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Why do adults engage in cyberbullying on social media? An integration of online disinhibition and 
deindividuation effects with the social structure and social learning (SSSL) model  

 
 ABSTRACT  

The dramatic increase in social media use has challenged traditional social structures and shifted a great 

deal of interpersonal communication from the physical world to cyberspace. Much of this social media 

communication has been positive: Anyone around the world who has access to the Internet has the 

potential to communicate with and attract a massive global audience. Unfortunately, such ubiquitous 

communication can be also used for negative purposes such as cyberbullying, which is the focus of this 

paper. Previous research on cyberbullying, consisting of 135 articles, has improved the understanding of 

why individuals—mostly adolescents—engage in cyberbullying. However, our study addresses two key 

gaps in this literature: (1) how the IT artifact fosters/inhibits cyberbullying and (2) why people are 

socialized to engage in cyberbullying. To address these gaps, we propose the social media cyberbullying 

model (SMCBM), which modifies Akers’ (2011) social structure and social learning (SSSL) model. 

Because Akers developed his model for crimes in the physical world, we add a rich conceptualization of 

anonymity composed of five sub-constructs as a key social media structural variable in SMCBM to 

account for the IT artifact. We tested the SMCBM with 1,003 adults who have engaged in cyberbullying. 

The empirical findings support the SMCBM. Heavy social media use combined with anonymity 

facilitates the social learning process of cyberbullying in social media in a way that fosters cyberbullying. 

Our results indicate new directions for cyberbullying research and implications for anti-cyberbullying 

practices. 
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1. INTRODUCTION 

In 2007, worldwide media reported on the case of Megan, a 13-year-old who was cyberbullied on social 

media by a “cute boy” named Josh she had met online. The two had an intense online friendship that 

ended poorly, with Josh branding Megan a “liar and slut.” His last message to Megan was “you are a bad 

person and everybody hates you. Have a shitty rest of your life. The world would be a better place 

without you.” The next day, Megan committed suicide. The startling twist to this story was that Josh was 

not a teenage boy but an adult female, Lori, who was married with children, had no criminal record, and 

ran a successful advertising business. She told police she had intended to “mess with Megan” because 

Megan had fallen out with her daughter, Sarah. It was later discovered that another adult female had 

helped with the cyberbullying. As this case demonstrates, although cyberbullying is a growing problem 

with adolescents (Gannett 2013), it is also an adult phenomenon that has extended to workplace settings 

(Acohido 2013). For example, nearly half (46.2%) of trainee doctors have experienced workplace 

cyberbullying that has negatively influenced their job satisfaction (Farley et al. 2015). In fact, it is 

estimated that the average online stalker/bully is 41 years old (McFarlane & Bocij 2003).  

A recent workplace cyberbullying case is an good illustration of this problem (Pershing Square 

Law Firm 2013): Ralph Espinoza was mildly disabled and had no fingers on his right hand. In 2006, two 

of his co-workers anonymously created two personal blogs to publish malicious comments about 

Espinoza. They referred to him as the “one handed bandit,” labelled his right hand “the claw,” and offered 

a reward for photos of his hand. This cyberbullying campaign quickly drew attention from numerous 

people, including other colleagues and strangers inside and outside the workplace, who also started to 

cyberbully Espinoza using fictitious (anonymous) names. The harassment continued for over a year and 

caused Espinoza to take medical leave. Although the cyberbullying extended beyond the workplace, the 

courts awarded US$820,000 to Espinoza because his employer did not adequately supervise its employees 

and did not act to thwart the cyberbullying.  

Accordingly, widespread concerns about cyberbullying have inspired research on cyberbullying 

in different disciplines. This literature has included explorations of ethical and moral factors (Tavani & 
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Grodzinsky 2002), gender and age differences (Tokunaga 2010), sociodemographics (Vandebosch & Van 

Cleemput 2009), and the relationships between online delinquent behavior and psychotic and 

symptomatic factors (Hinduja & Patchin 2010). Although previous research has improved the 

understanding of the motivations behind cyberbullying, we highlight two issues that require further study. 

First, evidence consistently shows that people are more likely to bully or stalk online than offline 

(Marcum et al. 2014; Slonje & Smith 2007). Recently, it was even estimated that 3.4 million people over 

18 years of age were harassed online in the United States annually (Baum et al. 2009). Although 

researchers have acknowledge that theories and studies of traditional bullying are not applicable to 

cyberbullying due to differences between online and offline contexts (Dooley et al. 2009; Hinduja & 

Patchin 2008; Slonje & Smith 2007), little research has examined exactly what makes the context of 

cyberbullying different from that of traditional bullying. Four studies that examined this issue highlighted 

the role of anonymity (Barlett et al. 2014; Udris 2014; Varjas et al. 2010; Wright 2014). Although this is 

an insightful start, these studies did not present anonymity as it is understood in the theoretical 

information systems (IS) literature and thus did not explain how and why it encourages cyberbullying or 

what creates anonymity itself. These studies offered only a binary representation of anonymity that 

focuses on lack of identification (yes/no), even though in an online social context, anonymity is highly 

perceptual and—aside from lack of identification—includes diffused responsibility, lack of proximity, 

knowledge of others, and confidence in the system’s functionality (Lowry et al. 2013; Pinsonneault & 

Heppel 1998).  

Second, it has been recognized that cyberbullying in social media can cause more psychosocial 

and emotional damage than traditional offline physical bullying because of the increased volume, scale, 

scope, and number of witnesses (Gillespie 2006). Worse still, through social media, cyberbullying can 

spread with a rapid, broad scale that it is almost unstoppable (Huang & Chou 2010; Li 2008). For 

example, in the Ralph Espinoza case, the wide exposure to the cyberbullying activities and the extensive 

interaction with peers exhibiting cyberbullying behaviors on social media demonstrate the potential of 

social learning and influence to run amok very quickly online. However, we are not exactly sure why this 
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social learning and influence occurs. Therefore, a related unexplored issue is to what extent leading social 

learning and criminology research, such as that involved with social learning theory (SLT) (Akers 2011), 

can be used to explain cyberbullying, to what degree such theory must be modified. 

Motivated by these issues in cyberbullying research, and by the fact that most studies focus on 

adolescents [adult cyberbullying is overlooked in research (Nycyk 2015) and is generally ignored in 

management practice, even though much occurs at work or amongst coworkers (Baum et al. 2009)], we 

propose a new model to explain adult cyberbullying that accounts for the social media artifact of 

perceived anonymity in a social learning context. Our model, the social media cyberbullying model 

(SMCBM), builds upon Akers’ (2011) seminal work on criminology and deviance. Our study aims to 

explain the pervasiveness and high transmissibility of adult cyberbullying by adopting the perspective of 

SLT, which posits that criminal behaviors are learned through association with deviant others (Akers 

2011). We thus also examine the extent to which the social learning components (including differential 

association, reinforcement, and definition) that are relevant to traditional (non-cyber) deviance and crime 

are also relevant to cyberbullying (e.g., Akers 2011), and if so, how any of these are influenced by 

perceived anonymity and the use of social media. We tested the SMCBM with 1,003 adult social media 

users who had a range of experiences with different types of cyberbullying. The results support the 

SMCBM and lay a foundation for compelling future cyberbullying research. 

2. BACKGROUND ON CYBERBULLYING 

2.1 Defining Cyberbullying 

The literature does not clearly distinguish between cyberbullying, cyberstalking, and cyberharassment. 

Cyberbullying generally refers to deliberate and hostile behavior intended to harm people using the 

Internet by leveraging the imbalance of power between bullies and victims (Limber 2012; Smith et al. 

2008). Notably, cyberbullying can involve stalking behaviors—such as sending threatening and harassing 

e-mails or messages and passing on rumors—as well as harassment, flaming, and denigration (Li 2006). 

Cyberharassment can be defined as repeated or one-off malicious Internet behaviors that are unsolicited 

but noticed by victims, which are intended to upset, disturb, or threaten other people (Piotrowski 2012; 



5 
 

Workman 2010). Cyberstalking generally refers to a series of repeated intrusive behaviors performed via 

the Internet, such as gathering private information or direct communication, that are intended to convey 

implicit and explicit threats and thus induce fear in online victims (Bocij 2004; Meloy 2001; Robert & 

Doyle 2003). Cyberstalking is also known by other names such as online harassment, online abuse or 

cyberharassment.” (Philips & Morrissey 2004, p. 67). However, unlike cyberbullying and 

cyberharassment, cyberstalking might involve following a former lover online but not involve harassing 

behaviors (i.e., victims do not always know they are victims). 

In reviewing these definitions, we consider cyberstalking and cyberharassment to be specialized 

forms of cyberbullying. Moreover, we argue that cyberbullying is a more appropriate term for the current 

study because cyberstalking generally involves repeated behaviors (Meloy 2001), whereas our scope 

includes one-off harassing behaviors. Moreover, cyberbullying typically involves aggressive behavior and 

an imbalance of power (Sourander et al. 2010). Such deliberation and power-imbalance causes more 

psychosocial and emotional damage than traditional offline physical bullying (Gillespie 2006). Thus, 

given our context, when we refer to cyberbullying, we refer to social harassment on social media, whether 

it takes the form of stalking, bullying, or harassment. Our definition necessarily excludes other online 

deviant behaviors with a weaker social media and interpersonal orientation, such as Internet addiction, 

pornography addiction, computer abuse, and online scams. 

2.2 Gaps in the Cyberbullying Literature 

Studying adult cyberbullying is challenging because most of the research involves juveniles, and the 

nascent literature has not yet developed a cohesive approach to studying cyberbullying. However, this 

broader cyberbullying literature is arguably the best starting point for building a theoretical model to 

better understand adult cyberbullying. We thus performed a review of the related literature (135 articles), 

as detailed in Online Appendix A. In this section, we summarize how this review informed our theory-

building. Of the 135 articles, fewer than half provided empirical evidence, and most of those that did were 

atheoretical and focused on juvenile offenders. A large portion of these studies have nonetheless appeared 

in high-quality and high-impact-factor journals, as noted in Online Appendix A.  
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In the cyberbullying articles that were theory-driven and supported by empirical evidence, the 

most frequently used theories were from psychology and criminology, including general strain theory, 

SLT, social cognitive theory, social norms theory, social dominance theory, and social ecological theory. 

However, these theories are either macro-level (environment level) theories that explain how 

cyberbullying can be directly influenced by the general environment or micro-level (individual level) 

theories that investigate the cognitive processes of individuals when they are involved in cyberbullying. 

Thus far, the cyberbullying literature has not established a theoretical integration of the macro- and micro-

perspectives, which has been achieved elsewhere in the deviance literature of Akers (2011). Thus, 

cyberbullying research currently lacks a cohesive theoretical approach to unifying inconsistent results.  

Moreover, simply adopting models that were derived from offline/physical contexts is unlikely to 

result in accurate explanations of the unique social media context of cyberbullying. Although the 

cyberbullying literature is replete with claims that the nature of cyberbullying is different from that of 

offline bullying, most of these studies have glossed over the central issue: the role of the IT or social 

media artifacts themselves in promoting cyberbullying. Most of the reviewed studies have inferred or 

acknowledged in passing that such artifacts are factors but have rarely explained these factors 

theoretically. For example, Raskauskas & Stoltz (2007) made two brief mentions of the “anonymity of 

electronics” (p. 566), with no further explanation, measurement, or modeling. Interestingly, although they 

cited Ybarra (2004) as support for electronic anonymity, Ybarra’s study did not mention anonymity. Even 

the most recent cyberbullying study, which is forthcoming in a top journal, only mentioned anonymity in 

passing (Barlett et al. 2016). This literature is replete with this kind of insubstantial treatment of and 

vague assumptions regarding anonymity. However, this point is not meant to condemn the current 

research, because it has been conducted primarily by psychologists and sociologists, whose focus is not 

on social media artifacts and how they might foster anonymity. This is where IS research can contribute. 

To date, only four studies have dealt with IT artifact issues (doing so as a secondary 

consideration), and three of these offered only a binary representation of anonymity, which focused on 

lack of identification (yes/no) (Barlett et al. 2014; Varjas et al. 2010; Wright 2014). Another study 
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inferred anonymity but focused more on the role of the disinhibition/disassociation created by online 

interactions (Udris 2014). Thus, Varjas et al.’s (2010) qualitative account of 20 high schoolers stands out 

as particularly insightful because it addresses both anonymity and disinhibition.  

The initial work on the cyberbullying IT artifact is a good start, but it is not a complete picture of 

anonymity or disinhibition in cyberbullying, and it omits explanations of causal mechanisms, which are 

crucial to theory-building. Again, IS researchers have discovered that in an online social context, 

anonymity is highly perceptual and involves not just a lack of identification but also diffused 

responsibility, lack of proximity, knowledge of others, and confidence in the system’s functionality 

(Lowry et al. 2013; Pinsonneault & Heppel 1998). Outside of cyberbullying, these two studies and others 

have pinpointed the important underlying mechanisms of disinhibition (e.g., Suler 2004) and 

deindividuation (e.g., Silke 2003) in changing people’s online behaviors.  

3. THEORY: THE SSSL MODEL IN CYBERBULLYING CONTEXTS 

Given the opportunities revealed from the literature, we first propose a theoretical model that includes 

both macro- and micro-components related to social learning. We do so by adopting, for the first time in 

cyberbullying research, a criminology theory that was designed for macro- and micro-components. Our 

model is a contextualized version of Akers’ (2011) social structure and social learning (SSSL) model of 

crime and deviance. The SSSL model builds on the core social learning (i.e., micro) components of SLT, 

which Akers himself developed. For the macro-components, the SSSL model adds environmental social 

structure and sociodemographic factors that drive the model.  

Accordingly, before formally proposing our model, we present its theoretical foundation. We first 

explain the micro-factors derived from SLT. We then explain the macro-factors derived from the SSSL 

model. Next, we propose our model, which is a unique contextualization of the SSSL model that accounts 

for social media artifacts that foster anonymity and related disinhibition and deindividuation. We posit 

that these factors change the nature of social learning such that cyberbullying is fostered. 

3.1 An Overview of SLT and Its Response to Sutherland’s Theory of Differential Association 

Akers’ early education and career took place during an era when Sutherland’s theory of differential 
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association was widely used to explain crime (Akers 2011) but was beginning to be criticized. Sutherland 

(1947) suggested that deviant behavior is not genetically inherited or predetermined, nor is it learned 

through media, news, or movies (a point we later challenge with social media, which allows people 

unprecedented association opportunities). Sutherland maintained that in American society, individuals 

associate personally with both law-abiding people and criminals. Whether a person becomes a deviant or 

a law-abiding citizen depends on the extent to which the individual has been exposed to criminal values 

(associated differently) versus law-abiding values. Ultimately, criminal behavior is socially learned in the 

same way as law-abiding behavior (Sutherland 1947). A key critique of Sutherland’s differential 

association is that he did not specify the “precise underlying learning mechanisms,” except for noting that 

learning is more than simple imitation (Akers 2011, p. 41) and that it can include gestures and verbal 

communication (Sellers & Winfree 1990, p. 23). Besides lacking accurate specification of the learning 

process, Sutherland also did not address the order in which the learning process takes place (Cressey 

1960, p. 54). 

 Burgess & Akers (1966) addressed these criticisms by positing that Skinner’s (1953) 

psychological behaviorism could supply relevant information by specifying the underlying learning 

mechanisms that Sutherland’s theory lacked. This was not the only modification that Akers proposed 

(2011). Besides modifying Sutherland’s (1947) definitions, Akers modified the underlying learning 

mechanism using Bandura’s (1977) cognitive SLT and introduced the concepts of imitation and 

reinforcement into his theory of social learning (Akers 1973; Sellers & Winfree 1990). The resulting 

theory was called the SLT of crime (Akers et al. 1979), which included “differential association, 

differential reinforcement, imitation, and definitions” (Akers 2011, p. 48). Although each element can be 

expressed in the form of an individual hypothesis, an underlying assumption of SLT is that these elements 

are considered as a whole (Akers 2011). This means that when all the elements lean more toward deviant 

behaviors, the probability of deviant behaviors increases (Akers 2011, p. 48).  
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3.2 The Core Components of SLT 

3.2.1 Differential association 

In contrast with earlier literature (for example, Cohen (1955) proposed the subculture theory of crime, 

according to which crime and criminal attitudes are formed within gangs and criminal subcultures), 

associations in SLT do not refer to particular gang or criminal subcultures, although these can also be 

differential associations. For Sutherland (1947), and even more so for SLT, associations refer to any 

social interactions. Consequently, differential association is the process by which individuals directly and 

indirectly interact and identify with others to learn deviant or acceptable behaviors (Akers et al. 1979). 

For SLT, the relevant social groups can change during an individual’s development (Akers 2011). In 

relation to cyberbullying, differential association means that cyberbullies-in-the-making associate with 

different social groups (i.e., ones with cyberbullies in them) than conforming people (i.e., non-

cyberbullies). 

SLT emphasizes that differential association results in interactional peer influence but not peer 

pressure, which plays only a marginal role in deviant behavior (Akers 2011, p. 63). When individuals are 

associated with people who perform certain behaviors, they are provided with a social environment “in 

which exposure to definitions, imitation of models, and social reinforcement for use of or abstinence from 

any particular substance take place” (Akers et al. 1979, p. 638). Thus, deviant acts are partially learned 

from deviants. Likewise, non-deviant acts are learned from non-deviants (Akers 2011). Recent research 

has suggested that in an social media context, differential associations can include online friends, 

influential online personalities (e.g., bloggers and celebrities), and even anonymous virtual group 

members, in addition to offline intimate personal groups (Hawdon 2012; Pauwels & Schils 2016). We 

leverage these social media-related insights in our theoretical model.  

3.2.2 Differential reinforcement  

Differential reinforcement refers to the positive and negative outcomes that are anticipated to result from 

an act based on observation of the consequences of similar behaviors performed by others. Akers (1998) 
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points out that differential reinforcement is considered “the core behavior-shaping mechanism” (Tittle et 

al. 2012, p. 864) of SLT, because all the cognitive and non-cognitive elements of social learning (i.e., 

definitions, imitation) are first shaped largely by the reinforcement process. In general, if rewards and 

positive consequences are observed, the behavior will be reinforced over time; conversely, if punishments 

and negative outcomes are observed, the behavior will be thwarted over time.  

There are four reinforcement mechanisms that can either strengthen or weaken a behavior (Akers 

2011): (1) positive reinforcement (providing rewards), (2) negative reinforcement (removal of 

punishments), (3) positive punishment (providing punishment), and (4) negative punishment (removal of 

rewards). Although there are similarities between these concepts and their counterparts in deterrence 

theory and rational choice theory (RCT), they should not be conflated. 

Differential reinforcements may seem similar to deterrence and rational choice theories of crime. 

For example, deterrence theory includes punishment, and the RCT of crime entails sanctions and rewards 

(Akers 1990). Deterrence theory also features specific deterrence, which is self-learned consequences, 

and general deterrence, which is the observed experience of others being punished (Gibbs 1975). Thus, 

deterrence theory implicitly entails learning, but unlike SLT, deterrence theory does not outline specific 

learning mechanisms beyond specific and general deterrence (Gibbs 1975). Also, deterrence theory does 

not highlight the roles of associations, definitions, or balance probability (e.g., rewards and costs) (Gibbs 

1975). The RCT of crime, especially Becker’s early version (1968), involves rational calculations 

intended to maximize benefits, and it is therefore the “economist’s analysis to crime,” as Becker called it 

(p. 2). SLT does not explain crimes in terms of rational cost-benefit calculations aimed at maximizing 

benefits but rather as actions learned through associations with criminals. 

3.2.3 Imitation  

The imitation construct was later added to SLT by Akers et al. (1979), following Bandura’s (1977) 

theorizing.i Imitation takes place when one observes behaviors and behavioral consequences and then 

decides to do the same (Akers 2011). Pondering the consequences of a behavior links imitation to 

reinforcement. It is crucial to SLT that when people are exposed more to deviant role models than to non-
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deviant role models, they are more likely to imitate the deviant role models (Sellers & Winfree 1990). 

The learning mechanisms, which for SLT include imitation and observational learning, explain not only 

how people become deviants but also the maintenance and desistance of deviant behavior (Akers 2011). 

However, SLT posits that imitation is “more important in the initial acquisition and performance of novel 

behavior than in the maintenance or cessation of behavioral patterns once established” (Akers & Sellers 

2004, p. 89). Akers et al. (1979) suggest that “after the initial use, imitation becomes less important” 

(Akers et al. 1979, p. 638) in predicting sustained behavior. They found that imitation variables explain 

“almost none of the variance” (for about only 0.1% of various kinds of abuse behavior) in predicting 

longitudinal deviant behaviors (Akers et al. 1979, p. 651). Thus, we do not model or measure it and 

instead assume it to be a causal mechanism of the SL process. 

3.2.4 Definitions 

In SLT, definitions “are orientations, rationalizations, definitions of the situation, and other evaluative and 

moral attitudes that define the commission of an act as right or wrong, good or bad, desirable or 

undesirable, justified or unjustified” (Akers & Sellers 2004, p. 86). Notably, definitions arise from the 

vicarious experience of differential reinforcement and the direct experience of imitating others. For SLT, 

because definitions can strengthen deviant behavior, they play a key role in explaining deviant behavior. 

Akers (2011) distinguished among three types of definitions: positive, negative, and neutralizing. Positive 

definitions result in the approval or acceptance of deviant behavior, negative ones result in the 

disapproval of such behavior, and neutralizations result in behavioral justification, which at a minimum is 

a form of positive, temporary approval. In this way, Akers links neutralizations, originally put forward by 

Sykes & Matza (1957), to definitions. Akers views neutralization as an extension of differential 

association theory in the sense that neutralizations are learned from deviant peers. Using neutralization 

techniques, deviants accept deviant acts as “all right under certain conditions” that are seen as 

“exceptional” (Akers 2011, p. 36). Thus, deviants use neutralization techniques to characterize a given set 

of conditions as exceptional, which in turn makes an act that in other circumstances would be morally 

unjustifiable feel acceptable.  
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3.3 The SSSL Model: Integrating Social Structures with SLT 

The SSSL model is an extension of SLT that adds macro-factors to the micro-factors of SLT.ii As a 

framework for cross-level theory integration, the SSSL model makes it possible to combine macro-level 

social structure theories with micro-level social learning variables to explain deviant behaviors. The 

motivation for considering the influence of social structure variables in SLT is that social structure 

determines the “general culture and structure of society and the particular communities, groups, and other 

contexts of social interaction” (Lee et al. 2004, p. 17) that influence social learning mechanisms, 

including the people with whom one is associated, reinforcement stimuli in the learning environment, and 

group norms regarding what is approved and disapproved. Online Appendix B summarizes our literature 

review of the SSSL model-based studies on which we build. Only two of these (Holt et al. 2010; Morris 

& Higgins 2010) have investigated a form of cyberdeviance using the SSSL model. Neither Holt et al. 

(2010) nor Morris & Higgins (2010) studied how social media artifacts influence social learning. 

In the SSSL model, social structure “can be conceptualized as an arrangement of sets and 

schedules of reinforcement contingencies and other social behavioral variables” (Lee et al. 2004, p. 17) 

that create a deviance-producing or deviance-preventing environment that shapes an individual’s behavior 

through the social learning process (Verrill 2005). In the SSSL model, Akers (2011) distinguishes four 

categories of social structural variables that can be used to predict social learning, as shown in Figure 1.  

Figure 1. An Overview of Aker’s (2011) SSSL Model, which Extends SLT 
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The four categories are: (1) structural crime correlates, which include geographical, societal, 

cultural, social, and community differences; (2) sociodemographic and socioeconomic crime correlates, 

which deal with one’s location in the social structure (e.g., age, gender, income, employment, class, and 

religion); (3) theoretically defined structural causes, such as those involving social disorganization (e.g., 

class conflict, oppression, and racism); and (4) different social locations of primary and secondary 

reference groups (e.g., family, peers, church, school, and work). The effects of structural variables on 

crime mean that a person’s race or place of residence do not directly cause crime. Rather, structural 

variables explain why people of certain ages or races may associate with certain reference groups, from 

whom they learn definitions, crime techniques, and differential reinforcements of criminal behavior. 

3.4 Proposing the SMCBM based on the SSSL Model and SLT  

Here, we present an overview of how we contextualize the SSSL model for cyberbullying, which results 

in the SMCBM. Figure 2 outlines this proposed theoretical model. Table 1 summarizes how we map the 

key social learning constructs to constructs that are more closely contextualized to cyberbullying. As 

follows, we explain how cyberbullying maps to the SSSL model and SLT. In the hypothesis section, we 

then return to the Ralph Espinoza case and discuss it using these principles. 

First, although there is no strict order in which the social structure elements must be applied, we 

posit that moving from offline social interactions to interacting through social media can result in a 

meaningful shift in a person’s social environment. First, the social group one affiliates with offline is 

replaced by the group of people one observes or interacts with on social media (i.e., structural 

correlates/social organization [the first SSSL model category] and differential social location in reference 

groups [the fourth SSSL model category]). Thus, whether lurking and observing a heated Discuss™ 

debate on rival sports teams or actively engaging in discussions about politics on Facebook™, a person 

takes up a virtual affiliation with a sub-community and starts to internalize its rules of engagement and 

norms regarding cyberbullying. Characteristics of these social media sub-societies—such as culture, 

social cohesion, social stability, surveillance, and informal control—can also differ across different forms 

of social media. For example, some Reddit™ communities might have strict moderators (moderators are a  
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Figure 2. The Proposed Theoretical Model: The Social Media Cyberbullying Model (SMCBM) 
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Table 1. Mapping of Key Social Learning Factors to this Research 
Social 
Learning 
Concept 

Definition of Construct from SLT Constructs Used in Our Research Model 

Differential 
association  

The process by which individuals 
directly and indirectly interact and 
identify with others who already engage 
in deviance to learn deviance, through 
the norms and frequency of these 
behaviors. 

We use cyberbullying negative social influence 
(norms and frequency) to reflect the extent to 
which individuals are exposed to the norms and 
cyberbullying of people who are socially important 
references (e.g., friends, family, colleagues, and 
people they follow online).  

Differential 
reinforcement 
(including 
imitation)  

The frequency, amount, and probability 
of rewards (i.e., negative reinforcement, 
encouraging deviance) and 
costs/punishment (i.e., positive 
reinforcement, blunting deviance) 
associated with deviant behaviors (both 
through one’s own experiences and 
through vicarious experiences of 
observing others through differential 
association). This subsumes the potential 
imitation process of social learning.iii 

To represent negative differential reinforcement, 
we use cyberbullying costs, which represents a 
person’s perceptions of any potential intrinsic or 
extrinsic losses that could occur from a 
cyberbullying act. 
 
To represent positive differential reinforcement, 
we use cyberbullying benefits, which represents a 
person’s perception of the potential intrinsic or 
extrinsic gains that could occur from a 
cyberbullying act. 

Formation of 
definitions 

Whether a deviant behavior is perceived 
as good or bad based on learned 
attitudes, beliefs, morality, and 
neutralization. The neutralizing 
definition is whether the deviant 
behavior can be justified as good. 

We use cyberbullying situational morality as a 
positive definition to reflect the extent to which a 
person believes a given form of cyberbullying to 
be unethical. We use cyberbullying neutralization 
as a negative definition to represent the degree to 
which a person suspends their offline moral 
judgment and instead rationalizes a given form of 
cyberbullying as acceptable.  
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common feature in this tool) who block people for cyberbullying, whereas others might be known for 

unmoderated bullying behavior.  

Second, the scale and scope of cyberbullying allows people, through social media, to affiliate and 

interact with more communities than is possible through other means. We describe this as increased 

“social media reach.” Today, unlike in any other time in history, a person in Des Moines, Iowa can 

communicate with and befriend someone—whom they have never met in person—in Tanzania, and have 

similar relationships with hundreds of others. Unfortunately, the same is true for bullying. Social media 

allows different kinds of people (e.g., with different sociodemographic/socioeconomic backgrounds) to 

affiliate with the same social communities (i.e., social structure category two and category three).  

For cyberbullying, the greater social media reach provided means that people can observe a greater 

variety of bullying, differing norms regarding cyberbullying, and a greater variety of bullies (e.g., 

children, working adults, parolees, celebrities, politicians, felons, sex offenders, cult members, retirees, 

veterans, lesbian, gay, bisexual, and transgender [LGBT] advocates, terrorists, and “shut ins”). We use 

standard elements of social structure category two (i.e., structural crime correlates), using basic 

demographics that are typically used as social learning correlates (e.g., gender, age, education, income, 

employment), but we also add a crucial factor for social media that should drive one’s exposure to 

negative social influence: hours of social media use per day. 

