q ) 0.56 0.10  -  -  -  -  -  -  - 0.57  -  -  -  -  - 
       T i 0.00 15.47  -  -  -  -  -  -  - 0.22  -  -  -  -  - 
2 4 0.57 U ji(q ) 0.58  -  -  -  -  -  -  -  - 0.59  -  -  -  -  - 
       T i 0.00  -  -  -  -  -  -  -  - 0.21  -  -  -  -  - 
1 1.7 0.29 U ji(q ) 0.54  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
       T i 0.00  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

The above algorithm requires the evaluation of N different query sets rather than 2N 

combinations. The scheme is clearly very efficient in terms of reducing the search space. 

However, this scheme need not be optimal because the expected surplus from a server can 

change with the query set. The algorithm does not re-evaluate servers that have already been 

eliminated in previous stages even though their contribution can be different in a new query set. 
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Thus, it is possible that a reasonably good server is eliminated unnecessarily. In the next section, 

we evaluate the performance of the heuristic. 

5.2 Evaluation 

In order to assess whether the above heuristic to restrict the search space is reasonable, 

we compare the surplus from the algorithm with the surplus that is realized from an exhaustive 

search through all possible combinations of q. Clearly, it is not always feasible to evaluate all 2N 

combinations of q. For example, Fedstats queries over 100 servers resulting in over 2100 

combinations. Even with 30 servers, there are over a billion combinations of q. So, we only seek 

to verify that the algorithm performs well relative to the option of evaluating all 2N combinations 

for relatively small values of N (specifically N=15). Using simulations, we compute a) the 

expected surplus under the query set suggested by our algorithm and b) the expected surplus 

associated with all possible values of q. We find that the optimal operational decisions (and 

consequently expected surplus) under our proposed algorithm is the same as the one identified 

through an evaluation of all possible q.12  

We ran 30 additional evaluation experiments. In each experiment, we choose 8 servers 

randomly from the initial set of 15 servers. With these 8 servers, we determine the optimal query 

set and wait time using our proposed algorithm and by exhaustive evaluation of all 28 possible 

query sets. The results are in Table 5. The proposed algorithm recommended the same query set 

as the one obtained from evaluating all 28 combinations in 28 out of the 30 simulations. In the 

two experiments where the optimal decisions were different, there was no notable difference in 

the expected surplus. The expected surplus from the proposed algorithm averaged over all 30 

                                                 
12 While it takes less than an hour to identify the optimal decisions under our proposed algorithm, exhaustive search 
required nearly 13 days on a machine with two 3.06 GHz processors and a 2 GB RAM. Also note that the search 
space under the latter strategy grows exponentially with the number of servers and will rarely be feasible with more 
servers. 
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experiments is 0.28, which is the same as under exhaustive evaluation.  Thus, even though the 

algorithm does not re-evaluate servers once they are eliminated, its approach of identifying 

servers to eliminate is effective. Simultaneously, it helps significantly reduce the computational 

complexity of the evaluation by reducing the size of the search space. Thus, the algorithm has 

several desirable properties in terms of performance and ability to scale as the number of servers 

(N) increases. We conducted additional sensitivity analysis by varying the parameters , , iξ λ η and 

also considered convex cognitive cost functions of the form ( ) kC P Pλ=  where 1k > . The 

heuristic continued to perform well in these additional tests as well. 

Table 5: Comparison with exhaustive evaluation 

# Simulations 
with Matching 

Decisions 

Exhaustive Search Proposed Algorithm 
Range of 

Exp Surplus 
Average Exp 

Surplus 
Range of 

Exp Surplus 
Average Exp 

Surplus 
28 0.00-0.57 0.28 0.00-0.57 0.28 

6. Discussion and Conclusions 

In this paper, we formulated the decision problem for a broker in distributed IR, 

analytically derived a solution that can be implemented in a computationally efficient manner 

and extended the approach to more complex decision environments. We demonstrated that the 

net surplus can be significantly enhanced by using the approach. Improved user modeling can 

help IS managers in designing and deploying DIR systems that generate greater user satisfaction. 

