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In marketing applications, it is common that some key covariates in a regression model, such as marketing
mix variables or consumer profiles, are subject to missingness. The convenient method that excludes the con-

sumers with missingness in any covariate can result in a substantial loss of efficiency and may lead to strong
selection bias in the estimation of consumer preferences and sensitivities. To solve these problems, we propose
a new Bayesian distribution-free approach, which can ensure that no customer is left behind in the analysis as
a result of missing covariates. In this way, all customers are being considered in devising managerial policies.
The proposed approach allows for flexible modeling of a joint distribution of multidimensional interrelated
covariates that can contain both continuous and discrete variables. At the same time, it minimizes the impact of
distributional assumptions involved in covariate modeling because the method does not require researchers to
specify parametric distributions for covariates and can automatically generate suitable distributions for missing
covariates. We have developed an efficient Markov chain Monte Carlo algorithm for inference. Besides robust-
ness and flexibility, the proposed approach reduces modeling and computational efforts associated with missing
covariates and therefore makes the missing covariate problems easier to handle. We evaluate the performance of
the proposed method using extensive simulation studies. We then illustrate the method in two real data exam-
ples in which missing covariates occur: a mixed multinomial logit discrete-choice model in a ketchup data set
and a hierarchical probit purchase incidence model in a retail store data set. These analyses demonstrate that the
proposed method overcomes several important limitations of existing approaches for solving missing covariate
problems and offers opportunities to make better managerial decisions with the current available marketing
databases. Although our applications focus on consumer-level data, the proposed method is general and can be
applied to other marketing applications where other types of marketing players are the units of analysis.
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1. Introduction
Regression models are a main class of econometric
tools for empirical marketing and economics stud-
ies. For example, a vast marketing literature studies
brand choices and purchasing behaviors of individual
consumers. In these studies, discrete-choice regression
models have become workhorses in assessing deter-
minants of consumer choices among differentiated
products and stores. Purchase incidence models are
frequently used to evaluate what drives household
purchasing/shopping decisions. Regression models
for conjoint analysis are essential in studying the
importance of product attributes and the design of
new products. To create the most effective marketing

strategies, it is crucial to obtain valid and precise esti-
mates of consumer preferences and responsiveness to
marketing mix strategies.

In practice, missing data issues often arise in the
applications of regression models (Little and Rubin
2002, Qian 2007). As noted in Blattberg et al. (2008,
p. 301), “Missing variables is a fact of life for DBM
[Database Marketing] applications.” The focus of this
paper is on how to obtain valid and efficient estimates
of regression relationships when some key covari-
ates in a regression model are subject to missingness.
To describe the issue more precisely, let Y denote
the regression outcome, and let X = 4X11 0 0 0 1XK5
denote K covariates. We are interested in estimating
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a parametric regression model, f�4Y �X5, where � is a
vector of parameters of interest. In marketing research,
it is not uncommon that some variables in X are
subject to missingness. For example, scanner panel
data frequently have been used to calibrate discrete-
choice models. Although scanner panel data have the
advantage of reflecting consumer behaviors in real
life, missing data issues can be severe. Missing data
can occur in this situation because here, unlike exper-
imental studies, typically only the values of market-
ing mix variables (e.g., price and coupon values) for
the purchased products are recorded in the collec-
tion of scanner data (Erdem et al. 1999, henceforth
referred as EKS). Other situations in which missing
data could occur include item and unit nonresponse in
surveys (Bradlow and Zaslavsky 1999), conjoint anal-
ysis (Bradlow et al. 2004), attrition and intermittent
missingness in panel data (Qian and Xie 2010), data
combination from different sources (Kamakura and
Wedel 1997, 2000; Gilula et al. 2006; Feit et al. 2010),
and one-to-one marketing (Khan et al. 2009). In sum,
missing data are ubiquitous in marketing research.

A simple method for avoiding missing covariate
problems is the complete-case analysis, where the
standard regression analysis is applied to the sub-
set of units with complete data. The complete-case
analysis, although convenient, is inefficient, because
it does not exploit the available information in those
excluded units. Furthermore, when the probabil-
ity of missingness depends on the regression out-
come, exclusion of units with incomplete data leads
to inconsistent estimation of population parameters
because the resulting subsample is nonrepresenta-
tive. For example, in the above scanner panel data
example, the missingness of those important market-
ing mix variables depends on the observed choice
outcome Y . A complete-case analysis or an ad hoc
method to fill in the missing values without account-
ing for this dependence is subject to self-selection bias
in the estimation of price sensitivity and promotion
effect (EKS 1999).

A general approach that avoids the drawbacks of
the complete-case analysis is to posit a model for the
covariates in X and then estimate a joint model for
the outcome Y and the covariates in X. That is, one
bases the inference on the following likelihood:

L4�1�3Y 1Xobs5

∝

∫

f�4Y �Xobs1Xmis5f�4X
obs1Xmis5 dXmis1 (1)

where Xobs and Xmis denote the observed and miss-
ing components of X, respectively; � is a vector of
parameters in the density function for the covariates.
The above likelihood-based inference is valid when
missingness is ignorable (Rubin 1976). Missingness is
ignorable if the missing data mechanism is missing

at random (MAR) and if the model governing the
missing data mechanism has parameters distinct from
the parameters � and � (i.e., parameter distinctness).
The MAR assumption is satisfied if missingness is
conditionally independent of the unobserved items
in the data matrix, given the observed items in the
data matrix. It is important to note that MAR is much
less restrictive than missing completely at random
(MCAR), which implies that missingness is indepen-
dent of both unobserved and observed data values.
The MAR is known to hold in the above scanner
panel example, where the missingness of marketing
mix variables depends only on the observed choice
outcomes.1

In the above likelihood, a multidimensional covari-
ate matrix must be carefully modeled, which can be a
challenging task. One approach is to posit parametric
distributions for X. One limitation of the parametric
covariate modeling approach is that misspecification
of the covariate distributions can result in a sig-
nificant estimation bias and misleading inference.
Therefore, care must be taken in modeling covari-
ates. On the other hand, as shown in our empirical
marketing applications, the multidimensional inter-
related covariates usually contain a mixture of con-
tinuous, semicontinuous, and discrete variables that
often exhibit features such as skewness, multimodal-
ity, discreteness, and zero-inflation. It is difficult to
specify a joint parametric covariate model to account
simultaneously for all the features in these variables.
The problem is further exacerbated because, unlike
the case in which all the data are observed, it is
much harder, if not impossible, to verify whether
distributional assumptions in a parametric covariate
model are satisfied simultaneously for all the miss-
ing covariates. Furthermore, the computation burden
can be heavy because one needs to evaluate multiple
integration with respect to those missing covariates
in the above likelihood. What is needed, then, is a
method that minimizes the impact of covariate distri-
butional assumptions and also reduces the extra mod-
eling and computational burden involved in covariate
modeling.

To address these challenges, we propose a new
distribution-free Bayesian approach to estimating
marketing models with multiple missing covariates.
Our approach builds on a novel odds ratio model-
ing framework, first proposed by Chen (2004). The
proposed method is robust in that no distributional

1 The MAR assumption could be questionable in some marketing
applications. For example, if the missingness of a consumer profil-
ing variable (e.g., income) relates to the unobserved value of this
variable, even after controlling for all the observed information
including the observed consumer behaviors (e.g., purchase inci-
dence outcome) and those observed profiling variables of the same
consumer, the missingness then becomes missing not at random.
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assumptions are required for modeling covariates. It
can automatically generate suitable distributions for
missing covariates and account for important dis-
tributional features including the ones mentioned
above. Despite its full freedom from distributional
assumptions, the method is flexible enough to allow
for dependence among the covariates. Our analy-
ses in both the real data and the simulation stud-
ies demonstrate that the proposed method improves
the estimation of the marketing model parameters
(e.g., consumer preference and marketing mix sensi-
tivities) in the presence of missing covariates. Conse-
quently, the proposed method offers the opportunity
for better managerial decisions, such as optimal pric-
ing and more accurate targeting. Furthermore, the
proposed approach possesses modeling and computa-
tional simplicity, thereby rendering missing covariate
problems easier to handle than they are under para-
metric covariate modeling approaches. As a Bayesian
approach, the proposed method is ideal for individu-
alized marketing when individual-level covariates are
subject to missingness, and it ensures that no con-
sumer is left behind in managerial considerations.2

We hope this paper will contribute to expanding the
set of tools researchers need to deal with missing
covariate problems.

Our approach for missing covariate problems is
general and can be applied to a wide range of market-
ing applications, including the following examples.
• Market data. As discussed above, in consumer

databases, important variables often are missing
(e.g., marketing mix variables, consumer profiles).
The proposed method allows researchers to more
efficiently and robustly estimate consumer prefer-
ences and sensitivity to marketing mix variables.

• Survey data. Survey studies are widely used and act
as essential tools with which marketing researchers
can answer important questions, particularly when
market data are not available. Item and unit nonre-
sponse are common in marketing survey data and
can threaten effective analyses of survey data. The
proposed method can be applied to this data type
to improve estimation and inference.

• Combining data from different sources. It is becom-
ing increasingly popular in marketing to combine
data from different sources to overcome the lim-
itations of a data set from a single source (e.g.,
Kamakura and Wedel 1997, 2000; Gilula et al. 2006;
Feit et al. 2010). The missing covariate problem
often occurs when data from different sources are
combined (Feit et al. 2010). Our proposed method
can be applied to address the problem.

2 An example is for online purchases, where ongoing predictions
need to be made based on sparse individual-level data. We thank
the associate editor for suggesting this.

• Beyond customer-level data. Marketing research is
multifaceted. Regression models are often applied
to study the behaviors of marketing players other
than consumers, such as firms (manufacturers,
retailers), organizations, and countries. Although
our applications in this paper focus on the consu-
mer-level data, the method can be applied to ad-
dress missing covariate problems in empirical appli-
cations in which these other marketing agents are
the units of analysis.
The rest of this paper is organized as follows. In §2

we review prior literature for missing covariate prob-
lems and describe our contributions to the field. In §3
we describe the model and estimation. In §4 we
summarize the features and benefits of the proposed
method. In §5 we apply the proposed method to two
marketing applications with missing covariate prob-
lems. We conclude with a discussion in §6.

2. Literature Review and
Contributions

Missing data are ubiquitous and problematic not only
in marketing contexts but throughout empirical anal-
ysis in social sciences. Consequently, the subject has
received an enormous amount of attention in the liter-
ature (e.g., Little and Rubin 2002, Schafer and Graham
2002, Daniels and Hogan 2008, Tsiatis 2006). A key
message from the literature is that methods based on
the probability models are preferred for dealing with
missing data issues because these methods are based
on the established statistical principles with known
properties. Furthermore, as the assumptions in the
analyses are made explicit, the methods can be eval-
uated clearly. Our review therefore focuses on model-
based methods.

Little (1992) and Ibrahim et al. (2005) review vari-
ous methods for dealing with missing covariates. Two
main approaches for solving missing covariate prob-
lems are popular. The first one is the multiple impu-
tation (MI) method (Little and Rubin 2002, Schafer
1997). MI imputes the missing values multiple times
using draws from the predictive distributions of miss-
ing values. Each imputed data set is analyzed using
standard complete-data methods. The resulting mul-
tiple estimates and inferences are combined to form
one pooled inference using Rubin’s combination rule.
The second approach is the direct estimation method,
in which a joint model for the regression outcome and
the covariates is directly estimated using the likeli-
hood or the posterior distribution under the model.
Compared with MI, the direct estimation method
does not require separate steps to create multiple
data sets nor to pool estimates over these data sets.

In marketing literature, the missing covariate issue
has also received much attention. Bradlow et al. (2004)
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develop an imputation learning model for the missing
attributes in a conjoint model that improves model
estimation. EKS (1999) and Feit et al. (2010) study
missing covariate problems in discrete-choice models.
EKS (1999) focus more on the robustness of covari-
ate modeling and use a polynomial probability func-
tion to model the nonnormal feature of price and
coupon values. One limitation of the approach is its
inflexibility to model the potentially strong depen-
dence among the covariates. Feit et al. (2010) use a
multivariate normal (MVN) covariate model, which
allows for correlated covariates. The MVN model is
frequently used in missing data analysis because of
its unique mathematical and computational proper-
ties.3 However, there are also significant limitations
in using a MVN model to handle missing covariate
problems. First, the regression parameter estimators
can be substantially biased if the parametric distri-
butional assumption is incorrect. Second, the MVN
covariate model does not allow for nonlinear rela-
tionships (e.g., a quadratic relationship or a relation-
ship with interaction) among covariates. As shown
in §4.5, this inflexibility in modeling covariates can
cause bias in outcome regression estimates. Third,
except for some limited types of regression models,
the computational cost generally is high. For example,
when the outcome is nonnormal or when the regres-
sion model contains nonlinear or interaction terms of
missing covariates, the likelihood of the resulting joint
model can involve intractable integrals with respect
to missing data.

There are other important works in marketing lit-
erature related to missing data problems. Kamakura
and Wedel (1997, 2000) develop MI methods to solve
data fusion problems. Their novel idea is to use a
finite mixture model to identify underlying homoge-
neous groups; the missing data are then stochastically
imputed using observations from the same group.
Gilula et al. (2006) propose a direct approach to data
fusion, which directly estimates the joint distribution
of the variables of interest. Although these methods
have been highly successful in addressing the prob-
lems for which they were designed, they address
issues that differ from missing covariate problems,
which are the focus of this paper.4 Another stream of

3 For example, the multiple imputation procedure in SAS, PROC
MI, uses the MVN model as the working model.
4 For example, Kamakura and Wedel’s data fusion approaches
address problems for which all variables are treated equally, and
no regression model in the form of f 4y � x5 is considered. In con-
trast, in missing covariate problems, the regression model f 4y � x5
is of primary interest, and it is important to use f 4y � x5 to impute
missing covariate values. Gilula et al. (2006) do employ a regression
model f 4y � x5. Their direct data fusion approach assumes that all
covariates in x are fully observed and thus also does not address
the missing covariate problems.

research studies the missing outcome issues in regres-
sion models (Bradlow and Zaslavsky 1999, Ying et al.
2006, Qian and Xie 2010, Yang et al. 2010). In these
studies, however, the missingness occurs in the out-
come instead of in the covariates, thus obviating the
need to model covariates.

There is emerging literature in statistics on weight-
ing methods for missing data (Tsiatis 2006). This
class of methods can be considered as a direct esti-
mation approach in which the estimation is based
on a set of inversely weighted estimating equations.
A major motivation of the weighting methods is the
robustness to model misspecifications. In addition to
specifying a covariate model, a weighting method
requires modeling how covariates are missing even
if they are missing at random. Modeling how mul-
tiple covariates are missing may not be easy, and
thus this approach may require much more modeling
work. This is in stark contrast to the likelihood-based
approaches in which there is no need to model miss-
ing data mechanisms when data are MAR. The benefit
of the additional modeling in the weighting method
is its property of double robustness. In missing covari-
ate problems, this implies that as long as either the
missing data model or the covariate model is correctly
specified, the resulting inference is consistent. The
method therefore protects against misspecifications of
one of the two working models, although not against
simultaneous misspecifications of both. Debates are
ongoing regarding the relative merits of likelihood-
based methods and weighting methods (e.g., see the
discussions in Kang and Schafer 2007). We note three
relevant points here. First, except for the special case
of monotone missingness, finding the most efficient
estimator in weighting methods is difficult, whereas
a likelihood-based approach, if correctly specified, is
most efficient. Second, for a general pattern of miss-
ingness, correctly specifying missing data models for
all missing covariates is difficult, if not impossible.
When the missing data models are misspecified, the
validity of a weighting approach, similar to that of
a likelihood-based approach, also depends on the
robustness of the covariate model. Thus in the weight-
ing approach, the robustness of covariate modeling is
also important in achieving a good property. Third,
because likelihood-based approaches are familiar to
and used frequently by researchers for various rea-
sons, it is highly relevant to develop robust methods
for missing covariate problems within the likelihood-
based framework.

As is reviewed above, to handle missing covari-
ate problems in marketing models, there is a clear
need for further research to find a method that is
more robust and flexible yet also general enough and
relatively simple to use. To that end, we contribute
to the literature by proposing a new distribution-free
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Bayesian approach that overcomes several important
limitations of existing methods for missing covari-
ates. Our approach builds on the novel semiparamet-
ric odds ratio model, first proposed by Chen (2004),
and extends it to a Bayesian framework. In the exten-
sion, we study the Bayesian inference and carefully
deal with the issue of efficient sampling algorithms
under the unique semiparametric model. As such,
our method shares many benefits of Chen’s approach
while overcoming its limitation in handling high-
dimensional missing covariate problems and/or com-
plex models. Because such problems are common
in marketing applications, the proposed method is
applicable to a much wider range of such applica-
tions. We offer a more detailed discussion on the fea-
tures and benefits of the proposed method in §4.

3. Model and Notation
Following the notation in §1, let f�4Y � X5 denote
the density function of a parametric model, with
its parameters � being the main interest of the
study. Below are some examples of the commonly
used parametric regression models in marketing
applications.