Third, we posit that the social media artifact itself changes the social structure. That is, social 

media strengthens the perception of anonymity, which fosters the underlying causal mechanisms of online 

disinhibition and deindividuation that change social learning and encourage cyberbullying. When people 

feel anonymous online and are considering cyberbullying, their increased disinhibition and 

deindividuation will change their differential reinforcement to downplay perception of risk and 

exaggerate perception of reward. Likewise, their definitions will be skewed such that negative definitions 

(e.g., neutralization) will increase and positive definitions (e.g., situational morality) will increase. These 

will then foster cyberbullying. Importantly, all of these social learning factors are reciprocal and self-

reinforcing over time, as emphasized in the literature, even though they are rarely measured as such 



16 
 

(Akers 2011). Next, we explain the causal mechanisms of perceived anonymity on social media.  

3.5 How Social Media Fosters Perceived Anonymity  

We argue that perceived anonymity plays a role in traditional crimes, even though criminological theories 

(e.g., SLT, deterrence theory, and RCT) may not specifically or directly theorize this role. (For example, a 

robber may use a mask in an attempt to avoid identification.) Although anonymity is not formally 

identified by criminological theories, several studies of criminology and deviance highlight the role of 

perceived anonymity in fostering deviant outcomes. For example, urban settings with higher population 

density and population mobility help to foster a sense of anonymity that enables crime and deviance 

(Clear et al. 2003; Crutchfield 1989; Crutchfield et al. 1982). Never mind that in urban environments, 

perpetrators are more likely to be caught on camera than in nonurban environments—perceptions are 

what matter. For instance, Clear et al. (2003) and Warner & Pierce (1993) suggest that environments 

perceived as anonymous as a result of residential mobility reduce people’s sense of commitment, 

surveillance, and informal social control, which further weakens social stability (Crutchfield et al. 1982). 

Similarly, according to Trumbull (1989), a more anonymous environment created by overcrowding (high 

population density) increases criminal opportunities. Danzinger (1976, p. 292) also points out that 

“anonymity makes identification of criminal suspects more difficult;” thus, crime rates in large cities tend 

to be higher because of the reduced apprehension of perpetrators. Jackson (1991, p. 384) argues that 

anonymity decreases social cohesion and restrains law enforcement, which influences “the ease of crime 

commission.” Thus, anonymity serves as a macro-level predictor of general deviance in the physical 

world, and its role is stronger online.  

However, perceived anonymity is much more complex than mere lack of identification. The five 

related sub-constructs of perceived anonymity established by Pinsonneault & Heppel (1998) are 

foundational to our explanation of how social media artifacts change the social structure that influences 

social learning: lack of identification, diffused responsibility, lack of proximity, lack of knowledge of 

others, and confidence in the system’s functionality. Building on Pinsonneault & Heppel (1998) and 

Lowry et al. (2013), we define these sub-constructs as follows: lack of identification is the degree to 
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which potential cyberbullies believe their personal identities will not be revealed by the social media 

system; diffused responsibility is the degree to which potential cyberbullies believe they will not be held 

accountable for their cyberbullying on social media; lack of proximity is the extent to which potential 

cyberbullies believe others are not physically close enough to their computer to observe their 

cyberbullying; lack of knowledge of others is the degree to which potential cyberbullies believe others in 

the social media system do not know them well enough to recognize them; and confidence in the system 

to function is the degree to which potential cyberbullies have confidence that the social media system will 

not malfunction, involve secret monitoring, or have “back doors” that will reveal their identity against 

their wishes. Given these definitions, it is clear that the meaning of anonymity is richer in a social context 

(Lowry et al. 2013) in which “anonymity can only significantly affect disinhibition, and other behaviors 

in general, when social evaluation is an important source of inhibition” (Pinsonneault & Heppel 1998, p. 

97). We argue that perceived anonymity’s role in cyberbullying is multidimensional and subjective.  

Several key factors explain why the five factors of perceived anonymity are altered in social 

media social structures and why they are highly subjective. First, several technical features of social 

media allow for increased anonymity, such as using pseudonyms, throwaway accounts, and false 

identities (i.e., lack of identification). Second, many sophisticated tools can be used outside of social 

media (e.g., browser extensions) that can further hide identity from social media providers (i.e., lack of 

identification and confidence in the system). Third, people are more likely to harass or bully people they 

do not know (Ybarra & Mitchell 2004) (i.e., knowledge of others and lack of proximity). Fourth, social 

media introduces dramatic shifts in scope and scale. Users can target thousands of people, engage in more 

frequent and more intense interactions, and reach people who are unreachable offline (Mangolda & 

Faulds 2009) (i.e., diffused responsibility and knowledge of others). Fifth, prosecuting cyberbullies 

requires law enforcement authorities to obtain Internet protocol (IP) addresses and other information from 

Internet service providers, which often are located in different countries or jurisdictions only governable 

by national law enforcement (i.e., diffused responsibility and confidence in the system). This means that 

cyberbullying is difficult to prosecute even when it involves a crime (e.g., a direct threat) and that people 
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are less likely to witness the arrests and prosecution of cyberbullies.  

3.6 How Cyberbullying Anonymity Fosters Disinhibition and Deindividuation and Changes Social 
Structure and Social Learning  

We now explain that perceived anonymity facilitates the underlying causal mechanisms of disinhibition 

and deindividuation, and it is these factors that desensitize people such that their social learning is altered 

to increase their willingness to engage in cyberbullying. Just as alcohol may disinhibit some people and 

consequently give them the courage (or stupidity) to pick a fight with a member of a biker gang at a bar, 

anonymity’s disinhibition and deindividuation mechanisms foster acts of online deviance in which people 

would not normally engage. 

The relationship between criminal behavior and the anonymity of cyberspace has been found to 

be significant in two empirical studies (Baggili & Rogers 2009; Barlett & Gentile 2012), but it has not 

been clearly explained. The theory of online disinhibition—which posits that several macro-level online 

characteristics are related to the high rate of online crime/deviance (Suler 2004)—offers an explanation 

for the prevalence of online deviance. Li (2007, p. 4) likewise argues that anonymous computer-mediated 

communication “not only fosters playful disinhibition but reduces social accountability,” leading to more 

engagement in aggressive acts. Consistent with this claim, Delmonico & Griffin (2008) suggest that 

online disinhibition explains “why the Internet is an ideal venue for problematic sexual behavior” (p. 

461). Lapidot-Lefler & Barak (2012) have also used online disinhibition to explain flaming behavior and 

suggest that the disproportionately high occurrence of deviant behaviors such as “violence, incitement, 

flaming, and verbal attacks” on social media should be attributed to online disinhibition (p. 434). Thus, 

we argue that due to the distinct nature of social media, disinhibition effects will influence the social 

psychological process of individuals committing cyberbullying. Specifically, online disinhibition occurs 

when individuals feel free to perform behaviors in cyberspace that they feel inhibited from performing 

offline (Lowry et al. 2013; Suler 2004). 

Importantly, in describing the disinhibition effect, Suler (2004) regards anonymity as the 

principal factor of increased disinhibition online, which in turn leads to cyberdeviance. For concision, we 
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too focus primarily on anonymity; it allows more straightforward conceptualization and measurement. 

According to Suler (2004), the disinhibition effect occurs because a high degree of anonymity enables 

people to easily separate their online actions from their offline identities and “avert responsibility for 

those behaviors, almost as if superego restrictions and moral cognitive processes have been temporarily 

suspended from the online psyche” (Suler 2004, p. 322). Such disinhibition has been predicted to exert 

significant influence over cyberbullying (Hinduja & Patchin 2008) and cyberstalking (Bocij & McFarlane 

2003), but our study is the first to explain and test this relationship.  

The second causal mechanism fostered by anonymity is deindividuation, which is “the loss of 

one’s sense of individuality and personal responsibility” (Valkenburg & Peter 2011, p. 122). It has been 

shown that anonymity (either in online or offline settings) is one of the major causes of deindividuation 

(Silke 2003). Anonymous conditions facilitate deindividuation by causing a loss of self-awareness (Silke 

2003). The social identity model of deindividuation (Reicher et al. 1995) also proposes that “anonymity 

promotes a shift in the kind of self-awareness from the personal to the group” (in this model, the process 

is also called depersonalization) (Lea et al. 2001, p. 527). The “sense of responsibility for actions online” 

will be inhibited (Brink 2014, p. 4), and individuals may convince themselves that they are not 

responsible for their online deviant behaviors (Freestone & Mitchell 2004; Harris & Dumas 2009). In 

addition, depersonalization caused by anonymity magnifies the influence of group norms and thereby 

makes it easier for individuals to learn negative definitions from deviant peers (DeHue et al. 2008).  

4. OPERATIONAL MODEL AND HYPOTHESES 

The hypotheses, depicted in Figure 2, closely follow our theoretical review that created SMCBM, which 

is a modification of SSSL to fit the cyberbullying context. Here, we start with predictions of how the IT 

artifact of cyberbullying anonymity changes the influence of the social learning constructs. We then 

explain how these influence cyberbullying frequency. We refer back to the Ralph Espinoza case as an 

illustration of these relationships and of how social learning influences cyberbullying. 
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4.1 How the IT Artifact of Perceived Anonymity Can Change Social Learning Outcomes 

4.1.1 How Cyberbullying Anonymity Influences Differential Association 

Again, differential association is the process by which individuals directly and indirectly interact and 

identify with others who engage in deviant behaviors to learn such behaviors. Consequently, our surrogate 

for this construct is negative social influence. We argue that perceived anonymity online encourages more 

association with those who engage in deviant behaviors. In the Ralph Espinoza case, anonymity allowed 

more co-workers to join. Worse, it allowed unknown people outside of work to observe and join the 

negative social spectacle.  

We posit that anonymity fosters this problem for a couple of reasons: Most importantly, online 

anonymity allows one to associate with people who engage in deviant behaviors with whom one would 

not normally associate offline because of socials restraint and potential embarrassment, as well as lack of 

access/reach. According to Neal (2010), people with relatively good social status are less willing to be 

associated with aggressive peers in a non-anonymous setting, because association with deviant peers can 

damage their social position. However, such restraint does not exist if aggressive behaviors are conducted 

anonymously. In the Ralph Espinoza case, people from outside work anonymously joined the fray in large 

numbers; this would be highly unrealistic in the physical world. Recall that a key causal mechanism of 

anonymity is behavioral disinhibition (Lowry et al. 2013; Suler 2004). Such inhibition should also extend 

to association. That is, it should be much easier and less risky to associate with social deviants 

anonymously online (e.g., associating with highly profane, angry, criminal, or racist people) than to do so 

offline. For example, it is much less socially risky for most people to visit a neo-Nazi Subreddit 

anonymously than to attend a neo-Nazi recruitment meeting. Notably, the more one affiliates with deviant 

groups or people, the more negative social influence (NSI) will be experienced, which we explain next. 

Both the SSSL model and the SLT posit that deviant behaviors are learned from behavioral 

models that emerge during social interaction. Differential association attempts to capture the extent to 

which individuals are exposed to deviant behavior through their associations with others. In the physical 

world, SSSL indicates that the association would be a physical association with criminals. In our context, 
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we posit that instead the association is virtual and involves observing cyberbully on social media. This 

negative exposure is called NSI. Such negative social influence is associated with traditional crimes 

(Kahan 1997). In our context, NSI can be expressed from the SLT literature (Akers et al. 1989) as a 

subjective norm [the degree to which one perceives important referent others approve/disapprove of 

specific behaviors (Ajzen 1991)] and frequency (how often behavior is observed) as the perception that 

comes into play when individuals learn to perform cyberbullying from others online by virtue of SLT 

phenomena, such as differential reinforcement and definitions. This is shown in the Ralph Espinoza case: 

the more people got involved, the less people spoke out, and the longer it went on, the worse the 

cyberbullying became.  

Moreover, such anonymity allows for “lurking” behaviors in which one can observe offensive 

behaviors online committed by others without any public or social responsibility to speak out against 

them. In the Ralph Espinoza case no one—including management—spoke out against what was 

happening. Through social media, one can witness offensive cyberbullying, but no one has to know that 

one was a witness. We argue that this can foster an online version of the bystander effect. This effect has 

been documented to occur in physical environments in which bystanders do not offer any help to a victim, 

and it tends to increase the more people are present because of a sense of diffused responsibility, 

ambiguity, and cohesiveness (Darley & Latané 1968). Preliminary research indicates that such effects 

could occur online in chat rooms as people see more users being added to a room (Markey 2000). 

Similarly, anonymity should make such effects stronger for cyberbullying on large social media 

platforms, especially because of the previous literature we noted showing a connection between 

anonymity and deindividuation, which helps foster a loss of one’s sense of individual responsibility 

(Freestone & Mitchell 2004; Harris & Dumas 2009; Valkenburg & Peter 2011), fostering NSI. Thus, 

H1. An increase in anonymity is associated with increased cyberbullying NSI. 
 
4.1.2 How Cyberbullying Anonymity Influences Differential Reinforcement 

Again, differential reinforcement deals with the frequency, amount, and probability of rewards and 

punishments associated with a behavior (Akers 1990). Thus the more an outcome is perceived on the 
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basis of social learning as negative (e.g., as a cost), the more likely it discourages those behaviors (Akers 

1990). We contend that perceptions of anonymity disrupt normal social structures such that a large 

volume of bullying is witnessed without negative consequences, and normal calculations of cost-benefit 

are skewed such that benefits are artificially inflated and costs are not fully manifested or perceived. The 

Ralph Espinoza case went on for 1.5 years without any punishments or chastisement from management; 

meanwhile, those who participated had the rewards of increased social bonding, power, and entertainment 

from otherwise dull work. Hence, their differential reinforcement was skewed by the anonymity provided 

by social media. In the context of non-anonymous abuse, such behavior likely never would have carried 

on for so long, and it could not have involved as many people.  

Because of a lack of anonymity in the physical world, people have a higher chance of witnessing 

bullies getting caught and receiving sanctions, which may include anything from negative peer reactions, 

to work suspensions, to legal consequences. Conversely, social media that is perceived as anonymous is 

often loaded with rude expressions, name-calling, and insulting language. Because of anonymity, the 

resulting punishments and social disapproval tend to be weaker and harder to enforce. According to 

SSSL, via differential reinforcement over time, this explains why users can perceive the costs of 

cyberbullying as low.iv The online disinhibition effect can further explain calculations of reduced costs 

because anonymity enables people to “avert responsibility for those behaviors” (Suler 2004). Moreover, 

the criminology literature shows that anonymity weakens informal social controls (Clear et al. 2003), 

which suggests that informal costs are reduced online as well.v This shift in the social environment 

through increased anonymity skews the cyberbullying social learning reinforcement process toward 

diminishing costs. Thus, 

H2. An increase in anonymity is associated with decreased cyberbullying costs. 
 

Moving from costs to benefits, per differential reinforcement, the more an outcome is perceived on the 

basis of social learning as positive (e.g., as a benefit), the more likely it tends to encourage the modeled 

behaviors (Akers 1990). The extant cyberbullying literature also argues that offenders not only examine 

costs but calculate benefits before they decide to commit such acts (e.g., Hemphill & Heerde 2014; 
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Hinduja & Patchin 2013). Anonymity can also influence the perception of benefits, although this is often 

less tangible than costs. The basic idea is that anonymity allows offenders to experience benefits they 

would not experience non-anonymously. The direct benefits of cyberbullying vary from case to case; 

however, according to existing literature, these benefits generally include revenge, seeking social 

approval, having fun, attracting attention, asserting power/influence, and so forth (Miller 2013; Varjas et 

al. 2010; Xiao & Wong 2013). In the Ralph Espinoza case, the likely rewards were social bonding, power, 

and entertainment.  

Regardless of the benefits imagined by bullies, we argue that anonymity increases imagined 

and/or real benefits. Likewise, anonymity can also give bullies more power and control, as has also been 

theorized in the early cyberbullying literature (Dooley et al. 2009). Later it was similarly theorized that 

cyberbullies benefit themselves through “a systematic abuse of power” on their victims (Slonje et al. 

2013, p. 26), and these external/internal benefits are magnified by increased power imbalance between the 

cyberbullies and the victims. Anonymity amplifies this imbalance. For example, in the online world, a 

number of different fake accounts can be created, which can be used for bullying the same or different 

victims (Galán-GarcÍa et al. 2016). Social media via anonymity also provides many different ways to 

bully someone and thus achieve stronger benefits than is possible non-anonymously (e.g., anonymous 

versions of: messaging, photos, fake people, memes, down voting, attachments, comments to a victim’s 

friends, movies, and so on). In such an anonymous environment, with numerous ways to commit power-

imbalanced attacks, victims are virtually powerless to protect themselves, which makes the cyberbullies’ 

abuse of power more effective (Moore et al. 2012), and thus the more likely perceived benefits will result. 

Hence, 

H3. An increase in anonymity is associated with increased cyberbullying benefits. 
 
4.1.3 How Cyberbullying Anonymity Influences Definitions 

Again, definitions refer to whether an action is good or bad (i.e., favorable or unfavorable) based on the 

learned attitudes, beliefs, and justifications for certain behaviors (Akers 1990). Moreover, the neutralizing 

definition is whether the deviant behavior can be justified as good. Here, definitions emphasize the inner 
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values formed from past cyberbullying experiences that may further influence the justifications for 

performing such behaviors in the future. We continue to argue that cyberbullying anonymity shifts the 

social structure such that definitions are different than in the physical world, and this includes increased 

neutralizing definitions. One who has chosen to cyberbully is more likely to have defined and justified 

cyberbullying as generally favorable and acceptable, at least in a particular instance. In the Ralph 

Espinoza case, the bullies thought they were just having a “good time,” and they were not aware of the 

severe psychosocial damage they were doing to him. (This is more likely with anonymity because there is 

a lack of two-way communication through which the victim’s pain can be conveyed.) Worse, the longer it 

went on, the more normal and acceptable this routine was. 

Previous research has argued that the high degree of anonymity in such environments increases 

the likelihood that cyberdeviant behaviors harmful to others “do not cause so many negative feelings 

(e.g., guilt, shame, self-condemnation)” for perpetrators (Pornari & Wood 2010, p. 89) and reduce “the 

chance of empathizing with the victim” (Robson & Witenberg 2013, p. 214). According to SSSL, by 

using neutralization techniques, criminals may accept deviant acts as “all right under certain conditions” 

(Akers 2011, p. 36).  

SSSL applied to neutralization theory readily explains why such justifications are increased by 

anonymity. We posit that the structure of the online environment makes such “acceptable conditions” 

more readily available. For example, because of key anonymity sub-constructs on social media—

particularly, diffused responsibility, lack of proximity, and lack of knowledge of others—the perpetrator 

can hide, and the consequences of a cyberbullying act are difficult to see or measure. These factors allow 

cyberbullies to invoke neutralization techniques that involve denial of responsibility (Siegal 2011; Sykes 

& Matza 1957). Likewise, unlike physical bullying, it is hard to see the actual consequences of 

cyberbullying, especially if anonymity is involved and the victim thus cannot express his or her injury to 

the bully. This fosters the neutralization technique of denial of injury (Siegal 2011; Sykes & Matza 1957), 

among other likely neutralization techniques. We thus propose, 

H4. An increase in anonymity is associated with increased cyberbullying neutralization.  
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Likewise, we argue that perceived anonymity on social media further modifies the social structure 

of the online environment by fostering moral disengagement, which in turn facilitates the learning of 

definitions that support cyberbullying. This increase in moral disengagement then results in increased 

neutralization and decreased situational morality, which is the mechanism that otherwise ethical people 

use to justify immoral behavior. Moral disengagement comprises “the mechanisms individuals activate to 

override the influence of their internal self-sanctions and to distance themselves from perceived 

reprehensible consequences of their behavior” (Garbharran & Thatcher 2011, p. 302). In the Ralph 

Espinoza case, even though the cyberbullying behaviors were abhorrent to others, the people involved 

were generally well-behaved, moral, and professional in their day-to-day work. Once online, it was as if 

their dark alter-egos took over their normal morality and skewed their behavior as normal, acceptable, and 

moral—even fun. Anonymity helped create this conundrum due to the lack of rich media and 

communication to understand the pain they were causing Espinoza. 

We posit that moral disengagement is a natural consequence of disinhibition and deindividuation. 

Per Suler (2004), when individuals commit deviance in an online anonymous environment, their moral 

cognitive processes are often temporarily suspended. We argue that it is this that fosters positive moral 

definitions of deviate behavior. Pornari & Wood (2010, p. 89) argue that the high degree of anonymity in 

such environments increases the likelihood that cyberdeviant behaviors harmful to others “do not cause so 

many negative feelings (e.g., guilt, shame, self-condemnation)” for perpetrators and reduce “the chance of 

empathizing with the victim” (Robson & Witenberg 2013, p. 214). Thus, people find it easier to justify 

their deviant behaviors in response to criticism from others in anonymous online environments 

(Davenport 2002). Anonymity suspends normal forms of social interaction and social mores; thus, 

“problem behaviors may be recognized, rationalized, and mutually encouraged by others” (Ko et al. 2008, 

p. 575). According to Bauman & Pero (2011) and Gini et al. (2014), moral disengagement caused by 

online disinhibition results in disregard for social mores and morals. Thus,  

H5. An increase in anonymity is associated with decreased cyberbullying situational morality. 
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4.2. How Social Learning Outcomes Influence Cyberbullying Frequency 

NSI is especially apt in our context because in SLT, a criminal or delinquent actor models and imitates 

the deviant behavior (i.e., NSI) of fellow group members (Akers et al. 1979). Thus, a strong connection 

exists between NSI and crime (Kahan 1997). Related research has shown that if people belong to a group 

that promotes violence (i.e., NSI), they are more likely to assimilate such negative norms as less costly 

and more beneficial and engage in similar behavior (Bocij & McFarlane 2003). The cyberbullying 

literature has also begun to identify this link, primarily in connection with various forms of negative 

social norms and exposure (Hinduja & Patchin 2013). Imagine in the Ralph Espinoza case if employees 

or management had intervened early on and tried to socially shame the bullies. Instead, no one stood 

against the NSI. As a consequence, unchallenged NSI in cyberbullying groups strengthens the belief that 

cyberbullying is “cool,” beneficial, or acceptable (DeHue et al. 2008), and thus encourage cyberbullying. 

In summary, if the SSSL model holds true in our context, then  

H6. An increase in cyberbullying NSI is associated with increased cyberbullying. 
  
Next, we deal with the effects of perceived cyberbullying benefits and costs on cyberbullying 

frequency. These hypotheses should hold prima facie, based on the SSSL model, the SLT, and the 

previous hypotheses related to benefits and costs. SSSL and SLT posit that the observed benefits from a 

crime are linked with increased rates of a crime, and observed costs are associated with decreased rates of 

a crime. These are argued to hold also for the social media context and cyber bullying. Thus, when people 

experience differential reinforcement that artificially increases perceived cyberbullying benefits and 

decreases perceived costs, they are more likely to commit cyberbullying. This was certainly the situation 

in the Ralph Espinoza case, but the converse could also have been true—had there been any management 

oversight, positive peer pressure, or workplace punishments. 

H7a. An increase in cyberbullying benefits is associated with increased cyberbullying. 
H7b. An increase in cyberbullying costs is associated with decreased cyberbullying. 
 
Neutralization theory (Sykes & Matza 1957) argues that neutralizations are linked to criminal 

behavior. A basic assumption of neutralization theory is that people who engage in delinquent behavior 
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“believe in the norms and values of the community in general” but are temporarily suspending them by 

using neutralization techniques in order to avoid guilt (Siponen & Vance 2010, p. 489). In the Ralph 

Espinoza case, the people involved in cyberbullying saw it as harmless fun and a way to “blow off 

steam.” They did not recognize the immorality of their behavior or the psychosocial damage to Espinoza. 

Worse, the more people who joined in on the abuse, the more acceptable it became because “everyone 

was doing it.” 

Moreover, early neutralization theory studies have proposed a distinction between “acts that are 

wrong in themselves” and “acts that are illegal but not immoral” (Sykes & Matza 1957, p. 667); the 

former causes more guilt than the latter. Thus, non-sociopathic people feel guilty and ashamed when they 

realize their behaviors do not comply with ethical standards, which in turn prevents them from performing 

deviant behaviors, unless they morally disengage and neutralize such behaviors. Before engaging in 

delinquent behavior, people often justify it subjectively with neutralizing definitions, and certain 

neutralization techniquesvi help them to justify their delinquent behaviors as acceptable under the 

circumstances, thereby removing moral restrictions (Mitchell & Dodder 1980). Finally, a few studies have 

proposed that juveniles use neutralization when they choose to cyberbully (e.g., Bauman 2010; Renati et 

al. 2012), and given the above, this link likely extends to adults. Thus, we hypothesize:  

H8a. An increase in cyberbullying neutralization is associated with increased cyberbullying. 
 
Finally, because perceived anonymity leads to moral disengagement—which decreases situational 

morality—we continue this chain of logic to explain how increased situational morality decreases 

cyberbullying, Importantly, the evaluation of an act as morally wrong leads to avoidance of the action, 

especially when the person has the freedom to do so (Hare 1981). The converse is also true: When an 

action is regarded as morally acceptable, it is likely to be done, especially when the person has 

motivations to do so. We argue that the same reasoning holds for cyber bullying. Thus,  

H8b. An increase in situational morality is associated with decreased cyberbullying. 
 

5. METHODOLOGY 

This study is the result of engaged scholarship (Van de Ven 2007) pursued over several years to build a 
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model and gather empirical data to enhance the understanding of cyberbullying. We started with four 

preliminary studies, which were followed by two separate data collections that were part of the peer-

review process for this manuscript. The present study represents the third data collection. Details of the 

other studies are available upon request. 

5.1 Data Collection and Advanced Sample Filtering to Improve Data Quality 

The most challenging aspect of our research is that despite its pervasiveness, cyberbullying involves 

behaviors that are considered socially unacceptable in most cultures. We needed to study such behaviors 

in a manner that would elicit honest responses while maintaining anonymity. We chose to use an 

anonymous self-reported cross-sectional survey, which is strongly supported in the literature: Previous 

studies of deviant behaviors have effectively used cross-sectional studies in a variety of settings (e.g., 

Bennett & Robinson 2000; Higgins et al. 2008; Hinduja 2007; Lowry & Moody 2015; Lowry et al. 2015; 

Posey et al. 2015). SLT has also been examined by self-report studies conducted by its developers (Akers 

et al. 1979) and others (e.g., Higgins 2006; Higgins & Makin 2004; Skinner & Fream 1997; Winfree et al. 

1994). Moreover, substantial IS research has used cross-sectional studies involving self-reported 

behaviors, in a greater variety of contexts (Karahanna et al. 1999; Lankton et al. 2010; Moody & Siponen 

2013; Vance et al. 2012; Venkatesh et al. 2012).  

The use of self-reports may involve social desirability bias, which we took the following 

measures to reduce: First, we provided the respondents with a certain level of anonymity. To ensure 

anonymity between the respondents and researchers, we used a third-party online panel. Consequently, 

the respondents never interacted with the researcher, and the researcher never had access to the 

respondent’s contact information, which is a leading practice to thwart social desirability bias (Awad & 

Ragowsky 2008; Lowry et al. 2013; Posey et al. 2013). Using the specific panel of Mechanical Turk™ 

(MTurk) also allowed us to gather respondents from a wide range of sociodemographic backgrounds, 

people who would have been virtually impossible to reach otherwise. MTurk is a particularly useful 

platform for such studies because millions of people are registered to respond, and the platform allows for 

advance-screening measures, which are helpful in recruiting people with preferred characteristics.  



29 
 

We followed the latest methodological literature on MTurk (e.g., Goodman et al. 2013; Landers 

& Behrend 2015; Lowry et al. 2016; Steelman et al. 2014) and used it in combination with advanced 

survey features and filtering through Qualtrics™ online surveys, which greatly improved the data quality 

(e.g., Goodman et al. 2013; Landers & Behrend 2015; Lowry et al. 2016). This literature indicates that 

our data collection context was an especially good fit for MTurk; it is a topic of general interest for which 

no special expertise was needed, the data could be collected with reasonable assurances of anonymity, 

and it is an ideal way to reach a large number of people with specific traits (e.g., having committed 

cyberbullying). First, we employed multiple screeners (including IP address and geolocation information) 

to ensure that only English-speaking adult respondents who lived in the United States could take the 

survey (the same country and language were required for consistency in the laws and norms regarding 

social media). The respondents were also required to have had committed at least one act of cyberbullying 

on social media in the last year and to have been willing to provide their opinions about cyberbullying in 

general. To eliminate (semi) professional survey-takers, we used the MTurk’s screening capabilities to 

make the survey known and available only to people who had taken a maximum of three previous 

surveys. However, we also paid a reasonable amount of compensation such that participants had the 

reasonable opportunity to earn around United States (US) minimum wage per hour. We also used 

Qualtrics™’ technical option to prevent more than one response from the same IP address. 

