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Aggregation Bias in Sponsored Search Data: The Curse and The Cure

Abstract

There has been significant recent interest in studying consumer behavior in sponsored search

advertising (SSA). Researchers have typically used daily data from search engines containing

measures such as average bid, average ad position, total impressions, clicks and cost for each

keyword in the advertiser’s campaign. A variety of random utility models have been estimated

using such data and the results have helped researchers explore the factors that drive consumer

click and conversion propensities. However, virtually every analysis of this kind has ignored

the intra-day variation in ad position. We show that estimating random utility models on ag-

gregated (daily) data without accounting for this variation will lead to systematically biased

estimates – specifically, the impact of ad position on click-through rate (CTR) is attenuated

and the predicted CTR is higher than the actual CTR. We demonstrate the existence of the

bias analytically and show the effect of the bias on the equilibrium of the SSA auction. Using

a large dataset from a major search engine, we measure the magnitude of bias and quantify

the losses suffered by the search engine and an advertiser using aggregate data. The search

engine revenue loss can be as high as 11% due to aggregation bias. We also present a few data

summarization techniques that can be used by search engines to reduce or eliminate the bias.

Key words: Sponsored search, generalized second-price auctions, consumer choice models, Hi-

erarchical Bayesian estimation, latent instrumental variables, aggregation bias.



1 Introduction

Sponsored search advertising (SSA) has not only transformed the way companies conduct their

marketing activities, but it has also been a tremendous resource to academic researchers who seek

to better understand how consumers respond to such ads. A myriad of researchers have turned to

SSA data to uncover new insights about consumer search (Ghose and Yang, 2009; Rutz and Bucklin,

2011), choice and related purchasing behaviors (Jeziorski and Segal, 2009; Yang and Ghose, 2010;

Agarwal et al., 2011) and advertiser/search engine strategies (Animesh et al., 2009; Yao and Mela,

2011; Rutz et al., 2012). Many of these papers have used random utility models to study the effect

of ad position, keyword length, presence or absence of brand name, etc. on the click-through and

conversion rates of the ads.

Sponsored search refer to ads that are displayed alongside organic search results when a user

issues a query at a search engine. The advertisers submit bids for keywords that are relevant to

them, along with these ads.1 When a user enters a query, the search engine identifies the advertisers

bidding on keywords closely related to the query and uses data on bids and ad quality/performance

to rank order the ads in a list of sponsored results. The most widely used pricing model is the

pay-per-click model, in which the advertiser pays only when a user clicks on his ad. The advertiser’s

cost per click or CPC is determined using a generalized second price auction (GSP), i.e. whenever

a user clicks on an ad at a particular position, the advertiser pays an amount equal to the minimum

bid needed to secure that position.

Although SSA is a relatively new practice, it already has fairly well-established data standards

associated with it. Most researchers who have modeled SSA-related issues have worked with a

data structure such as the one illustrated in Table 1. Advertisers also obtain similar datasets from

search engines and analyze them to design their bidding policies. In almost all cases, these data

are aggregated to the daily level and contain summary statistics for the day, such as the number

of ad impressions, average position of the ad, number of clicks received and the average CPC. It

should be clear how this kind of dataset lends itself to the types of models mentioned above, as

well as analysis of a variety of other customer behaviors (and related firm actions). But despite

the creativity and methodological prowess that has been demonstrated in this growing body of

1The term keyword refers to term or phrase on which an advertiser bids. Query (or query term) is the search
phrase entered by the consumer when conducting the search
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Table 1. Sample dataset for a particular keyword

date impressions clicks avg. pos avg. bid avg. CPC

01/11/09 180 1 19.33 1.00 0.30
01/12/09 202 0 18.42 1.00 0.00
01/13/09 223 5 8.19 2.00 1.24
01/14/09 198 3 7.94 2.00 0.89
01/15/09 197 5 8.08 2.00 1.21
01/16/09 321 21 2.00 3.00 2.12

literature, we believe that these modeling efforts are plagued by a major problem: an aggregation

bias due to the way that the raw (search-by-search) data are “rolled” up into Table 1.

In practice, the position of an ad can vary substantially within a day and aggregated data fail

to capture this variation. It is also widely known that the impact of position on CTR is non-linear.

For example, an ad at the topmost position tends to receive a disproportionately large number of

clicks as compared to ads on other positions. The convexity in the CTR, coupled with the intra-day

variation in position suggests that the daily aggregation might lead to estimation bias. The goal of

this paper is to provide a thorough evaluation of the nature of this bias, to demonstrate its effects

and provide recommendations to eliminate the bias.

The paper makes the following contributions. Firstly, we show that applying a logistic model

to aggregated SSA data can lead to biased estimation of the parameters of a random utility model.

Due to the bias, the effect of position on CTR is attenuated and the predicted CTR is higher than

the actual CTR. Surprisingly, we find that if all the advertisers use aggregate data, the consequence

of the bias is entirely borne by the search engine. Secondly, we quantify the magnitude of the bias

and measure its economic impact. While some researchers studying the use of aggregated consumer

data in other marketing settings suggest that aggregation bias is not important (Gupta et al., 1996;

Russell and Kamakura, 1994), others emphasize the need to address aggregation bias explicitly

(Narayanan and Nair, 2012; Neslin and Shoemaker, 1989). Using a unique and large disaggregate

dataset from a major search engine, we show that aggregation bias is very significant in this context.

We find that the search engine losses can be as high as 11% on average due to aggregation bias.

Our findings raise serious concerns for SSA researchers and practitioners and also question the

adequacy of the data standards that have become common in SSA. Finally, we present alternative
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data summarization techniques and modeling approaches that can reduce or eliminate the bias. We

find that sharing harmonic means instead of arithmetic means or complementing arithmetic means

by other summary information such as the variance can help reduce the bias significantly. These

results are robust in our analysis of a large real-world dataset as well as simulations that attempt

to vary several aspects of the sponsored search market.

The rest of the paper is organized as follows. Section 2 discusses related work and positions

our work in the literature. In Section 3, we analytically prove the existence of the bias and build

a game-theoretic model to study the economic impact of the bias. In Section 4, we analyze a large

disaggregate dataset from a search engine using the HB-LIV model. We present the managerial

implications of the bias in Section 5. In Section 6, we present some cures for the problem of

aggregation – data summarization techniques and modeling approaches that can reduce the bias.

Finally, we discuss the implications of the bias on research and practice and conclude the study in

Section 7.

2 Related work

There has been a considerable amount of work on auction design and consumer choice models in

SSA (Weber and Zheng, 2007; Liu et al., 2007; Hao et al., 2009; Goldfarb and Tucker, 2007). More

specifically, there are two streams of work that are closely related to our study, namely empirical

research on consumer click and conversion behavior in SSA and work related to aggregation biases

in choice models.

Empirical Research in Sponsored Search

There has been a lot of recent interest in trying to understand the factors driving keyword perfor-

mance in SSA. Craswell et al. (2008) and Ali and Scarr (2007) propose individual keyword-level

models to study how consumers navigate sponsored links. Other researchers have used logit models

to measure the influence of factors like ad position and keyword characteristics on consumer behav-

ior in SSA (Rutz et al., 2012; Rutz and Bucklin, 2011; Ghose and Yang, 2009; Agarwal et al., 2011).

Rutz et al. (2012) compare the performance of several logit models in predicting the conversions for

various keywords. Their results show that keywords are heterogeneous in their conversion rate and
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a significant portion of this variation can be explained by the presence of brand or geographical

information in the keyword. In another paper, Rutz and Bucklin (2011) measure the spill-over

effect of generic keywords on branded keywords. Ghose and Yang (2009) use a random effect logit

model to understand the relationship between different metrics such as CTR, conversion rates, bid

prices and ad position using the advertiser’s aggregate data. They show that keywords containing

retailer information have a higher CTR whereas keywords that are more specific or contain brand

information have a lower CTR. Recent work by Agarwal et al. (2011) uses a logit model to show

that although the CTR decreases with position, the conversion rate is non-monotonic in position.

They point out that the topmost position is not necessarily the revenue maximizing position.

Most of this stream of research uses aggregate data to estimate the parameters of the model.

The aggregate data obfuscate the variation in ad position and research in this area has overlooked

this fact. Ignoring this variation can lead to potential biases in the estimation of parameters and

ultimately affect the conclusions from these studies.

Aggregation Bias

Though researchers have grappled with the issue of data aggregation for many years, there is no

clear consensus on this issue. The problems associated with aggregation have been commonly

encountered in spatial and demographic studies and are referred to as the Yule-Simpson effect

(Good and Mittal, 1987). The drawbacks of aggregation have also been pointed out in various

studies in the economics and marketing literature. Neslin and Shoemaker (1989) point out the

limitations of aggregate data by refuting the claim that sales promotions undermine the consumer’s

repeat-purchase propensity. They show that even if the individual purchase propensities do not

change before and after promotions, statistical aggregation would lead to lower average repeat

probabilities for post promotional purchases. Yatchew and Griliches (1985) discuss the implications

of aggregation in the context of probit models. Issues related to data aggregation in the case of

logit models have been presented by Kelejian (1995). He discusses why aggregation bias might

occur when logit models are estimated on aggregate data and proposes a test for the existence of

this bias.