• Generalized Linear Model (GLM). The GLM as-
sumes that the outcome Yi is independently drawn
from a distribution in the exponential family whose
density function is

f�4yi � xi5

= exp
{

yiëi4�1xi5− b4ëi4�1xi55

a4�5
+ c4yi1 �5

}

1 (2)

where ëi is the canonical parameter as a function
of regression parameter �; functions b4 · 5 and c4·1 ·5
determine a particular distribution in the exponen-
tial family; and a4�5 = �/w, where � is the dis-
persion parameter and w is a known weight. The
GLM includes normal, binomial, Poisson, Gamma,
and inverse Gaussian models as special cases. It is
frequently used in data analysis and forms the foun-
dation for many more advanced marketing models.

• Discrete-Choice Model and Conjoint Model. Built
from underlying marketing and economic theories
(e.g., utility maximization), these models are well
suited for estimating consumer preferences and sen-
sitivity to marketing mix variables, market segmenta-
tion, and policy forecast.

• Duration Model. This model is useful for studying
consumer purchase incidence behavior. Seetharaman
and Chintagunta (2003) demonstrate examples of
parametric duration models.

• Models with heterogeneity. All of the above mod-
els can be extended to incorporate consumer hetero-
geneity, a critical feature in marketing applications
(Allenby and Rossi 1999).

As explained in §1, the covariate X can be sub-
ject to missingness in many marketing applications.
To handle the problem, one needs to posit a covari-
ate model, f�4X5. We review a novel semiparametric
odds ratio model below, first proposed by Chen (2004)
and adopted here for covariate modeling. To illustrate
the idea, we start with a simple case in which X con-
tains only two variables, X1 and X2, which could be
either continuous or discrete. Let f 4x11x25 be the joint
density function when 4X11X25= 4x11x25. Let 4x101x205
be a fixed and prespecified point in the sample space
of X. The odds ratio is

�4x21x203x11x105=
f 4x2 � x15f 4x20 � x105

f 4x2 � x105f 4x20 � x15
0 (3)

The odds ratio, as defined above, captures the depen-
dence between X1 and X2. When X2 is independent of
X1, the odds ratio �4x21x203x11x105 is one for all pos-
sible values of x1 and x2. Chen (2004) shows that the
conditional distribution can be reexpressed as

f 4x2 � x15=
�4x21x203x11x105f 4x2 � x105

∫

�4x21x203x11x105f 4x2 � x105 dx2
0

As shown above, the main idea of the modeling
approach is to decompose the conditional density
f 4x2 � x15 into two parts: a conditional density function
f 4x2 � x105 and an odds ratio function �4x21x203x11x105.
These two parts can then be modeled separately.
f 4x2 � x105 is the density function of X2 = x2 at a fixed
value, X1 = x10. Although it is not the same as the
marginal density function f 4x25, it behaves like a
marginal density function instead of a conditional dis-
tribution, as will be shown later in this section. We
call such a density a marginal-like density function.
Using the odds ratio representation, the joint density
for 4x11x25 is

f 4x11x25 = f 4x15f 4x2 � x15

=
�4x21x203x11x105f 4x2 � x105

∫

�4x21x203x11x105f 4x2 � x105 dx2
f 4x150

This idea can be extended to the case in which X
contains more than two variables by using condition-
ing. Let X = 4X11 0 0 0 1XK5 denote the K covariates. Its
joint density function is

f�4x110001xK5

=f�1
4x15

K
∏

k=2

f�k
4xk �xk−110001x15

=f�1
4x15

K
∏

k=2

(

��k
4xk1xk03xk−110001x11x4k−15010001x105

·f�k4xk �x4k−15010001x105
)

·

(

∫

��k
4xk1xk03xk−110001x11x4k−15010001x105

·f�k4xk �x4k−15010001x105dxk

)−1

1 (4)
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where each conditional distribution f�k
4xk � xk−11 0 0 0 1

x15 is reexpressed as a function of an odds ratio func-
tion and a marginal-like density function; �1 and �k

denote the parameters in the marginal density func-
tion of X1 and in the conditional density function of
Xk, respectively; and �k and �k denote the parame-
ters in the odds ratio function and the marginal-like
density function for Xk, respectively. Let xk11 0 0 0 1 xkNk

be the unique observed values in the data set for Xk.
A nonparametric model assigns probability mass pk =

4pk11 0 0 0 1 pkNk
5 to f 4xk � x4k−1501 0 0 0 1 x105, where a con-

straint is that
∑Nk

l=1 pkl = 1 for every k. To relax the con-
straint, we reparameterize pk as �k = 4�k11 0 0 0 1�kNk

5,
such that �kl = ln4pkl/pkNk

5 for l = 11 0 0 0 1Nk. Thus,
pkl = exp4�kl5/4

∑Nk
u=1 exp4�ku55. With this nonparamet-

ric model for f 4xk � x4k−1501 0 0 0 1 x105, the joint density
function for X can be expressed as in Equation (4),
where

f�k
4xk � xk−11 0 0 0 1 x15

=
��k

4xk1xk03xk−110001x11x4k−15010001x105f�k 4xk �x4k−15010001x105
∫

��k
4xk1xk03xk−110001x11x4k−15010001x105f�k 4xk �x4k−15010001x105dxk

=

∑Nk
l=1 18xk=xkl 9

��k
4xkl1xk03xk−110001x11x4k−15010001x105exp4�kl5

∑Nk
l=1��k

4xkl1xk03xk−110001x11x4k−15010001x105exp4�kl5
0 (5)

f�1
4x15 can also be written in the above format

by letting ��1
= 1. Equation (5) assigns probability

mass p′

k = 4p′

k11 0 0 0 1 p
′

kNk
5 to 4xk11 0 0 0 1 xkNk

5, where p′

kl =

f�k
4xk = xkl � xk−11 0 0 0 1 x151 l = 11 0 0 0 1Nk. As shown

in Equation (5), the integral in the denominator of
f�k

4xk � xk−11 0 0 0 1 x15 is replaced with a summation
over a finite number of observed data values. This
simplifies computation by avoiding the evaluation of
integrals. In this modeling framework, the marginal-
like distribution has been modeled nonparametrically,
thus enhancing the robustness of the method. We fol-
low Chen (2004) by using the following simple bilin-
ear form for odds ratio functions:

ln��k

(

xk1xk03xk−11 0 0 0 1 x11x4k−1501 0 0 0 1 x10

)

=

k−1
∑

v=1

�kv4xk − xk054xv − xv050 (6)

As noted in Chen (2004), using the above simple bilin-
ear form for odds ratio makes it easy to see that the
model nests the popular generalized linear model as
a special case. To see this, let xk follow a GLM, as in
Equation (2); its mean, �k, is

g4�k5 = �0 +�1x1 + · · · +�k−1xk−11

where g4 · 5 is the canonical link. The corresponding
odds ratio function can be shown to be

ln��k
4xk1xk03xk−11 0 0 0 1 x11x4k−1501 0 0 0 1 x105

=

k−1
∑

v=1

�v

a4�5
4xk − xk054xv − xv050

The GLM model therefore has a bilinear form of
odds ratio function, and the log-odds parameter �k

is a reparametrization of the parameters in the famil-
iar generalized linear model. On the other hand, the
marginal-like density function, f�k4xk � x4k−1501 0 0 0 1 x105,
is modeled parametrically in a GLM, whereas it is
modeled nonparametrically in the distribution-free
method. Thus, with the bilinear form of the odds ratio
function, it is readily seen that the above distribution-
free model nests the commonly used parametric GLM
as a special case by eschewing the distributional
assumptions. It is important to note that despite
its full freedom from distributional assumptions, the
distribution-free model is as flexible as a classical
regression model in modeling relationships among
variables. For example, similar to GLM, higher-order
terms can be included in the odds ratio functions to
model more complex relationships; nominal variables
can be included in the odds ratio functions by using
the dummy-variable technique.

We have developed an efficient Markov chain
Monte Carlo (MCMC) algorithm to make inference
of the joint model. One key step in the algorithm is
to update the parameters in the semiparametric odds
ratio model for covariates. The semiparametric odds
ratio model is distinct from the conventional para-
metric models. A difficulty to overcome in Bayesian
inference is finding an efficient method for posterior
sampling. There is no conjugate prior to updat-
ing these parameters. The random-walk Metropolis-
Hastings algorithm encounters the slow mixing prob-
lem because of the potentially high correlations
between parameters. We employ a hybrid Monte
Carlo (HMC) sampler (Duane et al. 1987) to update
these parameters. The sampler exploits the local
dynamics of the target distribution to propose a can-
didate draw, thus leading to a higher acceptance
rate with fast mixing of the posterior draws. The
details of the estimation algorithm are described in
Appendix A of the electronic companion, available
as part of the online version that can be found at
http://mktsci.pubs.informs.org/.

4. Features and Benefits of the
Proposed Method

To motivate our research, we conducted extensive
simulation studies covering various covariate distri-
butions and a wide range of types of regression mod-
els, including GLMs, mixed multinomial logit, and
multivariate probit discrete-choice models, and hier-
archical probit purchase incidence models with and
without autocorrelation. Simulation results illustrate
the limitations of the existing approaches to missing
covariate problems and demonstrate the unique fea-
tures and benefits of the proposed method. Because



Qian and Xie: No Customer Left Behind
Marketing Science 30(4), pp. 717–736, © 2011 INFORMS 723

of the space limitation, we summarize the main con-
clusions below and move the details of simulation
studies to Appendix B of the electronic companion.

4.1. Robustness
The simulation studies demonstrate the importance of
robust covariate modeling. As shown in Appendix B.1
of the electronic companion, when the paramet-
ric distributional assumptions are correct, parametric
covariate modeling approaches to handling missing
covariates work well and can remove the large bias
and substantial loss in estimation efficiency that
occurred in complete-case analysis. When the covari-
ate distribution is misspecified, however, a sizable
bias and poor coverage rate can arise in the estimates
of outcome regression parameters. In contrast, the
proposed distribution-free method works well over
different shapes of covariate distributions. The sim-
ulation studies detailed in Appendices B.5 and B.6
of the electronic companion confirm the robustness
of the proposed method for other types of market-
ing models, and these studies show that the proposed
method can correct for the bias in the estimates of
consumer preferences and marketing mix sensitivi-
ties as a result of the misspecification of distribu-
tional assumptions in parametric covariate modeling
approaches. These studies demonstrate the value of
a nonparametric procedure as a robust approach to
minimize the impact of distributional assumptions in
handling missing covariate problems.

4.2. Simplicity
We investigate two aspects of simplicity: computa-
tional and modeling. We first discuss computational
simplicity. Recall that the likelihood function of the
joint model as specified in Equation (1) involves inte-
gration with respect to missing covariates. For a non-
normal regression model such as Poisson, the integral
has no closed-form solution with those parametric
covariate models. This leads to computational diffi-
culty, as detailed in Appendix B.2 of the electronic
companion. In contrast, updating Xmis in our pro-
posed Bayesian approach is simple in that its con-
ditional distribution is a closed-form multinomial
distribution on a set of known values, and the prob-
abilities in the multinomial distribution can be read-
ily evaluated. As shown in simulation studies and
in real data analysis, this computational simplicity
helps to improve the convergence properties of the
MCMC algorithm and to reduce the computational
time compared with the parametric covariate model-
ing approach.

Next, we discuss modeling simplicity, which in
our opinion is no less important than computational
simplicity. As noted above, because selecting suit-
able distributions for missing covariates is impor-
tant, careful modeling must be done. This presents

a number of difficulties, however. A common and
convenient parametric model might not be general
enough to fit the unknown distributional shapes of
missing covariates. The attempt to verify the para-
metric distributional assumptions for all covariates is
also cumbersome—if not infeasible—when covariates
are subject to missingness. The finite mixture model-
ing approach is more flexible in that it tries different
parametric distributions for covariates and chooses
the one that fits the data best. As shown in the sim-
ulation studies, its success depends critically on cor-
rectly specifying the number of mixture components.
In general, selecting the correct number of mixture
components is not an easy task and remains an active
research area. This issue may be more challenging
for missing covariate problems. Furthermore, avoid-
ing local optima often requires that researchers repeat-
edly fit the joint model with a wide range of values
for the number of mixture components. The work-
load can become computationally burdensome with a
more complicated outcome regression model and in a
high-dimensional missing covariate problem.

One important value of the proposed distribution-
free approach for missing covariate problems, as a
nonparametric procedure, is its automatic modeling
feature; it does not require researchers to specify para-
metric covariate distributions and can automatically
generate suitable distributions for missing covariates.
The automatic feature of the proposed method frees
up researchers’ time to look for proper covariate dis-
tributions, and it allows them to invest their valuable
time in other aspects of modeling, such as developing
a more intelligent outcome regression model, thereby
increasing the efficiency of their research activities.

Last but not least, our approach conditions on any
fully observed covariates. This important feature has
the advantage of further reducing the computational
burden and increasing the modeling robustness com-
pared with an approach based on a joint normal
model or a mixture of joint normal models.

4.3. Efficiency
Our proposed method is also efficient in that the vari-
ability of regression parameter estimates using the
proposed method is almost the same as that using
the correct parametric covariate model.5 This might at
first seem counterintuitive to the concept that a highly
parameterized model should have less variability in
estimation than a nonparametric method. This should
not be unexpected, however, because the regression
parameters are high-level functionals of the proba-
bility density function. Such high-level functionals

5 Note that the sample size used in the simulation study is only
moderately large for marketing applications. For greater sample
sizes, the efficiency loss would vanish.
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undergo smoothing operations of integration of the
probability density functions. As a result, the regres-
sion parameters theoretically can be estimated more
efficiently with a nonparametric procedure than low-
level functionals, such as the density function itself.6

In summary, by using the proposed distribution-
free procedure, researchers would expect little or no
loss of efficiency in typical marketing applications,
and the method would perform as well as a correctly
specified parametric covariate model. On the other
hand, when the parametric covariate model is mis-
specified, a substantial bias can result. Because the
nonparametric distribution-free method is still con-
sistent in this case, the proposed distribution-free
method will outperform the parametric method.

4.4. Convergence
The general convergence properties of the MCMC
algorithm are established in Tierney (1994). Our
approach uses proper priors, and the Markov chain
in our algorithm is defined by a strictly positive tran-
sition kernel that is irreducible and aperiodic. Specif-
ically, the samplers used in our algorithm to update
model parameters are known to have these proper-
ties. The imputation step involves drawing from the
set of observed values, each of which has a strictly
positive probability to be visited. Therefore, theoreti-
cally, the MCMC chain will converge to its stationary
distribution. Empirically, we use both time-series plot
and numerical Geweke’s diagnostic statistics (Geweke
1992) to check convergence. These statistics show that
the Markov chains converge to the stationary distri-
bution. In particular, the distributions of the Geweke’s
diagnostic statistics over the simulated data sets fol-
low the null distribution of the test statistics. Chen
(2004) establishes that under general regularity condi-
tions, the maximum likelihood estimator (MLE) based
on the semiparametric odds ratio covariate model is
consistent and asymptotically normally distributed.
Because of the asymptotic equivalence of the frequen-
tist procedure and a Bayesian approach, we expect
our Bayesian procedure to share this general property.

4.5. Flexibility
An important strength of the proposed method is
its modeling flexibility, which refers to its ability
to model the potentially complex dependence struc-
ture among covariates. The simulation studies in
Appendix B.5 of the electronic companion show
the importance of modeling the dependence among

6 Meier et al. (2004) had a similar finding in a different context.
They found that when estimating mean survival time, a special
type of regression parameter, the loss of efficiency of the nonpara-
metric Kaplan–Meier procedure relative to parametric approaches
is negligible.

covariates; assuming independence in covariate mod-
eling when covariates in fact depend on each other
can lead to biased estimates in a brand-choice model.
As reviewed in §2, despite its convenience in some
special cases, the commonly used MVN model has
limitations in accounting for a nonlinear relationship
(e.g., a quadratic relationship or a relationship with
interaction) among covariates. The simulation study
described in Appendix B.3 of the electronic com-
panion demonstrates that when the MVN covariate
model is used in the presence of underlying non-
linear relationships among covariates, a significant
amount of bias in outcome regression model estimates
can occur. It is reasonable to believe that such bias
would also exist when a latent MVN model is used
to model discrete covariates, if nonlinear relationships
exist among these covariates. In contrast, the odds
ratio model is flexible enough to allow for such non-
linear relationships while not making any parametric
distributional assumptions.

4.6. Generality
The proposed method is general in that it can han-
dle a wide variety of types of continuous and dis-
crete variables. It can also handle a general pattern of
missingness.