In view of the length and sensitive nature of the survey, to decrease mono-method bias and 

increase both honesty and attention, we implemented the following procedural remedies taken from the 

literature (e.g., Goodman et al. 2013; Landers & Behrend 2015; Lowry et al. 2016; Lowry et al. 2013; 

Rouse 2015; Steelman et al. 2014) that have been shown to address these issues: (1) We randomized the 

order of the survey questions; (2) we reversed the scaling and anchors of half of the survey questions; (3) 

we used questions with different anchors; (4) we combined questions that were each other’s opposite or 

were unrelated; (5) we implemented randomly presented attention-trap questions to ensure that the 

respondents were reading and understanding the questions; (6) we asked the respondents to verify their 

honesty and completeness in answering; (7) we explained the importance of paying attention and the 
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scientific importance of the study; (8) we tracked the time spent in completing the surveys and eliminated 

any that were taken unusually fast compared to our pilot tests; (9) we provided data validation, look-ups, 

and other survey screeners to improve data accuracy; and (10) aside from these efforts—which help to 

prevent common-method bias a priori—we gathered a marker variable per Richardson et al. (2009), 

which in our case was based on organizational commitment and provides additional evidence for the 

absence of common method bias. 

5.2 Data Filtering and Sociodemographic Data  

Following the leading practices for MTurk studies that involve lengthy surveys, we employed a high 

degree of filtering to ensure a high degree of data quality; this is because such studies are prone to high 

drop-out rates and attempts to rush through the survey.vii The sociodemographic data of the 1,003 

respondents were as follows: age (𝑥𝑥 31.02 years; SD 8.36), first year on the Internet (𝑥𝑥 1999; SD 4.00 

years; min 1993, max 2012), and work years (𝑥𝑥 12.00 years; SD 8.27). The gender distribution was 514 

males (51.2%), 483 females (48.2%), and six other genders (0.6%). The respondents’ employment 

distribution was as follows: 185 full-time students (18.4%), 92 unemployed and non-students (9.2%), 162 

employed part-time (16.2%), and 564 employed full-time (56.2%). Full details of all demographics and 

individual cyberbullying behaviors are presented at the end of Online Appendix D.  

5.3 Measures and Controls 

All measures were based on established measures and were modified to fit our cyberbullying context 

where necessary. Here, we supply details on how some of our key constructs were measured to illustrate 

important aspects of our measurement strategy.  Full details on measurement, with source, controls, 

prompts, and survey logic are in Online Appendix C.  

To measure cyberbullying anonymity, we asked respondents to answer questions with respect to 

the social media platform they had most used for cyberbullying, the idea being that the level of anonymity 

can varying across platforms and even within a particular platform depending on a person’s use patterns 

(see Table 2 for details).  To measure cyberbullying frequency, we again asked them to answer with 
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respect to the platform they had most used for cyberbullying, and to disclose the frequency (i.e., Never, 

One Time, Monthly, Weekly, Daily) with which they had engaged in each of four behaviors: (1) post 

something hurtful, rude, inappropriate, or mean that targets someone; (2) publicly embarrass or prank 

someone with true information or photos that are potentially harmful; (3) spread a rumor or untrue 

information about someone; (4) send threatening or harassing messages, or send messages after someone 

told you to stop. To measure the SLT variables we again asked respondents to answer with respect to the 

platform they had most used for cyberbullying. We also had them answer these questions separately for 

each of the four cyberbullying behaviors, the rationale being that a respondent’s perceptions could vary 

across the different cyberbullying behaviors.  For example, the perceived costs and benefits of "posting 

something hurtful" could be different from those for "sending threatening or harassing messages." The 

neutralizations used to justify "publicly embarrassing or pranking someone" could be different from those 

for "spreading a rumor or untrue information." 

Table 2. Prompt, Scaling, and Measurement Items for Cyberbullying Anonymity 
Prompt: You indicated that you have used [social media] in the past year for cyberbullying. We would like to 
know your beliefs about using [social media] for cyberbullying. When cyberbullying other people using [social 
media] which of the following best describes your opinions about [the social media itself] in bullying others? “I 
believe that…”  
 
Scaling: 7-point Likert-type scale anchored on 1=very strongly disagree…7=very strongly agree. 
A-LI1. …my personal identity won’t be provided.  
A-LI2. …my cyberbullying is entirely secret. 
A-CS1. …the system(s) will not identify me without my permission. 
A-CS2. … no names will be attached to the systems’ internal records unless that is what I want.  
A-DR1. …it is impossible to make me more accountable than others for cyberbullying.  
A-DR2. …it is impossible to blame me personally for any cyberbullying. 
A-PX1. …others can’t physically see what I am doing on my computer screen (e.g., walk by and see what I’m 
writing). 
A-PX2. …I feel assured that no one can physically observe me in the act of cyberbullying (e.g., look over my 
shoulder when I’m typing). 
A-KO1. …my behavior(s) do NOT have enough distinguishing characteristics that would allow other people to 
identify me as the originator of the cyberbullying. 
A-KO2. …it is impossible to identify me as the origin of the cyberbullying based on my personal characteristics. 

Note: The cyberbullying anonymity measures were modified from social anonymity measures by Lowry et al. 
(2009). Social anonymity is second-order factor composed of the following reflective constructs: lack of identity (A-
LI); confidence in the system (A-CS); diffused responsibility (A-DR); proximity (A-PX); and knowledge of others 
(A-KO) 
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6. ANALYSIS AND RESULTS 

For model analysis, we used partial least squares (PLS) regression using SmartPLS version 2.0 (Ringle et 

al. 2005); because PLS is especially adept at the validation of mixed models of formative and reflective 

indicators, is more appropriate than covariance-based structural equation modeling for preliminary model 

building, and it is ideal for large models (Chin et al. 2003; Gefen et al. 2011; Lowry & Gaskin 2014).  

We first conducted pre-analysis and data validation for four purposes: (1) to establish the factorial 

validity of the measures through convergent and discriminant validity, (2) to establish that 

multicollinearity was not a problem for any of the measures, (3) to check for common-method bias, and 

(4) to establish strong reliabilities. Details are given in Online Appendix D. Figure 3 shows the final 

results of all paths and controls. The full details are available in Table D.5. 

Figure 3. Model Results with Controls and Exploratory Relationships (n = 1003) 
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Note: this figure includes all hypothesized paths, but only significant control paths. 
 

We also used bootstrapping techniques to test for mediation in our model (see Online Appendix 

D). We confirmed that our model follows the core SSSL model prediction, in which all social learning 

constructs act as full mediators. We are the first to show the rich second-order construct of cyberbullying 

anonymity as a direct driver of cyberbullying that is fully mediated by social learning constructs. 
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7. DISCUSSION 

7.1. Summary of Results 

Most of our hypotheses were supported. The association between anonymity and NSI was significant in 

the initial model but became insignificant when hours per day on social media was added (H1 rejected). 

Anonymity was associated with decreased costs (H2 supported), increased benefits (H3 supported), 

increased neutralization (H4 supported), and decreased situational morality (H5 supported). NSI was 

associated with increased cyberbullying (H6 supported). Costs was associated with decreased 

cyberbullying (H7a supported), but benefits was not associated with increased cyberbullying (H7b 

rejected). Neutralization was associated with increased cyberbullying (H8a supported), and situational 

morality was associated with decreased cyberbullying (H8b supported). 

We also explored several traditional sociodemographic factors that have influenced social 

learning constructs in more traditional criminal and deviance research (Akers 2011). We also ran the same 

factors as control variables against cyberbullying frequency, including age, gender, education, 

employment status, income, and hours per day on social media. We were surprised by how few of these 

influenced any of the social learning constructs or cyberbullying frequency, although this is another 

indicator that the social media community context is indeed unique: Social structural correlates of the 

physical world cannot represent the social structure of one’s network characteristics in social media. In 

terms of significant structural correlates, being female was associated with decreased cyberbullying 

benefits and increased costs; hours per day on social media was associated with increased cyberbullying 

NSI, increased benefits, increased cyberbullying neutralization, and decreased situational morality. There 

were no effects associated with age, education, employment, or income. In terms of the control variables, 

hours on social media was associated with increased cyberbullying frequency. Being female was 

associated with decreased cyberbullying frequency, whereas age, education, income, and employment 

status had no influence on cyberbullying frequency. Again, this is interesting in an SLT context, where 

such sociodemographics often matter. 
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7.2. Interpretation of Results and Contributions  

Our study provides several key contributions to the understanding of adult cyberbullying. First, we 

examined to what extent the SSSL model can account for cyberbullying, and we also revised the SSSL 

model to account for the unique social media community environment that is fostered by perceived 

anonymity and its associated causal mechanisms of disinhibition and deindividuation. We show that few 

of the traditional environmental criminological factors apply online and that the social learning 

mechanisms are instead largely driven by three factors: the richly conceptualized factor of perceived 

anonymity (i.e., lack of identification, diffused responsibility, lack of proximity, knowledge of others, and 

confidence in the system’s functionality), hours per day spent on social media, and gender. Hence, the 

SMCBM is a compelling model to use to study cyberbullying, especially when social learning and 

environmental influences are of utmost concern. 

We are also among the first to examine more than one specific cyberbullying behavior in either 

an SSSL model or an SLT study, and we are the first to provide a social learning micro- and macro-

perspective on cyberbullying. Examining four major sets of cyberbullying behavior allowed for a more 

robust and generalizable test of the SMCBM. We employed a novel survey-only design in which each 

unique cyberbullying behavior was randomly ordered (to cancel out any ordering effects), and the 

respondents provided social learning responses to one specific form of cyberbullying at a given time. 

Although it made sense in traditional SLT/SSSL studies to examine one behavior because other behaviors 

are unrelated (e.g., larceny, alcoholism, elder abuse, and shoplifting), we argue this is not the case with 

cyberbullying because it involves a lot of related but distinct behaviors. Thus, we believe that providing a 

set of four commonly committed types of cyberbullying provides a stronger, more realistic, and more 

generalizable test of our SMCBM than if we had chosen one form of cyberbullying (e.g., sending a 

malicious message, saying something hurtful, passing on a malicious rumor, or intentionally embarrassing 

someone). 

Moreover, to robustly test SMCBM, we tested for mediation using advanced bootstrapping 

techniques. These results are detailed in Online Appendix D. We thus are able to demonstrate that the 
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influence of cyberbullying anonymity on cyberbullying frequency is fully mediated by the social learning 

constructs. This further shows that SMCBM model fits the underlying theoretical assumptions of the 

SSSL model. That is, the social learning constructs are mediators, and the causal ordering matters. This 

hopefully sets the foundation for additional research that involves more direct testing of causality and 

longitudinal effects. 

Notably, unlike traditional SSSL models involving criminology, there were no social learning 

effects associated with age, education, employment, or income, which are often associated with 

traditional crimes (Akers 2011). We explain this difference by the contextual differences between the 

physical world and the unique context of social media. For example, in the physical world, lack of 

employment and low income may motivate some people to commit crimes to earn money (Sutherland 

1947). Moreover, the type of social media platforms our respondents engaged in were generally socially-

based and not associated with financial opportunities. Education might be able to prevent crimes in the 

physical world by inculcating values that favor social norms against crimes. Indeed, research has argued 

that many of our moral values are established through upbringing and education and evolve over time 

(Hare 1981; Kohlberg 1981). Thus, it may be that the inculcation of values against cyberbullying through 

educational institutions has either not taken hold of today’s adults or they have never received this 

education.  

However, we do find a strong social learning effect with hours per day on social media—so much 

so that when it was added to the baseline model, it predicted NSI and anonymity dropped out. Our 

interpretation is that from a social structure standpoint, the amount of time spent on social media much 

more greatly influences whom one associates with who is committing deviant behaviors than does 

anonymity. Time matters, in matters, because it shift’s one’s social structure increasingly from offline to 

online. Moreover, much abusive, socially modelled behavior can be easily witnessed without anonymity. 

However, further research on this is needed because hours per day on social media was a one-item 

measure. There also could be measurement issues in differential association because our formative 

measure mixed two different kinds of scaling (norms and frequency). 
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We also found a strong gender effect that we did not expect or predict. Females in our sample 

were significantly less likely to commit cyberbullying than males. Moreover, females perceived fewer 

benefits and more costs of cyberbullying than did males. Hence, there may be strong social learning 

differences in cyberbullying behavior based on gender, including how costs and benefits are interpreted. 

Some of this could likely have to do with a key motivating factor of cyberbullying: that of control and 

power imbalance between the bully and the victim (e.g., Moore et al. 2012; Slonje et al. 2013). These 

results may also relate to differences in genders based on aggression. Although the stereotype is that men 

are aggressive than women, the reality is more complex. Older meta-analysis shows that men tend to be 

more aggressive in terms of physical harm, but not in terms of social or psychological harm (Eagly & 

Steffen 1986). Interestingly, the same research does show that women are more likely to perceive harm to 

the victim, guilt, anxiety, and danger to oneself when envisioning performing an aggressive behavior. 

These factors need further research in respect to cyberbullying.  

As noted earlier, although cyberbullying is acknowledged as a serious issue with juveniles, it is 

also a serious issue with adults (Nycyk 2015). However, prior to this study, little was known about how to 

predict and discourage this behavior in adults or about their actual cyberbullying patterns and social 

media choices. As a new generation of social media users—who grew up as digital natives and have 

routinely practiced cyberbullying as a rite of passage—enters the workforce, many are bringing these 

pernicious, socially- learned behaviors with them. Of concern is our finding that our adult respondents use 

neutralization to suspend normal, rational judgment when choosing to engage in cyberbullying, because 

they likewise decrease perceived costs, increase perceived benefits, and suspend their offline moral 

inclinations. Worse, it is the characteristics of social media itself (e.g., perceived anonymity) combined 

with hours per day on social media that create this toxic condition. The behaviors we report involve not 

only minor harassment and rudeness but also harmful actions that can lead to reduced work productivity, 

social strain, psychological trauma, criminal behavior, job loss, and lawsuits—as in the Ralph Espinoza 

case.  

Moreover, the role of social media providers as enablers of cyberbullying requires further 
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attention, and our work in laying out the rich construct of perceived anonymity is only a starting point. 

Certainly, Facebook stands out as the chief adult cyberbullying platform, but our results show that adults 

use several other channels (e.g., Reddit, YouTube, Twitter, Instagram, and Disqus). We show that certain 

social media artifacts make cyberbullying easier, which helps explain why corresponding physical 

behaviors (e.g., bullying and stalking) in adults are not as prevalent. Social media artifacts can inspire 

disinhibition and deindividuation, which make adults feel more comfortable performing deviant behaviors 

online than offline, and social media providers are largely responsible for the design of the IT artifacts 

and system conditions that create disinhibition and deindividuation. We assume that these conditions are 

especially worsened by social media artifacts intentionally designed for anonymity, such as allowing self-

destructing messages, non-identified users, multiple accounts at the same IP address, easy access to 

“friends of friends,” not monitoring access from known IP-masking services, not requiring human 

moderators, and not having bots that monitor behavior.  

7.3 Limitations and Future Research Directions 

Our study focuses on the “dark side” of social media and thus lacks an emphasis on positive aspects that 

prevent people from being involved in cyberbullying. It is thus particularly important to better understand 

what prevents Ralph Espinoza cases from happening in the first place, such as positive conforming 

behavior in the workplace. First, SLT suggests that association with non-deviant peers can also lead 

people to perform conforming behaviors against cyberbullying (Akers 2011). In some real-world cases, 

role models against workplace cyberbullying play an important role in allowing colleagues to learn 

conforming rather than deviant behavior (XpertHR 2012). Second, companies can cultivate employees’ 

positive conforming behavior and adopt measures to thwart and punish cyberbullying. In some cases, 

employees must be fired to protect the work environment. For example, a call-center employee made 

offensive Facebook comments about a colleague, and the employee was fairly dismissed even after 

appealing the case (XpertHR 2012). In addition, the US government has developed a one-stop shop of 

tools at Stopbullying.gov that emphasizes use of social networking features to prevent cyberbullying 

behaviors (Uknowkids 2013). Thus, future research should consider positive aspects of social media that 
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can help people leverage a positive social learning process of anti-bullying behaviors and examine how IT 

artifacts themselves can help prevent cyberbullying behaviors. 

The SMCBM is intended to maximize prediction of adult cyberbullying frequency, as modified 

from the SSSL model. Nonetheless, the SMCBM contains more inferred causality than can be tested with 

cross-sectional data, because it has been explained by factors such as the causal mechanisms of 

disinhibition and deindividuation. As with a typical variance model, causation can be inferred primarily 

from the theoretical explanation, but little such causation can be demonstrated on the basis of our form of 

testing, other than through the mediation testing we conducted. Likewise, the nature of our measurement 

design does not allow for a distinction between initial and ongoing deviance. Our model implicitly 

assumes that most of the participants’ deviance is ongoing, such that they are not new to cyberbullying. It 

would be particularly interesting to study people who had just committed their first and only act of 

cyberbullying to better understand the imitation process, but this is especially challenging because of 

sampling constraints. Akers et al. (1979) found that imitation was important in explaining one’s very first 

act of deviance; after that, it had virtually no predictive effect on ongoing deviance. For these reasons, we 

did not include imitation in our model. 

Consequently, other methodologies should be employed to further build this area of research; 

however, this is easier said than done in social learning and SSSL model research. For example, 

experimentation is probably the most problematic solution and has yet to find much success in such 

studies. Researchers have previously found it difficult to obtain results by using short-term 

experimentation in this context (Pratt et al. 2010). We believe the reason for this is straightforward: Social 

learning is a process that takes time, and it is thus unrealistic to expect that an artificial manipulation will 

cause immediate changes. That is, social learning is not one event (unlike a fear appeal or other classic 

“interventions”); it requires continuous observation/imitation during a longer time period (Akers 2011). 

This is why cross-sectional studies are preferred over experimentation in this literature: Cross-sectional 

studies can at least take snapshots of where a given person is at a given point in time in the social learning 

process. Moreover, our context is inherently social, involving interactions with large numbers of people 



39 
 

over time. How to emulate this in a realistic manner in a short-term experiment has yet to be determined.  

Because social learning is a process, longitudinal studies of cyberbullying are more promising 

than one-time experiments. In SLT/SSSL research, some longitudinal studies have been conducted, but 

these are especially challenging in deviance studies because it is difficult to find participants willing to 

disclose potentially criminal behavior over time (causing a stronger self-selection bias), and such studies 

are prone to high dropout rates. Moreover, longitudinal studies are difficult to execute without full 

identification of the participants because the researchers must ensure that the right data is mapped to the 

right person. Such identification undermines anonymity, which then foster responses that are prone to 

social desirability bias. Another challenge of these studies is that the social learning processes for 

cyberbullying may require years of exposure. Nevertheless, this is an important future direction for 

cyberbullying research. 

Although we had a large number of respondents from a diverse sociodemographic range, our 

study cannot be assumed to be widely generalizable. First, we allowed only US respondents to ensure 

similarity with respect to assumed laws and national cultural mores. We expect that cyberbullying in 

countries with heavy social and governmental monitoring and different cultural norms would take on 

nuanced forms and might have different foci in the social learning constructs. Cross-cultural IS research 

in other contexts has been informative (e.g., Lowry et al. 2011; Posey et al. 2010); thus, testing the 

SMCBM in places such as China, India, Indonesia, Russia, Egypt, Brazil, South Africa, Nigeria, and 

Mexico would likely be informative,  

 It is also important to note that our study had a self-selection bias, which is difficult to estimate. 

In our case, the respondents were those who willingly and anonymously disclosed their cyberbullying 

behavior. Thus, it is theoretically possible that those who remain silent about their cyberbullying may 

experience other, more influential factors of which we are not aware (e.g., a greater sense of shame or 

more self-control). Furthermore, we cannot infer that these results transfer to juveniles because of 

differences in moral development, but we still believe that applying the SMCBM to them would be a 

useful starting place because much of the model will likely hold. 
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Again, we tested common sociodemographic factors that have been used in SLT/SSSL deviance 

studies, and most of these were insignificant. Going forward, other explanations for cyberbullying should 

be explored and added to the SMCBM. For example, a potential explanation is one’s lack of self-control 

or propensity to anger and under which conditions such predispositions lead to cyberbullying. Power is 

another example of a promising area for further theorizing and research. The physical power differential 

between victim and offender has recently been reported to be important in traditional bullying but not in 

cyberbullying (Barlett et al. 2016). However, there may still be kinds of power or status effects that matter 

in cyberbullying.  

Despite its social and technological importance, adult cyberbullying is overlooked in research 

(Nycyk 2015) and is generally ignored in management practice, even though much cyberbullying occurs 

at work or amongst coworkers (Baum et al. 2009). In fact, we found no previous studies involving 

participants over an average age of 25. As a result, adult cyberbullying remains unstudied, even though it 

is a pressing social problem and a dark side of the Internet (Nycyk 2015). We showed that SMCBM 

works well to explain adult behavior, and that it appears that key factors such as situational morality, 

neutralization, negative social influence, and costs/benefits must be accounted for. However, given this 

useful baseline, more research must be conducted to see just how adolescents and adults differ, which will 

require future SMCBM data collections and modifications for adolescents. For example, research has 

shown that moral decision-making develops over time and can thus differ between juveniles and adults 

(Kohlberg 1981). Research has also shown that juveniles are more prone to engage in risky behaviors and 

more likely to be pressured into such behaviors than adults because adults can better estimate long-term 

consequences than juveniles (Gardner & Steinberg 2005). Thus, it may be that adults will have stronger 

situational morality considerations, and juveniles may be more affected by low self-control. 

Another limitation is that for simplicity of modeling and measurement, we aggregated the four 

main types of cyberbullying in our main model. That is, we used an average of perceptions related to four 

related but different behaviors to predict the average level of those behaviors. To further address this 

concern, we conducted a sensitivity analysis of running four separate models for the four different 
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behaviors (summarized in Table D.8). The results across all four models were highly similar to our 

overall model, showing that SMCBM holds well across different behaviors. However, there are many 

other specific forms of cyberbullying that require further investigation for which we cannot claim our 

model to hold and may create more varied results, such as sexting, breaking into another person’s 

computer for revenge, sending unwanted porn to someone, defacing a person’s social media site, and so 

on. Other more advanced methodologies—such as multi-level modeling and hierarchical linear 

modeling— may also be useful when dealing with such highly disparate cyberbullying behaviors. 

Moreover, although benefits was supported in our baseline model, it dropped out when the 

control variables and social media and structure factors were added. Hence, we cannot conclude benefits 

should not be included in SMCBM; it just appears to be a weaker factor than is costs. We suspect this 

may have to do with the nature of self-report in that costs of cyberbullying are likely easier to envision 

than benefits. For example, it is likely easier to envision getting caught than visualizing the benefits of 

power imbalance. Notably, we measured costs and benefits more generally, as is often the case in RCT 

applications to deviant behaviors (e.g., Bulgurcu et al. 2010; Hu et al. 2011), so that our adult respondents 

could best define what they considered to be costs and benefits for themselves. This assumption is 

particularly useful for social learning, because costs and benefits are learned and not necessarily entirely 

rational or predictable across all forms of cyberbullying. Consequently, when people experience positive 

consequences of cyberbullying, such experiences reinforce their intention to cyberbully. Future research 

could benefit from the examination of specific costs and benefits of adult cyberbullying, and how these 

come about. 

Finally, for concision, we focus on the five sub-constructs of perceived anonymity that are the 

most likely drivers of the causal mechanisms of disinhibition and deindividuation in cyberbullying 

contexts. However, it is worthwhile to investigate other social media design considerations that may 

further drive or work in parallel with anonymity and to establish how they are different. This could 

include factors such as degree of synchronicity, media richness, and perceptions of monitoring. Moreover, 

future research should consider actual social media artifacts that could blunt cyberbullying, such as 
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interfaces that are designed to increase accountability, social presence, and personal identity. Research 

should also account for the fact that people are increasingly using technologies external to social media 

(e.g., IP masking, VPNs, and bit bleachers) to increase the anonymity of their social media interactions. In 

Table 3, we map many of the various social media design choices and technical factors that could have 

positive (+) and negative (-) influences on the five major factors of anonymity. At this point, these ideas 

are mostly speculative and need more theoretical development because little literature exists to support 

these relationships. Vance et al. (2015) showed a novel way that high volumes of IT artifact designs can 

be tested in a behavior security setting. We believe such an approach could be extended to study social 

media IT artifacts involved with cyberbullying. This alone provides an agenda for future cyberbullying 

artifact research and further illustrates the uniqueness of the social media context.  

8. CONCLUSION 

Whereas most cyberbullying research focuses on exploratory studies of juveniles or college students, ours 

is the first to focus on adult cyberbullies. Using engaged scholarship, we propose the SMCBM to 

integrate the inconsistent knowledge of drivers of cyberbullying with a re-contextualization of the SSSL 

model that includes the social media artifact of perceived anonymity as a key social structure driver of 

cyberbullying. The SMCBM was largely supported, implying that the social media artifact of anonymity, 

along with hours of social media use per day, helps to drive the social learning process and that this 

process is largely responsible for adult cyberbullying. We thus offer the SMCBM as a comprehensive 

model—the first to include micro- and macro-components of social learning—for further research on 

adult cyberbullying and as a potential theoretical starting point for research on juvenile cyberbullying.  
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Table 3. Social Media Artifacts and Contextual Factors that Can Change Cyberbullying Anonymity  
 
Social Media Artifact and Contextual Factors 

The Five Sub-constructs of 
Perceived Cyberbullying 

Anonymity: 
LI DR LP KO CS 

 
Social media anonymity influencers that can be chosen in most social media systems 

Interacting only with strangers + + + +  
Interacting with real-world associations - - - -  
Using a small social community with largely known people - -  -  
Using a large social community with largely unknown people + +  +  
Communicating untrue details or using inauthentic personas +  + +  
Using one’s true identity - -  - - 
Using pseudonyms + +    
Using asynchronous features to “buy time” to plot responses + +  + + 
Using different accounts and identities for different activities and goals + +  + + 
 

Social media anonymity influencers that exist only in some social media systems 
Using throwaway accounts + +   + 
Using avatars + +  +  
Disallowing the creation of more than one account from the same IP address - - -  - 
Interacting with real-time video conferencing - - - - - 
Interacting with real-time instant messaging - -  - - 
Allowing users to easily report bad behavior or malicious comments - -   - 
Requiring background checks and authentication of identity before joining - - - - - 
Using a social media system that is designed to conceal true identities† + + + + + 
Sending self-destructing messages   +  + + 
Allowing access to friends of friends  + + +  
Using a social media system that has automatic behavior-monitoring bots - -  - - 
Using a social media system that has human moderators or censors - -  - - 
 

Technical techniques that can be used with browsers or apps to increase cyberbullying anonymity 
Using IP-masking software or VPN + + +  + 
Blocking third-party cookies + +   + 
Blocking location data + + +  + 
Using anonymous browser or do-not-track functions + + +  + 
Blocking plugins and JavaScript +    + 
Using encrypted connections + + +  + 
Using prepaid “burner” cell phones bought with cash + + +  + 
Bit-scrubbing and history-scrubbing software +  +  + 

†Examples of social media systems designed to conceal identifies include Whisper™, Yik Yak™, and After 
School™. LI = lack of identification, DR = diffused responsibility, LP = lack of proximity, KO = lack of knowledge 
of others, and CS = confidence in the system. 
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i Adding imitation and downplaying Skinnerian operant conditioning also moved the SLT from the “Skinnerian 
behaviorism” version of Burgess & Akers (1966) toward cognitive learning theories (Akers 2011). 

ii The SSSL model encompasses SLT because it uses social structure variables as predictors, the SLT constructs as 
mediators, and deviance as the dependent variable (Akers 2011). The influence for this integration came, once again, from 
Sutherland, who had already described that social structures “determine” social associations (Sutherland 1947, p. 8). Cressey 
(1960) had also asserted that crimes in the US vary according to social structural indicators such as class, gender, and race. Akers 
(2011, p. 320) built on this notion with the SSSL model to suggest that social structures do not have a direct effect on deviant 
behavior but that these structures affect social learning elements, which then drive deviance. This also explains the correlation 
between social structure and crime rate (Akers 2011).  

iii Definitions and imitation were added to SLT by Akers et al. (1979) as extensions of differential reinforcement. In this 
process of reinforcement through vicarious experience, if individuals perceive in others’ experiences high benefits and low costs, 
they are more likely to imitate the behavior. Although imitation plays an important role in initiating deviant behavior and is thus a 
potential fourth key SLT factor, we removed it because it is not useful in predicting sustained behavior Akers et al. (1979). 

iv Other studies have also reported that perceived anonymity can make cyberbullies believe that potential sanctions are 
low: “Anonymity and confidentiality on the Internet provides [sic] a degree of protection for cyber bullies” (Topcu et al. 2013, p. 
149); moreover, “anonymity also implies the absence of consequences, because the aggressors frequently cannot be identified,” 
(Calvete et al. 2010, p. 1130). Consequently, King (2010, p. 850) concludes that “cyberbullies feel protected by anonymity.” 

v According to Davenport (2002), anonymity weakens the behavioral constraints imposed by the criminal justice 
system, an effect that facilitates deviance because it minimizes the threat of being punished. As a result of the sense of 
anonymity, people often perceive cyberdeviance as having few repercussions (D'Arcy & Herath 2011). 

vi Examples of neutralization techniques to justify behaviors include denial of responsibility, denial of injury, denial of 
the victim (i.e., denying the existence of a real victim), condemnation of the condemners, appeal to higher loyalties (Sykes & 
Matza 1957), the metaphor of the ledger (Klockars 1974), and the defense of necessity (Minor 1981). These techniques have been 
thoroughly studied, and several others are likely applicable to cyberbullies. We thus conducted a full review of these techniques 
and summarized 14 relevant neutralization techniques from the literature (available upon request). However, which techniques 
are chosen in various scenarios is not as theoretically important for the SMCBM as the general proposition that if the SLT/SSSL 
model holds in this context and is driven by NSI, the definitions factor of SLT is likely to be strongly represented by 
neutralization by those who choose to cyberbully, often against their better moral judgment. For this reason, as well as for 
theoretical concision, we depict neutralization as a second-order construct, which is consistent with the theoretical models 
developed by Jarvis et al. (2003) and Siponen & Vance (2010). 

vii A total of 1,972 people on MTurk saw our HIT and examined the disclosure page of our survey. 50 people indicated 
they had never committed cyberbullying and thus were disqualified. 167 people decided to not continue with the study or refused 
to provide consent—leaving 1,755 people who went to the first page of the survey, the demographics section. When asked for 
their country, five people indicated they did not live in the US, even though their IP address indicated a US-based computer, and 
thus were eliminated. Another 156 people did not continue at this point, leaving 1,594 people who went to the next page of 
demographics. Another 27 people dropped out at this point, leaving 1,567 people. Because of the length of the survey, we then 
randomly provided five attention-trap questions throughout the remainder of the survey to ensure the respondents were being 
honest, were paying attention, and were not rushing through the survey. The first trap caught 205 people off guard, who were 
removed, after which 20 people decided to not complete the IT artifact section, leaving 1,342 people in the study. After this, they 
were given instructions about the cyberbullying section and reminded of the requirement to disclose their cyberbullying 
behaviors. 142 people did not continue, leaving 1,200 people. In the final sections of the survey on cyberbullying behaviors, four 
more attention traps were executed. Trap 2 was provided in this section of the survey, causing 61 people to be removed, leaving 
1,139 people. 34 people did not pass Trap 3, leaving 1,105 people. 19 people did not pass Trap 4, leaving 1,086 people. 13 people 
did not pass Trap 5, leaving 1,073 respondents. Another 70 people passed all of the attention traps but did not fully respond to all 
cyberbullying behavior questions, and thus they were dropped, leaving 1,003 respondents for the final data analysis. Finally, the 
attention trap questions that were used were the following: 

1. ...it is true that Donald Trump has unusual hair. 
2. If adding two to the number three equals five then only select “somewhat agree" and nothing else. 
3. If adding two to the number six equals eight then only select “neutral" and nothing else. 
4. If you have been answering honestly thus far, please only select “agree" and nothing else. 
5. It is true that Hillary Clinton used to be the president of the United States. 