On the other hand, several researchers believe that the effect of aggregation is negligible or

absent when the disaggregate model can be approximated by the aggregate model (Gupta et al.,
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1996; Russell and Kamakura, 1994). Using household-level panel data and store-level purchase data,

Gupta et al. (1996) show that the price elasticity estimated from the two models differ by a very

small amount (4.7%). Allenby and Rossi (1991) present an analytical proof for the non-existence of

aggregation bias in nested logit models of consumer choice when the products are close substitutes

of each other, though they assume that the micro-level consumer behavior is approximately linear

in the product attributes. More specifically, in the context of sponsored search, Rutz and Trusov

(2011) use a latent instrumental variable approach that addresses endogeneity in search auctions.

Their model has an added benefit that it addresses some aspects of aggregation bias, such as that

due to aggregation of daata from heterogeneous consumers with different preferences and that due

to strategic bidding. However, as we show later in Section 5, the approach does not fully address

aggregation the bias resulting from aggregated ad performance data when ads are shown in multiple

positions.

The discussion reveals two themes. First, a number of recent studies have applied the logit model

on aggregated SSA data to study consumer choice behavior. Second, although aggregation bias has

been shown to exist in a number of environments, its non-existence has also been demonstrated in

several other environments. It is not clear which of these arguments is most applicable in the SSA

context, and it is thus not clear whether and to what extent aggregation bias affects SSA research.

This paper uses a theoretical model to show why data aggregation might lead to biased estimates

in the SSA context and how this bias affects the outcome in a search engine auction. An extensive

disaggregate search engine dataset is used to empirically measure the extent of aggregation bias in

SSA research, which we believe has been done for the first time. Finally, we suggest ways in which

the bias can be reduced or eliminated.

3 Aggregation Bias

In this section, we explore the estimation bias due to the aggregation of SSA data. We begin by

pointing out the distinction between the complete (disaggregate) and the summary (aggregate)

data that have been referred to in the paper. Table 2 is a stylized example that presents impression

level data for an ad, reflecting every search query for a particular term. Each observation contains

the date on which the impression occurred, position of the ad, bid placed by the advertiser, whether
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the consumer clicked on the ad and finally the CPC. Search engines usually do not provide such

granular data to advertisers or researchers. They provide aggregated data at the daily level as

shown earlier in Table 1 that mask the intra-day variation in position. Discussions with several

search engines reveal that they do not provide impression level data because it is expensive for

advertisers to store, manage and analyze such huge amounts of data. In addition, concerns about

user privacy and click-fraud further reduce the incentive to provide disaggregate data.

The intra-day variation arises due to two major factors – Firstly, SSA auctions are extremely

dynamic with advertisers entering and exiting the auction or changing their bids continuously.

Changes in competitors’ behavior lead to changes in the ad position. Secondly, most of the ads,

specifically broad match and phrase match ads are shown for a number of different queries.2 As

the set of competitors can be different for different queries, the position of the ad also varies across

queries.

Table 2. Complete dataset for a particular keyword

impression date click pos bid CPC

1 01/11/09 0 16 1 0.00
2 01/11/09 0 20 1 0.00
. . . . . . . . . . . . . . .
8190 02/15/09 0 6 2 0.00
. . . . . . . . . . . . . . .
9145 02/23/09 1 1 3 2.31

3.1 Analytical Proof of Aggregation Bias

Logit utility model

The logit utility model has been extensively used in economics and marketing to explain consumer

choice behavior. Researchers have primarily focused on keyword-level models to analyze the effect

that factors like ad position, specificity of the keyword and presence of brand name have on the

2An exact match occurs when the user’s query term exactly matches the advertiser’s keyword. A phrase match
occurs when the advertisers keyword appears anywhere within the user’s query. Finally, a broad match occurs when
user query is determined to be broadly similar to advertiser’s keyword. Broad match is commonly used by advertisers
as it maximizes the number of ad impressions.
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consumer’s propensity to click on the ad. The consumer’s utility has been modeled as

U = X ′β + ϵ, (1)

where X is a vector of covariates, β is the consumer’s sensitivity to these attributes and ϵ ∼

Logistic(0, 1). In binary choice models, this utility is not observed but constitutes a latent variable.

The consumer clicks on an ad when U > 0. Variable Y ∈ {0, 1} denotes whether a click was made

or not. In conjugation with prior research, we build a keyword-level model that ignores other ad

characteristics and focuses our attention on the impact of ad position on click through rate, i.e.

CTR = f(position)′. The simple model allows us to clearly identify the existence and direction of

the bias. However, this assumption does not impose any restrictions on the model as all keyword

characteristics (which typically do not change during the day) are subsumed in the intercept term

and the we focus our attention on position which varies intra-day. Although we focus on a keyword-

level model in this paper, our finding are applicable for different levels of analysis.

Estimation using complete dataset

We now discuss the estimation of β when the model is estimated using the complete dataset. Let

Vi be a random variable denoting the ad position on the ith impression. We assume that Vi is

independent and identically distributed and has a cumulative distribution function (c.d.f.) given

by FV (.), which is assumed to be constant during the period of observation.3 The consumer’s utility

is given by the following expression

Ui = β0 + β1Vi + ϵi. (2)

As ϵi is extreme value distributed, the probability of clicking on an ad (CTR) is pi = 1/(1 +

exp−{β0 + β1vi}). Note that pi might vary across impressions due to variation in the ad position.

Let β̂c denote the maximum likelihood estimate from the complete dataset. It can be easily shown

that β̂c is a consistent and unbiased estimator of β (Hayashi, 2000, Proposition 7.6).

3Let µV = E[V ] and σ2
V = V ar(V ).
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Estimation using aggregate dataset

Researchers do not observe Vi when aggregate data are used. They only observe the mean daily

position W which is given by

W =
V1 + V2 + . . .+ VN

N
, (3)

where N is the random number of ad impressions on a particular day and V1, . . . , VN is the ad

position during each of those impressions. The distribution of W is FW (.) and it depends on the

distribution of V and N . If the effect of position is estimated from aggregate data, the consumer

utility from clicking the ad is effectively modeled as

Ud = β0 + β1Wd + ϵd, (4)

where Wd is the average position for the day and ϵd is the logistically distributed error term. This

formulation causes a mis-specification as the consumers do not observe the ad at a position Wd

but at position V . As the variable Z = V −Wd (E[Z|W ] = 0), which affects the consumer’s click

behavior, is not accounted for in the regression, the mis-specification is similar to omitted variables

bias pointed out by Yatchew and Griliches (1985) and Wooldridge (2001). However, this issue arises

primarily due to data aggregation and our approach is closely related to prior work in Marketing

by Christen et al. (1997), Steenkamp et al. (2005) and Gupta et al. (1996). Further, as V ar(Z)

is not constant (it depends on the number of impressions in a days), the findings of Yatchew and

Griliches (1985) and Wooldridge (2001) are not directly applicable in this context. Hence, we derive

an important relationship between W and V in order to prove the aggregation bias.

Lemma 1 W ≤cx V , i.e. W is less than V in convex order. 4 ,

This relationship between W and V is very general and holds for any distribution, FV (.). Using

Lemma 1, we prove an important result of this paper.

Proposition 1 β̂s is a biased estimator of β.

4X is less than Y in convex order if E[f(X)] ≤ E[f(Y )] for all real convex functions f such that the expectation
exists. All proofs appear in the appendix.
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If β̂c is equal to β̂s then the convex order between W and V implies that

E

[
exp{β̂0,c + β̂1,cV }

1 + exp{β̂0,c + β̂1,cV }

]
> E

[
exp{β̂0,s + β̂1,sW}

1 + exp{β̂0,s + β̂1,sW}

]
.

Since both the L.H.S. and the R.H.S. equal the overall CTR during the observation period (as

shown in the appendix), this inequality is incorrect and hence β̂c cannot equal β̂s. Since β̂c is a

consistent and unbiased estimator of β, β̂s is biased. This finding is contrary to earlier work by

Allenby and Rossi (1991), Gupta et al. (1996) and Russell and Kamakura (1994), which prove that

aggregation bias in market or store-level scanner data is negligible. Aggregation bias is significantly

reduced in their context as products are very close substitutes of each other and the consumers (or

house-holds) are exposed to very similar marketing activities. However, position has a very strong

effect in sponsored search (Craswell et al., 2008) and ads in different positions may be perceived

very differently by consumers. Coupled with variation in ad position, aggregation bias can be quite

substantial, which is formalized in the following proposition.