4.7. Comparison with the Method of Chen (2004)
Our Bayesian method also compares favorably in
terms of scalability to higher-dimensional missing
data problems and to more complex models with
the MLE method developed by Chen (2004). The
MLE method requires evaluating the model like-
lihood. Although the integration in the likelihood
is replaced by the summation over finite points,
the number of terms to evaluate can become large
with multiple missing covariates, which makes the
MLE method computationally expensive. In con-
trast, the MCMC algorithm used in our Bayesian
approach avoids evaluating likelihood, and thus it
can handle much higher-dimensional missing data
problems, commonly seen in marketing applications.
The simulation study in Appendix B.4 of the elec-
tronic companion shows that the computational time
increases exponentially for MLE as the number of
missing covariates increases but only linearly with
the Bayesian approach. The computational advantage
would be even more dramatic for more complex mod-
els, such as when the covariate model involves inter-
action effects or when the outcome regression model
becomes more complex. Because of computational dif-
ficulty, certain important data features that cannot be
incorporated using the MLE approach can be han-
dled with relative ease using the proposed Bayesian
approach.
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Table 1 Summary Statistics of Marketing Variables

Price Coupon

SD and Proportion of Mean of
Brand Choice share (%) Mean correlation matrix no coupon (%) no-zero coupon

Heinz 2702 1017 0016 −0043 −0030 7809 00473
Hunt’s 3201 1001 0015 0021 8805 00479
Store brand 2008 0071 0010 100 NA

Other benefits of the proposed Bayesian approach
compared with the MLE approach include exact infer-
ence in small samples, easy incorporation of useful
information from other sources through prior spec-
ifications, and proper and convenient estimation of
unit-level quantities. Using the proposed Bayesian
approach for missing covariates, all these benefits
become readily available to researchers.

5. Applications
5.1. Ketchup Data Set
Our first example is the ketchup data in the ERIM
scanner panel data set provided by ACNielsen. We
include three brands in the analysis: Heinz, Hunt’s,
and the store brand. These three major brands account
for more than 80% share in the market. The sample
period is from 1985 to 1987, covering two and a half
years of transactions. Our analysis considers those
purchases in the dominant package size of 32 ounces.
The analysis sample contains 171 households that
made a total of 1,093 purchases from one store in
the Springfield market. Table 1 contains the summary
statistics of the data set.

We employ a discrete-choice model to estimate
the effect of pricing and coupon availability on the
demand of ketchup. Let uitj be the utility function of
the jth brand for the ith consumer at purchase occa-
sion t, and

uitj = �0ij +XT
itj�i + �itj1 i = 11 0 0 0 1N1 (7)

where the brand index j = 11213 represents the Heinz,
Hunt’s, and store brands, respectively. In the utility
function, �0ij is the individual-specific preference for
brand j , where �0i3 is normalized to be zero for iden-
tification purposes. The term Xitj is a vector of brand
characteristics, and in our application, Xitj = 4Pitj1Citj5,
where Pitj and Citj denote the price and coupon values,
respectively, for the jth brand faced by the ith con-
sumer at purchase occasion t. The parameter �i =

4�1i1�2i5, where �1i and �2i are the individual-specific
sensitivity coefficients for price and coupon, respec-
tively. The term �itj is the idiosyncratic error term,
unobservable to researchers. The researchers observe
the consumers’ choices among the brands. Let Yit =

4Yit11 0 0 0 1YitJ 5 be a vector of binary variables, where

Yitj = 1 if the consumer i chooses brand j at the pur-
chase occasion t, and Yitj = 0 otherwise. The random
utility model assumes that Yit is determined by the
latent utility in the following way:

Yitj = 1 iff uitj >uitj ′ ∀j ′ 6= j0

We assume that �itj follows an independent and iden-
tically distributed (iid) Type I extreme value distri-
bution across purchase occasions, brands, and con-
sumers. The probability for the choice of consumer i
observed at time t is

f�i
4Yit �Xit5=

∑J
j=1 Yitj exp4Vitj5
∑J

j=1 exp4Vitj5
1 and

Vitj = �0ij +�1iPitj +�2iCitj0

We model consumer heterogeneity �i = 4�0i11 0 0 0 1
�0i1J−11�1i1�2i51 J = 31 as follows:

�i ∼ N4çZi1å
−151 (8)

where ç is an nr × nz matrix, Zi is a vector of length
nz containing consumer-level characteristics, and å is
an nr × nr precision matrix. ç and å contain hyper-
parameters that describe the population distribution
of the subject-specific parameters �i.

The mixed multinomial logit (MNL) model spec-
ified above and its variant have been well stud-
ied and widely applied in economics and marketing
(e.g., Guadagni and Little 1983, Kamakura and Rus-
sell 1989, Chintagunta et al. 1991, Gönül and Srini-
vasan 1993).7 The Bayesian approach and the MCMC
algorithm for the mixed MNL estimation are well
established (Rossi and Allenby 1993, Allenby and
Lenk 1994).

In practice, some of the important marketing mix
variables are subject to missingness. The pioneering

7 We use the standard form of the mixed MNL model for the fol-
lowing reasons: (1) This allows us to investigate and demonstrate
the effects of missing covariates, the main theme of this paper, and
to contrast our approach with the prior approach of EKS (1999)
to the same missing covariate problem in a relatively straightfor-
ward setting. (2) It is reasonable to believe that more complicated
brand choice models would not affect the relative performance of
the methods in dealing with the missing covariates here.
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and insightful work of EKS (1999) points out the prob-
lem of missing covariates in a discrete-choice model,
where the prices and coupon availability are miss-
ing for the brands not purchased by any customer
in the scanner panel data. They presented an econo-
metric approach to correct for the self-selection bias
that results from missing covariates. Specifically, they
posited a model for the price and coupon process and
based the inference on the likelihood

L4ç1å1� � Y 1Xobs1Z5

=

N
∏

i=1

∫

[

∫

∏

t∈Ti

f�i
4Yit �X

obs
it 1Xmis

it 5

· f�4X
obs
it 1Xmis

it 5 dXmis
it

]

f�4�i �Zi5 d�i1 (9)

where Ti is the set of purchase occasions for con-
sumer i, and Xit = 48Pitj91 8Citj951 j = 11 0 0 0 1 J . Their
approach assumes that the covariates are indepen-
dent: f�4Xit5=

∏

j f�pj
4Pitj5

∏

j f�cj
4Citj5, where each den-

sity is separately modeled as a polynomial function.
When applying the proposed method to the brand

choice model, our approach can be viewed as an
extension of EKS in the following ways. First, we
attempt to make the above approach more robust.
To increase the modeling robustness, a nonparametric
distribution function is applied to model each covari-
ate. Because the parameters in the discrete-choice
model are of primary interest, and the parameters in
the covariate model are rarely of interest, a robust
model with fewer assumptions about the covariate
distribution is desirable. Second, we relax the assump-
tion of independence among covariates. As will be
shown later in this section, allowing for the correla-
tions between covariates can further improve the esti-
mates of brand preferences and sensitivity to market-
ing mix variables. Moreover, our generalization in this
aspect makes the method applicable to other cases
wherever correlations exist among covariates, as is
shown in the second application of the paper. Third,
our development uses a Bayesian framework, which
has well-known advantages in the individual-level
parameter estimation (Allenby and Rossi 1999).8

8 Other related work includes Chiang (1995) and Musalem et al.
(2008). Chiang (1995) also recognized the problem of missing mar-
keting mix variables, but explicit modeling of the problem is not the
emphasis of that work. A general issue with such ad hoc approaches
to handling missing covariates is that they do not account for depen-
dence between the regression outcome and missing covariates,
which can lead to selection bias in outcome regression estimates.
Furthermore, assumptions involved in such ad hoc approaches often
are hidden, which makes it difficult to assess the validity of these
methods. Musalem et al. (2008) developed a new Bayesian method
to estimate demand models when only aggregate data are avail-
able. Their approach is to simulate latent (i.e., entirely missing)

Strictly speaking, the discrete-choice model could
not be directly estimated using available data because
the price and coupon variables face serious missing-
ness problems. In fact, no purchase transaction has
all the values of Pitj and Citj observed. Some sort of
imputation method is required for filling in the miss-
ing values to estimate the discrete-choice model. We
believe that a valid imputation method needs to take
into account the dependence between the choice out-
come and the missing covariate values, as well as the
dependence among the covariates.

Here, we consider four imputation methods. The
first method is a conventional simple imputation (SI)
method as documented in EKS (1999). For any non-
bought brand in a purchase, the conventional method
searches in the database for any other consumer who
bought this brand in the same store on the same day.
If such a customer exists, the price at which that con-
sumer bought the brand is used to fill in the missing
price. If no such customer exists, we will fill in the
missing price with the average weekly price. If there
is no other weekly sale for this product, the aver-
age price on the nonpromotion days in the study
period is used to fill in the missing price values. For
a coupon, the SI method assumes that the coupon
value is zero for any nonbought brand. It is impor-
tant to note that this procedure only uses the observed
price and coupon values to fill in missing values.
Although this type of simple imputation procedure
is commonly used in practice, e.g., by scanner panel
data provider to fill in missing prices, it does not con-
sider the potentially strong dependence between the
choice outcome and these marketing mix variables,
and thus it can lead to a strong self-selection bias.

The second and third imputation methods apply
the proposed distribution-free method to model the
price and coupon distributions. Let the covariate Xit =

4Pit11 Pit21 Pit31 Cit11 Cit21 Cit3), where the third sub-
script takes a value of 1, 2, or 3 representing the
Heinz, Hunt’s, and the store brands, respectively.
A semiparametric odds ratio model as specified in
Equations (4) and (5) is applied to model Xit , with the
following bilinear forms of the odds ratio functions:

ln�4Pitj3Pitj ′1Pitj05=

j−1
∑

j ′=1

�P
jj′4Pitj − Pj054Pitj ′ − Pj ′05

+�P
j04Pitj − Pj054Pitj0 − Pj0051

ln�4Citj3Pitj5= �C
j 4Citj −Cj054Pitj − Pj050

consumer-level data that are consistent with the aggregate data. The
missing covariates are of binary types. Our approach considers more
detailed data (e.g., coupon face values instead of coupon usage indi-
cators) where covariates can contain a mixture of continuous and
discrete variables; this requires more careful modeling.
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Practical applications pose situations in which other
observations can provide useful information about
the missing values of a covariate. An important
strength of the proposed method is its flexibility in
allowing such information to be used through the
odds ratio functions, despite its full freedom from dis-
tributional assumptions. For example, the prices of
different brands might be correlated because of price
competition or price conformity. This price correlation
might be related to the market structure. The correla-
tions among prices of the three brands are significant.
Table 1 shows that the correlation coefficients among
prices of the three brands, using the observed data,
are as follows: −0.43 (between Heinz and Hunt’s),
−0.30 (between Heinz and the store brand), and 0.21
(between Hunt’s and the store brand). In the above
odds ratio model, the log odds parameter �p

jj′ captures
the correlations among the prices of different brands
and therefore allows the price of a brand not pur-
chased by a customer to be informed by that of the
customer’s purchased brand. The price and coupon
values may also be correlated, and the parameter
�C
j captures such potential correlations. Because we

never simultaneously observe the coupon availability
and face values of all brands for any consumer, we
opt for a simpler analysis that assumes independence
among coupon values of different brands and that
fixes the corresponding parameters in the odds ratio
functions at zero. Observations from other consumers
may provide useful information about the missing
price values. For example, even though a price for a
nonpurchased brand might not be observed for a con-
sumer, another consumer might purchase that brand
during the same time period. To incorporate such
information, we create a new variable, Pitj0, which
denotes the price paid for the brand j at the time t
by a customer other than consumer i. If no such cus-
tomer exists at time t, we search for the customer
who purchased the brand in the nearest time and
use that price as Pitj0. Our model then allows the
covariate distribution to depend on such informa-
tion through the odds ratio functions. In the above
model, the fixed and prespecified points for each vari-
able are chosen to be the smallest observed values for
the price and coupon variables, respectively.9 More
details about the distribution-free procedure and its

9 Theoretically, the choice of the fixed points can be arbitrary. For
example, when we use the largest values instead of the smallest
values, the estimation results have negligible changes in that the
changes of all parameter estimates are well within 3% of those esti-
mates using the smallest values. Practically speaking, an absurd
choice of these points, such as points extraordinarily remote from
observed data points, could lead to computational instability. We
recommend using a fixed-point value within the smallest and
largest observed values.

estimation algorithm can be found in Appendix A.2
of the electronic companion.

The above model is named “DF Model II.” For a
comparison, we fit a model named “DF Model I,”
which assumes all the covariates in Xit are indepen-
dent of each other. This is equivalent to setting all the
log odds parameters at zero in the above odds ratio
functions. In this aspect, DF Model I is akin to the
analysis of EKS (1999) in that it ignores the poten-
tial dependence among marketing mix variables. On
the other hand, DF Model I assumes a nonparametric
distribution for each covariate instead of the paramet-
ric polynomial distribution used in EKS (1999). We
estimate the model using the priors and the MCMC
algorithm described in Appendix A.2 of the electronic
companion. For the purpose of comparison, we also
fit a parametric MVN covariate model for 4Xit01Xit5,
where Xit0 = 4Pit101Pit201Pit305. It is important to note
that the MVN method models Xit0, whereas DF Mod-
els I and II condition on it. The DF models there-
fore further reduce the computational workload while
increasing the modeling robustness. All the mod-
els run the MCMC sampler, which discards the first
30,000 iterations as the burn-in period and keeps
every 10th draw for the next 500,000 iterations. We
use Geweke’s diagnostic to check the convergence.
The chains were found to converge well, except for
the parameters related to the coupon variable in
the SI model.10 The computational times to obtain
1,000 effectively independent draws for the popula-
tion regression parameters are 1 hour and 40 minutes,
35 minutes, and 38 minutes for the MVN model, DF
Model I, and DF Model II, respectively. The ratios of
the average f statistics of the population regression
parameters in the Markov chains, relative to those
from the MVN model, are 0.91 and 0.93 for DF Mod-
els I and II, respectively.11 Because of its computa-
tional simplicity, as explained in §4.2, we can see that
the proposed distribution-free method takes signifi-
cantly less time than the parametric MVN model with
a somewhat smaller autocorrelation.12

10 As explained later in this section, the coupon variable does not
converge in the SI model because the ad hoc method to fill in the
coupon variable in the SI method creates a strong self-selection bias.
EKS (1999) also note this problem.
11 Because we use the same sampler to update parameters in the
outcome regression models for all methods, the difference (or
ratio) of computational times (or f statistics) among methods can
be attributed to differences in methods for dealing with missing
covariates. For high-dimensional missing covariate problems, the
importance-sampling-type algorithm is infeasible, so we use the
data augmentation algorithm described in Appendix B.2 of the elec-
tronic companion for the MVN model. The f statistic, as defined
in Rossi et al. (2005, Chapter 3.10.3), measures the strength of auto-
correlation in a Markov chain, with a higher f value indicating
stronger autocorrelation.
12 Given that a finite mixture of the MVN model is more compli-
cated than the MVN model, it is expected that the approach would
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Table 2 Estimation Results in the Ketchup Purchase Data

Parameter SI model MVN model DF Model I DF Model II

Choice outcome model
Intercept (Heinz) 108 (0.28) 305 (0.44) 307 (0.45) 300 (0.36)
Intercept (Hunt’s) 106 (0.20) 301 (0.36) 303 (0.36) 208 (0.31)
Price −304 (0.50) −601 (0.76) −606 (0.86) −504 (0.66)
Coupon 5306 (3.32) 204 (0.56) 404 (1.28) 305 (1.24)
è11 202 (1.1) 402 (1.5) 601 (2.6) 408 (1.8)
è22 104 (0.6) 307 (1.1) 409 (1.7) 400 (1.2)
è33 208 (2.1) 1504 (5.8) 1805 (8.2) 1502 (5.9)
è44 303 (8.8) 1044 (1.21) 609 (6.4) 302 (2.1)
è12 0098 (0.77) 301 (1.2) 406 (2.0) 305 (1.4)
è13 −1056 (1.48) 208 (2.3) 104 (4.2) 209 (2.7)
è14 0024 (1.87) 003 (0.4) 106 (3.8) 004 (2.1)
è23 −0091 (1.04) 306 (2.1) 201 (3.5) 302 (2.4)
è24 0028 (1.28) 006 (0.8) 105 (3.0) 003 (1.8)
è34 −0018 (2.96) −004 (0.2) −202 (7.8) −008 (3.9)

Covariate modela
(1) Price model

Heinz
p11 0021 (0.02) 0020 (0.02)
p12 0048 (0.03) 0049 (0.03)
p13 0019 (0.02) 0022 (0.02)
p14 00008 (0.005) 00004 (0.005)
p15 00054 (0.014) 00051 (0.02)
p16 00053 (0.014) 00035 (0.02)

Hunt’s
p21 0031 (0.02) 0031 (0.02)
p22 0024 (0.02) 0027 (0.02)
p23 0036 (0.03) 0037 (0.04)
p24 0003 (0.01) 0002 (0.01)
p25 000095 (0.007) 00005 (0.01)
p26 00025 (0.01) 00016 (0.01)
p27 00022 (0.01) 00018 (0.01)

Store brand
p31 0011 (0.02) 0010 (0.02)
p32 0066 (0.03) 0066 (0.03)
p33 00134 (0.02) 00164 (0.02)
p34 00024 (0.01) 00020 (0.02)
p35 0008 (0.02) 0006 (0.02)

(2) Coupon model
Heinz
c11 0087 (0.02) 0084 (0.02)
c12 00005 (0.003) 00003 (0.002)
c13 00040 (0.009) 00047 (0.01)
c14 00035 (0.009) 00039 (0.01)
c15 00002 (0.002) 000011 (0.002)
c16 00050 (0.011) 00066 (0.02)
c17 000027 (0.002) 000029 (0.002)

Hunt’s
c21 0093 (0.012) 0090 (0.01)
c22 00002 (0.002) 00002 (0.002)
c23 00002 (0.002) 00001 (0.002)
c24 00005 (0.003) 00006 (0.004)
c25 0006 (0.01) 00088 (0.02)
c26 00002 (0.002) 00004 (0.003)

Store brand
c31 1000 (0.00) 1000 (0.00)

(3) Dependence
�P10 3901 (3.7)
�P20 4100 (8.0)
�P21 −2203 (5.1)
�P30 2804 (7.9)
�P31 0082 (4.0)
�P32 12097 (6.5)
�C1 204 (1.8)
�C2 902 (1.8)

Marginal LL −1,164.40 −1,122.63 −3,428.16 −2,631.89

Notes. Presented are the posterior means (posterior SD) for each parameter. The parameter pbl in the price model is the estimated
marginal probability mass at the lth price value of brand b, where these price values, in the order presented in the table, are as follows:
for Heinz, 0.99, 1.19, 1.39, 1.45, 1.49, 1.59; for Hunt’s, 0.89, 0.99, 1.19, 1.39, 1.45, 1.49, 1.59; and for the store brand, 0.59, 0.69,
0.89, 0.95, 0.99. The parameter cbl in the coupon model is the estimated marginal probability mass at the lth coupon value of brand b,
where these coupon values, in the order presented in the table, are as follows: for Heinz, 0.00, 0.25, 0.30, 0.36, 0.40, 0.50, 0.90; for
Hunt’s, 0.00,0.30, 0.36, 0.40, 0.50, 1.00; and for the store brand, 0.00. LL, log likelihood.

aBecause of space limitations, we report the estimates of the MVN covariate model in Appendix Table 6 of the electronic companion.
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Table 2 summarizes the model estimation results.
The result shows that the population price sensitivity
parameter �1 is estimated to be −3.4, −6.1, −6.6, and
−5.4 by the SI method, MVN model, DF Model I, and
DF Model II, respectively. The price sensitivity esti-
mate from the SI method is substantially smaller. This
is so because the SI method uses the accepted (i.e.,
observed) prices to fill in those missing price values.
As the accepted price tends to be on the lower end of
the underlying price distribution, this tends to under-
estimate the missing prices, therefore leading to an
underestimation of the price sensitivity. The estimates
of the price sensitivity parameter for the MVN model,
DF Model I, and DF Model II are closer to each other,
although the estimate from DF Model II is noticeably
smaller in size.