                                                      



Why do adults engage in cyberbullying on social media? An integration of online disinhibition and 
deindividuation effects with the social structure and social learning (SSSL) model 

 
ONLINE APPENDIX A. LITERATURE REVIEW ON CYBERBULLYING RESEARCH 

Methodology for Conducting Literature Review 

First, to ensure completeness of our review and to best understand the construct of cyberbullying, we 
engaged in a rigorous literature search and review process, involving a team of five researchers. All five researchers 
used Google Scholar™ and the EBSCO journal articles index to perform an exhaustive search on articles that had 
the following keywords in their abstracts or keyword index: Cyberbullying, cyber bullying, cyberstalking, cyber 
stalking, cyber-harassment, cyber harassment, online deviance, revenge porn, social media attacks, online mobs, 
harassment by computer, cyber defamation, Internet stalking, Internet bullying. As the researchers found articles in 
and out-of-scope, online collaborative software was used to coordinate these articles to avoid unnecessary 
duplication of work. We found 135 articles that dealt with our topic. 

Articles were determined to be in the scope of our review if they involved any kind of peer-reviewed article 
(or edited book or book chapter) that specifically demonstrated related factors that lead to a form of cyberbullying 
(e.g., cyberbullying, cyberstalking, revenge porn). They did not have to use an underlying theory to be included. 
Articles were deemed out-of-scope if they dealt with the general topic area but no findings could be used in any way 
to explain and predict factors that lead to cyberbullying. Most cyberbullying articles were out-of-scope, and included 
foci such as explaining the prevalence of cyberbullying (e.g., how many people victimize or are victims), predicting 
what causes people to overlook cyberbullying, predicting how cyberbullying harms self-esteem, providing guidance 
to teachers and parents, dealing with related regulations, research essays, and the like. For every in-scope article, we 
also checked its reference list, the publisher’s website for related articles and articles that cite it, and Google Scholar 
for articles that cite it. In the end, we found 62 articles to be in scope out of 135 cyberbullying articles that we found. 
Table A.1 summarizes these articles. 

We carefully double coded (two researchers coding and checking results) for articles that were in scope. 
We read these articles and recorded the following key information: (1) the type of evidence presented (e.g., 
empirical, qualitative, or both); (2) whether it appeared in an ISI-rated journal; (3) the theorie(s) used, if any, to 
explain and predict cyberbullying; (4) all of the predictors used to explain cyberbullying; (5) what form of 
cyberbullying they were predicting (e.g., revenge porn, cyberbullying, cyberstalking, defacing Facebook, etc.); (6) 
how many different kinds of specific cyberbullying behaviors they were actually predicting; (7) which relationships 
in their model were supported or rejected; (8) the kinds of research participants that were used (e.g., adolescents, 
college-age adults, adults 25 years or older); (9) and the kinds of IT artifacts that were studied and purported to 
increase cyberbullying (if any). To ensure 100% interrater reliability, any coding disagreements were resolved by 
the research team through FtF discussion. 

In summary, our review identified 135 manuscripts that dealt with topics related to cyberbullying, most 
dealing with cyberbullying and cyberstalking in adolescents. Of these articles, only 64 provided empirical or 
qualitative evidence on causes related to cyberbullying. The other 71 articles offered no evidence for predicting 
cyberbullying—they were literature reviews or commentaries, featured descriptive data, focused on legal aspects, or 
predicted other primary outcomes (e.g., effect on victims’ self-esteem). Of the 64 in-scope articles, one involved 
non-college adult offenders: six involved children (under 13 years); 10 involved a mix of children and teenagers; 35 
involved only teenagers; and 11 involved university students (ages 18–24). Of these 64 studies, all but one used self-
reported data (the exception used scenarios). 

Notably only 17 of these studies attempted to apply an underlying theory; the remaining studies were 
exploratory. Moreover, 12 different theories were used and thus, the findings from these studies were inconsistent. 
Some inferred that a cost-benefit (C-B) analysis is crucial to the decision to cyber-harass; others infer that non-C-B 
factors such as low self-control, habit, negative social influence, and neutralization (or moral disengagement) are 
more important; still others support both viewpoints. Many ignored theoretical issues and simply explored 
demographic factors such as age, gender, and income. 
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Table A.1 Summary of 64 cyberbullying Articles in the Literature that Provide Evidence for the Predictors of cyberbullying 
Citation ISI rated 

journal? 
(impact 
factor) 

Used theory? Specific DV Examines 
effects of the IT 
artifact? 

Type of 
participants 
(mean years of 
age) 

Context of study 

Alexy et al. 
(2005) 

no no self-report responses to a 
cyberstalking scenario 

no university 756 students in two universities 

Ang and Goh 
(2010) 

Yes (2.032 ) no self-report cyberbullying  no teenagers (mean 
14.9) 

396 adolescents from Singapore on 
cyberbullying 

Ang et al. 
(2010) 

yes (1.210 ) no self-report cyberbullying  no teenagers (mean 
14) 

336 adolescents from Singapore and 374 
adolescents from Malaysia 

Ang et al. 
(2013) 

Yes (1.210 ) no self-report cyberbullying no teenagers (range 
11–17) 

757 teenagers sample from USA and 
Singapore on cyberbullying 

Aricak et al. 
(2008) 

yes (2.71 ) no self-report cyber-
harassment 

no teenagers (mean 
15.1) 

Turkish students age from 12 to 19 

Barlett et al. 
(2014) 

no general learning 
model 

self-report cyberbullying anonymity university (mean 
19.2) 

146 undergraduate students 

(Barlett et al. 
2016) 

 strength 
differential 
hypothesis 

self-report bullying and 
cyberbullying 

no study one adults 
(mean 26.1); 
study two college 
students (19.2) 

Two studies: one cross-sectional and one 
short-term longitudinal. Designed to see if 
physical strength / power made a difference 
between traditional bullying and 
cyberbullying. 

Baroncelli and 
Ciucci (2014) 

yes (1.975 ) no self-report cyberbullying no children (mean 
12.6) 

669 preadolescents from a middle school in 
Tuscany (Central Italy) 

Bauman (2010) yes (1.309 ) SCT self-report cyberbullying no children (grades 
5–8) 

221 students in a rural intermediate school 

Bauman and 
Pero (2011) 

yes (1.625 ) SCT self-report bullying and 
cyberbullying 

no teenagers (grades 
7–12) 

30 deaf students and 22 hearing students 

Bayraktar et al. 
(2015) 

yes (1.210 ) no self-report cyberbullying 
and cyber victims 

no teenagers (mean 
15.1) 

Random sample survey of 2092 Czech 
adolescents 

Beran and Li 
(2005) 

yes (0.670 ) social 
dominance 
theory 

self-report cyber-
harassment 

no teenagers (grades 
7–9) 

432 students from grades 7–9 in Canadian 
schools 

Beran and Li 
(2008) 

no social ranking 
theory 

self-report cyberbullying no teenagers (grades 
7–9) 

432 students from grades 7–9 in Canadian 
schools 

Bilić (2014) no no self-report cyberbullying no teenagers (grades 
7–8) 

481 students in elementary schools in Croatia 

Boulton et al. 
(2012) 

yes (2.182 ) no self-report cyberbullying no university (mean 
21.3) 

405 postgraduate students 

Calvete et al. 
(2010) 

yes (2.694 ) SCT self-report cyber-
harassment 

no teenagers (mean 
14.1) 

1431 adolescents, aged between 12–17 
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Citation ISI rated 
journal? 
(impact 
factor) 

Used theory? Specific DV Examines 
effects of the IT 
artifact? 

Type of 
participants 
(mean years of 
age) 

Context of study 

DeHue et al. 
(2008) 

yes (2.71 ) no self-report cyberbullying 
via 6 different media 

no children (mean 
12.7) 

1211 final–year pupils of primary schools and 
first–year pupils of all levels of secondary 
schools  

Dilmac (2009) yes(0.29 ) no self-report cyberbullying  no university (mean 
19.3) 

693 socioeconomic status university students 

Doane et al. 
(2014) 

yes (2.694 ) TRA self-report cyberbullying  no university (mean 
age 19.1) 

Random sample survey of 375 university 
students in a university 

Dooley et al. 
(2009) (q) 

yes (0.81 ) no self-report cyberbullying in 
qualitative interview 

no university (range 
12–25) 

Polish university students aged 12–25; sample 
size unreported (qualitative) 

Erdur-Baker 
(2010) 

yes (2.007 ) no self-report cyberbullying  no teenagers (range 
14–18) 

276 adolescents (123 females, 151 males and 
2 unknown) ranging in age from 14 to 18. 

Gibb and 
Devereux 
(2014) 

yes (2.694 ) no self-report cyberbullying  no university (mean 
22.7) 

Random sample survey of 297 undergraduate 
and graduate students on their cyberbullying 
activities 

Görzig and 
Frumkin 
(2013) 

no no self-report on 
cyberbullying 

no children / 
teenagers (range 
9–16) 

Random stratified sample of 25,142 Internet–
using children 

Gradinger et al. 
(2009) 

yes (1.036 ) no self-report cyberbullying no teenagers (mean 
15.6) 

761 adolescents aged 14–19 

Heirman and 
Walrave 
(2012) 

yes (1.210 ) TPB self-report cyberbullying no teenagers (mean 
15.47) 

Random stratified cluster sample in six 
Belgium schools 

Hemphill and 
Heerde (2014) 

yes (3.612 ) no self-report cyberbullying  no teenagers (9th 
grade) 

927 Victorian students on their traditional and 
cyberbullying perpetration and victimization; 
longitudinal study from 2006 (grade 9) to 
2010 (young adulthood) 

Hinduja and 
Patchin (2008) 

yes(0.942 ) no self-report cyberbullying 
and victimization 

no teenagers 1378 youth students 

Hinduja and 
Patchin (2013) 

yes (2.777 ) no self-report cyberbullying  no teenagers (12th 
grade) 

Random sample survey of 4400 12th grade 
students on their thoughts on cyberbullying 

Hoff and 
Mitchell 
(2009) (q) 

no no cyberbullying incidents no university (range 
18–24) 

351 students in a public research University in 
New England about cyberbullying 

Jang et al. 
(2014) 

yes (2.694 ) general strain 
theory 

self-report cyberbullying no teenagers (grade 
8) 

5-year longitudinal study with 3449 Korean 
students, start from grade 8 to grade to one 
year after their graduation from high school 

Juvonen and 
Gross (2008) 

yes (1.434 ) no self-report cyberbullying no children / 
teenagers (range 
12–17) 

1454 children age between 12–17 
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Citation ISI rated 
journal? 
(impact 
factor) 

Used theory? Specific DV Examines 
effects of the IT 
artifact? 

Type of 
participants 
(mean years of 
age) 

Context of study 

Kokkinos et al. 
(2013) 

no no self-report cyberbullying / 
victimization experiences 

no children  Random sample survey of 300 Greek pre–
teenage students 

Kowalski and 
Limber (2007) 

yes (3.612 ) no self-report cyberbullying  no children / 
teenagers (grades 
6, 7, 8) 

3767 middle school students in grades 6, 7, 
and 8 

Kowalski et al. 
(2012) 

yes(1.447) no self-report cyberbullying no teenagers (mean 
15.2) 

4510 students in from eight schools in 
different regions of the United States about 
their experience of traditional and cyber 
bullying 

Li (2007) yes(1.52 ) no self-report whether have 
cyberbullying or not 

no teenagers (grade 
7) 

197 grade seven students from China and 264 
grade seven students from Canada 

Li and Fung 
(2012) 

book no self-report cyberbullying no teenagers (under 
18) 

Book that focuses on frequency of 
victimization.  

Low and 
Espelage 
(2013) 

yes (2.368 ) social learning 
theory 

self-report cyberbullying 
and offline bullying 

no teenagers (mean 
13.9) 

1023 students in grades 5-7 from four 
Midwestern middle schools in US 

Lyndon et al. 
(2011) 

yes (2.182 ) attachment 
theory & routine 
activities theory 

self-report cyberbullying no university (mean 
19) 

411 university student; DVs are two kinds of 
specific stalking related with Ex–partners: 
engage in cyber obsessional pursuit (COP) and 
obsessive relational pursuit (ORI) 

Menesini et al. 
(2013) 

yes (2.841 ) no self-report cyberbullying no teenagers (mean 
15.6) 

390 adolescents aged 14–18 

Mishna et al. 
(2012) 

yes (1.105 ) no self-report cyberbullying no children / 
teenagers (grades 
6, 7, 10, 11) 

2186 students in grade 6, 7, 10, 11 from 33 
schools 

Müller et al. 
(2014) 

yes(2.182 ) no self-report cyberbullying no teenagers (mean 
13.3) 

934 students in 12 Berlin primary and 
secondary schools 

Navarro and 
Jasinski (2012) 

yes (0.31 ) routine activities 
theory 

self-report cyberbullying  no teenagers National sample of 935 teenagers 

Nicol and 
Fleming (2010) 

no theories of 
aggression 

self-report mobile-phone 
cyberbullying 

no teenagers (mean 
14.5) 

348 student from 5 high schools 

Patchin and 
Hinduja (2010) 

yes (1.722 ) general strain 
theory 

self-report cyberbullying no children / 
teenagers (grades 
6–8) 

1963 students in 30 middle schools in US for 
their traditional bullying and cyberbullying 
experience 

Pornari and 
Wood (2010) 

yes (2.275 ) SCT, 
neutralization 

self-report cyberbullying no teenagers (mean 
13.3) 

339 students in years 7 to 9 (mainly studied 
offline aggression but has a small portion of 
survey for cyber aggression) 
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Citation ISI rated 
journal? 
(impact 
factor) 

Used theory? Specific DV Examines 
effects of the IT 
artifact? 

Type of 
participants 
(mean years of 
age) 

Context of study 

(Raskauskas 
and Stoltz 
2007) 

yes (4.141) no self-report traditional 
bullying and cyberbullying 

no teenagers (mean 
15.4) 

83 adolescents from ages 13 to 18 

Renati et al. 
(2012) 

yes (2.182 ) no self-report cyberbullying  no teenagers (mean 
16.1) 

819 adolescents randomly selected from 
multiple cities in Italian 

Riebel et al. 
(2009) 

No  no self-report cyberbullying no children / 
teenagers (mean 
13) 

1987 pupils from 6 to 19 years of age 

Schultze-
Krumbholz and 
Scheithauer 
(2009) 

yes (1.036 ) no self-report cyberbullying no children Student sample (unknown sample size) 

Smith et al. 
(2008) 

yes (6.459 ) no self-report cyberbullying no children / 
teenagers (range 
11–16) 

92 pupils from 14 schools + another 533 
pupils from 5 schools 

Sontag et al. 
(2011) 

yes (2.777 ) no self-report cyberbullying no children (mean 
12.89) 

300 children 

Steffgen et al. 
(2011) 

yes(2.182 ) no self-report cyberbullying no teenagers (mean 
15.9) 

2070 students on their experience of 
cyberbullying 

Topçu et al. 
(2008) 

yes(2.71 ) no self-report cyberbullying 
and cyber-victimization 

no teenagers (range 
14–15) 

Convenience sample survey of 183 middle 
school students on their experience on 
cyberbullying and cyber–victimization (only 
demographic variables) 

Treviño et al. 
(2006) 

yes (1.757 ) no self-report cyberbullying  no teenagers (grades 
7–9) 

264 students from junior high school; only 
studied gender differences (no other variables) 

Udris (2014) yes (2.694 ) no self-report cyberbullying disinhibition teenagers (mean 
16.3) 

Convenience sample survey of 887 high 
school students on their experience of 
cyberbullying 

Varjas et al. 
(2010) (q) 

no no self-report cyberbullying 
motivations 

anonymity, 
disinhibition 

teenagers (mean 
18) 

20 high school students 

Vazsonyi et al. 
(2012) 

yes (1.721 ) no self-report cyberbullying 
and offline bullying 

no children / 
teenagers (range 
6–16) 

Random sample survey of 1,000 youths 
(cross–cultural research) 

Walker (2012) thesis social 
dominance 
theory 

self-report cyberbullying no university (18–
24) 

438 university students. Focused on the extent 
of using technology 

Walrave and 
Heirman 
(2011) 

yes (0.833 ) no self-report cyberbullying no teenagers (mean 
15.1) 

1318 secondary school pupils in Belgium for 
their cyberbullying experience 
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Citation ISI rated 
journal? 
(impact 
factor) 

Used theory? Specific DV Examines 
effects of the IT 
artifact? 

Type of 
participants 
(mean years of 
age) 

Context of study 

Williams and 
Guerra (2007) 

yes (3.612 ) no self-report cyberbullying  no children / 
teenagers (grades 
5, 8, 11) 

3399 youth at 2005 and 2293 in the original 
sample at 2006 

Wright (2014) yes (2.182 ) no self-report cyberbullying anonymity teenagers (grade 
7 and 8) 

274 students (mean age 12.62) in Midwestern 
middle school 

Xiao and 
Wong (2013) 

no social cognitive 
theory 

self-report cyberbullying 
and cyber-victimization 

no university 
(mainly range 
from 18 to 25) 

288 university students in Hong Kong, most of 
whom aged 18-25 

Yang (2012) yes(0.670 ) no self-report cyberbullying no children / 
teenagers (under 
18) 

1,232 sample in 16 elementary, junior, high 
schools in Tailai about their cyberbullying 
experience 

Ybarra (2004) yes (2.71 ) no self-report cyberbullying no teenagers (Mean 
14.1) 

An analysis of Youth Internet Safety Survey 
result 

(q) = qualitative study (four studies were qualitative; all other studies were empirical surveys) 
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APPENDIX B. LITERATURE REVIEW OF LEADING SSSL AND SLT STUDIES 

In this appendix, we briefly review the key literature on SSSL, which further explains and positions the 
research gaps and opportunities we are building on. Our primary purpose was to review SSSL, and these articles are 
detailed in Table B.1. Importantly, IT artifacts that foster disinhibition is the key online social structure driver of our 
SSSL-based model, which is geared toward explaining cyberbullying. The move from the offline to the online 
context involves a dramatic shift in the structure of the social environment, and the IT artifacts we propose strongly 
represent that shift and thus influence the social learning constructs that encourage cyberbullying. We further 
explain our position, based on this review of the SSSL literature. 

First, we have good reason to believe that those social structure variables that influence social learning in 
the physical world, including structural correlates, social organizations, socioeconomic correlates and difference 
social location in reference groups, are less relevant in studying social learning of cyber deviance. According to 
O'Keeffe et al. (2011, p. 801), social media provides individuals with the “new forms of socialization”, and we 
contend that this new socialization along with the IT artifact makes these traditional structures less relevant. In other 
words, different from social learning in the physical world, social structure variables such as age, location and social 
economic status may not greatly influence the reference groups with whom an individual interacts with through 
social media. Hence, adopting SSSL in the social media cyberbullying context, it is important to identify social 
structure variables that are more relevant to one’s online network, rather than the personal network in the physical 
world.  

However, according to our review, only two studies (Holt et al. 2010; Morris and Higgins 2010) have 
investigated cyber deviance using the SSSL framework. But neither Holt et al. (2010) nor Morris and Higgins 
(2010) have studied how IT artifacts of social media influence the social learning process online. Moreover, the 
social structure variables investigated in these two studies are mainly adopted from previous SSSL literature in the 
physical context.  

Second, most of the extant studies on SSSL focused on the first, second, and fourth components of social 
structure variables1; however, empirical studies on the third dimension of social structure (i.e. theoretically defined 
structural variables) and efforts on such theoretical integration are absent and still at the preliminary stage (Akers 
2011a). In the offline context, Akers (2011a) suggested that social disorganization and conflict from social 
disorganization and anomie theories are two possible theory-driven predictors for social learning offline, however, 
these two theory driven factors are not relevant to the IT artifact of social media, and are less effective in explaining 
how social media makes the social learning process online different from that in the conventional offline society.  

Third, most of the SSSL papers we reviewed in Table B.1 investigated deviant behaviors of adolescents or 
university students (except one study investigating elderly drinking behavior). Few of them focused on adults’ 
deviant behaviors—particularly adults with work experience. It is not clear whether social learning mechanisms will 
hold for adults in the context of cyberbullying.  

Summarizing the above research opportunities, in this study we specifically emphasize the theoretically 
defined social structure variables in the SSSL framework and propose that perceived anonymity (with its five 
subconstructs) is a social media artifact that changes the social learning process and thus influences an increase in 
cyberbullying in adults.  

 

 

 

 

                                                      
1 Recall that the four social structure categories are as follows: (1) structural crime correlates, which include geographical, 
societal, cultural, social, and community differences; (2) sociodemographic and socioeconomic crime correlates, which deal with 
one’s location in the social structure (e.g., age, gender, income, employment, class, and religion); (3) theoretically defined 
structural causes, such as those involving social disorganization (e.g., class conflict, oppression, and racism); and (4) different 
social locations of primary and secondary reference groups (e.g., family, peers, church, school, and work). 
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Table B.1. Overview of Key SSSL studies 
Study Cyber or 

offline 
deviance 

Sample Multiple 
behaviors 
as 
dependent 
variables 

Cross-
sectional 
data 
collection 

Context / 
dependent 
variable 

Social structure 
variables 

Social learning 
variables 

Test of mediation 
effects (and interaction 
effects). 

Holt et al. 
(2010) 

Cyber 
deviance 

University 
students 

Combine Cross-
sectional 

Cyber-
deviance 
frequency 
(combine five 
deviant 
behaviors in 
DV) 

Race, gender, 
employment, 
skill, year in 
school 

Social learning as 
second-order 
constructs, 
including 
neutralizing 
definition 

Social learning 
“mediates the effect of 
race and gender on 
cyber-deviance” (p. 50). 

Morris 
and 
Higgins 
(2010) 

Cyber 
deviance 

University 
students 

Scenario 
(three 
vignettes) 

Cross-
sectional 

Possibility to 
engage in 
digital piracy 

Region, age, 
gender, race 

Social learning as 
second-order 
constructs (three 
dimensions except 
imitation) 

Full mediation for age 
and gender; partial 
mediation for race and 
region. 

Kim et al. 
(2013)  

Offline 
deviance 

High school 
students 

Single Cross-
sectional 

Frequency of 
adolescents’ 
alcohol use 

Population 
density, gender, 
residential 
mobility, public 
welfare, type of 
school, 
religiosity 

Association 
definitions, 
reinforcement, 
imitation 

Influences of social 
structural variables 
(population density, 
residential mobility, type 
of school, and 
religiosity) were 
substantially mediated 
by social learning 
variables. 

Capece 
and 
Lanza-
Kaduce 
(2013) 

Offline 
deviance 

University 
students 

Single Cross-
sectional 

Binge 
drinking (in 
last two 
weeks) 

Age, gender, 
race, marital 
status, 
fraternity/sororit
y affiliations, 
family 
relationship, 
academic status, 
work and student 
status. 

Anticipated 
rewards, 
anticipated 
punishers, and the 
definition of the 
drinking climate 
on campus 

Both mediations effects 
of social learning 
variables, and the 
interaction effects 
among social structure 
and social learning 
variables are tested. 
Some of the mediation 
effects are supported, as 
well as five interaction 
terms. 
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Orcutt 
and 
Schwabe 
(2012) 

Offline 
deviance 

African 
American 
adolescents 

Single Longitudinal 
(prior 
drinking as 
control 
variable for 
drinking in 
next period) 

Levels of 
deviant 
drinking 

Gender, race Differential 
association and 
definition 

Mediation effects of 
social learning or social 
bonding variables are 
not supported. 

Lee et al. 
(2004)  

Offline 
deviance 

Students 
(grades 7 
through 12) 

Single 
(separate 
analysis for 
two deviant 
behaviors) 

Cross-
sectional 

Adolescent 
alcohol and 
marijuana 
behavior 

Gender, class, 
age, family 
structure, 
community size 

Social learning as 
second-order 
constructs  

Social learning variable, 
except imitation, has 
substantial mediating 
effects. 

Warr 
(1993)  

Offline 
deviance 

Youth aged 
11-21 

Single 
(separate 
analysis for 
four 
deviant 
behaviors) 

Longitudinal 
archive data 
(but mainly 
cross-
sectional data 
analysis) 

Various 
delinquency, 
such as 
alcohol use, 
marijuana 
use, theft, 
burglary, 
cheating 

Ages Differential 
association 

Effects of age on 
delinquencies are 
partially mediated by 
social learning. 

Durkin et 
al. (2005) 

Offline 
deviance 

University 
students 

Single Cross-
sectional 

Binge 
drinking (in 
last two 
weeks) 

Gender, race, 
fraternity / 
sorority 
membership 

Differential 
association (best 
friends and 
friends with 
whom they most 
frequently 
associate with), 
Reinforcement 
(punishing / 
rewarding 
reactions of peers, 
relative costs / 
rewards), 
definition (general 
definition, 
specific 
definition, 
neutralization) 

Social learning variables 
mediate the effects of 
social structural 
variables. 