Proposition 2 The direction of aggregation bias is such that (i) the CTR estimated from the

summary data is greater than or equal to the actual CTR at any position, (ii) β̂1,s > β̂1,c, and

under certain conditions, (iii) β̂1,s
p→ β1/

√
β21
{
σ2V + (3σ2V + µ2V )ϕ

}
+ 1, where ϕ = E[1/N ].5

β̂s is biased and it predicts a CTR that is higher than the actual CTR at any position. Incorrect

estimation of CTR might lead advertisers to make suboptimal choices in sponsored search auc-

tions. The second part of Proposition 2 is consistent with Wooldridge (2001) which shows that the

estimates are scaled towards zero. Furthermore, the omitted variable Z increases the disturbance

term in the regression. The estimated error can be computed as a convolution of ϵ and Z, but this

is analytically intractable as ϵ is logistically distributed. However, Proposition 2(iii) holds when

β1Z + ϵ can be approximated closely by a logistic distribution. Proposition 2 shows that, if the

variation in the intra-day position is known, the actual β1 can be approximated by multiplying β̂1,s

by the scaling factor. However, this approach suffers from several simplifying assumptions that

are required for analytical tractability. We provide more general and robust empirical methods to

remove the bias in Section 5. Although we prove that the bias exists for a logistic model, it is

5The expectation of the inverse of the number of daily impression, E[1/N ], is bounded by (1 − (1 − e−λ))/λ ≤
ϕ ≤ (1− [1− Fλ(1) + 3(1− Fλ(2))/m]) where λ = E[N ] and Fλ(.) is the CDF of N . When there are a large number
of daily impressions, i.e. λ→ ∞, ϕ→ 1.
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easy to show that these results would be applicable in any binary choice model where the choice

behavior is convex in position.

3.2 Effect on Equilibrium Behavior

As advertisers use estimates from historical data to bid in SSA auctions, incorrect estimation of the

CTR might have a negative impact on their revenues. In this section, we build a game-theoretic

model to analyze the impact of aggregation on the advertisers’ and search engine’s revenues.

For our analysis, we make the following assumptions – (i) there areK advertising slots andK+1

advertisers, (ii) the advertisers’ valuation for a click, sk are drawn from a continuous distribution

with support on [0,∞), (iii) advertisers know their own valuation and the distribution of competing

bids and finally, (iv) the click-through rate, αi, decreases with the position i. In addition, we also

assume that advertisers estimate αi from historical data and are unaware of the aggregation bias.

The advertisers are indexed in decreasing order of their valuations, i.e. s1 > s2 > . . . sK+1 and

their bids are b1, . . . , bK+1, respectively.
6 In addition, let h = (bi, . . . , bK+1) refers to the history

of bids prior to assignment of position i.7 The case where complete data are used is analyzed

first. Here the advertisers correctly estimate αi. Edelman et al. (2007) show that under the above

assumptions, there exists a unique envy-free perfect Bayesian equilibrium and the optimal strategy

for advertiser k under this equilibrium is to bid as follows,

bk(sk, i, h) = sk −
αi
αi−1

(sk − bi+1). (5)

This is the maximum CPC that the advertiser is willing to pay to move to position i−1 and receive

more clicks. At this point, Advertiser k is indifferent between getting position i − 1 at a CPC of

bk(sk, i, h) and position i at bi+1. This is an ex-post equilibrium, i.e., it is optimal for Advertiser k

to follow the equilibrium strategy for any realization of other advertisers’ valuations. The search-

engine revenue is ΠCS =
∑K

i=1 αibi+1 and the payoffs for advertiser i is ΠCi = αi(si−bi+1). It should

be noted that this equilibrium ensures an assortive match, i.e., if si > sj then advertiser i bids

higher than advertiser j and occupies a slot above advertiser j in equilibrium. This case serves as

a reference for the ensuing discussion.

6bK+1 is set to 0.
7Positions K through i+ 1 are assignment before bidding for position i starts.
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Next, we consider the case in which aggregate data are used. Let the CTR estimated from

aggregate data be denoted as α
′
i.

Remark 1 When aggregate data are used to estimate CTR, the ratio αi/αi−1 is overestimated due

to the presence of aggregation bias.8

Due to this overestimation, advertisers might bid incorrectly. As the equilibrium considered here

is ex-post, the advertisers’ bidding strategies depend neither on their beliefs about each others

valuations nor on the fact that some advertisers might be using aggregate data. The bidding

strategies continue to be similar to the one outlined in Equation (5), but the bids in this case,

b
′
1, . . . , b

′
K , might be different.9 We consider two extreme cases to study the impact of aggregation

bias – (i) all advertisers except one use complete data and, (ii) all advertisers use aggregate data.

Let the search-engine revenue in Case I(II) be denoted by Π
AI(II)
S and advertisers’ profit by Π

AI(II)
i .

Case I: Suppose advertisers other than Advertiser j have access to complete data and can compute

αi correctly. Only Advertiser j uses aggregate data and overestimates β1. This leads him to

overestimate the ratio αi/αi−1 and he bids in the following manner.

b
′
j(sj , i, h) = sj −

α
′
i

α
′
i−1

(sj − b
′
i+1). (6)

As Advertiser j bids lower in equilibrium, he occupies a position j
′ ≥ j. The following proposition

characterizes the equilibrium in this case (detailed analysis and proofs are provided in the appendix).

Proposition 3 (i) If only Advertiser j uses aggregate data, the top advertisers (i ≤ j) bid lower,

advertisers in between (j < i ≤ j
′
) bid higher and the remaining advertisers (i > j

′
) bid the same

as they would have when everyone had complete data. (ii) The payoffs of the search engine and

Advertiser j decrease (ΠAIS < ΠCS ,Π
AI
j < ΠCj ) while all other advertisers receive payoffs that are

either the same or higher than payoffs they would have received if all advertisers were using complete

data (ΠAIi ≥ ΠCi , i ̸= j).

8Writing the CTR in terms of the logit model we get, αi
αi−1

= exp{β0+β1i}
1+exp{β0+β1i}

× 1+exp{β0+β1(i−1)}
exp{β0+β1(i−1)} ≈ exp{β1} when

CTRs are small. Since β̂1,s > β̂1,c ⇒ αi/αi−1 < α
′
i/α

′
i−1.

9We continue to assume that Advertiser K + 1 still bids 0.

11



Advertiser j underestimates the impact of position and incorrectly bids less, which might move

him to a lower position. In turn, some advertisers who were below him move up one position.

The ordering of these advertisers does not change, which is a consequence of the bidding policy

(Edelman et al., 2007). As b
′
j < bj′ , bids required to acquire all positions above j

′
decrease. As

bids for all position are (weakly) lower, the search engine loses revenue. Clearly, Advertiser j’s

payoff is lower, because he deviates from the optimal policy. However, the loss in revenue for the

search engine is substantially higher than the loss in revenue for the advertiser using aggregate data.

Interestingly, all these losses are transferred to the other advertisers ( ̸= j) as excess surplus since

GSP is a zero-sum game. Hence, the search engine suffers the most due to aggregation bias and all

advertisers apart from j are better off due to aggregation. In the subsequent case, we observe that

the search engine internalizes all the negative impact of aggregation.

Case II: When all advertisers use aggregate data, their estimate of the CTR, α
′
i are greater than

the actual CTR as shown in Proposition 3. For simplicity, we assume that all advertisers arrive at

the same estimates for α
′
i.
10 As a result, Advertiser k adopts the following bidding strategy,

b
′
k(sj , i, h) = sk −

α
′
i

α
′
i−1

(sk − b
′
i+1).

It is easy to see that the bid placed by advertiser K (the last advertiser) is less than the bid he

would have placed had he estimated CTR from complete data. Proceeding in an iterative fashion

we can show that all advertisers place a lower bid. The equilibrium in this case is specified in the

following proposition.

Proposition 4 (i) When all advertisers use aggregate data, the advertisers are arranged in as-

sortive order. The resulting bids are lower than the bids when complete data are used (b
′
i < bi, i =

1, . . . ,K). (ii) Search-engine revenue is lower (ΠA2S < ΠCS ) and advertisers’ payoff are higher

(ΠA2i > ΠCi ) as compared to the complete case.

In the appendix, we show that the advertisers bid less than what they would have had they

known the actual CTR. As all the advertisers use the same incorrect estimate of the CTR, the

10This result continues to hold even if the advertisers arrive as different estimates of α
′
i as long as αi/αi−1 <

α
′
i/α

′
i−1, which always hold true due to aggregation bias as shown earlier.
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eventual ranking remains the same as in the complete case. They receive the same number of clicks

but at a lower CPC and hence their payoffs are higher. Surprisingly, the search-engine revenue

suffers the most when all advertisers use aggregate data even though the advertisers make the

wrong decisions. These results question the data standards that have become common in SSA

and underscore the need to provide better data to advertisers. We also show that it is incentive

compatible for the search engine to provide richer/better data to advertisers.

Note that an advertiser always receives a higher payoff when he uses complete data as compared

to aggregate data, irrespective of the fraction of advertisers using aggregate data. This intuition is

formalized in the following proposition.

Proposition 5 An advertiser can always increase his payoff from SSA by unilaterally using com-

plete data instead of aggregate data.

The difference in payoff between the two cases (complete v/s aggregate) can be considered as

the value of complete data or alternately the disutility from aggregate data. Although advertis-

ers cannot get impression level data, they can periodically crawl the search engine and estimate

the empirical distribution of the ad position. Moreover, with recent improvements in ad tagging

and user tracking techniques, advertisers might be able to collect impression level data for a few

customers.

4 Empirical Analysis

In the previous section, we analytically show that aggregation at a daily level leads to a bias.