A more serious selection bias for the coupon effect
estimate can occur if it is not accounted for prop-
erly. The estimate for the population coupon effect �2
is 53.6, 2.4, 4.4, and 3.5 for the SI method, MVN
model, DF Model I and DF Model II, respectively. As
noted in EKS (1999), the MLE estimate under the SI
method theoretically will be infinity because the ad
hoc method for filling in coupon values used in the
SI method creates a strong self-selection bias. Because
the Bayesian approach for the SI method puts a prior
with mean at zero and a finite variance that helps
stabilize the model estimation, however, the posterior
mass of the parameter lies on a large number instead
of on infinity.13 The other three methods yield much
more comparable coupon sensitivity estimates.

It is also important to note that the standard errors
of the estimates in DF Model II are smaller than those
in DF Model I, in some cases by about 50%. This is
because DF Model II has allowed correlations in mar-
keting mix variables, therefore reducing the variabil-
ity when imputing the missing marketing mix values.
As a result, the estimation efficiency increases.

Table 2 also reports the logarithm of the marginal
density (LMD) of the data for four models, using the
method of Raftery et al. (2007).14 The LMD from the
SI method cannot be compared to those from the two

take considerably more time, particularly if the correct number of
mixture components needs to be assessed.
13 Another ad hoc approach is to impute missing coupon values for
a brand with the average of coupon face values used by customers
who bought the brand, instead of zero. This creates selection bias
in the opposite direction: because the coupon value used for a pur-
chased brand tends to be on the high end of its distribution, one
tends to overestimate the coupon values of nonpurchased brands,
leading to a downward bias in coupon effect estimates. Indeed,
because of the downward bias, the sign of the coupon effect esti-
mate when using this ad hoc approach to impute missing coupon
values in the data set becomes negative, which is highly implausi-
ble and inconsistent with the economic theory of the coupon effect.
14 We thank the associate editor for pointing out the availability of
the new method.

DF models because it does not model the covariate—
neither can that of the MVN method because it views
covariates as data types different from the DF models.
The LMD from DF Models I and II can be compared
with each other. We find DF Model II has a substan-
tially larger marginal likelihood, with the difference
of the LMD being 796.27, indicating that DF Model II
fits data significantly better than DF Model I.

In Table 2 we also report the estimated nonpara-
metric marginal distributions of price and coupon
for each brand. In DF Model I, the distribu-
tions are calculated as the probability mass pkl =

exp4�kl5/4
∑Nk

u=1 exp4�ku55 for the lth unique observed
value of the kth covariate, where 8�kl9 are the param-
eters defined in Equation (5). In DF Model II, this cor-
responds to the marginal-like distribution. We use the
simulation method to calculate the marginal distribu-
tion in DF Model II. In the analysis, the observed price
and coupon values are rounded to the second decimal
place. The results change little when holding more
decimal places. We find in Table 2 that the marginal
distributions of price and coupon values are clearly
nonnormal, which shows that the MVN model is not
adequate for such data. Furthermore, we find sig-
nificant dependence structures among marketing mix
variables, as shown by the log odds parameters, most
of which have 95% credible intervals excluding zero.
Therefore, a model that does not account for such
strong correlations, such as DF Model I, is inadequate
in this aspect. In Appendix B.5 of the electronic com-
panion, we further conduct simulation studies that
demonstrate the advantages of the proposed method
in repeated samples.

5.2. Managerial Implications
The above analyses demonstrate the potential bias of
parameter estimates, caused by improper imputations
of missing price and coupon values. Such bias can
translate into substantial bias when the impact of a
managerial policy of interest is assessed. As an exam-
ple, Table 3 reports a simulation result that inves-
tigates the effects of a 20% cut in Hunt’s price on
market shares. Starting from almost identical market
shares before the price cut, the percentage increases
of the Hunt’s market share for such a price cut are
predicted to be 33%, 59%, 61%, and 53% for the SI
method, MVN model, DF Model I, and DF Model II,
respectively.

Table 3 The Impact of Price Cut on Market Shares

SI (%) MVN (%) DF Model I (%) DF Model II (%)

After After After After
Brand Baseline cut Baseline cut Baseline cut Baseline cut

Heinz 35.5 27.2 33.8 22.5 33.2 21.3 33.0 23.4
Hunt’s 41.2 55.1 40.1 63.9 40.3 65.1 40.3 61.5
Store 23.2 17.7 26.1 13.6 26.5 13.6 26.7 15.1
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Figure 1 Comparison of Optimal Prices Determined from Different
Approaches
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Notes. There are substantial differences in the optimal price suggested by
the different methods. The suggested optimal price cuts are −22%, −8%,
−3%, and −14% for the SI method, MVN model, DF Model I, and DF
Model II, respectively.

In practice, the above results can inform the opti-
mal price for a manufacturer. To achieve this goal,
we consider the optimal price that maximizes the
profit. Specifically, we consider the profit function pj =
Mj4Pricej − Costj5, where Mj is the market share for
alternative j at a specified price value Pricej , and Costj
is the cost of the alternative j . We calculate the mar-
ket shares and profits for Hunt’s for a grid of values
of potential price cuts. We assume the Hunt’s cost is
70% of its original price. Figure 1 presents the profit
functions for a range of price-cut values based on the
estimation results of the different methods. As we can
see, different methods suggest substantially different
optimal prices: the suggested optimal price cuts are
−22%, −8%, −3%, and −14% for the SI method, MVN
model, DF Model I, and DF Model II, respectively.
Compared with DF Model II, other methods lead to
substantially different pricing suggestions. As shown
in the figure, substantial differences also exist in the
profits predicted by different methods.

5.3. Retail Store Purchase Incidence Data Set
Our second application illustrates the method in a
purchase incidence model using a data set in a fre-
quent shopper database from a retail store in China.
One managerial question is to study what affects pur-
chase incidence of customers and to profile the cus-
tomers based on some identifiable variables. Such
analysis is often of interest for customer relation-
ship management (CRM) and market segmentation.
Our sample contains purchase records during four
years for 455 frequent shoppers who made their initial
purchases within the first year. The household char-
acteristics considered important in profiling include
Firstbuy (the purchase amount at the first visit), Age
(age of the consumer), Marriage (marital status of the

consumer), Income (household income), Kidslt18 (the
number of children at home younger than 18), and
DTS (travel distance to the store). In the data set,
because of item nonresponse, Kidslt18 is missing 8.7%,
Age is missing 19.5%, Income is missing 7.6%, and DTS
is missing 9.7% of their values. There is no missing-
ness for Firstbuy and Marriage.

We employ a discrete-time purchase incidence
model to study the interpurchase time of these con-
sumers (Gupta 1991, Wedel et al. 1995). A distinct fea-
ture of the discrete-time survival model is its ability
to model explicitly the effects of marketing mix vari-
ables on consumer behavior at the times when they
did not visit the store (Seetharaman and Chintagunta
2003). Let uit denote consumer i’s utility to purchase
in the store at month t. We assume

uit = �0i +�1ieit +�2iPromt +�mt
mt + �it1 (10)

where eit is the elapsed time since the last purchase
by the consumer; Promt is the variable capturing the
monthly promotional activity of the store; mt is the
dummy for calendar month, where mt ∈ 411 0 0 0 1115
denotes months from January to November; �mt

is
the corresponding fixed effect; and �it is the iid unob-
served idiosyncratic factor affecting the utility to pur-
chase, which follows a standard normal distribution.
The consumer’s decision to shop or not to shop at the
store, Yit , is a binary variable, and Yit = 1 if uit > 0 and
Yit = 0 otherwise. We model consumer heterogeneity
�i = 4�0i1�1i1�2i5 as in Equation (8), where Zi includes
Age, Income, Marriage, Kidslt18, DTS, and Firstbuy.

As indicated above, some components in Z are
missing. The complete-case analysis excludes about
one-third of the customers who have a missing value
in any of these variables. The method is thus inef-
ficient, as the excluded consumers supply valuable
information in other observed variables. More impor-
tantly, it may still be of interest for the manager
to draw inferences about these consumers’ prefer-
ences and sensitivities to manage relationships with
them. In this case, excluding consumers from the
analysis is managerially undesirable. In addition, the
missing values of certain customers may result from
systematic differences between these customers and
the observed ones. Such selection effects must be
accounted for in the analyses.

Here, we apply our Bayesian method to the
data set, which includes all the consumers in the anal-
ysis. Note that Z contains a mixture of discrete and
continuous variables, in which Marriage is dichoto-
mous, Kidslt18 is a count variable, and the other
variables are continuous. Figure 2 shows these vari-
ables have features of nonnormality: skewness, mul-
timodality, or discreteness. Kidslt18 is a count variable
naturally modeled as a Poisson outcome—or perhaps
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Figure 2 Histograms of Variables in the Retail Store Data Set Using the Observed Data
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more appropriately, a zero-inflated Poisson outcome.
It is difficult to specify a joint parametric model to
account simultaneously for all the features in these
variables. The effect of covariate model misspecifi-
cations could be complicated because of the inter-
correlations among covariates. Our method augments
the above purchase incidence model with a semipara-
metric odds ratio covariate model for Z, as speci-
fied in Equations (4) and (5). In the approach, each
covariate’s marginal-like distribution is modeled non-
parametrically, thereby automatically allowing for all
the aforementioned data features. Thus, our approach
reduces data analysts’ modeling efforts while helping
guard against model misspecifications. The depen-
dence among the variables in Z is modeled by the
parametric odds ratio functions.

Model estimation is performed through an MCMC
algorithm that uses the approach of Albert and Chib

(1993) to update parameters in the purchase incidence
model and the HMC sampler to update parame-
ters in the covariate model. The imputation of miss-
ing covariate values accounts for any potentially
important dependence between the covariates and
the purchase incidence outcomes. For the purpose of
comparison, we conduct the complete-case analysis
and the analysis based on an MVN covariate model.
It is important to note that the MVN models all the
covariates, including the two fully observed variables,
Firstbuy and Marriage, whereas the DF model con-
ditions on these two variables and models only the
variables subject to missingness. All analyses run the
MCMC sampler for 12,000 iterations, and the first
2,000 iterations are discarded as the burn-in period.15

15 Because of the amenability of the outcome regression model to
Bayesian analysis and the high efficiency of the HMC sampler,
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Table 4 Estimation Result of a Purchase Incidence Model in the Retail Store Data Set

Parameter Complete-case MVN DF

Intercept −0044 (0.11)+ −0052 (0.080)+ −0050 (0.079)+

Firstbuy 0002 (0.04) 00016 (0.033) 00012 (0.033)
Marriage 00065 (0.11) 0011 (0.083) 0009 (0.080)
Age 00035 (0.05) 00053 (0.038) 00086 (0.044)
Income 00011 (0.043) 00023 (0.036) 00055 (0.039)
Kids −00073 (0.042) −00022 (0.035) −00017 (0.038)
DTS −00071 (0.05) −00095 (0.034)+ −0011 (0.035)+

Prom 4011 (1.12)+ 3057 (0.77)+ 3036 (0.78)+

Prom ∗ FirstBuy 0037 (0.30) 0031 (0.26) 0035 (0.26)
Prom ∗Marriage −0002 (0.90) 0030 (0.65) 0049 (0.63)
Prom ∗Age −0015 (0.39) −0021 (0.27) −0035 (0.36)
Prom ∗ Income −0074 (0.36)+ −0047 (0.27) −0069 (0.29)+

Prom ∗Kids 0014 (0.36) 0005 (0.27) 0001 (0.31)
Prom ∗DTS −0083 (0.38)+ −0049 (0.27) −0059 (0.27)+

eit 00043 (0.027) 00028 (0.017) 00027 (0.016)
eit ∗ FirstBuy −00002 (0.01) 00001 (0.008) 00001 (0.008)
eit ∗Marriage −0002 (0.03) −00005 (0.02) −00005 (0.02)
eit ∗Age 000069 (0.013) 00004 (0.008) 00002 (0.008)
eit ∗ Income 00004 (0.012) 00003 (0.008) 00002 (0.008)
eit ∗Kids 0001 (0.012) 00003 (0.008) 00003 (0.008)
eit ∗DTS −00004 (0.014) 00000 (0.008) 00001 (0.008)

è11 0025 (0.03)+ 0028 (0.03)+ 0027 (0.03)+

è22 6038 (2.85)+ 6006 (2.26)+ 5049 (2.08)+

è33 00029 (0.0025)+ 00020 (0.0014)+ 00019 (0.0014)+

è12 −0022 (0.21) −0020 (0.16) −0017 (0.15)
è13 −00012 (0.006)+ −00013 (0.004)+ −00013 (0.004)+

è23 −00010 (0.029) −000073 (0.020) −000067 (0.019)

Subjects/Obs. 292/14,357 455/22,340 455/22,340

Note. Presented are the posterior means (posterior SD) of each parameter.
+95% credible interval excludes zero.

All the observed decimal places of the covariate val-
ues are kept in the analysis to form unique covari-
ate values. Table 4 presents estimation results for the
parameters in the purchase incidence model, which
are of primary interest in the study. The covariates
in Z are standardized before entering the model. The
parameter estimates for Intercept, Prom, and eit there-
fore represent their effects for an average consumer
in the population. The comparison shows that the
proposed method improves the estimation efficiency
compared with the complete-case analysis by using
all the available information. The posterior standard
deviations (SDs) for all parameters are substantially
smaller than those from the complete-case analysis—
in some incidences, by a half. Also, some parameter
estimates have substantial differences. For example,
the estimated effect of DTS in our proposed model is
larger than that in the complete-case analysis and is
found to become statistically significant. The estima-
tion results using the MVN and DF model are more
similar to each other. Noticeable differences in some

a relatively small number of iterations is required for convergence.
Geweke’s diagnostic statistic confirms the quick convergence of the
MCMC sampling.

model estimates still remain, however. For example,
the 95% credible interval for Prom ∗ DTS is found to
exclude zero under the DF models but to include zero
under the MVN model. We further conduct simula-
tion studies in Appendix B.6 of the electronic com-
panion that demonstrate the advantages of the DF
method in repeated samples for purchase incidence
models relative to the other two methods.