Verrill 
(2005) 

Offline 
deviance 

High school 
and middle 

Combine 
six 

Cross-
sectional 

Various 
delinquency 

Population 
density, race 

Social learning as 
second-order 

Social learning variables 
partially mediate the 
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school 
students 

different 
kinds of 
offline 
deviances 

composition, 
gender 
composition, age 
composition, 
race, gender, 
age, SES, ethnic 
heterogeneity, 
residential 
mobility. 

constructs: 
differential 
association 
(number of 
delinquent 
friends), 
differential 
reinforcement 
(rewards, costs), 
and definition 
(general negative 
definition and 
neutralizing 
definition). 

effects of some social 
structural variables. 

Lanza-
Kaduce et 
al. (2006) 

Offline 
deviance 

University 
students 

Single Cross-
sectional 

Drinking 
before sexual 
intercourse 

Gender, Greek Reinforcement 
(risks and 
rewards) 

Effects of gender on 
drinking before sexual 
intercourse is mediated 
by social learning. 

Akers and 
Lee 
(1999) 

Offline 
deviance 

Secondary 
school 
students 

Single Cross-
sectional 

Marijuana 
use 

Age Social learning as 
second-order 
constructs (three 
dimensions except 
imitation) 

Social learning fully 
mediates the influence 
of age on marijuana use. 

Holland-
Davis 
(2006) 

Offline 
deviance 

Adolescents 
in grades 7 
through 12 

Single 
(separate 
analysis for 
three 
deviant 
behaviors) 

Cross-
sectional 

Alcohol use, 
marijuana 
use, illicit 
drug use 

Age, gender, 
father’s 
occupation, 
population of the 
local community 
surrounding each 
school, poverty, 
ethnic 
heterogeneity, 
residential 
mobility 

Differential 
association 
(number of 
friends), 
differential 
reinforcement 
(balance of good 
vs. bad 
outcomes), 
definition (general 
negative 
definition), 
imitation. 

Influences of most social 
structure variables are 
substantially mediated 
by social learning 
predictors. 

Whaley et 
al. (2011) 

Offline 
deviance 

High school 
and middle 
school 
students 

Single 
(separate 
analysis for 
four 

Cross-
sectional 
archive data 

Binge 
drinking, 
marijuana, 
ecstasy, 

Multi-level 
structural 
variables: 

Peer approval Most social structure 
variables are partially or 
fully mediated by peer 
approval. 
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deviant 
behaviors) 

methampheta
mine use 

Level 1: parent 
education, grade, 
race. 
Level 2: 
residential 
instability, 
population size, 
race 
composition. 

Hoffmann 
(2003) 

Offline 
deviance 

Students 
(grades 8 
through 10) 

Combine 
six types of 
delinquent 
behavior 
(conducted 
in the past 
year) 

Longitudinal 
study: the 
period for 
data 
collection 
lasts for two 
years 

Various 
delinquency 

Racial 
segregation 
index, percent of 
female-headed 
households, 
percent of 
jobless males, 
and percent of 
poverty 

Conventional 
definitions, and 
peer expectations 

The direct influence of 
community-level social 
structure variables on 
delinquency is not 
mediated by social 
learning. 

Akers 
(2011b) 

Offline 
deviance 

Elderly in 
Florida and 
New Jersey 
(aged 60 and 
above) 

Single Cross-
sectional 

Heavy 
alcohol 
drinking 

Retirement 
community 
context (income, 
education, age, 
density) 

Social learning as 
second-order 
constructs (three 
dimensions except 
imitation) 

Social learning fully 
mediates the influence 
of community context 
on alcohol drinking. 

Note: None of these studies considered IT artifacts of any kind in altering social structures. 
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ONLINE APPENDIX C. MEASUREMENT DETAILS 

Here, we document two sets of measures: The first set in Section 1, is asked once before we ask about four cyberbullying behaviors. The second set relates to 
four specific cyberbullying behaviors and their matched social learning variables. 
 
SECTION 1 Measures: Pre-deviance / cyberbullying questions 

Crucially, the measures in this section are measured ONCE to establish counter-explanations and SSSL contextual variables that affect SL. We essentially 
replicate Aker’s common community context variables (and add a couple related to the Internet) but then uniquely add the technology artifact context of 
perceived anonymity.  
 

Construct (Source) Scaling, Prompt, and Items 
Age Age [logic: must be 18 or older or not eligible for study] 
Web browsing years Approximately which was the first year you started using any form of graphical Web browser? (e.g., 

Internet Explorer, Chrome, Firefox, Safari, Opera, Netscape, Mosaic)  
[logic: must be 5 years or more] 

Hours per day on social media On average, how many hours do you spend each day using social media? [logic: must be > 0 or not 
eligible for study] 
 

• 0 minutes (none) 
• 1 to 15 minutes 
• 16 to 30 minutes 
• 31 minutes to 1 hour 
• > 1 hour <= 2 hours 
• > 2 hours <= 4 hours 
• > 4 hours <= 7 hours 
• > 7 hours <= 12 hours 
• > 12 hours <= 18 hours 
• > 18 hours 

Social media type Prompt: Please consider all forms of social media in the last year (12 months) that you have used 
at least once to cyberbully other people. Select the one form of social media you have most used for 
cyberbullying: 

• Facebook 
• Twitter 
• Online discussion forum, including blogs, Reddit, Disqus, Tumblr, etc. 
• Instant Messaging (IM), including Snapchat, WhatsApp, WeChat, etc. 
• Instagram 
• Ask.fm 
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• Google+ 
• Pinterest 
• Vine 
• YouTube 
• Other social media (specify) 
• I have not used any form of social media to cyberbully others in last 12 months 

[logic: not eligible for study if they select last choice] 
Residence In which country do you currently live? [Logic: full country drop down; must only select the US or 

not eligible for study] 
Gender Gender (male, female, other) 
Education Education: 

• less than high school 
• high school or equivalent 
• some university but no degree 
• associate’s degree 
• bachelor’s degree 
• master’s degree 
• doctoral degree  

Employment status What is your employment status?: student, unemployed, part-time, full-time 
Income Select your current yearly income range, including all sources:  

• $0 
• $1 to $10,000 
• $10,001 to $30,000 
• $30,001 to $50,000 
• $50,001 to $70,000 
• $70,001 to $100,000 
• $100,001 to $150,000 
• $150,001 to $200,000 
• $200,001 to $300,000 
• $300,001 to $500,000 
• $500,000 to $1,000,000 
• $1,000,001 + 

Work years How many total years have you worked full time in your lifetime? 
Organizational commitment (OC) (Herath and Rao 
2009)  
 
Reflective first-order [outside of model; used as a 
marker variable to detect any potential common-

Prompt: “To what degree do the following statements accurately represent you and your current 
work organization or the last place you worked (if you're a student, think of the school where you 
study)?” 
Scaling: 7-point Likert-type scale anchored on 1=very strongly disagree…7=very strongly agree. 
OC1. I am willing to put in a great deal of effort, beyond what is normally expected, in order to help 
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method bias] my organization be successful. 
OC2. I really care about the fate of my organization. 
OC3. For me, my organization is the best of all possible organizations for which to work. 

cyberbullying anonymity modified from social 
anonymity measures by Lowry et al. (2009) 
 
Social anonymity is second-order factor composed of 
the following reflective constructs: 
 
Lack of identity (A-LI) 
Confidence in the system (A-CS) 
Diffused responsibility (A-DR) 
Proximity (A-PX) 
Knowledge of others (A-KO) 

Prompt: You indicated that you have used [social media] in the past year for cyberbullying. We 
would like to know your beliefs about using [social media] for cyberbullying. When cyberbullying 
other people using [social media] which of the following best describes your opinions about [the 
social media itself] in bullying others? “I believe that…”  
 
Scaling: 7-point Likert-type scale anchored on 1=very strongly disagree…7=very strongly agree. 
A-LI1. …my personal identity won’t be provided.  
A-LI2. …my cyberbullying is entirely secret. 
A-CS1. …the system(s) will not identify me without my permission. 
A-CS2. … no names will be attached to the systems’ internal records unless that is what I want.  
A-DR1. …it is impossible to make me more accountable than others for cyberbullying.  
A-DR2. …it is impossible to blame me personally for any cyberbullying. 
A-PX1. …others can’t physically see what I am doing on my computer screen (e.g., walk by and see 
what I’m writing). 
A-PX2. …I feel assured that no one can physically observe me in the act of cyberbullying (e.g., 
look over my shoulder when I’m typing). 
A-KO1. …my behavior(s) do NOT have enough distinguishing characteristics that would allow 
other people to identify me as the originator of the cyberbullying. 
A-KO2. …it is impossible to identify me as the origin of the cyberbullying based on my personal 
characteristics. 
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SECTION 2 MEASURES: Questions Asked for Each of the Four Forms of cyberbullying 

To get a strong sample without a heavy cognitive burden, each respondent will provide their attitudes about four separately presented cyberbullying 
behaviors. They will only be asked about ONE behavior at a time. Each behavior will also be randomly ordered in presentation to mitigate any potential ordering 
effects. After asking about their participation in the ONE behavior, they will be asked about the social learning variables that relate only to that behavior. 

Crucially, these questions are framed as current attitudes/beliefs about the behaviors, as is done in most of Aker’s studies (e.g., Akers 2011a) and 
many others in the SLT literature. The assumption is that these attitudes are based on their experiences and general cognitions, so there is no attempt to ask the 
respondents what they were thinking when they committed the behavior (if they have done so) or if they would commit the behavior in the future. Then, similar 
to Holt et al. (2010), these responses are aggregated into a larger model—thus ensuring one-to-one correspondence of the variance of the social learning variables 
to the reported frequency of each specific deviant behavior. Also, like Aker’s studies, we ask them about their attitudes toward the behavior even if they have not 
committed the specific behavior in the last year. This better tests the model by providing fully orthogonal responses solely on their attitudes, whether then have 
done the behavior or not. 

  
 
 

Cyberbullying frequency (CBF) 
 
Formative measurement with cyberbullying items 
categorized and condensed from the cyberbullying 
instrument by Menesini et al. (2012) 
 
The frequency scaling is from Akers et al. (1989) 
 
 

Logic: Again, only one behavior will be shown at a time and this will be matched to one selected 
social media artifact they have used most for cyberbullying in the last year. Each respondent will fill 
out the social learning variables only for this behavior, and they will do this four times, in random 
presentation order, from the following set of four cyberbullying behaviors. 
 
Prompt: Instructions: At this point in the survey, we want to know your honest opinions about 
performing a specific form of cyberbullying on [selected tool], whether or not you have done this 
behavior. 
 
The cyberbullying behavior we want you to think about doing is: [selected behavior] 
 
Going forward, EVERY question we ask only pertains to this cyberbullying behavior on [tool]. 
 
First, for this particular behavior, in the past year, what is the frequency you have done this one 
behavior on [tool]? 

• Never 
• One time 
• Monthly (up to 2-3 times a month) 
• Weekly (up to 3-4 times a week) 
• Daily 

CBF-B1. Post something hurtful, rude, inappropriate, or mean that targets someone.  
CBF-B2. Publicly embarrass or prank someone with true information or photos that are potentially 
harmful.  
CBF-B3. Spread a rumor or untrue information about someone. 
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CBF-B4. Send threatening or harassing messages, or send messages after someone told you to stop.  

Cyberbullying situational moral beliefs (SM); 
adapted from Hu et al. (2011) 
 
[maps to social learning definitions: positive] 

Prompt: Again, going forward, we want to know your honest beliefs about this behavior [behavior] 
on [tool]. There are no right or wrong answers, so please do your best to provide us with an accurate 
response. 
  
Enter your agreement with the following statements about committing this behavior on [tool].  
 
“In moral or ethical terms, this behavior is… 
SM1. …morally unacceptable.” 
SM2. …against my moral beliefs.” 
SM3. …the wrong thing to do.” 

Cyberbullying negative social influence: norms 
(NSIN); based on subjective norms scaling suggested 
by Ajzen (1991) 
 
Norms modified for Aker et al.’s (1989) differential 
association (norms) construct of those in one’s social 
circle. Subjective norms are the degree to which one 
perceives important referent others approve / 
disapprove of specific behaviors (Ajzen 1991).  
 
[maps to social learning differential association: 
norms] 

Prompt: ‘The following people think it is okay / acceptable to engage in this behavior [behavior] on 
[tool]” 
 
NSN1. My “real world” friends. 
NSN2. My family members. 
NSN3. My work colleagues.  
NSN4. Other people who are important to me. 
NSN5. Other online friends. 
NSN6. Other anonymous people online whom I follow or chat with. 

cyberbullying negative social influence: frequency 
(NSIF) 
 
Based on NSIN modified for Aker et al.’s (1989) 
differential association (frequency) construct of 
those in one’s social circle. 
 
[maps to social learning differential association: 
frequency] 

To the best of your knowledge, about how often have each of the following people done the same 
behavior [behavior] on [tool] in the past year? 
• Never 
• One time 
• Monthly (up to 2-3 times a month) 
• Weekly (up to 3-4 times a week) 
• Daily 
• Not sure 
NSF1. My “real world” friends. 
NSF2. My family members. 
NSF3. My work colleagues.  
NSF4. Other people who are important to me. 
NSF5. Other online friends. 
NSF6. Other anonymous people online whom I follow or chat with. 
Prompt: “Considering all factors, I feel that doing this behavior [behavior] on [tool] would…” 
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cyberbullying benefits (BEN); adapted from 
Bulgurcu et al. (2010) 
 
[maps to social learning differential reinforcement 
(negative)] 

 
BEN1. …be favorable to me. 
BEN2. …result in benefits to me. 
BEN3. …create advantages for me. 
BEN4. …provide gains to me. 

cyberbullying costs (CST); adapted from Bulgurcu 
et al. (2010) 
 
[maps to social learning differential reinforcement 
(positive)] 

CST1. …be harmful to me. 
CST2. …impact me negatively. 
CST3. …create disadvantages for me. 
CST4. ...generate losses for me. 

 
Neutralization explanation: To decrease cognitive load and to follow Aker’s (2011a) approach to neutralization, we have provided only one item for each 
major kind of neutralization, and we continue to treat it as a formative construct. Importantly, this is framed like Aker’s approach to be about the 
respondent’s current attitudes about the behavior—not thinking about the neutralization technique they used to justify the behavior.  
 
[maps to social learning definitions: neutralization (negative)] 
Neutralization: Denial of responsibility (N-DR); 
Original from Sykes and Matza (1957); 
item from Siegal (2011) 

N1. “It is okay to do if you aren’t really intending to do it and it just happens.” 

Neutralization: Denial of injury (N-DI); Original 
from Sykes and Matza (1957); item from Siegal 
(2011) 

N2. “It isn’t a big deal. There is no possible meaningful harm.” 

Neutralization: Denial of victim (N-DV); Original 
from Sykes and Matza (1957); item from Cromwell 
and Thurman (2003) 

N3. “It is okay if the target person(s) deserve it; what comes around goes around (i.e., karma).” 

Neutralization: Condemning  
the condemners (N-CC); Original from Sykes and 
Matza (1957); item from Siegal (2011) and 
Cromwell and Thurman (2003) 

N4. “People who condemn this behavior often do worse things themselves online.” 

Neutralization: Appealing to higher loyalties (N-
AH); Original from Sykes and Matza (1957); item 
from Hinduja (2007) 

N5. “It is okay if it helps a person accomplish a greater good, such as for friends, family, or work.” 

Neutralization: Defense of necessity (N-DN); 
Original from Minor (1981); item from Eliason and 
Dodder (1999) and Puhakainen and Ahonen (2006) 

N6. “It is okay do if the circumstances require it.” 

Scaling: 7-point Likert-type scale anchored on 1=very strongly disagree…7=very strongly agree. 
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ONLINE APPENDIX D. DETAILS FOR ESTABLISHING FACTORIAL VALIDITY AND 

RELIABILITIES 

Formative or Reflective Constructs? 

A key step in preparing to assessing factorial validity is to determine which constructs are formative and 
which are reflective (Diamantopoulos and Winklhofer 2001).i We used (Cenfetelli and Bassellier 2009; 
Diamantopoulos and Winklhofer 2001; Petter et al. 2007) as the basis for determining which constructs were 
formative and which were reflective. In this assessment, the most important consideration is to see how the 
constructs were theoretically formed and validated in other literature, to make sure no contradictions exist in their 
current use, and to model the constructs consistently.  

First, we reaffirmed that cyberbullying anonymity was a second-order factor composed of reflective 
subconstructs. We also reaffirmed that neutralization was formative, as defined in the literature (e.g., Siponen and 
Vance 2010). Finally, cyberbullying was also treated as formative, as each individual behavior was assessed with its 
own independent set of social learning independent variables. All other latent constructs were first-order reflective 
constructs. We thus performed factorial validity according to these classifications. 

 
Factorial Validity for the Reflective Constructs 

Factorial validity of reflective constructs is established by establishing both convergent validity and 
discriminant validity, two highly interrelated concepts that must coexist. Importantly, factorial validity is established 
in different ways for reflective and formative constructs; thus, we discuss these analyses separately. 

To establish the factorial validity of our reflective constructs, we followed procedures shown by Straub 
Gefen and Straub (2005) and Lowry and Gaskin (2014). For an especially conservative analysis, we used two 
established techniques to establish convergent validity and two established techniques to establish discriminant 
validity. First, we examined the outer model loadings, summarized in Table D.1. Following Gefen and Straub 
(2005), convergent validity can be established when the t-values of the outer model loadings are significant. All 
items in the model passed these checks. Moreover, all loadings were above the 0.500 threshold. 

As a second check, we correlated the latent variable scores against the indicators as a form of factor 
loadings and then examined the indicator loadings and cross-loadings to establish convergent validity (see Table 
D.2). Although this approach is typically used to establish discriminant validity (Gefen and Straub 2005), 
convergent validity and discriminant validity are interdependent and help establish each other (Straub et al. 2004). 
Thus, convergent validity is also established when each loading for a latent variable is substantially higher than 
those for other latent variables.  

We also used two approaches to establish discriminant validity, as described in Gefen and Straub (2005) 
and Lowry and Gaskin (2014). First, as with convergent validity, we examined the factor loadings, but this time to 
ensure significant overlap did not exist between the constructs. To be extra conservative, and since we had more 
reflective items than was minimally needed, we dropped any items that had cross-loadings below 0.700. Second, we 
used the approach of examining the square roots of the AVEs described in Fornell and Larcker (1981); Staples et al. 
(1999)ii To be extra conservative, we also ensured that all AVEs were 0.500 or higher. Strong discriminant validity 
was shown for all subconstructs, using both approaches. All of the AVE thresholds were exceeded for all latent 
constructs, as summarized in Table D.3, which also displays the measurement model statistics for all first-order 
reflective constructs.  

 
Mono-Method Bias  

Several steps were taken a priori to decrease the likelihood of common-method bias from occurring in our 
data collection, as discussed in the main text. However, all data was collected using a similar-looking online survey; 
thus, we tested for common-method bias to establish that it was not a likely negative factor in the data remaining for 
our analysis.  

The most important problem of common-method bias is that it causes the constructs of a model to be highly 
correlated with each other. Thus, our main approach was simply to examine a correlation matrix of the constructs 
and to determine if any of the correlations were above 0.90, which is evidence that common-method bias may exist 
(Pavlou et al. 2007). These correlations—all of which were significantly below the 0.90 threshold—are presented in 
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the measurement model statistics in Table D.3.iii  
In addition, we had gathered a marker variable, organizational commitment, which we could use to further 

establish that common-method bias exists. A marker variable is one that is prone to social desirability bias (i.e., 
people are likely to respond highly in the affirmative) and that is unrelated to the theoretical model being tested. The 
idea here is that if common-method bias existed, then all (or most) constructs would be highly correlated, including 
the marker variable. The simplest way to test this was to run the marker variable in the correlation matrix of all 
variables. We did so against all the major constructs of our model and found trivial to low correlations (see Table 
D.4a). This provides further evidence common-method bias is likely not a legitimate threat to this study.  

 
Checking for Multicollinearity 

Another key threat to check for with SEM is the potential threat of multicollinearity, and this is especially 
important to assess with models that have formative second-order measurement. We followed the latest standards in 
checking for multicollinearity with all construct items. All of the first-order reflective constructs had VIFs well 
below the conservative threshold of 5.0 (the highest had a VIF of 3.980; most were below 3.0). All of the formative 
second-order constructs had VIFs well below the conservative threshold of 3.3 (the highest had a VIF of 2.597). 
Variance inflation factors (VIFs) less than 10 are traditionally viewed as justification for a model’s lack of 
multicollinearity, with 5.0 being ideal. However our results are in line with the latest most stringent standards 
(reflective constructs should be below 5.0 and formative should be below 3.3) (Cenfetelli and Bassellier 2009). 
Hence, we conclude that our model does not suffer from multicollinearity. See Table D.4b. 

 
Reliabilities 

As a product of our rigorous pre-analysis, all our reflective subconstructs exhibited high levels of 
reliability. To establish reliability, PLS computes a composite reliability score as part of its integrated model 
analysis. This score is a more accurate measurement of reliability than Cronbach’s alpha because it does not assume 
that loadings or error terms of the items are equal. However, we also included Cronbach’s alpha as a conservative 
check, and all these values were above the minimum threshold of 0.700. These values are summarized in Table D.4b 
and indicate strong reliabilities. 

 
Factorial Validity of Formative Constructs 

Again, cyberbullying anonymity is a second-order formative construct composed of first-order reflective 
subconstructs, and all have been theoretically and empirically validated in the previous literature. Likewise, 
cyberbullying and neutralization are both treated as first-order formative constructs. In this section, we further 
rigorously establish validity of these constructs to improve our analysis. Establishing factorial validity for formative 
indicators is more challenging than validating reflective indicators, because the established procedures that exist to 
determine the validity of reflective measures do not apply to formative measures (Petter et al. 2007; Straub et al. 
2004), and the procedures for validating formative measures are less known and established (Diamantopoulos and 
Winklhofer 2001) though standards are beginning to emerge (Cenfetelli and Bassellier 2009).iv We use these latest 
standards published in (Cenfetelli and Bassellier 2009). 

However, the biggest potential issue that must be addressed is multicollinearity (Cenfetelli and Bassellier 
2009). We thus assessed the possibility of multicollinearity among all the indicators in the model, as performed in 
the previous section. Variance inflation factors (VIFs) less than 10 are traditionally viewed as justification for a 
model’s lack of multicollinearity, with 5.0 being ideal, but formative methodologists have recently called for a more 
stringent cutoff of less than 3.3 to be used (Cenfetelli and Bassellier 2009; Diamantopoulos and Siguaw 2006; Petter 
et al. 2007). Again, this conservative threshold was established for all reflective and formatives constructs in our 
model—whether they were second- or first-order formative. 

A final step for validating our three second-order formative constructs, we assessed the absolute indicator 
contributions (i.e., zero-order correlations) of the individual items for each second-order construct against the overall 
average of for each construct. The goal in this step is to improve internal validity by removing items not exhibiting a 
significant association with the overall construct (Cenfetelli and Bassellier 2009; Diamantopoulos and Winklhofer 
2001).v All of the items showed significant associations with the overall measure at the 0.05 level of significance, 
and thus none of these items were removed during this step. We also performed inter-item correlational diagnostics 
to assess if there were unusually high correlations amongst the formative indicators, as these can significantly 
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weaken formative measures (Diamantopoulos and Siguaw 2006). As expected, all of the cyberbullying items were 
correlated but all were well below a high correlation threshold of 0.900. These statistics are summarized in Tables 
B.5a–B.5c for cyberbullying, neutralization, and cyberbullying anonymity, respectively. 

 
Summary of Pre-Analysis Validation 

Our pre-analyses show that our data exhibit strong factorial validity of the reflective and formative 
constructs, little multicollinearity, strong reliabilities, and that they lack mono-method bias. In summary, the results 
of our validation procedures show that our model data meets or exceeds the rigorous validation standards expected 
in modern research (Straub et al. 2004)—particularly for PLS analysis for reflective constructs (Gefen and Straub 
2005) and formative constructs (Cenfetelli and Bassellier 2009; Diamantopoulos and Siguaw 2006; Petter et al. 
2007). 
 
Table D.1. Outer Model Weights to Establish Convergent Validity 

Second-order construct First-order construct Items Loading 
cyberbullying 
anonymity 

Confidence in the system a_cs1 0.931*** 
a_cs2 0.920*** 

Diffused responsibility a_dr1 0.828*** 
a_dr2 0.927*** 

Knowledge of others a_ko1 0.878*** 
a_ko2 0.922*** 

Lack of identification a_li1 0.889*** 
a_li2 0.930*** 

Proximity a_px1 0.920*** 
a_px2 0.893*** 

cyberbullying Benefits B1 benefits b1_ben1 0.916*** 
b1_ben2 0.933*** 
b1_ben3 0.924*** 
b1_ben4 0.933*** 

B2 benefits b2_ben1 0.916*** 
b2_ben2 0.939*** 
b2_ben3 0.918*** 
b2_ben4 0.924*** 

B3 benefits b3_ben1 0.932*** 
b3_ben2 0.920*** 
b3_ben3 0.911*** 
b3_ben4 0.924*** 

B4 benefits b4_ben1 0.932*** 
b4_ben2 0.942*** 
b4_ben3 0.920*** 
b4_ben4 0.925*** 

cyberbullying costs B1 costs b1_cst1 0.918*** 
b1_cst2 0.939*** 
b1_cst3 0.927*** 
b1_cst4 0.909*** 
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B2 costs b2_cst1 0.934*** 
b2_cst2 0.931*** 
b2_cst3 0.917*** 
b2_cst4 0.917*** 

B3 costs b3_cst1 0.929*** 
b3_cst2 0.931*** 
b3_cst3 0.934*** 
b3_cst4 0.919*** 

B4 costs b4_cst1 0.929*** 
b4_cst2 0.942*** 
b4_cst3 0.936*** 
b4_cst4 0.921*** 

cyberbullying 
neutralization 

B1 neutralization b1_n1 0.830*** 
b1_n2 0.822*** 
b1_n3 0.846*** 
b1_n4 0.523*** 
b1_n5 0.842*** 
b1_n6 0.885*** 

B2 neutralization b2_n1 0.843*** 
b2_n2 0.846*** 
b2_n3 0.868*** 
b2_n4 0.551*** 
b2_n5 0.884*** 
b2_n6 0.920*** 

B3 neutralization b3_n1 0.842*** 
b3_n2 0.856*** 
b3_n3 0.871*** 
b3_n4 0.591*** 
b3_n5 0.882*** 
b3_n6 0.909*** 

B4 neutralization b4_n1 0.878*** 
b4_n2 0.858*** 
b4_n3 0.877*** 
b4_n4 0.565*** 
b4_n5 0.896*** 
b4_n6 0.906*** 

cyberbullying negative 
social influence: 
Frequency of 
cyberbullying 

B1 frequency b1_nsf1 0.790*** 
 b1_nsf2 0.603*** 
 b1_nsf3 0.664*** 
 b1_nsf4 0.805*** 
 b1_nsf5 0.728*** 
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 b1_nsf6 0.795*** 
B2 frequency b2_nsf1 0.809*** 
 b2_nsf2 0.697*** 
 b2_nsf3 0.733*** 
 b2_nsf4 0.831*** 
 b2_nsf5 0.772*** 
 b2_nsf6 0.693*** 
B3 frequency b3_nsf1 0.795*** 
 b3_nsf2 0.681*** 
 b3_nsf3 0.723*** 
 b3_nsf4 0.789*** 
 b3_nsf5 0.786*** 
 b3_nsf6 0.723*** 
B4 frequency b4_nsf1 0.811*** 
 b4_nsf2 0.655*** 
 b4_nsf3 0.697*** 
 b4_nsf4 0.794*** 
 b4_nsf5 0.764*** 
 b4_nsf6 0.688*** 

cyberbullying negative 
social influence: Norms 
about cyberbullying 

B1 norms b1_nsn1 0.828*** 
b1_nsn2 0.709*** 
b1_nsn3 0.745*** 
b1_nsn4 0.853*** 
b1_nsn5 0.836*** 
b1_nsn6 0.737*** 

B2 norms b2_nsn1 0.874*** 
b2_nsn2 0.809*** 
b2_nsn3 0.802*** 
b2_nsn4 0.888*** 
b2_nsn5 0.852*** 
b2_nsn6 0.751*** 

B3 norms b3_nsn1 0.845*** 
b3_nsn2 0.767*** 
b3_nsn3 0.803*** 
b3_nsn4 0.871*** 
b3_nsn5 0.817*** 
b3_nsn6 0.721*** 

B4 norms b4_nsn1 0.861*** 
b4_nsn2 0.788*** 
b4_nsn3 0.810*** 
b4_nsn4 0.890*** 



23 
 

b4_nsn5 0.830*** 
b4_nsn6 0.719*** 

cyberbullying 
Situational morality 

B1 situational morality b1_sm1 0.947*** 
b1_sm2 0.940*** 
b1_sm3 0.939*** 

B2 situational morality b2_sm1 0.958*** 
b2_sm2 0.960*** 
b2_sm3 0.949*** 

B3 situational morality b3_sm1 0.936*** 
b3_sm2 0.942*** 
b3_sm3 0.938*** 

B4 situational morality b4_sm1 0.948*** 
b4_sm2 0.959*** 
b4_sm3 0.954*** 

*** = p < 0.001; no items were dropped; B1 = Post something hurtful, rude, inappropriate, or mean that targets 
someone; B2 = Publicly embarrass or prank someone with true information or photos that are potentially harmful; 
B3 = Spread a rumor or untrue information about someone; B4 = Send threatening or harassing messages, or send 
messages after someone told you to stop. 
 