However, as pointed earlier, several papers show that aggregation bias is negligible in various

marketing data (Allenby and Rossi, 1991; Gupta et al., 1996; Russell and Kamakura, 1994). They

argue that aggregation bias is significantly reduced because the products considered in their analysis

are very close substitutes. These findings might not hold in SSA as Craswell et al. (2008), Ghose

and Yang (2009) and Abhishek and Hosanagar (2013) show that ad position has a very strong effect

in SSA. We perform the following empirical analysis on large representative search engine data to

examine and conclusively prove that ad position has a strong influence on consumer click behavior,

which leads to significant aggregation bias. Furthermore, we want to measure the extent of the

bias and observe its economical significance.
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4.1 Data Description

We analyze a large disaggregate data from a major search engine, which is extremely representa-

tive of consumer behavior in SSA. The data contain around 8 million unique impressions chosen

randomly from all user queries between August 10, 2007 and September 25, 2007. These are very

unique data as search engines rarely provide impression level data to advertisers or researchers.

For every impression, the dataset contains the user query, ads shown on the page and number of

ads on the preceding pages. Each ad is identified by a unique ad identifier, though the dataset

does not contain any ad-specific information. The dataset also contains information about clicks

during this period of observation. We construct an ad-level dataset, that contains information

about the keyword the advertiser was bidding on and all the impressions of the ad associated with

the keyword, which is similar to the one presented in Table 2.

Table 3. Summary Statistics

Total impressions 8,142,210
Unique queries 24,235
Unique ads 229,960
Ads with more than one impression 184,481
Mean impressions for every ad 64.4
Median impressions for every ad 7.0

There is evidence that there is substantial variation in position and reporting average position

alone results in the loss of information on actual position as shown in Figure 1. We next investigate

the impact of data aggregation.
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Figure 1. Mean Intra-day Variation in Position.

The ad level data described earlier are summarized at a daily level to create aggregate data.
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The data thus generated are similar to the campaign summaries that search engines make available

to the advertisers (as presented in Table 1).

4.2 Hierarchical Bayesian Model

We estimate a random-effect logit model using Hierarchical Bayesian (HB) techniques that are

commonly used in SSA. As our data do not contain any ad-specific attributes, the only covariate

included in our models is position. The effect of ad characteristics is captured in the ad-specific

intercept term. We demonstrate the aggregation bias for HB model.

We extend the binary choice logit model proposed earlier in Section 3 to account for multiple

keywords. Under this specification, the consumer’s utility from clicking on ad k during impression

i is given by

Uik = β0k + β1kVik + ϵik (7)

where ϵik is the idiosyncratic, logistically distributed error term. βk = (β0k, β1k)
′
are keyword

specific parameters which are assumed to be random and heterogeneous across ads. They drawn

from a multivariate normal distribution in the following manner:

βk ∼ N2(µβ, Vβ) where Vβ =

 σβ0 σβ0β1

σβ0β1 σβ1

 .

Similar models have been extensively used in prior research in SSA (Ghose and Yang, 2009; Yang

and Ghose, 2010). Note that although this random coefficient model captures heterogeneity across

ads, it still fails to accounts for the intra-day variation in Vik if the model is estimated on aggregate

data. As a result, we expect the aggregation bias to extend to the random-coefficient model as

well. To test this hypothesis, we take a random sample of ads from our data and apply the model

in Equation (7) to both the disaggregate and aggregate datasets and compare the estimates.

The log-likelihood function for the complete data is as follows

LL(β|complete data) ∝
K∑
k=1

IK∑
i=1

Yik log pik + (1− Yik) log(1− pik), (8)

where Yik is the indicator variable that denotes whether the ith impression of keyword k received a
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click or not and pik, the click-through probability is given by

pik =
exp{β0k + β1kvik}

1 + exp{β0k + β1kvik}
. (9)

The log-likelihood function for the aggregate data is as follows

LL(β|aggregate data) ∝
K∑
k=1

D∑
d=1

cdk log pdk + (ndk − cdk) log(1− pdk), (10)

where ndk and cdk denote the number of impressions and clicks on day d respectively and pdk, the

click-through probability is given by

pdk =
exp{β0k + β1kwdk}

1 + exp{β0k + β1kwdk}
. (11)

As the data on clicks are often sparse for most keywords in sponsored search, the SSA literature

primarily uses Hierarchical Bayesian models. We use a similar approach and assume that the mean

and variance-covariance matrix for βk have the following priors

µβ ∼ N2(µ,Σ), (12)

V −1
β ∼ Wishart(ν,∆). (13)

The parameters µ,Σ, ν,∆,µβ and V −1
β are estimated separately from the complete and the ag-

gregate datasets using a Markov Chain Monte Carlo (MCMC) approach. Before discussing the

details of the MCMC estimation procedure, we discuss some identification issues associated with

the model presented here.

4.3 Identification

The ad position in the previous exposition has been assumed to be exogenous. However, the position

is decided by the bids placed by the advertiser. In addition, we know that past performance affects

the quality score of the ad which in turn affects the position. The auction process and historical

performance jointly determine the position which is one of the most important strategic variables

that advertisers focus on in SSA. This indicates that position is endogenous (i.e. E[postϵt] ̸= 0)
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and the endogeneity should be explicitly incorporated in the HB model presented earlier.11

Endogeneity has been a major concern in the SSA literature and researchers have proposed

several techniques to address this issue. Ghose and Yang (2009) and Yang and Ghose (2010) use a

simultaneous equation model to address this problem. Their simultaneous model forms a triangular

system of equations which can be identified without any further identification constraints. Agarwal

et al. (2011) use a series of random bids to address the endogenous nature of position. In their

specification, position is completely determined by the random bids and quality score which are

exogenous. Recent econometric advances have lead to the development of the latent instrument

variable (LIV) framework (Ebbes et al., 2005), which has been used by Rutz and Trusov (2011)

and Rutz et al. (2012) to account for position endogeneity. The LIV framework uses a likelihood

based approach, which can be easily integrated with the HB model proposed earlier, and can be

estimated using the MCMC estimator.

In a LIV formulation, the endogenous covariate is decomposed into a stochastic term that is

uncorrelated with the error and another one that is possibly correlated with the error, i.e. X = θ+η

where θ is the uncorrelated part of X such that E[θϵ] = 0 and E[ηϵ] = σηϵ. As θ varies in the

dataset, it is possible to identify the correlation between η and ϵ, denoted by σηϵ. For the sake of

simplicity, we modify the model presented in Equation (7) such that, ϵik = ζik + ϑik, where ζik is

correlated with ad position and ϑik is orthogonal to position and logistically distributed. Clearly,

E[ηζ] = E[ηϵ] = σηϵ, which we denote by σηζ for the sake of exposition. The LIV approach is

extended to binary choice models by introducing a latent categorical variable with M categories

(Rutz et al., 2012). Position can assume any of these M categorical values with a probability

Π = {π1, π2, . . . , πM},
∑M

m=1. More specifically,

postk = Θ′
ktγ +Z ′

ktδ + ηkt, (14)

where Θ ∼ MultinomialM (Π) is the stochastic part of poskt and is exogenous whereas ηkt is

11We thank the anonymous reviewer for this suggestion.
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endogenous.12 The errors (ηkt, ϵkt)
′ are MVN distributed in the following manner

 ηtk

ζtk

 =MVN


 0

0

 ,

 σ2η ζ2ηζ

σ2ηζ σ2ζ


 . (15)

Zkt represents the observed instruments, and in our analysis we use lagged position as IVs which is

similar to the approach adopted by Rutz et al. (2012). Similar to Rutz et al. (2012), we estimate the

parameters Π,Θ and Vξ jointly for the entire observation period when the estimation is performed

on aggregate data. In the case of complete data, we exploit the richness of the data to estimate

the parameters, Π,Θ and Vξ, on a daily basis. Such an approach can account for variations over

time, due to changes in advertisers’ bids or other auction related factors, and might lead to better

performance. The exact difference between estimation on the complete versus aggregate data is

explained in detail in the Online Appendix.

4.4 Estimation Results

We estimate both the HB model and HB model with LIV (HB-LIV) to draw comparisons between

the two methods. A sample size of 200 ads is chosen for estimating the parameters. We make

this choice primarily for computational convenience as estimating the model on disaggregate data

takes a long time. The disaggregate dataset contains a large number of observations, hence the

estimation on the disaggregate dataset is really slow.13

We start off with diffused priors (µ = 0,Σ = 100I, ν = 5,∆ = νI) and refine them as the esti-

mation proceeds. The exact estimation procedure is outlined in the Online Appendix. We run the

MCMC simulation for 100,000 draws and the first 50,000 sample are discarded. The MCMC chains

are stationary after the burn-in period. The MCMC chains are thinned to remove autocorrelation

between draws and every 10th draw in the stationary period is used for the subsequent analysis.

The estimation results are presented in Table 4. We observe that there are significant differences

in the µβ estimated on the complete and aggregate data, for both the HB and HB-LIV models.