We now turn to the estimation of customer-level
estimates when some variables are missing from a
consumer’s profile. In individually targeted market-
ing, it is often useful to make inferences on the
consumer-specific parameters and then adopt differ-
ential marketing strategies based on the estimates of
these parameters. A Bayesian approach is well suited
for such individual-level analysis. Allenby and Rossi
(1999) consider such estimation when covariates are
fully observed. For our case in which covariates are
subject to missingness, the posterior distribution of �j

in a fully Bayesian approach is given by

�4�j � Y 1Zobs1X5

∝

∫

�48�i91ç1å1�1�1

Zmis
� Y 1Zobs1X5d�−j dçdåd�d� dZmis1
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Figure 3 Comparison of Posterior SD for 8�2 i9 on the Subset of
Consumers with the Complete Data on Variables in Zi
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Notes. The X axis gives the posterior SDs when the complete-case analysis
is used. The Y axis gives the posterior SDs from our proposed Bayesian DF
model analysis, where all the consumers are used to fit the model.

where �−j denotes all the consumer-specific parame-
ters except for the jth consumer. One benefit of the
Bayesian approach is that the entire posterior distri-
bution for �j can be obtained as a by-product of the
MCMC algorithm. It is important to note that our
fully Bayesian approach also automatically accounts
for the uncertainty in the imputation of missing
covariates.

Figure 3 plots the posterior SDs of 8�2i9 obtained
from the complete-case analysis versus those obtained
from our proposed method. It shows that the esti-
mates using the proposed method have smaller SDs
because the proposed method uses all the consumers
in the data, whereas the complete-case analysis dis-
cards information contained in those incomplete
cases. Such reduction in the estimation variability
of consumer-specific parameters can be valuable, as
these individual-level parameters tend to be less accu-
rately estimated. What are not shown in the figure are
those incomplete cases whose individual-level esti-
mates are not available in the complete-case analysis

Table 5 Moderating Effect of Covariates on the Promotional Effects

CC MVN DF

Z Before After ãCC Before After ãMVN
ãMVN −ãCC

ãCC
Before After ãDF

ãDF −ãCC

ãCC

DTS 5% 0.39 0.85 0.46 0.38 0.76 0.38 −17 0.39 0.77 0.38 −17
DTS Z 0.35 0.72 0.37 0.32 0.66 0.34 −8 0.33 0.65 0.32 −14
DTS 95% 0.31 0.57 0.26 0.29 0.54 0.25 −4 0.28 0.50 0.22 −14
Age 5% 0.32 0.73 0.40 0.29 0.66 0.37 −8 0.28 0.66 0.38 −5
AgeZ 0.35 0.72 0.37 0.32 0.66 0.34 −10 0.33 0.65 0.32 −14
Age 95% 0.37 0.72 0.35 0.35 0.65 0.30 −16 0.38 0.64 0.26 −26

but are available as a by-product of the fitting of our
proposed model.

5.4. Managerial Implications
In this subsection, we investigate the managerial impli-
cations of the above estimation results. Specifically, we
investigate the differences of targeting and profiling
consumers based on observed characteristics of con-
sumers using the above estimation results. Such pro-
filing on actionable consumer characteristics can be
managerially very useful to take findings from one
store to another similar store (e.g., Singh et al. 2006).
Similar to the approach of Singh et al. (2006), we calcu-
late the marginal effects of observed household charac-
teristics. More specifically, we calculate the effect of a
30% price promotion on the purchase incidence prob-
ability for a population with covariate vector Z = z̄,
zj15%, zj195%. In the notation, z̄ is the sample average of
the covariate vector Z; zj15% 4zj195%5 is the same as z̄,
except that the jth covariate is set to be the 5th (95th)
percentile of its distribution. Based on the model esti-
mates from different methods, we simulate popula-
tions of consumers and calculate the average purchase
incidence probabilities before and after the promotion
when the variables of interest are DTS and Age.

Table 5 presents the simulation results. It shows
that the estimates of the changes in purchase probabil-
ities before and after the promotion vary under differ-
ent methods. The complete-case (CC) analysis tends
to overestimate considerably the promotional effects
in this data set. For example, at Age95%, the over-
estimation, compared with DF, is about 35%. Thus,
the complete-case analysis could lead a manager to
misjudge the effect of promotion on purchase inci-
dence probability and, in turn, the profitability of the
potential promotion activity. For example, using the
complete-case analysis, the manager might conclude
that the increase in the purchase incidence probability
outweighs the loss of money values because of pro-
motion and thus may conclude that the promotion is
profitable. An analysis using DF may show, however,
that the increase in the purchase incidence is not large
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enough to offset the loss because of promotion, lead-
ing the manager to conclude that the promotion is not
profitable. The MVN and DF models for covariates
lead to more comparable results. In Table 5, we report
the percentage change of the promotional effect on
purchase incidence probabilities from that predicted
using the complete-case analysis for the MVN and
DF models, respectively. These numbers indicate that
the MVN model also overestimates the promotional
effects at DTS95% and Age95%.

6. Conclusion
With the increasing popularity of database marketing,
CRM, and individualized marketing, companies face
a greater need to provide customized marketing solu-
tions based on consistent and precise elasticity esti-
mates on marketing mix variables. On the other hand,
the real applications above indicate that the covari-
ates in a marketing regression model often are subject
to missingness. The convenient complete-case analy-
sis can lead to strong self-selection bias and to sub-
stantial loss of estimation efficiency. More advanced
methods for overcoming these drawbacks commonly
assume parametric models for covariate distributions.
One limitation of the parametric modeling approach
is its nonrobustness; when the parametric covariate
model is misspecified, a substantial bias can arise
in the estimation of marketing outcome models. The
issue is further exacerbated by the difficulty in assess-
ing the validity of distributional assumptions in mod-
eling covariates with missing values. Furthermore,
the extra computational and modeling workload can
be high, which have hindered the routine use of these
methods for dealing with high-dimensional missing
covariate problems. Therefore, how to extract useful
information from the available data in a robust, effi-
cient, and simple manner is an issue pertinent to cur-
rent marketing research activities.

To this end, we have developed a distribution-free
Bayesian method to handle missing covariate prob-
lems. Our development of an efficient MCMC algo-
rithm overcomes an important limitation of Chen
(2004) and enables one to handle high-dimensional
missing covariate problems and/or complex mod-
els commonly seen in marketing applications. Some
other key benefits of the method to marketing
researchers are (1) its distribution-free feature, which
enables robust modeling of covariate distributions
and minimizes the impact of distributional assump-
tions in covariate modeling; (2) its flexibility, which
allows for complex dependence among covariates and
to incorporate any useful information for covariate
distribution; and (3) its simplicity in modeling and
computation, which substantially reduces the work-
load associated with careful modeling of covariates
compared with alternative parametric approaches.

The applications of the proposed method yield
some interesting empirical findings. In the ketchup
example, we confirm that because they do not account
for the dependence between choice outcomes and
missing marketing mix variables, conventional ad hoc
approaches to imputing missing marketing mix val-
ues can create strong selection bias in the estimation
of brand-choice models. The joint modeling of the
choice outcomes and missing covariates provides a
principled approach to correcting the bias. Our anal-
ysis shows that to remove the bias, it is important
to properly model distributional features of market-
ing mix variables and to account for the dependence
among them. Ignoring either feature can lead to siz-
able bias in estimation and, consequently, to subop-
timal managerial decisions. As demonstrated in the
empirical application and simulation studies, the pro-
posed method improves model estimates of consumer
preferences and sensitivities to marketing mix vari-
ables when compared with prior approaches to the
problem. The retail store example shows that the
interrelated covariates often exhibit various features
such as discreteness, skewness, multimodality, semi-
continuity, and zero-inflation. The proposed method
accounts automatically for these important data fea-
tures and helps guard against model misspecifications
in a parametric covariate modeling approach. Our
Bayesian approach also enables straightforward esti-
mation and inference of consumer-level parameters if
some components of the consumer’s profile are miss-
ing. This approach ensures that no customer is left
behind in the analyses and in the subsequent man-
agerial inferences.

Several issues and opportunities for future research
remain. First, in our covariate model, although the
univariate marginal-like distributions are modeled
nonparametrically, the odds ratio functions are mod-
eled parametrically. As noted in Chen (2004), the
assumption can be wrong only for the higher-order
terms of dependence structure. It is therefore reason-
able to believe that the potential effect is relatively
minor when the lower-order terms capture the major-
ity of the associations among covariates. To control
for such potential misspecification more thoroughly,
however, it would be valuable in future research
to develop a formal procedure for choosing proper
terms in the odds ratio functions.

Second, our analysis assumes that the covariates
are missing at random. Although this is a standard
assumption in missing data analysis and is either
known to hold or considered reasonable in many mar-
keting applications, it could be tenuous in some mar-
keting applications. When covariates are missing not
at random, all methods based on the MAR assump-
tion, including the proposed method in this paper, are
potentially invalid. Extending the method to account
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for such potentially nonignorable missing data would
be very valuable.

In this paper we have investigated the use of the
method for a wide range of types of commonly
used marketing models. The proposed method is
not limited to these marketing models, however. An
essentially infinite number of parametric marketing
models exists, and new ones are proposed constantly.
In many of these models, a Bayesian approach is
a preferred method for estimation and inference. It
would be interesting to combine the proposed method
with these other types of marketing regression mod-
els to make better use of available data sets.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mktsci.pubs.informs.org/.
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Web Appendix to

“No Customer Left Behind: A Distribution-Free Bayesian

Approach to Accounting for Missing Xs in Marketing Models”

This Appendix contains two main sections: A and B. In Web Appendix A, we provide
the overview of estimation algorithm and the details of the algorithm when the outcome
follows a discrete choice model. In Web Appendix B, we provide the details of extensive
simulation studies from which the main conclusions are summarized in the main paper. The
simulation studies investigate the performance of our proposed method for various models
and covariate distributions, and compare our method with various other methods to treat
missing covariate problems.

A. Estimation using an MCMC algorithm

A.1 An overview

We develop an MCMC procedure to sample from the following posterior distribution of
model unknowns

π(θ, φ,Xmis|Y,Xobs) ∝ fθ(Y |Xobs, Xmis)fφ(X
obs, Xmis)π(θ)π(φ),

where π(θ) and π(φ) are the priors of θ and φ, respectively. Below are the major steps of
this MCMC procedure.

• Impute Xmis. The imputation of Xmis can be achieved componentwisely. 1 That is, we
draw a value for a missing component of Xmis, given all the observed components and the
other missing components at their current values. The updating of any missing component
involves a draw from a multinomial distribution on a finite number of values. Details on
calculating the probabilities in the multinomial distribution for discrete choice outcome
models are given in Section A.2.

• Draw (λ, γ) from λ, γ|Xobs, Xmis. Once Xmis is imputed, one can update the values
of (λ, γ) from their distribution conditioning on the complete data for the covariates.
Because conjugate priors for this updating step do not exist, a Metropolis-type algorithm
is needed. The dimension of (λ, γ) is relatively large and these parameters are significantly
correlated. This renders a Random-Walk Metropolis algorithm not working well since the
proposal draws have low acceptance rates. To overcome this challenge, we adopt a Hybrid
Monte Carlo (HMC) algorithm, where the derivatives of the joint density function of X
with respect to (λ, γ) are calculated and used to generate proposal draws. We find that
the HMC algorithm handles the updating of multiple correlated parameters efficiently.

1
An alternative approach is to update missing covariates in an observation all together. This reduces autocorrelation of Markov

Chain but it can involve evaluating summations with a large number of combinatorial terms which is time consuming. Our
experiences in the applications and simulation studies are that imputing componentwisely takes less overall computational
time and the inflation of autocorrelation is manageable. Another alternative approach is a hybrid updating algorithm which
periodically switches between imputation componentwisely and imputation all together. Although we do not find the need to
use this approach in our applications, it could be a viable updating approach in future applications.

1



Because the HMC algorithm uses the derivative information to make a trial move, it
produces draws that are more likely to be accepted while still being able to quickly explore
the target distribution (Liu 2001). Therefore the target acceptance rate in HMC sampler
is significantly higher than that in a RW-MH sampler, especially in high-dimensional
parameter space. Recent theoretical work (Beskos et al. 2010) shows that the acceptance
rate under optimal tuning of an HMC sampler is 0.651. We therefore set the acceptance
rate of our HMC sampler to be at the level between 0.6 and 0.7.

• Once the missing covariates Xmis are imputed, one can use a conventional algorithm to
update the parameters in the outcome model, which depends on the specific outcome
model used.

A.2 MCMC Algorithm for a Discrete Choice Model with Missing Covariates.

The model parameters are θ = (Π,Λ) and φ = (λ, γ), where λ = (λ1, · · · , λK), γ =
(γ1, · · · , γK) and γ1 = 0. As we adopt the Bayesian approach, to complete the model
specification, we need to assign priors for model parameters (Π,Λ, λ, γ). We assign the
priors in the following forms:

vec(Π) ∼MVN(µΠ,Λ
−1
Π ) , Λ ∼ W (ν, S)

λ ∼MVN(µλ, νλInλ
) , γ ∼MVN(µγ, νγInγ

), (1)

where W (ν, S) is a Wishart distribution with ν being the degrees of freedom and S being
the scale matrix. As will be shown later, we assign the values to the constants in the above
priors in such a way that the priors are non-informative relative to the data.

The posterior distribution of the model parameters involves integration over the random
effects {βi} , i = 1, · · · , N and the missing data Xmis. To facilitate the posterior sampling,
we first apply the data augmentation method (Tanner and Wong 1987), where the model
parameters (Π,Λ, λ, γ) are augmented with the other unknowns ({βi} , X

mis) in the model.
Their joint posterior distribution is given below.

π(Π,Λ, λ, γ, {βi} , X
mis|Y,Xobs, Z) ∝

{

N
∏

i=1

[

∏

t∈Ti

fβi
(Yi|X

obs
i , Xmis

i )fλ,γ(X
obs
it , Xmis

it )

]

fΠ,Λ(βi|Zi)

}

π(Π)π(Λ)π(λ)π(γ), (2)

where π(Π), π(Λ), π(λ) and π(γ) are the priors for these model parameters. Below are the
details of each updating step in the MCMC algorithm.

(1) Updating Xmis|Xobs, {βi} , Y, λ, γ.

Once we have draws of the model parameters, we can impute the missing price and coupon
values. One approach imputes missing values in Xit = ({Pitj} , {Citj}) one component at
a time. Suppose that the kth component of Xit is missing. Then by the Bayes Rule, the
formula for imputing Xmis

itk is:

p(Xmis
itk = xkl|yit, xit1, ..., xit(k−1), xit(k+1), ..., xitK) =

fβi
(yit|x

kl
it )fλ,γ(x

kl
it )

∑Nk

l′=1 fβi
(yit|xkl′

it )fλ,γ(xkl′
it )

,

2



where xkl
it = (xit1, ..., xit(k−1), X

mis
itk = xkl, xit(k+1), ..., xitK) is the vector of covariate values for

xit. X
mis
itk is imputed with xkl in xkl

it , and xkl denotes the lth unique observed value in the
dataset for the kth component of Xit (l = 1, ..., Nk). In xkl

it , all the missing values except the
kth component take the imputed values in the previous iteration. The starting values can
be obtained by drawing from their empirical distributions on the observed data.

The above imputation step assigns discrete probabilities to those unique observed data
values, and make draws from this discrete probability distribution. It is clear from the above
imputation equation that when imputing Xmis

itk , one should account for both the dependence
between the outcome Y and covariates as quantified by the conditional density function
fβi

(·|·), as well as the dependence among the covariates as quantified by the density function
fλ,γ(·). When the covariate Xitk is independent of the other covariates, the above imputation
formula reduces to a simpler form:

p(Xmis
itk = xkl|yit, xit1, ..., xit,k−1, xit,k+1, ..., xitK) =

fβi
(yit|x

kl
it )fλk,γk=0(X

mis
itk = xkl)

∑Nk

l′=1 fβi
(xkl′

it )fλk,γk=0(Xmis
itk = xkl′)

.

The simpler imputation formula is intuitive: when the Xitk is independent of all the other
covariates, these other variables do not contribute to its imputation through the covariate
density function fλ,γ(·).

As noted in EKS (1999), it is possible that some non-purchased brands by a consumer
might be purchased by other consumers on the same day at the same store. Therefore,
the prices for these brands at that day are known. When we use this information, we
can form the posterior distribution using the full-information likelihood (EKS 1999), while
the likelihood given in Equation (9) of the main paper can be considered as the limited
information likelihood. Note that the price values for brands not purchased by any consumer
in the store at a given day are still missing and need to be imputed. Let (xit1, ..., xitJ), the
first J components of xit, denote the pricing variables. Then to impute the missing pricing
variables with the full-information likelihood, we use:

p(Xmis
it
1
tk = ·· = Xmis

itnt
tk = xkl| {yit}i∈s(t) ,

{

xkl
it

}

i∈s(t)
) =

∏

i∈s(t) fβi
(yit|x

kl
it )fφJ+1,...,φK

(xit,J+1, ..., xitK |xkl
itP )f

1/nt

φ1,...,φJ
(xkl

itP )
∑Nk

l′=1

[

∏

i∈s(t) fβi
(yit|xkl

it )fφJ+1,...,φK
(xit,J+1, ..., xitK |xkl′

itP )f
1/nt

φ1,...,φJ
(xkl′

itP )
] ,

where xkl
itP = (xit1, ..., x

mis
itk = xkl, ..., xitJ) denotes the vector of prices at purchase occasion

t within which xmis
itk is imputed by xkl and k ≤ J ; s(t) = (it1, ..., i

t
nt

) is the set of indices
for the nt consumers who made purchase on the same occasion t. For these consumers, the
pricing values faced by them are assumed to be the same for the full-information likelihood.
Therefore, essentially only one of the consumers contributes likelihood for price variables.
This is equivalent to having each consumer contribute f

1/nt

φ1,...,φJ
(xkl

itJ) to the likelihood, as used
in the above imputation formula. In our application we use the imputation formula based
on the full-information likelihood.