 
 
 



Table D.2. Correlations of Latent Variable Scores against the Indicators to Establish Convergent and Discriminant Validity) (Part 1 of 3) 
Items A-cs a-dr a-ko a-li a-px benefits 

B1 
benefits 
B2 

benefits 
B3 

benefits 
B4 

costs B1 

a_cs1 0.931 0.551 0.598 0.690 0.377 0.105 0.083 0.181 0.133 -0.168 
a_cs2 0.920 0.524 0.609 0.705 0.395 0.122 0.076 0.146 0.143 -0.206 
a_dr1 0.480 0.828 0.562 0.534 0.368 0.125 0.110 0.174 0.129 -0.237 
a_dr2 0.540 0.927 0.601 0.599 0.334 0.149 0.133 0.232 0.197 -0.207 
a_ko1 0.579 0.588 0.878 0.664 0.403 0.081 0.030 0.141 0.121 -0.197 
a_ko2 0.595 0.602 0.922 0.672 0.403 0.111 0.069 0.131 0.134 -0.169 
a_li1 0.769 0.580 0.693 0.889 0.437 0.131 0.070 0.179 0.134 -0.193 
a_li2 0.620 0.595 0.661 0.930 0.422 0.133 0.107 0.224 0.181 -0.198 
a_px1 0.356 0.309 0.387 0.384 0.920 0.100 0.072 0.108 0.083 -0.171 
a_px2 0.403 0.410 0.427 0.476 0.893 0.086 0.070 0.104 0.059 -0.166 
b1_ben1 0.112 0.135 0.094 0.122 0.068 0.916 0.452 0.489 0.502 -0.438 
b1_ben2 0.119 0.140 0.101 0.142 0.108 0.933 0.476 0.505 0.508 -0.394 
b1_ben3 0.109 0.154 0.097 0.136 0.104 0.924 0.490 0.511 0.522 -0.379 
b1_ben4 0.115 0.154 0.108 0.138 0.104 0.933 0.489 0.506 0.491 -0.408 
b2_ben1 0.071 0.119 0.031 0.078 0.063 0.465 0.916 0.491 0.429 -0.217 
b2_ben2 0.098 0.136 0.062 0.099 0.089 0.474 0.939 0.491 0.456 -0.191 
b2_ben3 0.068 0.122 0.058 0.111 0.061 0.472 0.918 0.480 0.445 -0.210 
b2_ben4 0.082 0.139 0.060 0.078 0.077 0.494 0.924 0.474 0.463 -0.202 
b3_ben1 0.172 0.241 0.161 0.220 0.129 0.510 0.506 0.932 0.477 -0.277 
b3_ben2 0.165 0.209 0.148 0.217 0.092 0.502 0.477 0.920 0.497 -0.244 
b3_ben3 0.162 0.193 0.110 0.184 0.089 0.494 0.469 0.911 0.455 -0.261 
b3_ben4 0.155 0.223 0.133 0.205 0.120 0.493 0.479 0.924 0.447 -0.224 
b4_ben1 0.145 0.166 0.133 0.156 0.071 0.511 0.452 0.465 0.932 -0.254 
b4_ben2 0.131 0.169 0.122 0.149 0.072 0.517 0.462 0.480 0.942 -0.234 
b4_ben3 0.128 0.189 0.140 0.171 0.078 0.492 0.433 0.467 0.920 -0.226 
b4_ben4 0.149 0.191 0.135 0.177 0.074 0.507 0.454 0.480 0.925 -0.222 
b1_cst1 -0.165 -0.227 -0.178 -0.197 -0.151 -0.410 -0.223 -0.265 -0.233 0.918 
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b1_cst2 -0.178 -0.228 -0.169 -0.188 -0.173 -0.428 -0.211 -0.268 -0.255 0.939 
b1_cst3 -0.201 -0.244 -0.208 -0.207 -0.179 -0.409 -0.211 -0.265 -0.244 0.927 
b1_cst4 -0.202 -0.209 -0.191 -0.204 -0.186 -0.362 -0.170 -0.203 -0.192 0.909 
b2_cst1 -0.103 -0.152 -0.077 -0.125 -0.112 -0.252 -0.464 -0.246 -0.234 0.486 
b2_cst2 -0.122 -0.169 -0.092 -0.139 -0.125 -0.259 -0.487 -0.262 -0.253 0.468 
b2_cst3 -0.109 -0.141 -0.091 -0.142 -0.109 -0.208 -0.431 -0.212 -0.224 0.468 
b2_cst4 -0.126 -0.166 -0.086 -0.128 -0.114 -0.192 -0.426 -0.217 -0.217 0.474 
b3_cst1 -0.256 -0.299 -0.253 -0.308 -0.169 -0.235 -0.230 -0.431 -0.259 0.546 
b3_cst2 -0.283 -0.280 -0.251 -0.323 -0.195 -0.243 -0.253 -0.442 -0.281 0.512 
b3_cst3 -0.269 -0.302 -0.278 -0.324 -0.202 -0.217 -0.225 -0.428 -0.254 0.528 
b3_cst4 -0.255 -0.268 -0.235 -0.322 -0.201 -0.213 -0.215 -0.429 -0.243 0.511 
b4_cst1 -0.205 -0.248 -0.190 -0.236 -0.121 -0.289 -0.202 -0.281 -0.516 0.456 
b4_cst2 -0.219 -0.243 -0.211 -0.261 -0.131 -0.312 -0.233 -0.316 -0.543 0.485 
b4_cst3 -0.204 -0.234 -0.218 -0.281 -0.140 -0.268 -0.221 -0.277 -0.513 0.457 
b4_cst4 -0.195 -0.229 -0.204 -0.271 -0.134 -0.232 -0.178 -0.237 -0.467 0.492 
b1_n1 0.137 0.268 0.180 0.182 0.166 0.414 0.285 0.297 0.297 -0.397 
b1_n2 0.209 0.305 0.209 0.242 0.223 0.454 0.263 0.270 0.297 -0.527 
b1_n3 0.147 0.214 0.132 0.156 0.167 0.444 0.274 0.251 0.260 -0.489 
b1_n4 0.084 0.116 0.079 0.069 0.143 0.252 0.155 0.189 0.194 -0.217 
b1_n5 0.128 0.222 0.142 0.163 0.163 0.470 0.314 0.333 0.339 -0.440 
b1_n6 0.115 0.212 0.114 0.130 0.159 0.478 0.273 0.268 0.269 -0.511 
b2_n1 0.040 0.135 0.048 0.046 0.057 0.264 0.512 0.255 0.281 -0.185 
b2_n2 0.097 0.135 0.073 0.094 0.020 0.294 0.536 0.287 0.327 -0.218 
b2_n3 0.075 0.121 0.054 0.062 0.069 0.318 0.508 0.257 0.304 -0.272 
b2_n4 0.030 0.039 0.001 -0.008 0.067 0.190 0.289 0.184 0.168 -0.124 
b2_n5 0.036 0.092 0.028 0.042 0.050 0.315 0.555 0.279 0.329 -0.205 
b2_n6 0.062 0.125 0.061 0.070 0.075 0.365 0.561 0.294 0.337 -0.276 
b3_n1 0.170 0.275 0.189 0.202 0.148 0.325 0.345 0.469 0.348 -0.234 
b3_n2 0.231 0.277 0.187 0.250 0.124 0.372 0.375 0.517 0.418 -0.274 
b3_n3 0.206 0.285 0.240 0.265 0.156 0.339 0.312 0.520 0.348 -0.295 
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b3_n4 0.078 0.103 0.083 0.071 0.081 0.214 0.217 0.317 0.245 -0.117 
b3_n5 0.218 0.262 0.201 0.255 0.142 0.345 0.325 0.507 0.354 -0.250 
b3_n6 0.181 0.257 0.170 0.220 0.111 0.358 0.334 0.533 0.372 -0.266 
b4_n1 0.136 0.229 0.151 0.151 0.088 0.321 0.299 0.328 0.600 -0.216 
b4_n2 0.170 0.247 0.167 0.196 0.112 0.352 0.285 0.340 0.617 -0.277 
b4_n3 0.138 0.207 0.154 0.163 0.089 0.337 0.290 0.296 0.557 -0.298 
b4_n4 0.039 0.078 0.073 0.035 0.030 0.201 0.166 0.192 0.306 -0.098 
b4_n5 0.137 0.199 0.156 0.166 0.117 0.363 0.297 0.310 0.611 -0.227 
b4_n6 0.118 0.186 0.142 0.146 0.108 0.362 0.290 0.323 0.606 -0.270 
b1_sm1 -0.076 -0.131 -0.070 -0.077 -0.155 -0.410 -0.280 -0.223 -0.229 0.551 
b1_sm2 -0.083 -0.152 -0.087 -0.092 -0.165 -0.398 -0.276 -0.226 -0.224 0.563 
b1_sm3 -0.090 -0.147 -0.089 -0.101 -0.163 -0.418 -0.275 -0.217 -0.222 0.540 
b2_sm1 -0.003 -0.055 0.011 -0.018 -0.036 -0.248 -0.506 -0.222 -0.247 0.269 
b2_sm2 -0.015 -0.074 0.003 -0.018 -0.060 -0.274 -0.528 -0.242 -0.273 0.273 
b2_sm3 -0.032 -0.065 -0.002 -0.039 -0.067 -0.277 -0.526 -0.239 -0.259 0.276 
b3_sm1 -0.205 -0.192 -0.165 -0.196 -0.109 -0.315 -0.308 -0.461 -0.294 0.299 
b3_sm2 -0.222 -0.233 -0.194 -0.221 -0.135 -0.309 -0.305 -0.502 -0.333 0.293 
b3_sm3 -0.216 -0.235 -0.200 -0.245 -0.126 -0.321 -0.302 -0.467 -0.318 0.296 
b4_sm1 -0.119 -0.175 -0.125 -0.138 -0.085 -0.331 -0.257 -0.277 -0.504 0.286 
b4_sm2 -0.126 -0.177 -0.135 -0.158 -0.105 -0.366 -0.285 -0.326 -0.548 0.322 
b4_sm3 -0.152 -0.218 -0.150 -0.167 -0.107 -0.354 -0.275 -0.318 -0.531 0.317 
b1_nsf1 -0.068 -0.012 -0.047 -0.052 -0.032 0.209 0.157 0.135 0.123 -0.156 
b1_nsf2 -0.024 0.013 -0.046 -0.045 -0.034 0.132 0.132 0.101 0.124 -0.022 
b1_nsf3 -0.035 -0.001 -0.026 -0.013 -0.012 0.074 0.067 0.066 0.064 -0.041 
b1_nsf4 -0.060 -0.014 -0.045 -0.040 -0.023 0.171 0.160 0.109 0.147 -0.114 
b1_nsf5 0.012 0.050 0.049 0.034 0.098 0.123 0.093 0.073 0.038 -0.143 
b1_nsf6 0.012 0.042 0.050 0.028 0.095 0.129 0.068 0.086 0.044 -0.158 
b2_nsf1 -0.048 -0.021 -0.044 -0.064 -0.042 0.076 0.325 0.127 0.138 -0.008 
b2_nsf2 -0.050 0.006 -0.067 -0.024 -0.058 0.092 0.271 0.113 0.162 0.029 
b2_nsf3 -0.025 0.002 -0.043 0.009 -0.044 0.063 0.205 0.130 0.108 -0.016 
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b2_nsf4 -0.028 0.011 -0.039 -0.020 -0.026 0.114 0.297 0.146 0.159 -0.016 
b2_nsf5 -0.035 -0.006 -0.026 -0.049 0.016 0.112 0.275 0.114 0.109 -0.053 
b2_nsf6 -0.040 -0.012 -0.016 -0.041 0.031 0.100 0.213 0.107 0.078 -0.057 
b3_nsf1 0.022 0.076 0.045 0.047 -0.022 0.123 0.185 0.279 0.158 -0.090 
b3_nsf2 0.010 0.091 0.024 0.022 -0.041 0.112 0.150 0.212 0.168 -0.014 
b3_nsf3 -0.007 0.054 0.004 0.006 -0.044 0.041 0.111 0.172 0.128 0.002 
b3_nsf4 0.034 0.058 0.029 0.060 -0.006 0.113 0.175 0.208 0.185 -0.021 
b3_nsf5 0.049 0.112 0.075 0.069 0.074 0.106 0.139 0.234 0.102 -0.068 
b3_nsf6 0.011 0.082 0.066 0.047 0.065 0.074 0.097 0.159 0.075 -0.068 
b4_nsf1 -0.004 0.060 0.030 0.015 -0.022 0.109 0.139 0.145 0.325 -0.019 
b4_nsf2 -0.022 0.047 -0.036 -0.010 -0.054 0.083 0.111 0.118 0.261 0.019 
b4_nsf3 0.027 0.043 -0.002 0.039 0.012 0.049 0.117 0.100 0.228 0.001 
b4_nsf4 -0.005 0.040 -0.016 -0.001 -0.057 0.108 0.141 0.137 0.280 -0.034 
b4_nsf5 0.044 0.066 0.042 0.055 0.042 0.121 0.126 0.128 0.259 -0.054 
b4_nsf6 0.050 0.074 0.071 0.071 0.104 0.087 0.079 0.115 0.216 -0.084 
b1_nsn1 -0.071 0.034 -0.037 -0.087 -0.023 0.323 0.249 0.201 0.218 -0.235 
b1_nsn2 -0.086 0.004 -0.070 -0.095 -0.071 0.244 0.215 0.152 0.166 -0.129 
b1_nsn3 -0.069 -0.033 -0.069 -0.104 -0.056 0.242 0.186 0.183 0.152 -0.157 
b1_nsn4 -0.081 -0.020 -0.072 -0.119 -0.043 0.313 0.260 0.190 0.225 -0.226 
b1_nsn5 -0.013 0.030 -0.004 -0.040 0.084 0.298 0.185 0.144 0.133 -0.305 
b1_nsn6 0.020 0.051 0.031 -0.002 0.099 0.280 0.144 0.145 0.109 -0.276 
b2_nsn1 -0.090 -0.023 -0.077 -0.112 -0.084 0.176 0.459 0.199 0.225 -0.059 
b2_nsn2 -0.094 -0.026 -0.094 -0.117 -0.105 0.131 0.375 0.150 0.178 0.007 
b2_nsn3 -0.101 -0.081 -0.152 -0.133 -0.087 0.138 0.378 0.173 0.179 -0.022 
b2_nsn4 -0.087 -0.050 -0.114 -0.147 -0.090 0.203 0.456 0.208 0.230 -0.081 
b2_nsn5 -0.061 0.007 -0.042 -0.082 -0.004 0.187 0.374 0.185 0.170 -0.091 
b2_nsn6 -0.028 -0.008 -0.021 -0.048 0.041 0.189 0.319 0.171 0.153 -0.136 
b3_nsn1 0.004 0.059 0.013 0.039 -0.032 0.222 0.241 0.385 0.265 -0.066 
b3_nsn2 0.045 0.092 0.029 0.051 -0.055 0.188 0.222 0.309 0.260 -0.033 
b3_nsn3 0.027 0.067 0.005 0.030 -0.014 0.161 0.195 0.269 0.216 -0.036 
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b3_nsn4 0.013 0.067 -0.009 0.022 -0.045 0.245 0.282 0.388 0.279 -0.093 
b3_nsn5 0.062 0.113 0.082 0.075 0.044 0.209 0.222 0.303 0.193 -0.115 
b3_nsn6 0.059 0.081 0.096 0.073 0.064 0.190 0.171 0.264 0.135 -0.131 
b4_nsn1 0.028 0.076 0.053 0.028 -0.017 0.262 0.276 0.298 0.522 -0.127 
b4_nsn2 0.015 0.054 0.017 -0.004 -0.043 0.216 0.264 0.246 0.422 -0.044 
b4_nsn3 0.026 0.062 -0.010 0.000 -0.005 0.211 0.273 0.255 0.417 -0.078 
b4_nsn4 0.031 0.064 0.016 0.002 -0.040 0.296 0.307 0.286 0.499 -0.121 
b4_nsn5 0.043 0.104 0.085 0.071 0.058 0.223 0.217 0.220 0.403 -0.122 
b4_nsn6 0.048 0.104 0.092 0.077 0.093 0.184 0.180 0.179 0.352 -0.130 

 

Table D.2. Correlations of Latent Variable Scores against the Indicators to Establish Convergent and Discriminant Validity) (Part 2 of 3) 
Items costs B2 costs B3 costs B4 neutral 

B1 
neutral 
B2 

neutral 
B3 

neutral 
B4 

moral 
B1 

moral 
B2 

moral 
B3 

moral 
B4 

a_cs1 -0.092 -0.258 -0.192 0.139 0.049 0.203 0.126 -0.070 -0.011 -0.212 -0.127 
a_cs2 -0.139 -0.273 -0.218 0.184 0.083 0.214 0.158 -0.095 -0.022 -0.211 -0.131 
a_dr1 -0.153 -0.278 -0.240 0.245 0.094 0.217 0.152 -0.126 -0.028 -0.168 -0.143 
a_dr2 -0.150 -0.273 -0.218 0.260 0.137 0.302 0.247 -0.142 -0.081 -0.236 -0.199 
a_ko1 -0.080 -0.272 -0.227 0.179 0.037 0.203 0.180 -0.096 0.011 -0.165 -0.158 
a_ko2 -0.088 -0.227 -0.177 0.154 0.064 0.194 0.135 -0.065 -0.002 -0.191 -0.106 
a_li1 -0.101 -0.287 -0.223 0.178 0.039 0.225 0.128 -0.080 -0.001 -0.191 -0.104 
a_li2 -0.156 -0.335 -0.284 0.190 0.080 0.252 0.190 -0.093 -0.042 -0.235 -0.184 
a_px1 -0.116 -0.185 -0.112 0.196 0.061 0.119 0.099 -0.162 -0.042 -0.104 -0.097 
a_px2 -0.110 -0.189 -0.147 0.189 0.057 0.164 0.105 -0.148 -0.063 -0.138 -0.092 
b1_ben1 -0.220 -0.247 -0.282 0.513 0.328 0.366 0.358 -0.430 -0.255 -0.305 -0.338 
b1_ben2 -0.211 -0.215 -0.267 0.492 0.337 0.372 0.363 -0.401 -0.254 -0.318 -0.342 
b1_ben3 -0.235 -0.203 -0.270 0.471 0.328 0.373 0.367 -0.377 -0.257 -0.316 -0.336 
b1_ben4 -0.253 -0.239 -0.278 0.494 0.332 0.360 0.362 -0.399 -0.268 -0.305 -0.349 
b2_ben1 -0.478 -0.244 -0.219 0.298 0.565 0.362 0.296 -0.247 -0.528 -0.282 -0.249 
b2_ben2 -0.468 -0.226 -0.210 0.298 0.573 0.349 0.300 -0.270 -0.519 -0.303 -0.270 
b2_ben3 -0.428 -0.236 -0.209 0.307 0.543 0.362 0.295 -0.279 -0.473 -0.298 -0.257 
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b2_ben4 -0.438 -0.213 -0.192 0.326 0.571 0.359 0.327 -0.292 -0.493 -0.319 -0.285 
b3_ben1 -0.252 -0.458 -0.297 0.328 0.315 0.566 0.347 -0.239 -0.249 -0.503 -0.311 
b3_ben2 -0.229 -0.422 -0.271 0.293 0.275 0.506 0.329 -0.212 -0.224 -0.457 -0.309 
b3_ben3 -0.229 -0.418 -0.267 0.312 0.288 0.524 0.320 -0.212 -0.199 -0.438 -0.282 
b3_ben4 -0.229 -0.420 -0.268 0.316 0.289 0.543 0.334 -0.207 -0.231 -0.475 -0.291 
b4_ben1 -0.235 -0.290 -0.541 0.337 0.349 0.393 0.648 -0.227 -0.250 -0.314 -0.541 
b4_ben2 -0.250 -0.243 -0.511 0.330 0.339 0.392 0.625 -0.233 -0.273 -0.310 -0.511 
b4_ben3 -0.229 -0.255 -0.485 0.314 0.322 0.381 0.608 -0.213 -0.247 -0.305 -0.496 
b4_ben4 -0.222 -0.251 -0.499 0.316 0.325 0.404 0.607 -0.213 -0.242 -0.320 -0.511 
b1_cst1 0.482 0.528 0.462 -0.529 -0.255 -0.294 -0.280 0.548 0.265 0.286 0.290 
b1_cst2 0.473 0.534 0.481 -0.534 -0.264 -0.300 -0.283 0.559 0.276 0.306 0.312 
b1_cst3 0.484 0.524 0.470 -0.490 -0.234 -0.261 -0.259 0.531 0.284 0.304 0.319 
b1_cst4 0.452 0.499 0.456 -0.473 -0.213 -0.228 -0.227 0.525 0.223 0.263 0.273 
b2_cst1 0.934 0.481 0.467 -0.324 -0.527 -0.268 -0.223 0.351 0.529 0.235 0.244 
b2_cst2 0.931 0.466 0.416 -0.327 -0.560 -0.285 -0.222 0.367 0.557 0.280 0.244 
b2_cst3 0.917 0.489 0.460 -0.273 -0.487 -0.226 -0.193 0.330 0.507 0.221 0.236 
b2_cst4 0.917 0.479 0.452 -0.279 -0.487 -0.236 -0.192 0.323 0.499 0.220 0.227 
b3_cst1 0.479 0.929 0.543 -0.356 -0.240 -0.446 -0.275 0.318 0.229 0.428 0.280 
b3_cst2 0.477 0.931 0.555 -0.318 -0.240 -0.430 -0.284 0.304 0.247 0.452 0.286 
b3_cst3 0.494 0.934 0.537 -0.345 -0.253 -0.438 -0.277 0.298 0.238 0.405 0.259 
b3_cst4 0.467 0.919 0.521 -0.286 -0.218 -0.422 -0.252 0.272 0.207 0.407 0.252 
b4_cst1 0.429 0.528 0.929 -0.324 -0.249 -0.301 -0.563 0.259 0.230 0.300 0.501 
b4_cst2 0.456 0.556 0.942 -0.311 -0.253 -0.308 -0.566 0.289 0.256 0.304 0.522 
b4_cst3 0.459 0.536 0.936 -0.302 -0.246 -0.271 -0.534 0.262 0.225 0.278 0.468 
b4_cst4 0.460 0.545 0.921 -0.306 -0.231 -0.258 -0.522 0.268 0.217 0.248 0.455 
b1_n1 -0.253 -0.295 -0.268 0.830 0.443 0.520 0.450 -0.476 -0.274 -0.279 -0.312 
b1_n2 -0.280 -0.342 -0.326 0.822 0.394 0.467 0.406 -0.564 -0.266 -0.314 -0.335 
b1_n3 -0.283 -0.278 -0.274 0.846 0.478 0.467 0.440 -0.544 -0.273 -0.277 -0.272 
b1_n4 -0.150 -0.169 -0.143 d0.523 0.315 0.317 0.338 -0.264 -0.180 -0.154 -0.240 
b1_n5 -0.267 -0.288 -0.291 0.842 0.458 0.515 0.491 -0.504 -0.292 -0.298 -0.351 
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b1_n6 -0.310 -0.289 -0.262 0.885 0.472 0.469 0.431 -0.620 -0.309 -0.277 -0.298 
b2_n1 -0.447 -0.216 -0.198 0.446 0.843 0.466 0.398 -0.256 -0.510 -0.290 -0.229 
b2_n2 -0.523 -0.244 -0.251 0.402 0.846 0.468 0.391 -0.291 -0.586 -0.344 -0.267 
b2_n3 -0.471 -0.218 -0.230 0.511 0.868 0.483 0.435 -0.345 -0.542 -0.314 -0.273 
b2_n4 -0.243 -0.101 -0.084 0.339 d0.551 0.333 0.269 -0.155 -0.259 -0.153 -0.141 
b2_n5 -0.488 -0.216 -0.229 0.452 0.884 0.463 0.420 -0.279 -0.545 -0.300 -0.282 
b2_n6 -0.530 -0.242 -0.263 0.508 0.920 0.484 0.441 -0.339 -0.587 -0.331 -0.317 
b3_n1 -0.219 -0.365 -0.233 0.506 0.462 0.842 0.447 -0.245 -0.257 -0.484 -0.271 
b3_n2 -0.277 -0.444 -0.307 0.463 0.458 0.856 0.465 -0.282 -0.308 -0.580 -0.347 
b3_n3 -0.258 -0.448 -0.282 0.540 0.489 0.871 0.483 -0.299 -0.276 -0.555 -0.308 
b3_n4 -0.109 -0.163 -0.107 0.369 0.348 d0.591 0.371 -0.141 -0.152 -0.266 -0.202 
b3_n5 -0.232 -0.406 -0.264 0.494 0.458 0.882 0.473 -0.241 -0.244 -0.526 -0.276 
b3_n6 -0.246 -0.435 -0.282 0.515 0.498 0.909 0.498 -0.272 -0.279 -0.568 -0.313 
b4_n1 -0.206 -0.260 -0.504 0.452 0.413 0.484 0.878 -0.249 -0.273 -0.299 -0.563 
b4_n2 -0.193 -0.281 -0.545 0.437 0.368 0.485 0.858 -0.311 -0.271 -0.355 -0.618 
b4_n3 -0.226 -0.257 -0.517 0.514 0.466 0.482 0.877 -0.325 -0.293 -0.298 -0.551 
b4_n4 -0.068 -0.128 -0.260 0.325 0.290 0.325 d0.565 -0.149 -0.120 -0.134 -0.283 
b4_n5 -0.183 -0.231 -0.501 0.460 0.419 0.479 0.896 -0.263 -0.248 -0.276 -0.565 
b4_n6 -0.213 -0.281 -0.553 0.480 0.434 0.483 0.906 -0.320 -0.267 -0.323 -0.602 
b1_sm1 0.348 0.293 0.274 -0.576 -0.307 -0.261 -0.307 0.947 0.423 0.357 0.441 
b1_sm2 0.361 0.319 0.287 -0.622 -0.343 -0.312 -0.317 0.940 0.433 0.406 0.418 
b1_sm3 0.340 0.295 0.256 -0.584 -0.316 -0.279 -0.306 0.939 0.422 0.374 0.421 
b2_sm1 0.522 0.229 0.226 -0.313 -0.585 -0.280 -0.278 0.417 0.958 0.363 0.384 
b2_sm2 0.563 0.242 0.247 -0.335 -0.628 -0.303 -0.310 0.455 0.960 0.398 0.419 
b2_sm3 0.539 0.240 0.240 -0.314 -0.583 -0.304 -0.273 0.423 0.949 0.367 0.368 
b3_sm1 0.239 0.420 0.270 -0.297 -0.325 -0.549 -0.289 0.385 0.369 0.936 0.400 
b3_sm2 0.243 0.444 0.289 -0.335 -0.341 -0.616 -0.344 0.381 0.368 0.942 0.415 
b3_sm3 0.250 0.420 0.295 -0.323 -0.342 -0.554 -0.336 0.370 0.372 0.938 0.415 
b4_sm1 0.244 0.260 0.471 -0.333 -0.276 -0.306 -0.586 0.415 0.393 0.385 0.948 
b4_sm2 0.255 0.283 0.511 -0.375 -0.318 -0.345 -0.642 0.441 0.405 0.436 0.959 
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b4_sm3 0.238 0.286 0.509 -0.372 -0.294 -0.341 -0.622 0.436 0.371 0.424 0.954 
b1_nsf1 -0.107 -0.069 -0.071 0.264 0.166 0.131 0.146 -0.273 -0.173 -0.154 -0.171 
b1_nsf2 -0.099 -0.031 -0.060 0.149 0.176 0.107 0.107 -0.131 -0.155 -0.095 -0.090 
b1_nsf3 -0.054 0.001 -0.010 0.131 0.075 0.042 0.067 -0.140 -0.101 -0.051 -0.077 
b1_nsf4 -0.112 -0.054 -0.078 0.217 0.178 0.091 0.158 -0.254 -0.190 -0.108 -0.169 
b1_nsf5 -0.085 -0.054 -0.036 0.249 0.146 0.069 0.079 -0.186 -0.111 -0.080 -0.043 
b1_nsf6 -0.067 -0.081 -0.047 0.221 0.104 0.074 0.082 -0.186 -0.071 -0.081 -0.035 
b2_nsf1 -0.313 -0.058 -0.076 0.079 0.409 0.145 0.154 -0.071 -0.393 -0.149 -0.129 
b2_nsf2 -0.211 -0.013 -0.074 0.066 0.320 0.073 0.132 -0.050 -0.290 -0.103 -0.121 
b2_nsf3 -0.193 -0.050 -0.063 0.068 0.247 0.119 0.128 -0.063 -0.278 -0.133 -0.107 
b2_nsf4 -0.248 -0.054 -0.091 0.086 0.333 0.147 0.165 -0.073 -0.325 -0.150 -0.163 
b2_nsf5 -0.248 -0.041 -0.061 0.122 0.398 0.156 0.133 -0.071 -0.325 -0.143 -0.083 
b2_nsf6 -0.189 -0.039 -0.045 0.124 0.329 0.137 0.117 -0.087 -0.256 -0.128 -0.050 
b3_nsf1 -0.099 -0.219 -0.109 0.130 0.170 0.298 0.145 -0.063 -0.172 -0.330 -0.146 
b3_nsf2 -0.081 -0.123 -0.099 0.105 0.146 0.210 0.144 -0.029 -0.152 -0.219 -0.143 
b3_nsf3 -0.045 -0.090 -0.037 0.066 0.108 0.165 0.130 -0.021 -0.100 -0.177 -0.091 
b3_nsf4 -0.071 -0.125 -0.090 0.104 0.179 0.234 0.186 -0.047 -0.161 -0.231 -0.157 
b3_nsf5 -0.092 -0.176 -0.065 0.159 0.209 0.293 0.178 -0.072 -0.152 -0.277 -0.096 
b3_nsf6 -0.075 -0.130 -0.045 0.129 0.158 0.212 0.141 -0.079 -0.125 -0.191 -0.055 
b4_nsf1 -0.080 -0.060 -0.221 0.092 0.176 0.142 0.338 -0.098 -0.133 -0.165 -0.301 
b4_nsf2 -0.080 -0.024 -0.170 0.052 0.135 0.089 0.227 -0.041 -0.105 -0.097 -0.223 
b4_nsf3 -0.074 -0.032 -0.174 0.060 0.101 0.085 0.201 -0.060 -0.064 -0.103 -0.198 
b4_nsf4 -0.087 -0.057 -0.207 0.079 0.140 0.098 0.279 -0.103 -0.111 -0.162 -0.304 
b4_nsf5 -0.084 -0.093 -0.230 0.133 0.160 0.130 0.321 -0.096 -0.113 -0.139 -0.226 
b4_nsf6 -0.078 -0.104 -0.218 0.138 0.141 0.144 0.321 -0.116 -0.115 -0.156 -0.209 
b1_nsn1 -0.162 -0.080 -0.090 0.431 0.268 0.234 0.233 -0.419 -0.219 -0.191 -0.209 
b1_nsn2 -0.128 -0.040 -0.055 0.321 0.237 0.169 0.179 -0.320 -0.191 -0.131 -0.159 
b1_nsn3 -0.096 -0.063 -0.047 0.304 0.188 0.162 0.149 -0.315 -0.149 -0.130 -0.154 
b1_nsn4 -0.159 -0.100 -0.103 0.406 0.276 0.213 0.239 -0.407 -0.225 -0.172 -0.225 
b1_nsn5 -0.180 -0.135 -0.100 0.459 0.270 0.221 0.205 -0.406 -0.185 -0.147 -0.168 
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b1_nsn6 -0.129 -0.140 -0.105 0.413 0.205 0.202 0.181 -0.328 -0.101 -0.119 -0.124 
b2_nsn1 -0.378 -0.075 -0.078 0.182 0.552 0.257 0.209 -0.149 -0.539 -0.232 -0.158 
b2_nsn2 -0.320 -0.027 -0.060 0.131 0.441 0.175 0.170 -0.089 -0.489 -0.173 -0.144 
b2_nsn3 -0.306 -0.049 -0.061 0.096 0.402 0.151 0.150 -0.100 -0.465 -0.159 -0.138 
b2_nsn4 -0.366 -0.084 -0.096 0.178 0.509 0.228 0.213 -0.172 -0.541 -0.219 -0.204 
b2_nsn5 -0.330 -0.090 -0.090 0.243 0.521 0.258 0.211 -0.153 -0.456 -0.184 -0.135 
b2_nsn6 -0.305 -0.139 -0.113 0.254 0.453 0.267 0.216 -0.160 -0.382 -0.183 -0.126 
b3_nsn1 -0.106 -0.203 -0.136 0.204 0.252 0.418 0.242 -0.119 -0.207 -0.411 -0.208 
b3_nsn2 -0.090 -0.151 -0.113 0.183 0.209 0.318 0.208 -0.098 -0.202 -0.336 -0.180 
b3_nsn3 -0.089 -0.125 -0.076 0.146 0.179 0.283 0.165 -0.076 -0.178 -0.299 -0.146 
b3_nsn4 -0.138 -0.221 -0.126 0.223 0.279 0.389 0.246 -0.146 -0.236 -0.396 -0.229 
b3_nsn5 -0.122 -0.212 -0.119 0.266 0.309 0.413 0.228 -0.116 -0.202 -0.365 -0.159 
b3_nsn6 -0.099 -0.197 -0.109 0.237 0.216 0.346 0.184 -0.123 -0.163 -0.314 -0.122 
b4_nsn1 -0.159 -0.144 -0.351 0.273 0.279 0.313 0.533 -0.181 -0.205 -0.270 -0.488 
b4_nsn2 -0.150 -0.086 -0.239 0.208 0.254 0.267 0.389 -0.121 -0.202 -0.221 -0.380 
b4_nsn3 -0.163 -0.114 -0.256 0.185 0.232 0.236 0.388 -0.143 -0.186 -0.215 -0.367 
b4_nsn4 -0.183 -0.132 -0.323 0.269 0.283 0.287 0.493 -0.206 -0.217 -0.262 -0.468 
b4_nsn5 -0.184 -0.136 -0.324 0.302 0.308 0.271 0.490 -0.182 -0.182 -0.212 -0.407 
b4_nsn6 -0.136 -0.117 -0.291 0.279 0.243 0.240 0.435 -0.171 -0.137 -0.181 -0.332 