µ1 is overestimated by 10% when the estimation is performed on aggregate data indicating that

aggregation bias exists when a HB model is used. The bias in µ1 increases to 12.9% when a HB-LIV

12postk = vik or wdk depending on the context, where t represents the unit of time.
13We estimate the HB model on 25 different samples and the qualitative findings remain the same.
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Table 4. Estimates of Parameters

HB HB-LIV
Parameters Complete Aggregate Complete Aggregate

µβ:
µ0β -1.495(0.000) -1.459(0.001) -1.672(0.301) -1.612(0.189)
µ1β -0.793(0.085) -0.727(0.098) -0.642(0.120) -0.558(0.074)

Vβ:
σβ0 0.654(0.128) 0.753(0.170) 0.678(0.107) 0.689(0.192)
σβ1 0.153(0.037) 0.155(0.038) 0.147(0.033) 0.162(0.042)
σβ1β2 0.025(0.067) -0.085(0.076) 0.019(0.052) -0.090(0.076)

Vξ:
σζ 0.263(0.067) 0.389(0.082) 0.142(0.047) 0.196(0.065)
ση 1.733(0.238) 2.113(0.414)
σηζ 0.136(0.039) 0.176(0.052)

Θ:
θ1 0.962 (0.083) 0.748 (0.091)
θ2 2.838 (0.029) 2.364 (0.037)
θ3 4.552 (0.012) 5.927 (0.045)

Π:
π1 0.523 (0.255) 0.322 (0.181)
π2 0.238 (0.173) 0.193 (0.127)

Instrument Variable:
post−1 0.885(0.096) 0.766(0.127)

Note that the values reported for parameters Vξ,Θ and Π in the complete data case are means of the daily
estimates.

model is used. This results strongly indicates that aggregation bias is significant in the context

of SSA. This finding is of concern as the extant literature on SSA (Agarwal et al., 2011; Ghose

and Yang, 2009; Yang and Ghose, 2010) is silent about this issue and only very recently, Rutz and

Trusov (2011) acknowledge its existence and account for it in their model. Rutz and Trusov (2011)

significantly advance the SSA literature by proposing a novel methodology to address endogene-

ity which also addresses aggregation to some extent. However, as demonstrated in Table 4, the

aggregation bias in not completely eliminated, which points to the value of complete information.

Aggregate data is prone to two primary disadvantages – (i) it does not capture intra-day varia-

tions, and (ii) it is difficult to identify temporal patterns due to the limited amount of data (one

observation per day). When the estimation is performed on complete data, these variations can

be explicitly captured and accurately estimated underscoring the important of richer data in SSA.
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Our findings demonstrate that this bias in non-trivial in practice and future research in SSA should

be informed about the pitfalls of aggregate data. In conjunction with prior literature, we also

observe a statistically significant difference in the estimates from the HB and the HB-LIV model,

confirming the need to control for endogeneity of ad position in sponsored search. Aggregation bias

acts in addition to the bias due to endogeneity, and it is just as important to correct.

We use the differences between the estimates from summary and complete data for a random

sample of 5000 exact-match keywords to compute the empirical distribution of the error (ε =

β̂s− β̂c) due to aggregation. This empirical distribution is used in Section 5 to quantify the impact

of aggregation bias on search engine and advertiser revenues.

5 Managerial Implications

In the previous section, we show the existence of aggregation bias using the HB and HB-LIV models.

In this section, we discuss the managerial implications of the bias. The analysis presented in Section

3.2 provides evidence that aggregation bias can lead to a decrease in the search engine and possibly

an advertiser’s revenue. Here, we extend the analysis to characterize the loss, exploiting the large

dataset available to us. Suppose m is the expected revenue per-click, then the advertiser’s profit

per-impression is given by

Π = CTR(CPC)× {m− CPC}. (16)

It is easy to see the trade-off between bidding high to get more clicks (CTR increases with CPC) and

bidding low to earn greater profit per click. The optimal bids can be computed by substituting the

expression for CTR (as a function of advertisers CPC) into the profit function. Unfortunately, our

data do not contain bidding information (CPC), and as a result, we use estimates commonly found

in the extant literature to illustrate the magnitude of the loss. We assume that the relationship

between position and CPC is given by pos = e2(1−CPC) (Ghose and Yang, 2009) and the CTR

for the average keyword is a logit with β̂c = (−1.672,−0.642)′ (Table 4). The optimal bid can be

derived by substituting these relationships in Equation (16).When the advertiser uses aggregate

data, his estimate of β is given by β̂s = β̂c + ε, where ε is the estimation error computed in the

previous section. We sample β̂s from this empirical distribution, and for each β̂s, compute the

optimal bid that maximizes the advertiser’s profit in Equation (16). The bids computed using β̂c
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are greater than almost all the bids computed using samples of β̂s, which supports our earlier claim

that aggregation bias results in an advertiser placing a lower-than-optimal bid.

Next, we use the computed CPCs to estimate the effect of aggregation bias on the advertiser’s

and search-engine’s revenues. Figure 2 shows the % loss suffered by the advertiser due to aggregation

bias. There is a great deal of variation in this loss as the valuation changes. The impact of

aggregation bias is more pronounced when the advertiser’s valuation for the click is low. In this

situation, he bids lower and even small deviations from the optimal bid can lead to significant

changes in the position leading to significantly lower payoffs. On the other hand, when the valuation

is high, the bid is correspondingly higher and deviations from the optimal bid have little impact

on position, and hence the loss is relatively smaller.
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Figure 2. Loss in revenues caused due to Aggregation bias.

The effect of aggregation is considerably higher for a search engine. On average, it loses more

that 11% of its payments from the advertiser as a result of aggregation bias. Lower bids, as a

consequence of aggregation bias, negatively impact search engine revenues in two ways – Firstly,

lower bids imply that the search engine generates lesser revenue per-click. Secondly, the ad appears

at a lower position due to the lower bid, which in turn leads to fewer clicks. The advertiser pays

the search engine for fewer clicks and pays less for each click. In this example, we estimate that

the search engine loses 1.4¢ for every impression of the representative ad.

In the preceding, analysis we consider how payments from one advertiser to the search engine

are affected due to aggregation bias. Naturally, the dynamics are more complicated when we try

to quantify the effect that the bias has on payments by all advertisers and the overall profitability

21



of the search engine. For example, when an advertiser bids sub-optimally and moves to a lower

position, another advertiser moves up to occupy the vacant position. Though the search engine

loses revenue from the advertiser that moves down, it earns more from the advertiser that moves

up, reducing the overall loss suffered by the search engine. It is difficult to accurately estimate this

loss as we do not have data from multiple advertisers. Therefore, we leave this as direction for

future research.

6 Suggested Cures

In the previous discussion, we outlined the problem of aggregation bias and some of its implications.

As mentioned earlier, aggregation bias arises due to inadequate data. It might be infeasible for

search engines to store and report impression level data due to the size of such datasets and

potential privacy concerns. However, a search engine can provide different data to reduce the

effect of aggregation. Kendall and Stuart (1977) show that information about a few moments of a

distribution can be used to create a good approximation of the distribution. Accordingly, we explore

various summary statistics and measure the improvements they offer over the standard aggregate

data provided by search engines. We also consider a few modeling approaches, which explicitly

account for the variation in position and estimate the improvements offered by them.14 We first

outline these approaches and subsequently draw comparisons between them. These approaches are

compared in two ways – (i) using the large representative search engine data available to us, and

(ii) an extensive evaluation using simulated data.

6.1 Proposed Summarization Techniques

Here, we present a few approaches that might be able to address the problem of aggregation bias.

6.1.1 Sample Mean

Different Ways of Aggregation

An important reason for bias is the non-linearity of the position-CTR curve. As a result, linear

aggregation of the position does not yield the correct underlying response parameters. Christen

14We thank the Associate Editor and the anonymous reviewers for recommending this extension.
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et al. (1997) and Danaher et al. (2008) show that when the response is multiplicative, i.e. of the

form αxβ11 x
β2
2 . . ., where xi are marketing mix variables, an aggregate model should use geometric

means to correctly estimate the coefficients. Unfortunately, there is no analytical analog of this

result when the underlying model is logit. We use both the geometric and harmonic means and

empirically compare which method of aggregation works better in SSA. As the position-CTR curve

is convex in nature, both these aggregation methods might perform better than linear aggregation.

Modeling Position Variation using a Poisson

We also consider a model where Vi is drawn from a Poisson distribution with mean equal to the

daily (arithmetic) mean u. The log-likelihood of observing the data in this case is given by

LL(β|data, λ) ∝
K∑
k=1

D∑
d=1

cdk log

{ ∞∑
i=0

P (Vidk = v)pidk

}
+(ndk−cdk) log

{
1−

∞∑
i=0

P (Vidk = v)pidk

}
,

(17)

where λ is a K × D matrix, and every column of λ contains the scale parameter of the Poisson

distribution for every day. The position of every impression Vidk for keyword k on the dth day is

drawn from a Poisson distribution with λkd = ukd and the probability P (Vidk = v) = λvdke
λdk/v!.

Pooling Positions Across Days

In the previous approach, we try to model the data generating process (DGP) for position. Here,

we extend this analysis to model the data generating process by pooling data across multiple days.