(2) Updating λ, γ|Xobs, Xmis.
Once the missing values in X are all imputed, we can update the parameters φ = (λ, γ) given
these imputed covariate data. Note that fφ(Xit1, ..., XitK) =

∏K
k=1 fφk

(Xitk|Xit(k−1), ..., Xit1).

Thus, given that the prior for φ factorizes, i.e., π(φ) =
∏K

k=1 πk(φk), φk can be updated in-
dependently of (φ1, · · · , φk−1, φk+1, · · · , φK). For φk, the density function for its conditional
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distribution is given as:

πc(φk) =

[

∏

i

fi(φk)

]

πk(φk),

where πk(φk) is the prior and

fi(φk) =

∏

t

∑Nk

l=1 1(xitk=xkl)ηγk
(xitk, xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl)

∏

t

∑Nk

l′=1 ηγk
(Xitk = xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)

. (3)

With the above odds-ratio covariates model, there does not exist conjugate prior for πk(φk)
and thus the conditional distribution of φk does not have a closed form. One general approach
is to apply the Metropolis-Hasting type algorithm. We find the Random-Walk Metropolis-
Hasting (RW-MH) is inefficient since there are a relatively large number of parameters,
which tend to be highly correlated. We adopt the Hybrid Monte Carlo method to make the
conditional draws.

Duane et al. (1987) proposed the method of Hybrid Monte Carlo (HMC) that combines
the idea of Molecular Dynamics (MD) proposal and the Metropolis acceptance-rejection
method to sample from a target distribution. In the HMC algorithm, the trial move is
generated by the MD simulation method. The MD method obeys the Newton’s law of
motion, and is known to work well in simulating a complex physical system. When making
the proposal draws, the local dynamics of the target distribution, quantified by the gradient
of the log-density function of the target distribution, is utilized. Therefore, unlike the RW-
MH algorithm, the randomness in proposing new draws is suppressed in the HMC algorithm.
The result is that the HMC sampler produces draws that are more likely to be accepted and
more quickly reach the high mass area of the target distribution by adapting to its local
dynamics. The method handles the correlation between parameters more efficiently than
the standard Metropolis algorithm.

Operationally, the HMC algorithm works in the following way. To sample from a target
distribution πc(φk), we first express πc(φk) as exp[−Uk(φk)]. We then augment the parameter
φk with a vector of auxiliary momentum variables pk which has the same dimension as φk.
The guide Hamiltonian is given as

Hk(φk, pk) = Uk(φk) + ϕk(pk),

where ϕk(pk) = −1
2
pT

k pk. To run the algorithm, we first need to initialize the system. Let
φold

k be the current value of φk, and let the initial value φ0
k = φold

k . Generate p′k from a
standard Gaussian distribution and then assign to the system an initial momentum: p0

k =
p′k −

δk

2
U ′

k(φ
0
k), where U ′

k(φ
0
k) is the derivative of Uk(·) with respect to its argument, and δk

is a user-specified stepsize. Starting from the initial phase space (φ0
k, p

0
k), an approximate

molecular dynamic algorithm, called leap-frog algorithm, is run L steps to generate a new
state (φL

k , p
L
k ) in the phase space (Duane et al. 1987, Liu 2001), where

φl
k = φl−1

k + δkp
l−1
k ,

pl
k = pl−1

k − δl
kU

′
k(φ

l
k),

l = 1, ..., L, δl
k = δk for l < L and δL

k = δk

2
. At the end of the leap-frog steps, let the candidate

draw (φprop
k , pprop

k ) = (φL
k , p

L
k ). The algorithm accepts the candidate draw according to the

following probability

min(1, exp
{

−Hk(φ
prop
k , pprop

k ) +Hk(φ
old
k , pold

k )
}

).

4



If the candidate draw is accepted, φprop
k becomes the new draw; otherwise, φold

k becomes the
new draw. At the end of the MCMC run, the draws for φk are collected and the draws for the
momentum variable pk can be discarded. The algorithm requires evaluating the derivative
of Uk(φk) with respect to φk. For the semiparametric odd ratio covariate model, we have

∂Uk(φk)

∂φk

= −
∑

i

∂ ln fi(φk)

∂φk

−
∂ ln π(φk)

∂φk

, (4)

where each component of the derivative is given below.

∂ ln fi(φk)

∂λkl

=

∑

t

[

1(xitk=xkl) −
ηγk

(xkl, xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl)
∑Nk

l′=1 ηγk
(xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)

]

,

∂ ln fi(φk)

∂γkv

=
∑

t

[

(xitk − xk0)(xitv − xv0)

−

∑Nk

l′=1 ηγk
(xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)(xkl′ − xk0)(xitv − xv0)

∑Nk

l′=1 ηγk
(xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)

]

,

∂ ln π(φk)

∂λkl

= −
λkl − µλ,kl

νλ

,
∂ ln π(φk)

∂γkv

= −
γkv − µγ,kv

νγ

,

where µλ,kl is the corresponding element for λkl in µλ (the mean vector in the prior for λ),
µγ,kv is the corresponding element for γkv in µγ (the mean vector in the prior for γ) and
νλ, νγ are the variances in the prior for λ, γ, as shown in Equation (1). In our applications,
we set the constants in the priors for λ and γ as follows: µλ and µγ are vectors of zeros with
length nλ and nγ , respectively; νλ = νγ = 104. Note that in the derivatives shown in the
above, the larger νλ and νγ, the smaller the contribution of the priors in the updating. As
long as vλ and vγ are sufficiently large, the contribution of the prior to updating is negligible
and the prior becomes noninformative relative to data. Further increased values of νλ and
νγ lead to negligible change in the estimation results.

For the pricing variables, let (Xit1, ..., XitJ) denote the covariates for prices of the J
brands. Since only one consumer in s(t) contributes likelihood of xit, the derivatives for the
kth price, where 1 ≤ k ≤ J , is given as:

∂ ln fi(φk)

∂λkl

=

∑

t

1

nt

[

1(xitk=xkl) −
ηγk

(xkl, xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl)
∑Nk

l′=1 ηγk
(xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)

]

,

5



∂ ln fi(φk)

∂γkv

=
∑

t

1

nt

[

(xitk − xk0)(xitv − xv0)

−

∑Nk

l′=1 ηγk
(xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)(xkl′ − xk0)(xitv − xv0)

∑Nk

l′=1 ηγk
(xkl′ , xk0;xit(k−1), ..., xit1, x(k−1)0, ..., x10) exp(λkl′)

]

,

where nt is the number of consumers who made purchase on the occasion t in the same store.

(3) Updating βi|Yi, X
obs
i , Xmis

i ,Π,Λ.
Random-Walk Metropolis-Hasting algorithm is used to update the individual-specific pa-
rameter βi. Draw a proposal βprop

i from MVN(βold
i , κΛ−1), where βold

i and Λ are para-
meter draws at the previous iteration, and the scaling parameter κ is adjusted in the
RWMH algorithm to achieve approximately 30% acceptance rate. Calculate p(βprop

i ) =
∏

t∈Ti
fβi=βprop

i
(Yit|Xit)fθ(β

prop
i ) and p(βold

i ) =
∏

t∈Ti
fβi=βold

i
(Yit|Xit)fθ(β

old
i ), where Xit is the

complete covariates with the missing components Xmis
it imputed in the previous iteration.

Then with probability qi = min(1, p(βprop
i )/p(βold

i )), βnew
i = βprop

i , and with probability
1 − qi, β

new
i = βold

i .

(4) Updating Π,Λ|βi, Zi.
Let Θ = vec(Π′). Our priors for the hyperparameter Θ and Λ are of the following form:

Θ ∼ MVN(µΠ,Λ
−1
Π ), Λ ∼ W(ν, S).

The prior distributions are standard for multivariate normal. In our applications, we set
the constants in the priors as follows: µΠ is a nr × nz vector of zeros; ΛΠ = 0.01 ∗ Inr×nz

;
ν = nr + 4; S = νInr

. These priors are chosen to be noninformative relative to the data so
that the resulting inference is dominated by data rather than by priors. With the priors,
we follow the standard approach (Gelman et al. 2004, Rossi et al. 2005) to obtain the
conditional draws as follows:

p(Λ|Θ) = W
(

ν +N,
(

S−1 +
N

∑

i=1

eie
′
i

)−1
)

,

where ei = βi − ΠZi, and

p(Θ|Λ) = N
(

ΣΠ

[

(Λ ⊗ Inz
)Hzβ + ΛΠµΠ

]

,ΣΠ

)

,

N is the number of subjects, ΣΠ =
[

(Λ ⊗Hzz) + ΛΠ

]−1
, and

Hzz =
N

∑

i=1

ZiZ
′
i, Hzβ =











Hzβ1

Hzβ2

...
Hzβnr











,

and Hzβj
=

∑N
i=1 Ziβij, for j = 1, ..., nr.
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B. Simulation Studies

To motivate the research, we conduct a series of simulation studies that illustrate the limi-
tations of the existing approaches to handling missing covariate problems and demonstrate
the unique features and benefits of the proposed method.

B.1 Robustness

To demonstrate the importance of robust covariate modeling, we conduct the following
simulation study to compare the performance of the proposed approach with that of fully
Bayesian parametric approaches to handling missing covariates. We simulated the outcome
y from a Poisson distribution with its mean λy following a regression model

lnλy = β0 + β1x.

We generated the covariate x from five different distributions. Figure 1 plots the shapes of
these distributions. 2 The simulated complete datasets have roughly the same range of the
values for the outcome and the covariate among the five different distributions. To create
missingness, we divide each simulated complete dataset into two halves where in the first half
all observations have the outcome larger than its median value. In the first half, the covariate
x is set to be missing with a probability of 0.6, and in the second half with a probability of
0.2. For each generated dataset with missing covariate, we apply four methods to deal with
the missing covariate problem. The first method is the complete-case (CC) analysis. The
second method is to assume a normal model (NM) for the covariate X. That is, we assume
that X ∼ N(µ, σ2). The third method applies a finite mixture of normal model (MNM) for
X, whose density function is

f(x) =
J

∑

j=1

πjfj(x), where fj(x) = N(µj, σ
2
j ) and

J
∑

j=1

πj = 1, 0 ≤ πj ≤ 1 ∀j,

where J is the number of components in the mixture, fj(x) is the jth component density of
the mixture and πj is the mixing weight for the jth component. The MNM is more flexible
than the NM to accommodate different shapes of distributions. We assign the following
proper priors for model parameters:

µj ∼ N(µ0, σ
2
0), σ2

j ∼ IG(
ν0

2
,
ν0

2
σ2

j0), (π1, · · · , πJ) ∼ D(α1, · · · , αJ),

where IG denotes inverse-Gamma distribution, D(α1, · · · , αJ) denotes Dirichlet distribu-
tion. The constants in these priors are given values such that the resulting priors are diffuse.
In our analysis, we use a homogeneous mixture model which sets σ2

j to be equal in all
mixture components since we find nonconvergence issues with heterogeneous variances as
documented in the literature. Because there are at most two modes for the covariate distri-
butions considered, we assume a mixture of two normal distributions (i.e. J=2). We develop
two algorithms to sample the posterior distributions of joint model parameters under both
parametric models. One is an importance sampling type algorithm and the other one uses

2
To simulate from the Basin Shape distributions, we divide the interval (0,1) into 10 equal-length segments and assign the proba-

bility vector pc on the 10 segments. Then within each segment we use a uniform distribution to generate x. The simulated values
approximate the basin-shape distributions. For Basin Shape distribution I, pc = (0.3, 0.1, 0.05, 0.03, 0.02, 0.03, 0.05, 0.1, 0.3) and
for basin shape distribution II, pc = (0.1, 0.1, 0.05, 0.03, 0.02, 0.03, 0.05, 0.1, 0.5).
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a Metropolis-Hasting algorithm.3 The fourth method applies our proposed distribution-free
method (DFM). In addition to the above four methods to handle missing covariates, we also
consider the analysis using the full data as a benchmark. For each of the five covariate dis-
tributions, we simulated 100 datasets. With the resulting sample of estimates, we calculate
the bias, standard deviation (SD), the mean squared error (MSE) as well as 95% credible
intervals for each Bayesian estimator.

The simulation results are summarized in Table 1. The two sampling algorithms for
the parametric approaches give similar estimation results and the importance sampling type
algorithm gives slightly more accurate results which are reported in Table 1. The results
show that the complete-case analysis has a substantial amount of bias, and their coverage
rates are poor. In addition, the method also has the largest variabilities (i.e. largest SDs)
among all estimators, indicating the inefficiency of the method. A second message is that
when the parametric assumption is correct, the parametric approach to handling the missing
covariates can work well. For example, the NM performs well when the covariate is indeed
normally distributed in that there is no bias and the coverage rates of credible intervals
are close to the nominal rate. So does the MNM when the covariate is in fact a mixture
of two normals. However, when the covariate distribution is misspecified, sizable bias and
poor coverage rate can occur in the estimates of outcome regression parameters. For ex-
ample, the NM can perform poorly when the covariate is not normally distributed in that
there is sizable bias and coverage rate is far from the 95% nominal rate. This is so also
for MNM when the covariate is not distributed as a mixture of two normals. Interestingly,
when the covariate is normally distributed, i.e. a mixture of one normal, the coverage rate is
noticeably different from the 95% nominal rate. As noted in Kamakura and Wedel (1997),
selecting a proper number of components in mixture modeling is important. When using
more components than needed, the number of observations in each component will decrease,
which in turn may lead to computational instability and imprecise parameter estimates. On
the other hand, when using less components than needed, the mixture model is not able to
model the shape of the distribution adequately which can lead to bias in the estimation of
outcome regression model parameters. This points to the importance of selecting the correct
number of components in mixture modeling, which is not an easy task in the context of miss-
ing covariate problems. In contrast, the proposed distribution-free method does not require
specifying a parametric covariate distribution or selecting the correct number of mixture
components, and works well over different shapes of distributions. This demonstrates the
value of a nonparametric procedure as an approach to minimize the impact of distributional
assumptions in handling missing covariate problems.

B.2 Computational Simplicity

Recall that the posterior distribution contains the likelihood function of the joint model
which involves integration with respect to the missing covariates:

L(θ, φ;Y,Xobs) ∝

∫

fθ(Y |Xobs, Xmis)fφ(X
obs, Xmis)dXmis. (5)

For a nonnormal regression model, such as the Poisson regression model, the above integral
has no closed-form solution with a normal or a mixture of normal covariate model. For these
two parametric covariate models, we have considered two algorithms to sample from the

3
More details about the two algorithms are given in the following subsection.
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posterior distribution of (θ, φ). The first one is an independence Metropolis sampler (referred
to as the importance sampling type algorithm in the subsection above due to their similarity),
where the proposal distribution used is a multivariate Student t distribution with 6 degrees of
freedom, the location parameter being the MLEs of (θ, φ), and the scale parameter being the
inverse of the negative Hessian matrix evaluated at the MLEs. The sampler requires MLEs.
In this case, a very accurate numerical method for evaluating the integral is required. We
have used an adaptive quadrature method for its evaluation. Note that this method can
involve high-dimensional integrations and become computationally infeasible with multiple
missing covariates. The second method is to view Xmis as latent variables and update Xmis

with other model parameters. For the missing covariate of unit i, its conditional distribution
is proportional to the product of the unit-level models: fθ(yi|x

obs
i , xmis

i ) and fφ(x
obs
i , xmis

i ).
For a nonlinear regression model with a normal or a mixture of normal covariate model,
the conditional distribution is an unknown form of multivariate distribution. Therefore
its updating requires a Metropolis-type algorithm, whose performance depends critically
on the selection of proposal distributions. A reasonable proposal distribution should be
customized to the shapes of unit-specific conditional distribution which can be very different
from unit to unit. We have implemented a Hybrid Monte Carlo method to make these
conditional draws because the method exploits the derivative information for each unit-level
conditional distribution. Therefore the draws have a higher rate of acceptance with relative
low autocorrelations.