d = dropped for conservative improvement of discriminant validity (loading was below 0.700) 
 
Table D.2. Correlations of Latent Variable Scores against the Indicators to Establish Convergent and Discriminant Validity) (Part 3 of 3) 

Items nsf B1 nsf B2 nsf B3 nsf B4 nsn B1 nsn B2 nsn B3 nsn B4 
a_cs1 -0.032 -0.032 0.036 0.018 -0.073 -0.091 0.031 0.020 
a_cs2 -0.050 -0.062 0.015 0.018 -0.032 -0.078 0.048 0.054 
a_dr1 0.026 -0.019 0.076 0.037 0.023 -0.044 0.060 0.062 
a_dr2 0.004 0.006 0.106 0.086 0.013 -0.021 0.106 0.100 
a_ko1 -0.008 -0.056 0.043 0.046 -0.026 -0.122 0.038 0.062 
a_ko2 -0.026 -0.039 0.056 -0.002 -0.043 -0.060 0.042 0.039 
a_li1 -0.044 -0.057 0.010 0.014 -0.072 -0.120 0.041 0.015 
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a_li2 -0.007 -0.026 0.088 0.049 -0.087 -0.112 0.066 0.050 
a_px1 0.015 -0.035 -0.014 0.011 0.020 -0.062 -0.012 0.010 
a_px2 0.011 -0.014 0.031 -0.007 -0.002 -0.054 -0.001 0.009 
b1_ben1 0.207 0.075 0.106 0.137 0.335 0.176 0.213 0.245 
b1_ben2 0.177 0.101 0.113 0.095 0.344 0.183 0.244 0.261 
b1_ben3 0.178 0.144 0.143 0.125 0.341 0.208 0.259 0.284 
b1_ben4 0.199 0.136 0.120 0.119 0.332 0.203 0.225 0.268 
b2_ben1 0.131 0.320 0.192 0.122 0.225 0.452 0.273 0.289 
b2_ben2 0.166 0.333 0.180 0.152 0.239 0.461 0.252 0.290 
b2_ben3 0.169 0.315 0.165 0.176 0.244 0.404 0.241 0.269 
b2_ben4 0.147 0.338 0.179 0.152 0.256 0.445 0.261 0.293 
b3_ben1 0.138 0.163 0.283 0.172 0.194 0.226 0.393 0.287 
b3_ben2 0.110 0.117 0.234 0.150 0.187 0.191 0.359 0.276 
b3_ben3 0.125 0.144 0.258 0.146 0.207 0.193 0.361 0.285 
b3_ben4 0.134 0.171 0.277 0.157 0.195 0.199 0.362 0.268 
b4_ben1 0.111 0.148 0.152 0.343 0.198 0.208 0.249 0.491 
b4_ben2 0.120 0.161 0.159 0.328 0.199 0.232 0.263 0.516 
b4_ben3 0.130 0.158 0.185 0.327 0.183 0.202 0.256 0.479 
b4_ben4 0.133 0.157 0.183 0.336 0.206 0.212 0.273 0.502 
b1_cst1 -0.141 -0.021 -0.040 -0.011 -0.268 -0.074 -0.069 -0.113 
b1_cst2 -0.145 -0.015 -0.070 -0.041 -0.293 -0.079 -0.118 -0.134 
b1_cst3 -0.165 -0.071 -0.099 -0.072 -0.273 -0.097 -0.110 -0.140 
b1_cst4 -0.116 0.016 -0.010 -0.018 -0.250 -0.041 -0.065 -0.084 
b2_cst1 -0.139 -0.295 -0.101 -0.102 -0.196 -0.395 -0.135 -0.184 
b2_cst2 -0.118 -0.303 -0.106 -0.101 -0.182 -0.406 -0.147 -0.198 
b2_cst3 -0.112 -0.282 -0.090 -0.103 -0.154 -0.345 -0.114 -0.172 
b2_cst4 -0.097 -0.275 -0.090 -0.097 -0.154 -0.345 -0.098 -0.182 
b3_cst1 -0.072 -0.040 -0.164 -0.065 -0.123 -0.082 -0.216 -0.138 
b3_cst2 -0.042 -0.039 -0.168 -0.074 -0.102 -0.082 -0.200 -0.128 
b3_cst3 -0.091 -0.086 -0.209 -0.095 -0.122 -0.110 -0.218 -0.151 



34 
 

b3_cst4 -0.056 -0.045 -0.195 -0.082 -0.117 -0.079 -0.230 -0.143 
b4_cst1 -0.063 -0.086 -0.102 -0.254 -0.110 -0.111 -0.139 -0.360 
b4_cst2 -0.081 -0.093 -0.101 -0.278 -0.112 -0.106 -0.141 -0.349 
b4_cst3 -0.068 -0.092 -0.088 -0.261 -0.101 -0.089 -0.137 -0.336 
b4_cst4 -0.067 -0.067 -0.088 -0.238 -0.089 -0.071 -0.111 -0.324 
b1_n1 0.219 0.085 0.161 0.098 0.405 0.190 0.248 0.265 
b1_n2 0.214 0.041 0.073 0.070 0.386 0.131 0.181 0.225 
b1_n3 0.237 0.092 0.103 0.092 0.429 0.181 0.195 0.230 
b1_n4 0.211 0.138 0.149 0.125 0.285 0.167 0.192 0.233 
b1_n5 0.266 0.132 0.170 0.152 0.433 0.212 0.248 0.312 
b1_n6 0.281 0.113 0.115 0.087 0.476 0.195 0.205 0.246 
b2_n1 0.151 0.384 0.196 0.161 0.249 0.490 0.260 0.257 
b2_n2 0.154 0.407 0.174 0.153 0.220 0.518 0.252 0.266 
b2_n3 0.185 0.352 0.158 0.165 0.302 0.484 0.264 0.290 
b2_n4 0.147 0.275 0.161 0.130 0.216 0.315 0.207 0.202 
b2_n5 0.177 0.400 0.203 0.173 0.260 0.520 0.250 0.299 
b2_n6 0.201 0.408 0.199 0.190 0.301 0.532 0.275 0.308 
b3_n1 0.116 0.151 0.278 0.139 0.257 0.248 0.385 0.279 
b3_n2 0.077 0.136 0.260 0.115 0.198 0.232 0.392 0.295 
b3_n3 0.114 0.158 0.271 0.132 0.233 0.220 0.385 0.266 
b3_n4 0.122 0.141 0.241 0.129 0.185 0.194 0.317 0.264 
b3_n5 0.093 0.139 0.280 0.146 0.193 0.228 0.380 0.276 
b3_n6 0.124 0.146 0.278 0.136 0.237 0.244 0.410 0.288 
b4_n1 0.122 0.170 0.190 0.340 0.198 0.199 0.220 0.472 
b4_n2 0.096 0.131 0.171 0.316 0.203 0.179 0.228 0.479 
b4_n3 0.164 0.188 0.178 0.344 0.236 0.219 0.215 0.480 
b4_n4 0.139 0.115 0.162 0.238 0.209 0.155 0.222 0.332 
b4_n5 0.117 0.150 0.161 0.334 0.207 0.210 0.216 0.521 
b4_n6 0.164 0.167 0.185 0.363 0.249 0.230 0.258 0.519 
b1_sm1 -0.261 -0.078 -0.061 -0.117 -0.445 -0.151 -0.128 -0.199 
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b1_sm2 -0.271 -0.097 -0.066 -0.109 -0.461 -0.178 -0.152 -0.205 
b1_sm3 -0.273 -0.081 -0.072 -0.107 -0.425 -0.146 -0.119 -0.181 
b2_sm1 -0.179 -0.388 -0.190 -0.133 -0.208 -0.551 -0.237 -0.205 
b2_sm2 -0.196 -0.412 -0.187 -0.158 -0.248 -0.572 -0.251 -0.246 
b2_sm3 -0.183 -0.387 -0.180 -0.132 -0.193 -0.533 -0.219 -0.207 
b3_sm1 -0.110 -0.154 -0.278 -0.150 -0.190 -0.225 -0.402 -0.246 
b3_sm2 -0.133 -0.171 -0.314 -0.187 -0.185 -0.220 -0.425 -0.275 
b3_sm3 -0.149 -0.175 -0.319 -0.192 -0.162 -0.214 -0.419 -0.263 
b4_sm1 -0.124 -0.137 -0.136 -0.295 -0.199 -0.172 -0.201 -0.466 
b4_sm2 -0.161 -0.148 -0.162 -0.333 -0.228 -0.189 -0.216 -0.493 
b4_sm3 -0.137 -0.133 -0.145 -0.328 -0.203 -0.159 -0.205 -0.474 
b1_nsf1 0.790 0.441 0.444 0.411 0.415 0.249 0.296 0.236 
b1_nsf2 d0.603 0.382 0.377 0.369 0.304 0.265 0.255 0.213 
b1_nsf3 d0.664 0.423 0.449 0.398 0.279 0.185 0.256 0.157 
b1_nsf4 0.805 0.524 0.489 0.481 0.402 0.285 0.309 0.265 
b1_nsf5 0.728 0.386 0.411 0.408 0.343 0.172 0.240 0.173 
b1_nsf6 d0.644 0.309 0.390 0.343 0.280 0.130 0.214 0.139 
b2_nsf1 0.417 0.809 0.429 0.385 0.231 0.550 0.306 0.251 
b2_nsf2 0.402 d0.697 0.380 0.387 0.170 0.436 0.248 0.222 
b2_nsf3 0.460 0.733 0.466 0.404 0.175 0.393 0.258 0.200 
b2_nsf4 0.464 0.831 0.478 0.445 0.219 0.464 0.307 0.261 
b2_nsf5 0.453 0.772 0.477 0.418 0.244 0.476 0.301 0.251 
b2_nsf6 0.469 d0.693 0.459 0.394 0.254 0.406 0.298 0.227 
b3_nsf1 0.447 0.427 0.795 0.429 0.194 0.262 0.486 0.252 
b3_nsf2 0.413 0.382 d0.681 0.390 0.175 0.234 0.408 0.220 
b3_nsf3 0.434 0.421 0.723 0.395 0.150 0.219 0.402 0.179 
b3_nsf4 0.467 0.498 0.789 0.481 0.203 0.274 0.463 0.279 
b3_nsf5 0.464 0.481 0.786 0.456 0.225 0.289 0.452 0.271 
b3_nsf6 0.478 0.448 0.723 0.425 0.197 0.238 0.380 0.226 
b4_nsf1 0.429 0.432 0.435 0.811 0.164 0.224 0.257 0.436 
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b4_nsf2 0.382 0.377 0.387 d0.655 0.139 0.162 0.223 0.337 
b4_nsf3 0.385 0.374 0.412 d0.697 0.134 0.139 0.226 0.325 
b4_nsf4 0.450 0.442 0.456 0.794 0.172 0.210 0.287 0.433 
b4_nsf5 0.418 0.359 0.401 0.764 0.186 0.159 0.259 0.377 
b4_nsf6 0.442 0.375 0.449 d0.688 0.155 0.160 0.259 0.366 
b1_nsn1 0.416 0.250 0.212 0.196 0.828 0.379 0.406 0.401 
b1_nsn2 0.357 0.221 0.215 0.181 0.709 0.373 0.342 0.331 
b1_nsn3 0.397 0.251 0.238 0.169 0.745 0.353 0.373 0.315 
b1_nsn4 0.444 0.288 0.236 0.196 0.853 0.416 0.399 0.386 
b1_nsn5 0.377 0.198 0.180 0.171 0.836 0.329 0.355 0.332 
b1_nsn6 0.313 0.162 0.158 0.115 0.737 0.275 0.350 0.288 
b2_nsn1 0.245 0.534 0.268 0.210 0.379 0.874 0.414 0.372 
b2_nsn2 0.220 0.465 0.235 0.181 0.315 0.809 0.362 0.352 
b2_nsn3 0.276 0.513 0.290 0.206 0.315 0.802 0.385 0.343 
b2_nsn4 0.280 0.546 0.305 0.231 0.374 0.888 0.432 0.394 
b2_nsn5 0.249 0.501 0.295 0.193 0.407 0.852 0.436 0.358 
b2_nsn6 0.269 0.450 0.296 0.183 0.407 0.751 0.429 0.350 
b3_nsn1 0.299 0.294 0.476 0.285 0.381 0.392 0.845 0.436 
b3_nsn2 0.273 0.264 0.445 0.266 0.328 0.390 0.767 0.411 
b3_nsn3 0.321 0.319 0.465 0.287 0.350 0.399 0.803 0.395 
b3_nsn4 0.323 0.340 0.508 0.315 0.403 0.434 0.871 0.454 
b3_nsn5 0.298 0.328 0.477 0.270 0.406 0.409 0.817 0.397 
b3_nsn6 0.283 0.281 0.423 0.229 0.390 0.368 0.721 0.335 
b4_nsn1 0.209 0.229 0.223 0.415 0.366 0.356 0.412 0.861 
b4_nsn2 0.196 0.237 0.247 0.381 0.292 0.347 0.399 0.788 
b4_nsn3 0.237 0.262 0.274 0.402 0.323 0.358 0.417 0.810 
b4_nsn4 0.242 0.281 0.276 0.450 0.357 0.385 0.439 0.890 
b4_nsn5 0.266 0.278 0.284 0.471 0.402 0.367 0.417 0.830 
b4_nsn6 0.247 0.243 0.271 0.415 0.379 0.324 0.390 0.719 

d = dropped for conservative improvement of discriminant validity (loading was below 0.700)  



37 
 

Table D.3. First-Order Measurement Model Statistics (Part 1 of 3) 
 

Latent construct AVE Mean SD Marker (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Marker variable† n/a 4.55 0.15 n/a                   
b1_freq (1) n/a 2.30 0.79 -.142 n/a                 
b2_freq (2) n/a 1.63 0.79 .026 .234 n/a               
b3_freq (3) n/a 1.65 0.81 -.048 .284 .292 n/a             
b4_freq (4) n/a 1.60 0.80 -.018 .287 .241 .310 n/a           
A_LI (5) .827 3.75 1.75 -.109 .144 .036 .192 .131 .910         
A-CS (6) .857 3.90 1.78 -.096 .115 .009 .174 .098 .765 .926       
A_DR (7) .773 3.78 1.53 -.121 .150 .057 .212 .128 .641 .576 .879     
A_PX (8) .822 4.93 1.63 -.139 .146 .019 .095 .054 .476 .419 .403 .907   
A_KO (9) .811 4.04 1.66 -.095 .151 .027 .170 .104 .744 .652 .659 .449 .900 
SM_B1 (10) .887 4.81 1.51 .226 -.459 -.130 -.059 -.115 -.095 -.089 -.151 -.170 -.088 
SM_B2 (11) .913 5.31 1.55 .113 -.171 -.518 -.112 -.122 -.023 -.018 -.062 -.058 .005 
SM_B3 (12) .881 5.33 1.45 .199 -.212 -.186 -.468 -.220 -.232 -.229 -.228 -.133 -.197 
SM_B4 (13) .910 5.62 1.41 .142 -.241 -.182 -.180 -.496 -.156 -.138 -.193 -.103 -.146 
NSN_B1 (14) .619 3.62 1.37 -.107 .299 .122 .061 .056 -.093 -.061 .016 -.001 -.045 
NSN_B2 (15) .690 3.20 1.49 -.012 .057 .459 .105 .053 -.127 -.091 -.038 -.063 -.101 
NSN_B3 (16) .649 3.08 1.35 -.134 .136 .211 .364 .132 .060 .045 .095 -.004 .047 
NSN_B4 (17) .669 2.84 1.36 -.021 .130 .167 .155 .395 .036 .041 .093 .014 .057 
NSF_B1 (18) .654 2.38 0.91 -.082 .461 .200 .178 .191 .004 -.024 .031 .031 -.001 
NSF_B2 (19) .651 1.90 0.88 .015 .171 .541 .221 .157 -.031 -.034 -.003 -.035 -.043 
NSF_B3 (20) .603 2.05 0.88 -.053 .209 .231 .436 .206 .078 .054 .085 .018 .059 
NSF_B4 (21) .678 1.82 0.87 .018 .226 .204 .245 .492 .039 .015 .050 -.022 .025 
BEN_B1 (22) .859 3.05 1.41 -.164 .327 .197 .178 .175 .145 .123 .155 .103 .107 
BEN_B2 (23) .855 2.71 1.44 -.070 .169 .448 .196 .117 .096 .086 .137 .078 .055 
BEN_B3 (24) .849 2.79 1.46 -.148 .171 .194 .424 .191 .221 .176 .229 .116 .150 
BEN_B4 (25) .864 2.48 1.43 -.078 .149 .198 .220 .464 .172 .149 .185 .078 .142 
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CST_B1 (26) .853 4.04 1.62 .213 -.407 -.088 -.059 -.123 -.215 -.203 -.251 -.186 -.203 
CST_B2 (27) .856 4.48 1.69 .082 -.193 -.397 -.070 -.138 -.141 -.126 -.171 -.124 -.093 
CST_B3 (28) .862 4.56 1.69 .171 -.239 -.109 -.325 -.175 -.341 -.287 -.312 -.207 -.276 
CST_B4 (29) .868 4.86 1.75 .067 -.218 -.118 -.167 -.457 -.277 -.221 -.260 -.143 -.223 
NET_B1 (30) .641 3.95 1.49 -.195 .459 .164 .138 .163 .203 .173 .285 .206 .182 
NET_B2 (31) .685 3.41 1.60 -.088 .179 .519 .183 .159 .068 .071 .135 .063 .059 
NET_B3 (32) .692 3.31 1.54 -.172 .195 .246 .503 .222 .271 .230 .301 .158 .227 
NET_B4 (33) .703 3.11 1.59 -.094 .177 .196 .213 .524 .180 .157 .229 .116 .176 

†MV = marker variable (used organizational commitment as unrelated, marker variable to further establish likely lack of common method bias); bolded and 
underlined diagonal elements are the square roots of the AVEs; all AVEs for the latent constructs were above minimum threshold of 0.500. 
 