Various corporations spend large amounts in acquiring and providing centralized access to large 

distributed data repositories in order to empower their information workers. The design of 

intelligent information systems such as intelligent DIR systems will contribute to increased 

adoption of systems by their users and will help generate better return on investment from 

enterprise IS.  
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We now discuss implementation challenges with the proposed approach and conclude by 

discussing future directions for research. Our model assumes that it is possible to estimate the 

user utility (i.e., estimate , ,jk j jU ξ λ ). This raises two important questions tied to implementation. 

The first relates to techniques that can be employed to estimate these parameters and the 

granularity at which these parameters can be estimated. A second question relates to the impact 

of uncertainty in the estimated parameters.  

With regard to techniques for estimating user preferences, there are three approaches that 

can be used in implementing the model. In the IR community, a recent focus has been the design 

of personalized IR systems that personalize search results using models of user interests based on 

previously issued queries and previously visited webpages (Teevan et al. 2005). These 

techniques allow the computation of user-specific relevance scores. An additional approach 

available is the use of econometric models that estimate utility weights using prior choice/clicks 

data. Smith et al. (2001) estimate aggregate utility weights for users at a shopbot. Rossi et al. 

(1996) propose an individual-level multinomial probit model to estimate utility weights for each 

user. Estimating individual-level parameters requires a lot more data on past user activity. When 

such data are not available, segment-level estimation may be more appropriate. In an enterprise 

setting, a segment may be users within a division. In cases where segments are not easily 

specified in advance, latent segments can be identified and estimated (see Kamakura and Russell 

(1989) and Andrews et al. (2002)). Finally, another highly appealing option available is the use 

of conjoint analysis. In conjoint analysis, respondents are presented with options that 

simultaneously vary two or more attributes and are asked to indicate their preferences among 

these options (e.g., one option may entail waiting for an additional second and another may entail 

evaluating an additional document). Respondents’ preference orderings are then used to estimate 
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the utility part-worths. The technique has been widely adopted by marketing researchers and 

practitioners (see Greene et al. (2001) for a detailed survey). A conjoint task can be designed for 

users of a DIR system within an enterprise setting to estimate how users trade off the benefit 

from a document with cognitive and waiting costs.  

Another important issue is that of uncertainty in the estimates. That is, what is the impact 

of errors in ,jk jU ξ  or jλ . If the errors are iid with zero mean, then the optimal decisions need 

not change as long as the expected surplus function in Section 3 is additive and piecewise 

separable. However, it may be possible to exploit the error structure under some circumstances. 

Furthermore, it would be most useful to conduct sensitivity analysis to measure the impact of 

small changes in parameters on the optimal decisions. This can help determine whether to strictly 

implement the decisions generated by the model or to use the solution as an indicator of the 

neighborhood in which the optimal solution may lie.  

There are several interesting avenues for future research. In this paper, we considered an 

IR broker that is interested in maximizing net surplus without any other constraints. There may 

be other objective functions worth exploring and resource constraints worth modeling. Another 

interesting extension will be the study of the algorithms in environments where there is 

considerable overlap in results across servers. Our analysis focuses on federated search where the 

overlap is minimal. Simulations that incorporate the possibility of overlap suggest that the 

techniques described in Section 5 are promising even in the presence of some overlap across 

servers. However, it may be feasible to exploit any knowledge of overlap patterns and develop 

more efficient algorithms for DIR environments with significant overlap. Finally, we considered 

a static wait time for the broker. The approach does not account for information a broker may 

gather in real time during a specific retrieval. For example, during a particular search, a broker 
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may have retrieved the top few documents early on but will end up waiting until the 

recommended waiting period has elapsed or all servers have responded. In this situation, the 

broker may be better off terminating the search early since it knows that the servers expected to 

be most relevant have already responded. Hosanagar (2005) presents an adaptive approach to 

allow the broker to adjust the decisions in real time. Other adaptive techniques and 

metaheuristics to evaluate these alternatives can also prove useful.  
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