Let’s assume that the E[Vi] = µ and V ar(Vi) = σ2V .
15 Using law of large numbers, it is easy to

show that the mean daily position, U ∼ N(µ, σ2v/n), where n is the number of impressions on day

d. To estimate β, we follow a two-step process. In the first step, we estimate µ and σ2V for each

keyword by maximizing the following likelihood,

LL(µ, σ2V |data) ∝
D∏
d=1

ϕ

(
ud − µ

σ2V /nd

)
,

where ϕ(.) represents the p.d.f. of the standard normal distribution. In the second step, we

approximate Vi by a normal distribution such that P (Vidk = v) = Φ
(
v−µk
σ2
V k

)
− Φ

(
v−1−µk
σ2
V k

)
, where

15We drop the day and keyword subscripts for simplicity.
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Φ(.) represents the c.d.f. of a standard normal distribution. Substituting this p.d.f. in Equation

(17) gives us the overall log-likelihood. Note that this approach relies on the implicit assumption

that FV (.) does not change over time.

6.1.2 Higher Order Statistics

If a search engine provides higher order moments in addition to the mean, the aggregation bias

may be reduced significantly. We discuss three approaches with increasing data requirements.

Mean and Variance

When the mean (µdk) and variance (σ2dk) of position are provided, we assume that the position

has a negative binomial distribution (NBD) with probability of success pdk and (real) number of

trails rdk. The NBD makes intuitive sense as the success of probability pdk of an NBD, can can

be thought of as the probability of a competing advertiser placing a higher bid. The log-likelihood

function is similar to Equation (17), but the distribution of ad position in this model is given by

P (Vidk = v) =

 v + rdk − 1

v

 (1− pdk)
rdkpvdk,

where pdk = 1− µdk
σ2dk

and rdk =
µ2dk

σ2dk − µdk
.

Empirical Distribution

In the preceding approaches, the variation in position is modeled in a parametric manner due to

the limitation in the numbers of moments reported. A search engine can provide further moments,

e.g. skewness and kurtosis, which might help the research model the randomness in position more

accurately. For the sake of brevity, we adopt the extreme case and assume that the search engine

provides the empirical distribution of the ad position as shown in Table 5, in addition to the daily

summary. In this case, the variation in position can be modeled non-parametrically. The log-

likelihood is given by Equation (17), where P (Vidk = v) is provided by the empirical distribution,

e.g. P (Vidk = 5) = 0.29. As pointed out earlier, this data can also be independently collected by

an advertiser by periodically crawling ads from a search engine.
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Table 5. Empirical distribution of ad position

position frequency P (V = v)

2 20 0.13
3 10 0.07
4 50 0.32
5 45 0.29
6 30 0.19

Position-Level Summary

The complete dataset entirely eliminates aggregation bias, but it might be difficult for search engines

to provide this data due to privacy or technical concerns. Instead, the search engine can provide

a position-level summary, which is sufficient statistics for the logit model as we show below. The

position-level summary reports the keyword performance measures for every position (where the

ad appeared) separately. It is easy to show that Equation (8) can be simplified to

LL(β|complete data) ∝
K∑
k=1

D∑
d=1

∞∑
v=1

cvdk log pvdk + (nvdk − cvdk) log(1− pvdk), (18)

where nvdk and cvdk are the number of impressions and clicks on the kth ad at position v on the dth

day, respectively. Since Equation (18) is identical to the likelihood function of the position-level

data, a position-level summary is sufficient statistic to correctly estimate the parameters of the

model.

6.2 Application to Search Engine Data

We apply the summarization and modeling techniques presented earlier to the search engine data

available to us. Since the data used in Section 4 are quite extensive and representative of typical

data in SSA, the results presented here aim to provide real world validation for the suggested

summarization techniques. The results demonstrating the performance of these techniques vis-

a-vis the search engine data are presented in Table 6. The comparisons between the different

summarization techniques are performed using the mean average percentage error (MAPE) in the

estimates of β0 and β1, measured as |β̂0c− β̂0s|/β̂0c and |β̂1c− β̂1s|/β̂1c, respectively. Note that the

HB-LIV model is used for this analysis.
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Table 6. Comparative performance of various data summarization approaches on search engine data.

Method Data Requirement MAPE(ε0) MAPE(ε1)

Different Ways of Aggregation
Arithmetic Mean O(X) 53.4% 28.9%

Geometric Mean O(X) 42.1% 17.5%

Harmonic Mean O(X) 40.3% 10.2%

Poisson Model O(X) 43.3% 22.8%

Pooling Data Across Days O(X) 21.8% 10.8%

Mean and Variance O(2X) 15.2% 7.8%

Empirical Distribution O(NX) 9.8% 4.2%

Position-level Summary o(NX) 0% 0%

Firstly, we observe that both geometric and harmonic means perform better than the arithmetic

mean. This reduction in bias is due to the convexity of both these aggregation techniques, which

match the convexity of the position−CTR curve. We also observe that the harmonic mean performs

better than the geometric mean. This implies that if a search engine wants to provide only the mean

position in the campaign reports, it should provide the harmonic mean of the position. This result

also suggests that researchers who aggregate sponsored search data at a weekly or a monthly level

for lack of sufficient data or computational reasons should use the harmonic mean for aggregation.

Secondly, we observe that modeling techniques have mixed performance. Modeling the variation in

position as a Poisson random variable does not work well as shown in Table 6. This approach does

not perform very well because the ad position does not follow a Poisson distribution, a hypothesis

we confirm using the Neyman-Scott test. However, pooling data across days leads to significant

decrease in the bias, but the effect is heterogeneous across keywords. This approach works best

when the distribution of the ad position does not change across days, e.g. when the bids are held

constant in the observation period. If the bids change, then the performance of this technique

drops considerably. Thirdly, we observe that richer data that provide higher order moments lead

to significant improvement in the parameter estimation. From Table 6, we observe that using
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both the mean and the variance to model the variation in the ad position significantly improves

the estimates. Not only do we observe a reduction in the aggregation bias but there is also a

considerable decrease in the error in β̂0s. On average, there is more than 70% reduction in the

estimation error associated with β0 and β1. Using the empirical distribution marginally improves

the estimation performance. This summarization technique performs better than all the preceding

techniques and the MAPE is considerably lower for β0 and β1. When the position-level summary is

used, the aggregation bias is completely eliminated. However, this technique requires substantially

more data as compared to the other techniques.

6.3 Application to Simulated Data

In order to perform better characterization of these techniques and ascertain their performance

under different conditions, we turn to simulated data.16

6.3.1 A Model of Sponsored Search Auctions

We model a generalized second price auction to determine the position of the ad across different

impressions. We adopt the approach presented by Abhishek and Hosanagar (2013) and assume

that the competing advertisers draw their bids from a Weibull distribution which is given by

F (x;ψ, c) = 1− exp

{
−
(x
c

)ψ}
,

where ψ is the shape parameter and c is the scale parameter. A Weibull distribution is quite flexible

and has been shown to capture the bid distribution better than other commonly used distributions

(Abhishek and Hosanagar, 2013). Variation in ψ can give rise to different types of competing bid

distributions, whereas c changes the magnitude of the bids. Low values of ψ lead to heterogeneous

bids, whereas higher values of ψ lead to relatively homogeneous bids. These competing bids are

stochastically changed during the course of the day, leading to intra-day variation in position.17

The probability that the bids are changed before an impression is denoted by κ. Intuitively, the

intra-day variation in position increases in κ. In Section 3, we had assumed that the distribution

of the ad position remains constant during the period of observation for analytical tractability.

16We thank the Associate Editor and the anonymous reviewers for suggesting this extension.
17The findings are qualitatively similar for different values of ψ.
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Here, we relax this assumption such that the advertiser can change his bid several times during the

observation period (but not within a day), changing FV (.). To model consumer choice, a logit data

generating process is used and the inputs to the simulation are the coefficients of the logit model

(β0, β1) and κ. The consumer’s decision to click on the ad (of the focal advertiser) conditional on its

position is simulated for each query using the random utility model specified in Equation (2). The

complete data record the position and the binary click decision for every impression. In addition,

the daily total number of impressions, clicks and the mean position for the ad are computed and

recorded in the aggregate data. 100 different runs are generated for every tuple β0, β1 and κ, where

β0 ∈ [−2,−1], β1 ∈ [−1,−0.25] and κ ∈ [0, 1].

For the sake of brevity, the exact characterization of the bias is presented in the Online Ap-

pendix. There are three main insights from this analysis – (i) the bias (and the intra-day variation)

increases with κ as shown earlier in Proposition 2, (ii) when FV (.) is not constant during the

simulation period, the bias increases super-linearly in |β1|, and (iii) the error in the estimate of

intercept term increases in |β1| and κ.18 We now apply the techniques proposed in Section 6.1 on

the simulated data to obtain a greater understanding of their effectiveness.

6.3.2 Analysis on Simulated Data

Similar to Section 6.2, we use MAPE to compare the various techniques, but instead of measuring

the error with respect to β̂c, we use the simulation parameter β.19 We begin by presenting the over-

all performance of the aforementioned techniques and subsequently discuss how their performance

varies across different values of β.