In contrast, Section 4 shows that updating Xmis in our proposed Bayesian approach is
simple in that its conditional distribution is a closed-form multinomial distribution on a set
of known values, in which the probabilities in the multinomial distribution can be readily
evaluated. Unlike the Independence Metropolis algorithm for parametric covariate modeling
approaches, no numerical evaluation of the integrals is required. Unlike the Metropolis step
of the second algorithm for parametric approaches, our updating step has an acceptance rate
of 100%. This helps improve the convergence properties of the MCMC algorithm. In our
simulation study, the computational times for obtaining 1000 effectively independent draws
of the Poisson regression parameteres for NM, MNM and DFM are on average 0.25 min, 0.70
min and 0.15 min, respectively, demonstrating the computational simiplicity of the proposed
distribution-free approach.4

B.3 Flexibility

An important strength of the proposed method is its modeling flexibility, which refers to
the ability to incorporate the potentially complex dependence structure among covariates.
As reviewed in Section 2 of the main paper, albeit its convenience in some special cases,
the commonly-used multivariate normal model has limitations in accounting for potentially
nonlinear relationships (e.g. quadratic or interaction effects) among covariates. To illustrate
the point, we conduct the following simulation study. We simulate the outcome Yi from
N(β0 + β1x1i + β2x2i + β3x3i, 1), i = 1, · · · , 500. The covariates are simulated from the
following distributions. We simulate x1i from N(0, 1), x2i from N(α20 + α21x1i, 1) where
α20 = 0 and α21 = 0.5, and x3i from N(α30 + α31x1i + α32x2i + α33x1ix2i, 1) where α30 = 0,
α31 = α32 = 0.5. Note that α33 captures the nonlinear interaction effect of x1 and x2 on x3.
We consider two scenarios. In the first scenario we set α33 = 0 which implies that there is no

4
Our computations are coded in Fortran language and executed using a 2.7GHz Intel Xeon Processor with 4GB memory. The

computational times for NM and MNM are based on the faster one of the two posterior sampling algorithms described in the
above.
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interaction effect and thus the covariates are jointly normal. In the second scenario we set
α33 = 0.5 in which case there is no equivalent joint normal distribution for these covariates.
On the other hand, the proposed method can allow for such nonlinear relationships through
flexible specification of odds ratio functions.

We then create the missingness in the covariates as follows. The covariate x1 is always
observed. We then divide the data into two halves according to the median value of the
outcome y. In the first strata, the covariate x2 is subject to missingness according to the
following rule: logit(Prob(G2 = 1)) = γ20 + γ21x1 + γ22x3, where G2 is indicator for X2

being observed. In the second half, the covariate x3 is subject to missingness according
to the following rule: logit(Prob(G3 = 1)) = γ30 + γ31x1 + γ32x2. In simulations, we set
γ20 = 4, γ21 = 4, γ22 = 3, γ30 = −2, γ31 = −4, γ32 = 2. This creates about 25% missingness
for x2 and 15% missingness for x3. Then for each dataset with missingness, we compare
the following three methods: the complete case analysis (CC), the method based on a joint
normal model for covariates, and our proposed distribution-free method.

Table 2 summarizes the simulation results over 100 simulated datasets. As we can see
from the table, the complete case analysis has large biases and the coverage rates are poor.
When β33 = 0, both the method based on the MVN covariate model and our proposed
method work equally well in that biases are removed and coverage rates are very close to
nominal 95% confidenc rate. However, when β33 = 0.5, there is a substatial bias for the
method based on the MVN covariate model and covarage rates for some parameters de-
teoriate. In contrast, the proposed method allows for such nonlinear relationship among
covariates and continues to perfrom well. The above simulation study demonstrates that
despite the fact that the multivariate normal model is a common model choice for missing
covariates, it suffers from modeling inflexibility in that it cannot model nonlinear relation-
ships. When using the MVN model in the presence of underlying nonlinear relationships
among covariates, a significant amount of bias in the outcome regression model estimates
can occur. It is reasonable to believe that such bias would also exist when a multivariate
normal model is used for latent data to model discrete covariates if nonlinear relationships
exist among these covariates. In contrast, the odds-ratio model is flexible enough to allow
for such nonlinear effects, while not making any parametric distributional assumptions.

B.4 Comparison with the Method of Chen (2004)

Our Bayesian method also compares favorably in terms of its scalability to larger dimen-
sional missing data problems and its ability to handle more complex models with the MLE
method previously developed by Chen (2004). The MLE method requires evaluating the
model likelihood. Although the integration in the likelihood is replaced by the summation
over the finite points, the number of terms to evaluate can become large with multiple miss-
ing covariates. This can make the MLE method computationally expensive. To demonstrate
the point, we conduct the following simulation study. We simulated data from a normal re-
gression model in which yi ∼ N(β0 +

∑J
j=1 βjxji, 1), where i = 1, · · · , 500. In the simulation,

β0 = −3 and βj = 2,∀ j. The covariate xji is simulated from a distribution which assigns
equal probability mass on 10 points, {k/10}, k = 1, · · · , 10. We simulated three datasets
where the total number of covariates, J, is 1,2,3, respectively. For each generated dataset,
we random select 40% of observations where we set the covariates to be missing. We then ap-
ply both the MLE approach and our proposed Bayesian approach to the simulated datasets.
This would allow us to investigate the performance of two methods with increasingly larger
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dimensional missing data problems. Both methods give very similar estimation results, and
our comparison focuses on computational time.

Figure 2 plots the comparison of computation times between two methods. It shows that
the Bayesian approach takes less computational time. More importantly, the computational
time appears to increase exponentially for MLE as the number of covariates increases but
only linearly with the Bayesian approach. Note that with J missing covariates, the number of
terms to evaluate for the summations in the likelihood is in the order of 10J , which increases
exponentially with J. In this case, the MLE can become computationally very expensive.
In contrast, the MCMC algorithm employed in our Bayesian approach avoids evaluating
likelihood and as a result it is more scalable and can handle much higher-dimensional missing
data problems, commonly seen in marketing applications. The computational advantage
would be even more dramatic for more complex models, such as when the covariate model
involves interaction effects or when the outcome regression model becomes more complex
in which cases the MLE approach would encounter even more difficulty. In summary, the
study demonstrates significant computation advantage of the proposed Bayesian approach
over Chen’s MLE approach. Because of computational difficulty, there can be important
data features that cannot be incorporated using the MLE approach, but can be handled
with relative ease using the proposed Bayesian approach.

B.5 Simulation Studies for Discrete Choice Models

In this subsection, we use simulated datasets to illustrate the potential bias when not
properly accounting for missing covariates in a brand choice model and evaluate the effec-
tiveness of the proposed method to remove the bias. In this simulation study, we generate
choice outcomes for 150 consumers over 300 days on three brands from a mixed multinomial
logit model. Each consumer has three occasions to make choices. The choice outcome is
simulated from the following discrete choice model, where the utility function of brand j for
consumer i at the purchase occasion t is

uitj = ψ01i + ψ02i + ψ1iPriceitj + ǫitj,

where ψ01i, ψ02i are the individual-specific intercepts for brand 1 and 2 respectively, ψ1i

is the individual-specific price sensitivity, and ǫijt is generated from iid Type-I Extreme
value distribution. We simulate the consumer-specific parameters (ψ01i, ψ02i, ψ1i) from a
multivariate normal distribution with mean (π01 = 3, π02 = 2, π1 = −5) and a diagonal
variance-covariance matrix whose diagonal elements are (σ2

01 = 0.62, σ2
02 = 0.62, σ2

1 = 1.62).
We generate price values for three brands from three distributions: (1) a multivariate normal
with the mean vector (µ1, µ2, µ3) = (1.4, 1.2, 0.8) and a diagonal variance-covariance matrix
Σ whose diagonal elements (i.e. variances) are 0.22; (2) the same distribution as in (1) except
that we set the off-diagonal correlations to be (ρ12, ρ13, ρ23) = (−0.5,−0.5, 0.5), instead of
zeros as in (1); (3) nonnormal distributions, in which the price values for each brand are
simulated from a Basin Shape distribution. 5 These values are motivated by the ketchup
dataset. We then set the price values to be missing for non-purchased brands at any day.
For each simulated dataset, we fit the discrete choice model using the four methods (SI,
MVN model, DF model I and DF model II) as explained in the analysis of the ketchup

5
These distributions are simulated in a similar way as in Section 5.1. We divide the interval of price values (a, b) into 10

equal-length segments and assign the probability vector pc on the 10 segments. Then within each segment we use a uniform
distribution to generate price values. In simulations, pc = (0.6, 0.05, 0.05, 0.03, 0.02, 0.02, 0.03, 0.05, 0.05, 0.1). The price intervals
(a, b) are (0.9,1.6), (1.0,1.4), (0.7,1.0) for three brands, respectively.
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dataset. We repeat the analyses for 50 simulated datasets and the results are summarized
in Table 3.

As shown in Table 3, the population parameter estimates (posterior means) in the brand
utility function when using the simple imputation method have severe biases with the size
of the average percentage bias above 40%. The precentage bias for an estimtor, π̂, of a para-
meter, π, is defined as 1 −E(π̂)/π. In particular, the estimates of the price sensitivity have
a percentage bias of about 40%. This is because the SI method does not consider the depen-
dence between the choice outcome and covariates when imputing prices for non-purchased
brands and thus can lead to serious selection bias. The MVN model performs well when the
covariates are generated from a multivariate normal distribution but can have sizable bias for
nonnormal distirbutions. The DF Model I accounts for the dependence between the choice
outcome and covariates but ignores the dependence between prices of different brands, when
imputing prices. It also performs much better than the simple imputation method but still
has sizable biases when prices among brands are correlated (e.g. 12% in the price sensitiv-
ity estimates). In comparison, the DF Model II accounts for both the correlations between
covariates and the nonnormal feature of covariates. It recovers the model parameters well
and removes the remaining bias in the MVN model and DF model I. Furthermore, the DF
model II is efficient in that its estimates have essentially the same variability as those using
correct parametric model assumptions. Overall, the simulation study using the repeated
samples demonstrates that a simple imputation that does not account for the dependence
between the brand choice outcome and the prices can lead to serious bias in the parameter
estimations. It is also important to account for both the non-standard distributional shapes
and correlations between covariates. Our proposed method can meet these challenges and
recover the true parameter values well.

In practice, it is possible for a consumer to purchase more than one brand at a single
purchase occasion. Although this does not occur in our ketchup dataset, we conduct a
simulation study to evaluate the performance of our method in this case. Specifically we
apply a multivariate probit model to account for multiple brand purchase and use our method
to handle the missing covariate problem. The utility function is specified as uitj = ψ01i +
ψ02i +ψ03i +ψ1iPriceijt + ǫitj, where the error term ǫit = (ǫit1, ǫit2, ǫit3) ∼ N(0,Σ), and Σ is a
correlation matrix. Unlike the mixed multinomial logit model, the observed choice outcome
Yitj is formed as follows:

yitj =

{

1, if uitj > 0
0, if uitj ≤ 0.

The above model specification results in a multivariate probit model. In our simulation, we
set the variance-covariance matrix Σ as an equi-correlation matrix with correlation coefficient
being 0.5. We simulate the unit specific parameters (ψ01i, ψ02i, ψ03i, ψ1i) from a multivariate
normal distribution with mean (π01 = 6, π02 = 5, π03 = 4, π1 = −5) and a diagonal variance-
covariance matrix with diagonal elements (σ2

01 = σ2
02 = σ2

03 = 0.62, σ2
1 = 1.62). We then

follow the procedure described above to generate the covariates and to set missing values.
We use the method proposed by Chib and Greenberg (1998) to update parameters in the
multivariate probit model.

Table 4 summarizes the simulation results using 50 simulated datasets. The conclusions
are broadly similar to the simulation result for the mixed multinomial logit model. The sim-
ple imputation results in biased parameter estimates in the utility function, including the
correlation coefficient in the variance-covariate matrix Σ. The MVN covariate model works
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well when the covariates are indeed normally distributed but can have bias for nonnormal
distributions. In this case, the distribution free method can help protect the analysis from
being biased.

B.6 Simulation Studies for Purchase Incidence Models

In this subsection, we conduct a simulation study to demonstrate the potential bias when
not properly accounting for missing covariates in a purchase incidence model and evaluate
the performance of the proposed method to remove the bias. We simulate the purchase
incidence outcome from the following hierarchical probit model. The utility to purchase in
the store is uit = β0i + ǫit, t = 1, · · · , ni. We simulate the within-unit error terms from

the following multivariate distribution: ǫi = (ǫi1, · · · , ǫini
)

ind
∼ N(0,Σi). We consider two

forms of Σi. The first one is Σi = Ini×ni
. That is, the error terms are independent standard

normal across purchase occasions. In the second scenario, Σi follows an AR-1 form, where
the diagonal entries of Σi are all ones, and the off-diagonal element of Σi is σij = ρ|k−j| for
the entry at kth row and jth column of Σi.

6 In our simulation, we set the value of the auto-
correlation coefficient, ρ, as 0.5. The observed purchase outcome Yit = 1 if uit > 0 and Yit = 0
otherwise. In the second level of the model, β0i = N(π0+π1Z1i+π2Z2i, σ

2
β), i = 1, · · · , N . The

covariates are simulated from two scenarios. In the first scenario, Z1 and Z2 are simulated
from standard normal distributions. In the second scenario, the covariate Z1 is simulated
from an exponential distribution with rate 1 and Z2 from another exponential distribution
with rate 1. In the simulation, we set parameters as following: π0 = −0.3, π1 = 0.1, π2 = 0.1
and σβ = 0.3. We set the number of consumers N = 400 and the number of observations per
consumer ni = 50. These settings are similar to those in the above retail store application.

We follow the procedure below to create missingness in the covariates. First, we cal-
culate the purchasing rate for each consumer, that is,

∑

j Yij/ni. We then divide the sim-
ulated complete dataset into two halves where in the first half all consumers have their
purchase rates larger than the median of all consumers’ purchase rates. In the first half,
Z1 is missing subject to the following missingness probability: logit(P (Z1 is observed)) =
γ10 + γ11Z2i, and in the second half, Z2 is missing according to the missingness probability:
logit(P (Z2 is observed)) = γ20 + γ21Z1i. In the simulation, we set γ10 = 0.5, γ11 = 1 and
γ20 = −0.5, γ21 = 1. For each resulting simulated data with missingness, we conduct the
following analyses: (1) Fit the above hierarchical probit purchase incidence model using only
complete cases; (2) Fit a joint model of purchase incidence outcome and covariates with all
consumers using a MVN for the covariates; and (3) Fit a joint model of purchase incidence
outcome and covariates with all consumers using our proposed DF approach. We also fit a
hierarchical probit model to the complete dataset before we create missingness.

Table 5 summarizes the results on 100 simulated datasets. The complete-case analysis
results in substantially biased estimates. Our proposed Bayesian approach removes the bias
and recovers the true parameter well for both independent and correlated error terms and
both normal and nonnormal covariate distributions. When the parametric MVN covariate
model is used, it recovers the parameters equally well as our approach when the covariate is
truly jointly normal. On the other hand, for nonnormal covariate distributions, substantial
bias arises for the parametric approach, whereas the DF approach continues to perform well.

6
When simulating the posterior distribution of model unknowns, a Metropolis-Hasting step was used to update the auto-

correlation coefficient ρ.
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Table 1: Simulation Results on the Impact of Covariate Distributional Assumption. FD: full
data analysis; CC: complete-case analysis; NM: normal covariate model; MNM: mixture of
normal model; DFM: distribution-free model.

Covariate Method β0 = −3 β1 = 4.5
Distribution Bias SD MSE CR Bias SD MSE CR

Normal FD -0.02 0.21 0.21 95% 0.02 0.31 0.31 93%
CC -0.95 0.34 1.01 12% 0.95 0.47 1.06 38%
NM -0.04 0.24 0.25 92% 0.05 0.35 0.35 93%
MNM -0.07 0.25 0.26 86% 0.08 0.37 0.38 84%
DFM -0.05 0.26 0.26 94% 0.05 0.37 0.37 95%

Normal Mixture FD -0.03 0.22 0.22 93% 0.04 0.28 0.28 95%
CC -0.91 0.45 1.02 20% 0.93 0.58 1.10 49%
NM 0.39 0.20 0.44 52% -0.52 0.27 0.58 53%
MNM -0.06 0.28 0.29 94% 0.08 0.36 0.37 93%
DFM -0.06 0.29 0.29 96% 0.07 0.37 0.37 94%

Uniform FD 0.01 0.20 0.20 91% -0.01 0.24 0.24 93%
CC -0.91 0.37 0.99 11% 0.93 0.45 1.03 30%
NM 0.28 0.23 0.36 68% -0.34 0.28 0.44 69%
MNM 0.05 0.26 0.27 90% -0.06 0.31 0.32 89%
DFM -0.01 0.26 0.26 94% 0.02 0.31 0.31 94%

Basin Shape I FD -0.02 0.20 0.20 97% 0.02 0.22 0.22 97%
CC -1.93 0.66 2.04 0% 1.90 0.73 2.03 5%
NM 1.19 0.15 1.20 0% -1.22 0.16 1.24 0%
MNM 0.25 0.25 0.35 85% -0.26 0.27 0.38 85%
DFM 0.07 0.33 0.34 95% -0.06 0.35 0.36 93%

Basin Shape II FD 0.01 0.27 0.27 91% -0.02 0.29 0.29 91%
CC -0.42 0.58 0.71 84% 0.13 0.68 0.68 83%
NM 1.80 0.16 1.80 0% -2.05 0.17 2.06 0%
MNM 0.61 0.21 0.65 23% -0.71 0.23 0.75 15%
DFM 0.07 0.29 0.30 92% -0.08 0.31 0.33 91%
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Table 2: Simulation Results on the Flexibility of Modeling Dependence Structure.