Table D.3. First-Order Measurement Model Statistics (Part 2 of 3) 

Latent construct (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) 

SM_B1 (10) .942                       
SM_B2 (11) .452 .956                     
SM_B3 (12) .403 .394 .939                   
SM_B4 (13) .452 .409 .435 .954                 
NSN_B1 (14) -.466 -.226 -.189 -.219 .787               
NSN_B2 (15) -.166 -.576 -.232 -.181 .448 .831             
NSN_B3 (16) -.141 -.245 -.439 -.215 .472 .496 .806           
NSN_B4 (17) -.207 -.229 -.277 -.498 .436 .436 .504 .818         
NSF_B1 (18) -.308 -.168 -.127 -.149 .464 .248 .324 .254 .809       
NSF_B2 (19) -.084 -.414 -.157 -.126 .269 .586 .348 .285 .515 .807     
NSF_B3 (20) -.055 -.170 -.304 -.137 .232 .309 .549 .296 .529 .579 .776   
NSF_B4 (21) -.125 -.132 -.163 -.328 .217 .215 .306 .490 .537 .502 .529 .824 
BEN_B1 (22) -.433 -.278 -.335 -.367 .361 .206 .252 .284 .208 .106 .112 .124 
BEN_B2 (23) -.294 -.544 -.325 -.286 .262 .474 .275 .307 .154 .337 .180 .151 
BEN_B3 (24) -.236 -.245 -.508 -.322 .215 .218 .396 .301 .130 .155 .290 .147 
BEN_B4 (25) -.238 -.272 -.335 -.553 .212 .228 .277 .532 .115 .143 .172 .337 
CST_B1 (26) .585 .283 .314 .322 -.282 -.077 -.098 -.128 -.203 -.041 -.058 -.047 
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CST_B2 (27) .370 .565 .258 .257 -.180 -.401 -.132 -.199 -.111 -.340 -.106 -.083 
CST_B3 (28) .321 .248 .456 .289 -.119 -.094 -.231 -.150 -.091 -.085 -.211 -.099 
CST_B4 (29) .289 .248 .302 .520 -.106 -.100 -.140 -.367 -.082 -.111 -.101 -.281 
NET_B1 (30) -.637 -.333 -.338 -.366 .491 .213 .253 .301 .317 .108 .128 .121 
NET_B2 (31) -.346 -.631 -.359 -.312 .302 .576 .295 .324 .177 .446 .197 .178 
NET_B3 (32) -.306 -.311 -.619 -.344 .251 .265 .442 .319 .121 .171 .314 .140 
NET_B4 (33) -.332 -.305 -.347 -.651 .244 .234 .254 .556 .157 .183 .195 .399 

Bolded and underlined diagonal elements are the square roots of the AVEs 
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Table D.3. First-Order Measurement Model Statistics (Part 3 of 3) 
Latent 
construct 

(22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) 

BEN_B1 (22) .927                       
BEN_B2 (23) .515 .926                     
BEN_B3 (24) .542 .523 .922                   
BEN_B4 (25) .545 .484 .509 .930                 
CST_B1 (26) -.435 -.221 -.271 -.250 .924               
CST_B2 (27) -.246 -.488 -.253 -.251 .512 .925             
CST_B3 (28) -.244 -.248 -.466 -.279 .564 .517 .928           
CST_B4 (29) -.295 -.223 -.297 -.546 .507 .485 .581 .931         
NET_B1 (30) .531 .332 .333 .342 -.555 -.326 -.349 -.333 .801       
NET_B2 (31) .356 .609 .312 .359 -.264 -.558 -.259 -.267 .530 .828     
NET_B3 (32) .397 .385 .581 .419 -.300 -.279 -.479 -.312 .574 .539 .832   
NET_B4 (33) .391 .330 .359 .672 -.290 -.230 -.294 -.590 .523 .478 .540 .838 

Bolded and underlined diagonal elements are the square roots of the AVEs 
 

 
 



Table D.4a. Highest Order Latent Variable Correlations against the Marker Variable, Organization Commitment (OC) 
Latent construct Mean SD MV (1) (2) (3) (4) (5) (6) 

Marker variable† 4.55 1.51               
cyberbullying frequency (first-order formative) (1) 1.80 0.54 -.067             
cyberbullying anonymity (second-order formative) (2) 4.08 1.36 -.137 .201           
cyberbullying situational morality (second-order formative) 
(3) 

5.27 1.12 .225 -.473 -.200         

cyberbullying negative social influence (second-order 
formative) (4) 

2.62 0.91 -.087 .346 -.014 -.484       

cyberbullying benefits (second-order formative) (5) 2.76 1.47 -.144 .442 .207 -.576 .484     
cyberbullying costs (second-order formative) (6) 4.49 1.36 .164 -.379 -.325 .580 -.282 -.488   
cyberbullying neutralization (second-order formative) (7) 3.45 1.25 -.169 .488 .262 -.673 .534 .652 -.549 

This table represents the correlations of the latent constructs at their highest level; 2nd = second-order formative construct formed of first-order reflective 
constructs; †MV = marker variable (used organizational commitment as unrelated, marker variable to further establish likely lack of common method bias) 
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Table D.4b. Collinearity Statistics and Reliabilities for All Constructs 
  Collinearity Statistics Reliability Information 
Latent construct Construct type Tolerance VIF # of 

items 
CR Alpha 

(α) 
Anonymity: Lack of identification (A_LI) First-order reflective .267 3.740 2 .906 .794 
Anonymity: Confidence in the system to function (A-CS) First-order reflective .382 2.614 2 .923 .833 
Anonymity: Denial of responsibility (A_DR) First-order reflective .444 2.250 2 .872 .716 
Anonymity: Lack of proximity (A_PX) First-order reflective .705 1.419 2 .902 .784 
Anonymity: Knowledge of others (A_KO) First-order reflective .356 2.806 2 .896 .769 
CB anonymity (second-order) Second-order formative .635 1.575 10 n/a n/a 
CB frequency First-order formative .531 1.884 4 n/a n/a 
Situational morality: Behavior 1 (SM_B1) First-order reflective .342 2.922 3 .959 .937 
Situational morality: Behavior 2 (SM_B2) First-order reflective .339 2.951 3 .969 .953 
Situational morality: Behavior 3 (SM_B3) First-order reflective .393 2.545 3 .957 .933 
Situational morality: Behavior 4 (SM_B4) First-order reflective .391 2.557 3 .968 .950 
CB situational morality (second-order) Second-order formative .437 2.286 12 n/a n/a 
CB negative social influence, norms: Behavior 1 (NSN_B1) First-order reflective .413 2.424 6 .906 .878 
CB negative social influence, norms: Behavior 2 (NSN_B2) First-order reflective .315 3.172 6 .930 .910 
CB negative social influence, norms: Behavior 3 (NSN_B3) First-order reflective .373 2.678 6 .917 .891 
CB negative social influence, norms: Behavior 4 (NSN_B4) First-order reflective .393 2.545 6 .927 .900 
CB negative social influence, frequency: Behavior 1 (NSF_B1) First-order reflective .417 2.398 3 .850 .735 
CB negative social influence, frequency: Behavior 2 (NSF_B2) First-order reflective .338 2.958 4 .882 .821 
CB negative social influence, frequency: Behavior 3 (NSF_B3) First-order reflective .376 2.662 5 .883 .836 
CB negative social influence, frequency: Behavior 4 (NSF_B4) First-order reflective .407 2.460 3 .863 .762 
CB negative social influence (second-order) Second-order formative .621 1.610 39 n/a n/a 
CB benefits: Behavior 1 (BEN_B1) First-order reflective .392 2.551 4 .960 .945 
CB benefits: Behavior 2 (BEN_B2) First-order reflective .357 2.802 4 .959 .943 
CB benefits: Behavior 3 (BEN_B3) First-order reflective .367 2.724 4 .958 .941 
CB benefits: Behavior 4 (BEN_B4) First-order reflective .328 3.052 4 .962 .948 
CB benefits (second-order) Second-order formative .499 2.002 12 n/a n/a 
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CB costs: Behavior 1 (CST_B1) First-order reflective .351 2.848 4 .959 .943 
CB costs: Behavior 2 (CST_B2) First-order reflective .318 3.141 4 .959 .944 
CB costs: Behavior 3 (CST_B3) First-order reflective .348 2.874 4 .961 .947 
CB costs: Behavior 4 (CST_B4) First-order reflective .306 3.273 4 .963 .950 
CB costs (second-order) Second-order formative .570 1.753 12 n/a n/a 
CB neutralization: Behavior 1 (NET_B1) First-order reflective .268 3.728 5 .913 .883 
CB neutralization: Behavior 2 (NET_B2) First-order reflective .264 3.783 5 .927 .904 
CB neutralization: Behavior 3 (NET_B3) First-order reflective .287 3.488 5 .930 .908 
CB neutralization: Behavior 4 (NET_B4) First-order reflective .251 3.980 5 .933 .912 
Neutralization (second-order) Second-order formative .385 2.597 20 n/a n/a 

B1 = Post something hurtful, rude, inappropriate, or mean that targets someone; B2 = Publicly embarrass or prank someone with true information or photos that 
are potentially harmful; B3 = Spread a rumor or untrue information about someone; B4 = Send threatening or harassing messages, or send messages after 
someone told you to stop. 
 
 
Table D.5a. CB Zero-order Correlations and Inter-item Correlational Diagnostics  

cyberbullying behavior cyberbullying 
(formative) 

(1) (2) (3) 

Behavior 1 frequency (1) .666       
Behavior 2 frequency (2) .651 .234     
Behavior 3 frequency (3) .703 .284 .292   
Behavior 4 frequency (4) .682 .287 .241 .310 

Note: the first highlighted column shows the zero-order correlations of the latent construct’s items against the overall average of the latent construct.  
B1 = Post something hurtful, rude, inappropriate, or mean that targets someone; B2 = Publicly embarrass or prank someone with true information or photos that 
are potentially harmful; B3 = Spread a rumor or untrue information about someone; B4 = Send threatening or harassing messages, or send messages after 
someone told you to stop. 
 
 
  



Table D.5b. Neutralization Zero-order Correlations and Inter-item Correlational Diagnostics (Part 1 of 2) 
 Items Neutralization 

(formative) 
b4_n1 b4_n2 b4_n3 b4_n4 b4_n5 b4_n6 b3_n1 b3_n2 b3_n3 b3_n4 b3_n5 b3_n6 

b4_n1 .684                         
b4_n2 .655 .757                       
b4_n3 .725 .711 .653                     
b4_n4 .516 .433 .419 .427                   
b4_n5 .694 .729 .728 .725 .441                 
b4_n6 .712 .718 .682 .810 .444 .811               
b3_n1 .690 .465 .410 .358 .260 .378 .361             
b3_n2 .678 .431 .507 .368 .219 .389 .382 .687           
b3_n3 .736 .384 .382 .515 .264 .402 .450 .640 .667         
b3_n4 .566 .318 .272 .291 .529 .303 .300 .463 .411 .478       
b3_n5 .704 .392 .399 .397 .261 .470 .434 .673 .694 .726 .436     
b3_n6 .739 .419 .420 .468 .240 .437 .470 .694 .718 .800 .452 .790   
b2_n1 .663 .435 .311 .346 .228 .338 .330 .509 .389 .370 .281 .373 .393 
b2_n2 .640 .348 .377 .368 .188 .320 .331 .375 .495 .403 .219 .376 .417 
b2_n3 .715 .331 .299 .497 .245 .357 .434 .375 .363 .513 .290 .400 .460 
b2_n4 .512 .204 .170 .236 .498 .195 .214 .262 .231 .282 .571 .226 .259 
b2_n5 .682 .338 .308 .398 .217 .430 .389 .375 .354 .408 .262 .452 .438 
b2_n6 .724 .368 .323 .443 .224 .397 .425 .388 .399 .442 .282 .411 .471 
b1_n1 .680 .466 .380 .400 .240 .375 .377 .556 .414 .441 .291 .422 .446 
b1_n2 .627 .356 .426 .367 .205 .330 .324 .420 .481 .407 .227 .364 .390 
b1_n3 .687 .328 .310 .499 .253 .358 .441 .353 .334 .521 .284 .395 .437 
b1_n4 .508 .267 .245 .285 .545 .248 .272 .267 .215 .265 .573 .222 .219 
b1_n5 .702 .397 .386 .450 .272 .502 .440 .425 .378 .464 .291 .511 .475 
b1_n6 .688 .337 .327 .452 .200 .365 .438 .373 .356 .465 .261 .407 .455 
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Table D.5b. Neutralization Zero-order Correlations and Inter-item Correlational Diagnostics (Part 2 of 2) 
 Items b2_n1 b2_n2 b2_n3 b2_n4 b2_n5 b2_n6 b1_n1 b1_n2 b1_n3 b1_n4 b1_n5 
b2_n2 .687                     
b2_n3 .661 .643                   
b2_n4 .400 .375 .429                 
b2_n5 .681 .670 .723 .414               
b2_n6 .705 .708 .811 .432 .806             
b1_n1 .490 .328 .377 .241 .351 .398           
b1_n2 .324 .408 .335 .202 .296 .356 .652         
b1_n3 .366 .330 .551 .263 .383 .470 .613 .599       
b1_n4 .245 .192 .273 .561 .231 .245 .380 .354 .362     
b1_n5 .338 .306 .415 .271 .473 .453 .611 .602 .658 .346   
b1_n6 .359 .335 .492 .247 .404 .483 .654 .647 .788 .375 .712 

Note: the first highlighted column shows the zero-order correlations of the latent construct’s items against the overall average of the latent construct. 
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Table D.5c. cyberbullying Anonymity Zero-order Correlations and Inter-item Correlational Diagnostics  
 Items Anonymity 

(2nd-Order) 
a_li1 a_li2 a_cs1 a_cs2 a_dr1 a_dr2 a_px1 a_px2 a_ko1 

a_li1 .838                   
a_li2 .791 .658                 
a_cs1 .780 .708 .565               
a_cs2 .786 .717 .583 .714             
a_dr1 .686 .463 .506 .454 .433           
a_dr2 .720 .550 .543 .512 .486 .558         
a_px1 .575 .377 .329 .321 .338 .290 .264       
a_px2 .643 .419 .445 .366 .381 .385 .349 .645     
a_ko1 .770 .620 .593 .535 .537 .502 .535 .347 .387   
a_ko2 .781 .628 .599 .543 .559 .511 .549 .351 .384 .624 

Note: the first highlighted column shows the zero-order correlations of the latent construct’s items against the overall average of the latent construct. 
 
  



Table D.6. Detailed Results of PLS Analysis on Hypotheses Only (n = 1003) 
Tested path β t-

statistic 
Supported? 

H1: cyberbullying anonymity  cyberbullying negative social 
influence 

.202 2.12* Yes 

H2: cyberbullying anonymity  (-) cyberbullying costs (-.356) 9.66*** Yes 
H3: cyberbullying anonymity  cyberbullying benefits .274 7.58*** Yes 
H4: cyberbullying anonymity  cyberbullying neutralization .360 9.59*** Yes 
H5: cyberbullying anonymity  (-) cyberbullying situational morality (-.306) 8.36*** Yes 
H6: cyberbullying negative social influence  cyberbullying 
frequency 

.276 6.75*** Yes 

H7a: cyberbullying costs  (-) cyberbullying frequency (-.127) 3.18** Yes 
H7b: cyberbullying benefits  cyberbullying frequency .075 1.81(n/s) No 
H8a: cyberbullying neutralization  cyberbullying frequency .127 2.34* Yes 
H8b: cyberbullying situational morality  (-) cyberbullying frequency (-.244) 5.52*** Yes 

p < 0.05, p < 0.01, p < 0.001, n/s = not significant  
 
Table D.7. Detailed Results of PLS Analysis on All Relationships and Controls (n = 1003) 

Tested path β t-statistic Supported? 
H1: cyberbullying anonymity  cyberbullying negative social 
influence 

.114 1.55(n/s) No 

H2: cyberbullying anonymity  (-) cyberbullying costs (-.348) 7.96*** Yes 
H3: cyberbullying anonymity  cyberbullying benefits .274 7.19*** Yes 
H4: cyberbullying anonymity  cyberbullying neutralization .338 7.78*** Yes 
H5: cyberbullying anonymity  (-) cyberbullying situational morality (-.266) 6.39*** Yes 
H6: cyberbullying negative social influence  cyberbullying 
frequency 

.219 4.39*** Yes 

H7a: cyberbullying costs  (-) cyberbullying frequency (-.098) 2.43* Yes 
H7b: cyberbullying benefits  cyberbullying frequency .087 1.81(n/s) No 
H8a: cyberbullying neutralization  cyberbullying frequency .173 3.31** Yes 
H8b: cyberbullying situational morality  (-) cyberbullying frequency (-.223) 4.64*** Yes 
 
Contribution of cyberbullying Anonymity Subconstructs to cyberbullying Anonymity 
Lack of identification  cyberbullying anonymity .323 7.02*** Yes 
Diffused responsibility  cyberbullying anonymity .324 10.80*** Yes 
Lack of proximity  cyberbullying anonymity .197 7.31*** Yes 
Knowledge of others  cyberbullying anonymity .165 4.18*** Yes 
Confidence in the system to work  cyberbullying anonymity .203 5.76*** Yes 
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SM Community Social Structure and Sociodemographic Variables on social learning Constructs 
Age  cyberbullying negative social influence  (-.051) 1.13(n/s) No 
Age  cyberbullying benefits  (-.005) 1.14(n/s) No 
Age  cyberbullying costs  (-.054) 0.87(n/s) No 
Age  cyberbullying neutralization (-.056) 0.72(n/s) No 
Age  cyberbullying situational morality  .064 1.10(n/s) No 
Gender (female)  cyberbullying negative social influence (-.069) 0.80(n/s) No 
Gender (female)  cyberbullying benefits  (-.108) 3.01** Yes 
Gender (female)  cyberbullying costs  .128 3.59*** Yes 
Gender (female)  cyberbullying neutralization (-.050) 1.10(n/s) No 
Gender (female)  cyberbullying situational morality  .064 1.56(n/s) No 
Education  cyberbullying negative social influence (-.080) 1.97* Yes 
Education  cyberbullying benefits  (-.015) 0.26(n/s) No 
Education  cyberbullying costs  .053 0.78(n/s) No 
Education  cyberbullying neutralization (-.073) 1.27(n/s) No 
Education  cyberbullying situational morality  .083 1.80(n/s) No 
Employment status  cyberbullying negative social influence (-.058) 0.80(n/s) No 
Employment status  cyberbullying benefits  .067 1.34(n/s) No 
Employment status  cyberbullying costs  (-.038) 0.72(n/s) No 
Employment status  cyberbullying neutralization (-.001) 0.02(n/s) No 
Employment status  cyberbullying situational morality  (-.002) 0.02(n/s) No 
Income  cyberbullying negative social influence (-.039) 0.43(n/s) No 
Income  cyberbullying benefits  .011 0.17(n/s) No 
Income  cyberbullying costs  (-.036) 0.42(n/s) No 
Income  cyberbullying neutralization .008 0.13(n/s) No 
Income  cyberbullying situational morality  .018 0.38(n/s) No 
Hours per day on social media  cyberbullying negative social 
influence 

.177 4.40*** Yes 

Hours per day on social media  cyberbullying benefits  .084 2.09* Yes 
Hours per day on social media  cyberbullying costs  (-.044) 0.95(n/s) No 
Hours per day on social media  cyberbullying neutralization .078 2.02* Yes 
Hours per day on social media  cyberbullying situational morality  (-.107) 2.89** Yes 
 

Exploratory Controls on Cyberbullying Frequency 
Age  cyberbullying frequency (-.038) 1.20(n/s) No 
Gender (female)  cyberbullying frequency (-.064) 2.03* Yes 
Education  cyberbullying frequency (-.021) 0.80(n/s) No 
Employment status  cyberbullying frequency (-.052) 1.62(n/s) No 
Income  cyberbullying frequency .082 1.85(n/s) No 
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Hours per day on social media  cyberbullying frequency .087 2.97** Yes 
p < 0.05, p < 0.01, p < 0.001, n/s = not significant  
 

 

Table D.8. Basic Results for Four Separately Run Behavior Models (n = 1003) 
 Behavior B1 Behavior B2 Behavior B3 Behavior B4 
Tested path β t-statistic β t-statistic β t-statistic β t-statistic 
H1: cyberbullying anonymity  cyberbullying 
negative social influence 

.088 1.05(n/s) (-.013) 0.19(n/s) .123 2.59** .129 2.55** 

H2: cyberbullying anonymity  (-) cyberbullying 
costs 

(-.279) 7.68*** (-.215) 4.48*** (-.359) 10.43*** (-.287) 8.14*** 

H3: cyberbullying anonymity  cyberbullying 
benefits 

.169 4.12*** .169 3.88*** .270 7.63*** .214 6.30*** 

         
H4: cyberbullying anonymity  cyberbullying 
neutralization 

.341 9.72*** .161 3.45*** .333 9.33*** .282 7.65*** 

H5: cyberbullying anonymity  (-) cyberbullying 
situational morality 

(-.197) 5.11*** (-.114) 2.09* (-.280) 7.63*** (-.240) 6.63*** 

H6: cyberbullying negative social influence  
cyberbullying frequency 

.284 7.39*** .357 9.68*** .265 7.21*** .306 7.24*** 

H7a: cyberbullying costs  (-) cyberbullying 
frequency 

(-.132) 3.24*** (-.017) 0.49(n/s) (-.037) 1.17(n/s) (-.156) 3.87*** 

H7b: cyberbullying benefits  cyberbullying 
frequency 

.056 1.59(n/s) .107 2.47** .105 2.63** .052 1.13(n/s) 

H8a: cyberbullying neutralization  cyberbullying 
frequency 

.151 3.26*** .194 4.36*** .218 4.87*** .099 1.72(n/s) 

H8b: cyberbullying situational morality  (-) 
cyberbullying frequency 

(.188) 4.40*** (-.175) 4.32*** (-.148) 3.39*** (-.204) 4.56*** 

p < 0.05, p < 0.01, p < 0.001, n/s = not significant  
B1. Post something hurtful, rude, inappropriate, or mean that targets someone.  
B2. Publicly embarrass or prank someone with true information or photos that are potentially harmful.  
B3. Spread a rumor or untrue information about someone. 
B4. Send threatening or harassing messages, or send messages after someone told you to stop. 



ANALYSES FOR MEDIATION 

Our model proposing one level of full mediation to adhere to the assumption of SSSL that the social 
learning constructs act as full mediators. Testing for this kind of complex mediation at the same time is not possible 
with PLS (or any other tool, for that matter); however, this can be accurately tested using advanced bootstrapping 
tests on the construct confidence intervals of the mediation effects, as shown in this section.  

The traditional tests for mediation have been the Baron and Kenny (1986) and Sobel (1982) tests. However, 
with more computing power available to researchers, other methods have become more prevalent. The bootstrapping 
method represents one such approach which has gained in popularity in recent times (Hayes 2009; MacKinnon) and 
has been recently introduced in IS research (e.g., Vance et al. 2015). This method has several advantages (Vance et 
al. 2015): it provides greater statistical power, allows for the direct measurement of “indirect effects,” and does not 
assume normal distribution such as that in the Sobel (1982) method. 

Our mediation testing with bootstrapping follows Baron and Kenny’s (1986) guidelines for evaluating the 
three paths shown in Figure D.1. The paths in question are: (1) from the independent to the mediating variable (a), 
(2) from the mediating to the dependent variable (b), and (3) from the independent to the dependent variable (path c, 
or c′ when considered simultaneously with paths a and b). 

 
Figure D.1. Overview of Baron and Kenny’s (1986) Approach to Mediation 

 

In the bootstrap method, we resample (from the obtained sample) with replacement 5000 times. In each 
resample, we obtain the product (of ab) by multiplying the coefficients in paths a and b, which estimates the indirect 
effect in the resample (MacKinnon 2008). The coefficient corresponding to c′ is also obtained. This process is 
repeated at least 1000 times; preferably this should be close to 5000 times or more (Hayes 2009). We used 5000 
resamples. Of course, our mediation model is more complex than depicted in Figure A2.1, but the same principals 
and logic hold. Figure D.2 depicts the mediation mapping we used for the social learning constructs.  

 
Figure D.2. Mediation Mapping to Test social learning Constructs as Full Mediators 
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Sorting the values of ab and c′ in ascending order yields a percentile-based confidence interval ci%. To do 
this, the ordinal positions of ab and c′ corresponding to the bounds of our interval are calculated using the formula 
k(.5 - ci/200) for the lower bound and the formula 1 + k(.5 + ci/200) for the upper bound (Hayes 2009). In this case, 
k is the number of resamples mentioned earlier. We assume a standard 95% confidence interval, so our ordinal 
ranges are 125 (lower bound) and 4876 (upper bound). 

Observing the confidence interval ab, if we do not find zero between the upper and lower bounds, we can 
conclude with a confidence of ci% that the indirect effect exists, that is, it is not zero (MacKinnon 2008). Examining 
the confidence interval for c′ allows us to infer whether the mediation is full or partial. If ab is non-zero and c′ is 
zero, full mediation is indicated; on the other hand, if both ab and c′ are non-zero, then partial mediation can be 
inferred. 

We followed the above procedures to bootstrap the effects of our mediating relationships. The results are 
shown in Table D.8. The results first show that indeed our model complies with SSSL in that the social learning 
constructs act as full mediators, with the exception of negative social influence because its relationship with 
anonymity was insignificant in the full model. This is a particularly compelling analysis because it provides further 
support for perceived anonymity creating a unique social media social structure context that drives the social 
learning processes, which in turn foster cyberbullying.  
 

 
 
 
 



Table D.8. Bootstrapped Confidence Interval Tests for Full and Partial Mediation Model (All Model Mediators of NSI) 
Proposed relationship  

Proposed 
Mediator 

Mediation Test (ab) Full/Partial Mediation Test (c′)  
Type of 
mediation 
relationship 

5% lower 
bound 
125 

95% 
upper 
bound 
4876 

Zero 
included? 

2.5% 
lower 
bound 

97.5% 
upper 
bound 

Zero 
included? 

 
Testing social learning Constructs as Mediators in the Model 
 
Anonymity (a1) NSI (b1)  cyberbullying (c′) NSI (b1) -.020 .098 Yes -.069 .074 Yes n/a* 
Anonymity (a2) Benefits (b2)  cyberbullying 
(c′) 

Benefits (b2) .002 .053 No -.069 .074 Yes Full 

Anonymity (a3) Costs (b3)  cyberbullying (c′) Costs (b3) .020 .082 No -.069 .074 Yes Full 
Anonymity (a4) Neutralization (b4)  
cyberbullying (c′) 

Neutralization (b4) .022 .102 No -.069 .074 Yes Full 

Anonymity (a5) Morality (b5)  cyberbullying 
(c′) 

Morality (b5) .042 .110 No -.069 .074 Yes Full 

*relationship between anonymity and NSI is insignificant; NSI = negative social influence



Detailed Sociodemographic Data 

The sociodemographic data of the 1,003 participants were as follows: age (𝑥𝑥 31.02 years; SD 8.36); first 
year on the Internet (𝑥𝑥 1999; SD 4 years; min 1993, max 2012); work years (𝑥𝑥 12.00 years; SD 8.27). The gender 
distribution was 514 males (51.2%), 483 females (48.2%), and 6 “other” gender (0.6%). Employment was 
distributed as follows: 185 full-time student (18.4%); 92 unemployed and not a student (9.2%); 162 employed part-
time (16.2%); and 564 employed full-time (56.2%). Table D.8 provides detailed data distributions on other 
demographic factors. 

 
Table D.8. Demographic Data Distributions for Our Sample of Adult Cyberbullies (n = 1003) 

Distribution of tool most used for cyberbullying: 
 
• Facebook: 530 people (52.8%) 
• Online discussion forum, including blogs, Reddit, Disqus, 

Tumblr, etc.: 193 people (19.2%) 
• Twitter: 100 people (10.0%) 
• YouTube: 78 people (7.8%) 
• Instagram: 43 people (4.3%) 
• Instant Messaging (IM), including Snapchat, WhatsApp, 

WeChat, etc.: 37 people (3.7%) 
• Other social media: 13 people (1.3%) 
• Google+: 5 people (0.5%) 
• Ask.fm: 1 person (0.1%) 
• Pinterest: 1 person (0.1%) 
• Vine: 1 person (0.1%) 

Distribution of income:  
 
• $0: 18 people (1.8%) 
• $1 to $10,000: 89 people (8.9%) 
• $10,001 to $30,000: 248 people (24.7%) 
• $30,001 to $50,000: 301 people (30.0%) 
• $50,001 to $70,000: 173 people (17.2%) 
• $70,001 to $100,000: 99 people (9.9%) 
• $100,001 to $150,000: 47 people (4.7%) 
• $150,001 to $200,000: 16 people (1.6%) 
• $200,001 to $300,000: 5 people (0.5%) 
• $300,001 to $500,000: 1 person (0.1%) 
• $500,000 to $1,000,000: 2 people (0.2%) 
• $1,000,001 +: 4 people (0.4%) 

Distribution of hours on social media each day: 
 
• 0 (none): 0 people (0%) 
• 1 to 15 minutes: 14 people (1.4%) 
• 16 to 30 minutes: 49 people (4.9%) 
• 31 minutes to 1 hour: 170 people (16.9%) 
• > 1 hour <= 2 hours: 281 people (28.0%) 
• > 2 hours <= 4 hours: 311 people (31.0%) 
• > 4 hours <= 7 hours: 134 people (13.4%) 
• > 7 hours <= 12 hours: 31 people (3.1%) 
• > 12 hours <= 18 hours: 9 people (0.9%) 
• > 18 hours: 4 people (0.4%) 

Distribution of educational level:  
 
• 5 less than high school (0.5%) 
• 105 high school or equivalent (10.5%) 
• 291 some university but no degree (29.0%) 
• 130 associate’s degree (13.0%) 
• 355 bachelor’s degree (35.4%) 
• 100 master’s degree (10.0%) 
• 17 doctoral degree (1.7%). 
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i The difference is that items within formative constructs are theoretically distinct and thus are not replaceable with 
other items in the same construct; items in reflective constructs are theoretically the same and thus are replaceable with each 
other (Diamantopoulos and Winklhofer 2001). This distinction has recently become a serious issue in systems-related research 
where it has been discovered that many previous studies have been mis-specified because they did not distinguish between 
reflective and formative constructs (Petter et al. 2007). Such mis-specification can lead to problems in empirical results and 
theoretical interpretations, including the potential increase in both Type I and Type II errors (Petter et al. 2007). 

ii The basic standard followed here is that the square root of the AVE for any given construct (latent variable) should be 
higher than any of the correlations involving the construct (Fornell and Larcker 1981; Staples et al. 1999). The numbers are 
shown in the diagonal for constructs (bolded and underlined). 

iii We also gathered organizational commitment in case high correlations existed so we could use it to perform the 
marker-variable technique, but this was unnecessary given the nature of the model’s correlations. Namely, the neutralization 
constructs had moderately high intercorrelations, which was theoretically expected. No patterns existed that hinted at common-
method bias. 

iv Validating items within formative measures is particularly challenging because these items can move in different 
directions apart from each other. Whereas reflective indicators must demonstrate considerably high correlations among each 
other (i.e., exhibit high conceptual overlap) to be valid internally, the indicators of a formative construct need not meet this 
criterion, and instead need to represent distinct facets of the overall construct being modeled (Bollen and Lennox 1991; 
Diamantopoulos and Winklhofer 2001; Petter et al. 2007). Reflective items are interchangeable but formative items are not 
interchangeable; hence, reliability measurements are not appropriate for formative constructs (Diamantopoulos and Winklhofer 
2001). Specifically, internal consistency examinations of formative constructs with Cronbach’s α and average variance extracted 
(AVE) calculations are not methodologically appropriate (Bagozzi 1994; Cenfetelli and Bassellier 2009; Petter et al. 
2007).Researchers have traditional used theoretical reasoning alone to support the validity of formative constructs 
(Diamantopoulos and Winklhofer 2001). Over time, methodological approaches have emerged to improve validation of formative 
constructs, such as using the modified multitrait-multimethod (MTMM) approach and assessing multicollinearity (Petter et al. 
2007; Straub et al. 2004). 

v It would be more ideal to do this using a MIMMIC model where all of the formative items of a second-order construct 
were correlated to the average of a separately created reflective construct representing overall second-order construct. However, 
we had no such reflective meta-constructs available from the literature. 
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