The comparisons between these methodologies are presented in Table 7. We continue to observe

that the harmonic mean performs considerably well as compared to the arithmetic and geometric

means. The magnitude of the errors reported in Table 7 is lower in comparison to the errors

reported in Table 6. This is due to the fact that we include a larger range of β0 and β1 in our

simulation analysis than what is observed in practice. Pooling data across days, to derive the

underlying distribution of position, reduces the bias significantly. In the absence of adequate data,

this approach can be used by researchers and academics to reduce aggregation bias. This approach

18These results are presented in Tables 1 and 2 in the Online Appendix.
19There is no statistical difference between β and β̂c.
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Table 7. Comparative performance of various data summarization approaches on simulated data.

Method MAPE(ε0) MAPE(ε1)

Different ways of aggregation
Arithmetic mean 10.3% 20.1%

Geometric mean 8.1% 10.6%

Harmonic mean 4.4% 5.8%

Poisson model 8.1% 9.7%

Pooling data across days
Not accounting for bid changes 6.2% 7.7%

Accounting for bid changes 3.4% 4.2%

Mean and Variance 2.8% 3.6%

Empirical Distribution 2.1% 2.5%

Position-level Summary 0% 0%

is more effective when changes in the position distribution (e.g. due to bid changes) are explicitly

accounted for in the estimation. If there are significant differences in the position distribution

across days, then this approach might further increase the bias.

Daily summaries that report more data, e.g. the daily mean and variance, decrease the esti-

mation error to a significant extent in the simulations. The bias when both the daily mean and

variance are reported is quite similar to the bias when data is pooled across days. However, it

should be kept in mind that pooling data across days is effective only when changes in FV (.) are

explicitly accounted for, which can be challenging in a real-world setting. Providing the daily em-

pirical distribution of position further decreases the estimation error, but the incremental benefit

is small. Not surprisingly, the position-level summary has no bias.

Figure 3 demonstrates the bias for different techniques. Clearly, we observe that the magnitude

of the bias increases non-linearly for all techniques as β1 increases. Furthermore, we observe that

using the empirical distribution out performs all the other techniques, while using the harmonic

mean leads to the least amount of bias when only the daily means are reported.
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Figure 3. Magnitude of the bias for different values of β1 when β0 = 2.0 and κ = 0.5.

6.4 Summary of Results

The empirical analysis presented here has two distinct themes. The first theme suggests that

provisioning of better data by a search engine can lead to significant reduction in the aggregation

bias. As we show in the preceding sections, it is incentive compatible for the search engine to provide

better data to advertisers. The appropriate dataset should be determined as a trade-off between

the loss due to aggregation and the costs associated with providing richer data to advertisers. If a

search engine can provide only daily means, it should report the harmonic mean. On the hand, if a

search engine is at a liberty to provide any data, it should provide the position-level summary. The

second theme points to steps that can be taken by an advertiser or a researcher to explicitly account

for the variation in position using modeling techniques (e.g. pooling data across days) or collecting

addition information (e.g. by crawling the search engine to generate the empirical distribution). A

unilateral reduction in the aggregation bias can prove to be profitable for an advertiser as shown

in Corollary 1.

7 Conclusions

Search engine advertising is fast emerging as an important and popular medium of advertising for

several firms. The medium offers rich data for advertisers on consumer click and conversion behav-

ior. As a result, there has been considerable interest in analyzing SSA data among practitioners and

researchers. Several models have been proposed to study consumer behavior and inform advertiser
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strategies.

This paper makes three main contributions. First, we demonstrate the existence of aggregation

bias and its effect on the equilibrium of the SSA auction. We show that equilibrium bids are lower

when advertisers use aggregate data. As a result the search engine’s revenues are always lower due

to the bias. Second, we use a large search engine dataset and quantify the magnitude of the bias

and measure its economic impact. Third, we present various summarization techniques that can

be used by search engines to provide better datasets to advertisers.

These findings have important managerial and economic implications. Advertisers commonly

use aggregate data provided by search engines to guide their bidding strategies. Our results suggest

that advertisers might not be bidding optimally in these auctions because they overestimate the

clicks obtainable at a given position. This not only impacts the advertisers negatively, but also

leads to a reduction in the revenue of the advertiser. Given the size of the SSA industry, these losses

can translate into several million dollars of lost revenues for the search engines. Our study points

out that the current format of the data provided to advertisers is not adequate, and search engines

should take steps to address this problem. We recognize that it might be infeasible for search

engines to store and report impression level data due to the size of such datasets and potential

privacy concerns. However, these constraints do not imply that it is infeasible to provide adequate

data to advertisers. We provide guidelines to search engines about the nature of datasets that can

be provided to researchers and quantify the reduction in the bias that each of these techniques

offer.

We also find that, as a result of aggregation bias, consumer response to other ad attributes, such

as ad text or branding, may also have been incorrectly estimated. Thus advertisers must be cautious

in applying the biased estimates to guide key managerial decisions such as ad design and keyword

selection. In the absence of adequate data from search engines, advertisers and researchers must

take into account the variation in ad position within a day. This can be determined by examining if

multiple queries are matched to a single keyword (match type is broad) and if bids of competitors

change considerably within a given day. If the ad position for a keyword is somewhat stable across

impressions within a day, the bias is likely to be low and existing random utility models can be

applied on aggregate data.

Our study focuses mainly on demonstrating the existence and direction of aggregation bias in
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the coefficient of position and identifying some economic consequences of this bias. An interesting

and related question is how aggregation affects ad attributes like wordographics, presence of brand

information, ad creative etc. and whether their coefficients also suffer from aggregation bias. In

this paper, the effect of ad attributes is subsumed in the intercept term as we do not have data

on ad attributes. A richer dataset that contains ad characteristics might help in a more extensive

analysis of this issue. Another direction for future research is building models that endogenize

the variation in position. The variation in position can be modeled using probabilistic models or

structural methods. In ongoing work, we are developing a model that explicitly accounts for the

intra-day variation in position and would therefore not suffer from aggregation bias.

SSA presents an exciting opportunity to understand consumer behavior and drivers of firms’

advertising strategy. Through this paper we hope to inform the practitioners about the inadequacies

of the data standards commonly used in SSA so that they can take steps to address these problems.

We also identify issues with some common modeling techniques in SSA so that subsequent research

in this emerging area is informed about these issues.

Appendix: Proofs of Propositions

Proof of Lemma 1

We use the following result from Muller and Stoyan (2002, page 27) to prove this result. Let

V1, ..., Vn be iid random variables and f1, ..., fn measurable real functions. Define the function f̄ by

f̄(v) =
1

n

n∑
i=1

fi(v).

Then,
n∑
i=1

f̄(Vi) ≤cx

n∑
i=1

fi(Vi).

Using this result we now prove that Wn ≤cx V , where Wn is the average position when there are

exactly n impressions on the day. Let fi(v) = v/(n− 1) for all i = 1, . . . , n− 1 and fn(v) ≡ 0.

f̄(v) =
1

n

n−1∑
i=1

v/(n− 1) =
v

n
.
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Since
n∑
i=1

f̄(Vi) =
1

n

n∑
i=1

Vi and
n∑
i=1

fi(Vi) =
1

n− 1

n−1∑
i=1

Vi ⇒
1

n

n∑
i=1

Vi ≤cx
1

n− 1

n−1∑
i=1

Vi.

Proceeding in a recursive manner

1

n− 1

n−1∑
i=1

Vi ≤cx
1

n− 2

n−2∑
i=1

Vi,

. . .

V1 + V2
2

≤cx V.

⇒Wn =
1

n

n∑
i=1

Vi ≤cx
1

n− 1

n−1∑
i=1

Vi ≤cx . . . ≤cx
V1 + V2

2
≤cx V

Let g be any convex function

As E[g(W )] =
∞∑
i=1

g(Wn)P (n),⇒ E [E[g(W )]] = E

[ ∞∑
i=1

g(Wn)P (n)

]
,

⇒ E [E[g(W )]] =
∞∑
i=1

E [g(Wn)]P (n) ≤
∞∑
i=1

E [g(V )]P (n) = E [g(V )]
∞∑
i=1

P (n) = E [g(V )] ,

as P (n) is a probability measure. Therefore W ≤cx V .

Proof of Proposition 1

Let Yi denote an indicator variable that equals 1 if the ith impression resulted in a click and zero oth-

erwise. We assume that the clicks are independent of each other and hence Yis are independent.The

log likelihood of observing the dataset with a total of I ad impressions is given by

LL(β|complete data) =

I∑
i=1

yi log pi + (1− yi) log(1− pi). (19)

The first order condition (F.O.C) for Equation (19) is as follows

∂LL

∂β
=

I∑
i=1

{yi(1− pi)− (1− yi)pi} x′i = 0,

=
I∑
i=1

{yi − pi} x′i = 0.
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where xi = (1 vi)
′. Since we know that LL(β|data) is a convex function in β (Hayashi, 2000) this

F.O.C gives us the following two equations

C =
I∑
i=1

pi, (20)

I∑
i=1

yivi =
I∑
i=1

vipi. (21)

Dividing Equation (20) by I we get

obsctr =
C

I
=

1

I

I∑
i=1

pi. (22)

If the number of impressions on day d is nd and the number of clicks is cd. The log-likelihood

of observing the aggregate data for D days is given by

LL(β|aggregate data) =
D∑
d=1

cd log pd + (nd − cd) log(1− pd) (23)

Evaluating the first order condition for Equation (23)

∂LL

∂β
=

D∑
d=1

{cd(1− pd)− (nd − cd)pd} x′d = 0,

=

D∑
d=1

{cd − ndpd} x′d = 0,

where xd = (1 wd)
′, which in turn gives us

D∑
d=1

cd = C =

D∑
d=1

ndpd, (24)

D∑
d=1

wdcd =
D∑
d=1

ndwdpd. (25)

Dividing Equation (24) by I we get

obsctr =
C

I
=

D∑
d=1

ndpd
I

. (26)
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Note that the obsctr is the came in both cases.