Parameter FD CC MVN DFM
Bias SD MSE CR Bias SD MSE CR Bias SD MSE CR Bias SD MSE CR

α33 = 0
β0 = 0 -0.01 0.10 0.10 92% 0.36 0.12 0.38 12% -0.00 0.10 0.10 93% 0.01 0.10 0.10 96%
β1 = 0.5 0.01 0.10 0.10 98% 0.50 0.13 0.51 3% 0.01 0.11 0.11 98% -0.00 0.11 0.11 96%
β2 = 0.5 -0.01 0.10 0.10 96% -0.30 0.12 0.31 29% -0.01 0.12 0.12 95% -0.01 0.11 0.11 97%
β3 = 0.5 -0.00 0.10 0.10 93% 0.10 0.10 0.15 81% -0.00 0.10 0.10 94% 0.00 0.09 0.09 94%

α33 = 0.5
β0 = 0 -0.01 0.10 0.10 91% 0.43 0.12 0.45 4% -0.05 0.10 0.11 82% -0.01 0.10 0.10 92%
β1 = 0.5 0.01 0.09 0.09 98% 0.55 0.13 0.57 1% 0.04 0.10 0.11 93% 0.00 0.11 0.11 93%
β2 = 0.5 -0.01 0.09 0.09 97% -0.30 0.12 0.32 28% -0.10 0.12 0.15 81% -0.01 0.12 0.12 95%
β3 = 0.5 -0.01 0.08 0.08 92% -0.02 0.10 0.10 89% 0.04 0.09 0.10 88% 0.00 0.10 0.10 92%
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Table 3: Simulation Result B.5.A. The first row for each parameter in a mixed multinomial
logit discrete choice model lists the average of the estimates (posterior means) over all the
simulations and their percentage bias in the parenthesis. The second row for each parameter
lists the standard deviation of the estimates over all the simulations.

Case I: Independent MVN
Parameter True Value SI MVN DF Model I DF Model II

Interceptbrand1 (π01) 3 1.71(-43%) 3.06 (2%) 3.05 (2%) 2.98 (-1%)
0.41 0.47 0.46 0.47

Interceptbrand2 (π02) 2 1.09 (-46%) 2.05 (3%) 2.07 (3%) 2.03 (2%)
0.30 0.36 0.36 0.37

Price (π1) -5 -2.67 (47%) -5.07 (-2%) -5.06 (-1%) -4.94 (2%)
0.64 0.74 0.72 0.73

Case II: Correlated MVN
Parameter True Value SI MVN DF Model I DF Model II

Interceptbrand1 (π01) 3 1.84(-39%) 3.12 (4%) 3.42 (14%) 3.11 (3%)
0.32 0.42 0.44 0.40

Interceptbrand2 (π02) 2 1.11 (-45%) 2.03 (2%) 2.24 (12%) 2.07 (3%)
0.21 0.33 0.35 0.31

Price (π1) -5 -2.84 (43%) -5.13 (-3%) -5.61 (-12%) -5.22 (4%)
0.49 0.66 0.75 0.67

Case III: Non-normal Distribution
Parameter True Value SI MVN DF Model I DF Model II

Interceptbrand1 (π01) 3 2.01(-33%) 3.38 (13%) 3.09 (3%) 3.10 (3%)
0.49 0.42 0.34 0.33

Interceptbrand2 (π02) 2 1.34 (-34%) 2.37 (18%) 2.06 (3%) 1.99 (-1%)
0.51 0.47 0.35 0.34

Price (π1) -5 -3.29 (34%) -6.26 (-25%) -5.12 (-2%) -4.95 (1%)
0.86 1.23 0.78 0.75
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Table 4: Simulation Result B.5.B. The first row for each parameter in a multivariate probit
outcome model lists the average of the estimates (posterior means) over all the simulations
and their percentage bias in the parenthesis. The second row for each parameter lists the
standard deviation of the estimates over all the simulations.

Case I: Independent MVN
Parameter True Value SI MVN DF Model I DF Model II

Interceptbrand1 (π01) 6 5.18(-14%) 6.21 (4%) 6.15 (3%) 6.15 (3%)
0.41 0.41 0.40 0.39

Interceptbrand2 (π02) 5 4.22 (-16%) 5.21 (4%) 5.11 (3%) 5.11 (3%)
0.36 0.40 0.39 0.38

Interceptbrand3 (π03) 4 3.41 (-15%) 4.18 (5%) 4.13 (3%) 4.12 (3%)
0.28 0.29 0.28 0.27

Price (π1) -5 -4.47 (11%) -5.25 (-5%) -5.25 (-5%) -5.13 (-3%)
0.38 0.35 0.32 0.32

ρ 0.5 0.40 (-20%) 0.51 (-2%) 0.51 (-2%) 0.50 (1%)
0.07 0.08 0.07 0.07

Case II: Correlated MVN
Parameter True Value SI MVN DF Model I DF Model II

Interceptbrand1 (π01) 6 5.30(-12%) 6.27 (4%) 6.26 (4%) 6.18 (3%)
0.61 0.45 0.57 0.52

Interceptbrand2 (π02) 5 4.39 (-12%) 5.20 (4%) 5.19 (4%) 5.14 (3%)
0.52 0.40 0.48 0.46

Interceptbrand3 (π03) 4 3.54 (-12%) 4.19 (5%) 4.18 (4%) 4.17 (4%)
0.35 0.28 0.32 0.30

Price (π1) -5 -4.61 (8%) -5.21 (-4%) -5.20 (-4%) -5.20 (-4%)
0.52 0.37 0.45 0.45

ρ 0.5 0.40 (-20%) 0.51 (2%) 0.51 (2%) 0.51 (2%)
0.09 0.08 0.09 0.09

Case III: Non-normal Distribution
Parameter True Value SI MVN DF Model I DF Model II
Interceptbrand1 (π01) 6 5.42(-10%) 6.54 (9%) 6.21 (4%) 6.18 (3%)

0.58 0.52 0.51 0.52
Interceptbrand2 (π02) 5 4.52 (-10%) 5.47 (9%) 5.16 (3%) 5.13 (3%)

0.61 0.50 0.47 0.49
Interceptbrand3 (π03) 4 3.65 (-9%) 4.31 (8%) 4.12 (3%) 4.11 (3%)

0.45 0.38 0.36 0.38
Price (π1) -5 -4.52 (10%) -5.48 (-10%) -5.15 (-3%) -5.11 (2%)

0.59 0.50 0.47 0.48
ρ 0.5 0.42 (-16%) 0.50 (-0%) 0.51 (2%) 0.51 (2%)

0.05 0.06 0.05 0.06
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Table 5: Simulation Result B.6. The first row for each parameter in a hierarchical Probit
model lists the average of the estimates (posterior means) over all the simulations and their
percentage bias in the parenthesis. The second row for each parameter lists the standard
deviation of the estimates over all the simulations.

Parameter True Value FD CC MVN model DF model

Independent Error Term and Normal Covariate Distributions
Intercept (π0) -0.3 -0.302 (-1%) -0.250 (17%) -0.302 (-1%) -0.301 (-0%)

0.029 0.037 0.029 0.030
Z1 (π1) 0.1 0.099 (-1%) 0.068 (-32%) 0.099 (-1%) 0.099 (-1%)

0.015 0.018 0.017 0.015
Z2 (π2) 0.1 0.102 (2%) 0.120 (20%) 0.099 (-1%) 0.098 (-2%)

0.018 0.022 0.018 0.019
σβ 0.3 0.302 (1%) 0.298 (-1%) 0.298 (-1%) 0.299 (-0%)

0.015 0.020 0.015 0.015

Independent Error Term and Non-normal Covariate Distributions
Intercept (π0) -0.3 -0.305 (-2%) -0.242 (19%) -0.278 (8%) -0.303 (-1%)

0.029 0.038 0.028 0.030
Z1 (π1) 0.1 0.103 ( 3%) 0.072 (-28%) 0.089 (-11%) 0.104 (4%)

0.017 0.020 0.019 0.018
Z2 (π2) 0.1 0.102 (2%) 0.112 (12%) 0.121 (21%) 0.100 (0%)

0.018 0.021 0.015 0.019
σβ 0.3 0.299 (-0%) 0.297 (-1%) 0.278 (-8%) 0.299 (-0%)

0.015 0.020 0.015 0.015

AR(1) Error Term and Normal Covariate Distributions
Intercept (π0) -0.3 -0.303 (-1%) -0.233 (22%) -0.302 (-1%) -0.301 (-0%)

0.020 0.031 0.021 0.021
Z1 (π1) 0.1 0.099 (-1%) 0.019 (-81%) 0.100 (0%) 0.101 (1%)

0.022 0.026 0.024 0.024
Z2 (π2) 0.1 0.097 (-3%) 0.143 (43%) 0.099 (-1%) 0.098 (-2%)

0.018 0.024 0.022 0.022
σβ 0.3 0.296 (-1%) 0.263 (-12%) 0.294 (-2%) 0.293 (-2%)

0.022 0.042 0.023 0.023
ρ 0.5 0.500 (0%) 0.503 (1%) 0.500 (0%) 0.500 (0%)

0.010 0.016 0.010 0.010

AR(1) Error Term and Non-normal Covariate Distributions
Intercept (π0) -0.3 -0.301 (-0%) -0.228 (24%) -0.284 (6%) -0.300 (0%)

0.035 0.046 0.031 0.037
Z1 (π1) 0.1 0.102 (2%) 0.066 (-34%) 0.086 (-14%) 0.102 (2%)

0.020 0.023 0.021 0.021
Z2 (π2) 0.1 0.101 (1%) 0.113 (13%) 0.131 (31%) 0.100 (0%)

0.021 0.023 0.016 0.023
σβ 0.3 0.292 (-3%) 0.288 (-4%) 0.266 (-12%) 0.293 (-2%)

0.018 0.024 0.021 0.019
ρ 0.5 0.502 (0%) 0.502 (-0%) 0.502 (0%) 0.502 (0%)

0.010 0.013 0.010 0.01019



Table 6: Estimation Result in the Ketchup Purchase Data.
Table presents posterior mean (posterior SD) of each parameter. SI stands for the simple imputation model. MVN stands for
multivariate normal covariate model. DF stands for the distribution-free covariate model. The parameter pbl in the price model
is the estimated marginal probability mass at the lth price value of brand b, where these price values, in the order presented in
the table, are as follows: for Heinz: 0.99, 1.19, 1.39,1.45, 1.49,1.59; for Hunt’s: 0.89, 0.99,1.19, 1.39, 1.45, 1.49, 1.59; for Store
brand: 0.59, 0.69, 0.89,0.95, 0.99. The parameter cbl in the coupon model is the estimated marginal probability mass at the lth
coupon value of brand b, where these coupon values, in the order presented in the table, are as follows: for Heinz: 0.00, 0.25,
0.30, 0.36, 0.40, 0.50, 0.90; for Hunt’s: 0.00,0.30, 0.36, 0.40, 0.50, 1.00; for Store brand: 0.00.

Parameter SI Model MVN Model DF Model I DF Model II

Choice Outcome Model
Intercept (Heinz) 1.8(0.28) 3.5 (0.44) 3.7 (0.45) 3.0 (0.36)
Intercept (Hunts) 1.6(0.20) 3.1 (0.36) 3.3 (0.36) 2.8 (0.31)
Price -3.4(0.50) -6.1(0.76) -6.6(0.86) -5.4(0.66)
Coupon 53.6 (3.32) 2.4 (0.56) 4.4 (1.28) 3.5 (1.24)
Σ11 2.2 (1.1) 4.2 (1.5) 6.1(2.6) 4.8 (1.8)
Σ22 1.4(0.6) 3.7 (1.1) 4.9(1.7) 4.0 (1.2)
Σ33 2.8 (2.1) 15.4 (5.8) 18.5(8.2) 15.2 (5.9)
Σ44 3.3 (8.8) 1.44 (1.21) 6.9(6.4) 3.2 (2.1)
Σ12 0.98(0.77) 3.1 (1.2) 4.6 (2.0) 3.5 (1.4)
Σ13 -1.56(1.48) 2.8 (2.3) 1.4 (4.2) 2.9 (2.7)
Σ14 0.24(1.87) 0.3 (0.4) 1.6(3.8) 0.4 (2.1)
Σ23 -0.91(1.04) 3.6 (2.1) 2.1(3.5) 3.2 (2.4)
Σ24 0.28(1.28) 0.6 (0.8) 1.5 (3.0) 0.3 (1.8)
Σ34 -0.18 (2.96) -0.4 (0.2) -2.2(7.8) -0.8 (3.9)

Covariate Model (MVN)
µ1 1.23 (0.02)
µ2 1.05 (0.02)
µ3 0.74 (0.02)
µ4 1.26 (0.03)
µ5 1.16 (0.03)
µ6 0.82 (0.03)
µ7 0.11 (0.02)
µ8 0.10 (0.02)
µ9 0.01 (0.00)
Σ11 0.027 (0.001)
Σ22 0.026 (0.001)
Σ33 0.009 (0.001)
Σ44 0.028 (0.002)
Σ55 0.027 (0.002)
Σ66 0.014 (0.002)
Σ77 0.023 (0.001)
Σ88 0.024 (0.001)
Σ99 0.002 (0.000)
Σ12 -0.009 (0.001)
Σ13 -0.006 (0.001)
Σ14 0.021 (0.001)

continued on next page

20



Table 6: continued

Parameter SI Model MVN Model DF Model I DF Model II
Σ15 -0.007 (0.001)
Σ16 -0.005 (0.001)
Σ17 0.002 (0.001)
Σ18 -0.004 (0.001)
Σ19 -0.001 (0.001)
Σ23 0.006 (0.001)
Σ24 -0.007 (0.001)
Σ25 0.020 (0.001)
Σ26 0.007 (0.001)
Σ27 0.003 (0.001)
Σ28 0.007 (0.001)
Σ29 0.000 (0.001)
Σ34 -0.006 (0.001)
Σ35 0.006 (0.001)
Σ36 0.008 (0.001)
Σ37 0.002 (0.001)
Σ38 0.004 (0.001)
Σ39 0.000 (0.001)
Σ45 -0.009 (0.001)
Σ46 -0.007 (0.001)
Σ47 0.003 (0.001)
Σ48 -0.005 (0.001)
Σ49 -0.000 (0.001)
Σ56 0.004 (0.001)
Σ57 0.003 (0.001)
Σ58 0.009 (0.001)
Σ59 -0.000 (0.001)
Σ67 0.002 (0.001)
Σ68 0.003 (0.001)
Σ69 0.001 (0.001)
Σ78 0.002 (0.001)
Σ79 -0.001 (0.001)
Σ89 -0.001 (0.001)
Covariate Model (DF)
(1) Price Model
Heinz
p11 0.21(0.02) 0.20(0.02)
p12 0.48(0.03) 0.49(0.03)
p13 0.19(0.02) 0.22(0.02)
p14 0.008(0.005) 0.004(.005)
p15 0.054(0.014) 0.051 (0.02)
p16 0.053(0.014) 0.035(0.02)
Hunts

continued on next page
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Table 6: continued

Parameter SI Model MVN Model DF Model I DF Model II
p21 0.31(0.02) 0.31(0.02)
p22 0.24(0.02) 0.27 (0.02)
p23 0.36(0.03) 0.37(0.04)
p24 0.03(0.01) 0.02(0.01)
p25 0.0095(0.007) 0.005(.01)
p26 0.025(0.01) 0.016 (0.01)
p27 0.022(0.01) 0.018 (0.01)
Store Brand
p31 0.11(0.02) 0.10 (0.02)
p32 0.66(0.03) 0.66 (0.03)
p33 0.134(0.02) 0.164 (0.02)
p34 0.024(0.01) 0.020 (0.02)
p35 0.08(0.02) 0.06 (0.02)
(2) Coupon Model
Heinz
c11 0.87(0.02) 0.84 (0.02)
c12 0.005(0.003) 0.003(0.002)
c13 0.040(0.009) 0.047 (0.01)
c14 0.035(0.009) 0.039 (0.01)
c15 0.002(0.002) 0.0011 (0.002)
c16 0.050(0.011) 0.066(0.02)
c17 0.0027(0.002) 0.0029 (0.002)
Hunts
c21 0.93(0.012) 0.90 (0.01)
c22 0.002(0.002) 0.002(0.002)
c23 0.002(0.002) 0.001 (0.002)
c24 0.005(0.003) 0.006 (0.004)
c25 0.06(0.01) 0.088 (0.02)
c26 0.002(0.002) 0.004 (0.003)
Store Brand
c31 1.00 (0.00) 1.00 (0.00)
(3) Dependence
γP

10 39.1 (3.7)
γP

20 41.0 (8.0)
γP

21 -22.3 (5.1)
γP

30 28.4(7.9)
γP

31 0.82(4.0)
γP

32 12.97 (6.5)
γC

1 2.4 (1.8)
γC

2 9.2 (1.8)

Marginal LL -1164.40 -1122.63 -3428.16 -2631.89
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Figure 1. The Shapes of the Different Covariate Distributions. (a): N(0.5, 0.22). (b):
0.5*N(0.25,0.12)+0.5*N(0.75, 0.12). (c) Uniform(0,1). (d) Basin Shape I. (e) Basin Shape
II.
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Figure 2. Comparison of Computational Times between Bayesian Method and the MLE
method. The computation time for the Bayesian method is the time to obtain 1000 effectively
independent draws plus the time for burn-in.
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