Assuming I is large we can apply Chevychev’s law of large numbers to rewrite Equation (22) as

obsctr = E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
. (27)

If we have a large enough observation period, Equation (26) can be simplified as

obsctr =

D∑
d=1

nde
β̂0,s+β̂1,swn

I(1 + eβ̂0,s+β̂1,swn)
= E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
.

As the observed ctr, obsctr is same in both the cases,

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
= E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
. (28)

As the convex ordering in Lemma 1 holds and logit is a convex in position for β0 < 0 (which is a

reasonable assumption in SSA as the CTR on the topmost position is less that 0.2 in all cases), it

follows from the definition of convex ordering that

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
≥ E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
, (29)

if β̂c = β̂s. The equality holds only when FV (.) = FW (.) i.e. which hold only under few special

cases (e.g. when there is exactly one impression every day or there is no intra-day variation in

position). Since Equation (28) and Equation (29) cannot simultaneously be true and Equation

(28) always holds we prove by contradiction that β̂c ̸= β̂s.

Proof of Propositions 2 (i) and (ii)

i) Since we know that

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
= E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
,
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and by definition of convex order

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
≥ E

[
eβ̂0,c+β̂1,cW

1 + eβ̂0,c+β̂1,cW

]
,

we can say that

E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
≥ E

[
eβ̂0,c+β̂1,cW

1 + eβ̂0,c+β̂1,cW

]
.

As this result hold for any distribution ofW , this relation should hold pointwise for the two function.

⇒ eβ̂0,s+β̂1,sx

1 + eβ̂0,s+β̂1,sx
≥ eβ̂0,c+β̂1,cx

1 + eβ̂0,c+β̂1,cx

ii) The preceding relationship implies that

eβ̂0,s+β̂1,sx ≥ eβ̂0,c+β̂1,cx ∀x ≥ 0

⇒ β̂1,s > β̂1,c

Proof of Propositions 2 (iii)

If the true model is U = β0k + β1kVi + ϵ, but we use the aggregate data for estimation, then we

have

U = β0 + β1(Wd + Zi) + ϵ,

= β0 + β1Wd + β1Zi + ϵ.

The disturbance term in this case is β1Zi+ ϵ. Assuming that β1Zi+ ϵ is approximately logistically

distributed, β̂1,s → β1/
√
V ar(β1Zi) + 1, where σϵ = 1 for the purpose of identification. The

variance V ar(β1Zi) can be computed in the following manner.

V ar(Zi) = V ar(Vi −Wd),

= V ar(Vi) + V ar(Wd)− 2Cov(Vi,−Wd),
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= σ2V +
{
σ2V + µ2V

}
E
[
1

N

]
+ 2σ2V E

[
1

N

]
,

= σ2V +
{
3σ2V + µ2V

}
E
[
1

N

]
.

Hence,

β̂1,s →
β1√

β21
{
σ2V + (3σ2V + µ2)ϕ

}
+ 1

,

where ϕ = E[1/N ].

Proof of Proposition 3

(i) We assume that advertiser j moves to position j
′
if he uses aggregate data. Since j

′
ends up

higher than j in equilibrium, b
′
j(sj , j

′
, h) < bj′(sj′ , j

′, h) or

1

αj′−1

((αj′−1 − αj′ )sj′ + αj′ bj′+1) >
1

α
′

j′−1

((α
′

j
′−1

− α
′

j
′ )sj + α

′

j
′ bj′+1), (30)

which also implies that his bid in the equilibrium decreases, i.e. b
′
j < bj′ . In addition, as b

′
j is lower

than bj , j
′ ≥ j. The bids for all the advertisers in this case are as follows:

b
′
i =

1

αi−1

(
K∑
k=i

(αk − αk+1)sk

)
for i > j

′
,

b
′
j =

1

α
′

j′−1

(α
′

j
′−1

− α
′

j
′ )sj +

α
′

j
′

αj′

j
′
+1∑
k=i

(αk − αk+1)sk

 ,

b
′
i =

1

α
′
i−2

 j
′∑

k=i

(αi−2 − αi−1)si + αj′+1b
′
j

 for j
′ ≥ i > j,

b
′
i =

1

α
′
i−1

(
j−1∑
k=i

(αi−1 − αi)si + αj−1b
′
j+1

)
for i < j.

As h do not change for advertisers below j
′
, therefore their bids remain the same. It is easy to see

that advertisers j + 1 to j
′
end up bidding higher, i.e. b

′
i > bi for j < i ≤ j

′
though they moves up

by 1 position.

We now show that the bid associated with every position ≥ j
′
is lower than when complete
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data is used. Lets consider the bid b
′

j′
, placed by advertiser j

′
who occupies position j

′ − 1. We

start off by showing that b
′

j′
< bj′−1.

b
′

j′
− bj′−1 =

1

αj′−2

((αj′−2 − αj′−1) (sj′ − sj′−1)︸ ︷︷ ︸
<0 by construction

+αj′−1 (b
′
j − bj′ )︸ ︷︷ ︸

<0 by assumption

) < 0.

So the bid for position j
′ − 1 is lower than the bid in the complete case. Proceeding in a similar

manner it is easy to show that bids for all positions above j
′ − 1 will also be lower. This implies

that b
′
i < bi for i < j (these ads do not change position). To summarize – b

′
j < bj , b

′
i < bi for i < j,

b
′
i > bi for j < i ≥ j

′
and b

′
i = bi for i > j

′
.

(ii) As all the bids are either the same or lower in this case, search-engine revenue is lower (ΠA2S <

ΠCS ). The payoff of advertiser j is lower as any deviation from the optimal bidding policy results in

a strictly lower payoff. Advertisers j
′
+1 onwards receive the same payoff and all other advertisers

are better off due to suboptimal bid by advertiser j. Starting off with advertiser j
′
,

ΠA2
j′

−ΠC
j′

= (αj′−1 − αj′ )sj′ − αj′−1b
′
j + αj′ b

′

j′+1

= (αj′−1 − αj′ )sj′ + αj′ bj′+1 −
αj′−1

α
′

j
′−1

((α
′

j′−1
− α

′

j′
)sj + α

′

j′
bj′+1)

> 0 (by Equation 30)

Similarly, using induction we can show that ΠA2i > ΠCi for advertiser i, s.t. j < i ≤ j
′
. For i < j,

the revenues remain the same but the payment to the search engines is lower, hence their payoff

are higher for these advertisers too (ΠA2i > ΠCi , i ¡ j).

Proof of Proposition 4

(i) If all advertisers use the same incorrect estimate of αi, the optimal bidding policy is the one

proposed by Edelman et al. (2007). They just use α
′
i instead of αi to compute the optimal bids.

We can show by induction that b
′
j ≤ bj for all advertisers.

Step 0: Let b
′
K+1 = bK+1 = 0.

Step 1: b
′
K = sK

(
1− α

′
K

α
′
K−1

)
< sK

(
1− αK

αK−1

)
= bK .
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Assuming b
′
j+1 < bj+1,

Step j:

b
′
j = sj

(
1−

α
′
j

α
′
j−1

)
+

α
′
j

α
′
j−1

b
′
j+1

< sj

(
1−

α
′
j

α
′
j−1

)
+

α
′
j

α
′
j−1

bj+1

< sj

(
1− αj

αj−1

)
+

αj
αj−1

bj+1

< bj .

Hence, b
′
j < bj ∀j ≤ K.

(ii) Since all advertisers occupy the same position as they did earlier and pay less, search engine

profits are lower ( ΠA1S < ΠCS ). The advertisers’ payoff in the case are higher: ΠA1i = αi(si−b
′
i+1) >

αi(si − bi+1) = ΠCi from Proposition 5 (i).

Proof of Proposition 5

Lets assume that Advertiser j uses aggregate data and appears at a position j
′
. Let the equilibrium

bids be denoted by b
′
1, . . . , b

′
K , 0. In the equilibrium, αj′ (sj − bj′ ) > αi(sj − bi+1) ∀ i ̸= j

′
. Now

suppose that Advertiser j does not have access to aggregate data and overestimates αi/αi−1. As

a result, he bids lower and moves to position j
′′ ≥ j

′
. Following the argument in the Proof of

Proposition 4, the bids for all positions i, i ≤ j
′′
decrease and all other advertisers are better off.

As the bids are (weakly) lower, the search-engine revenue is lower. The payoff to Advertiser j is

αj′′ (sj − bj′′ ) < αj′ (sj − bj′ ) as he found it optimal to bid for position j
′
when he could correctly

estimate the CTR. This implies that he is worse off using aggregate data.
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