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Abstract

Motivated by the growing practice of using social network data in credit scoring, this study

analyzes the impact of using network based measures on customer score accuracy and on tie

formation among customers. We develop a series of models to compare the accuracy of customer

scores obtained with and without network data. We also investigate how the accuracy of social

network based scores changes when individuals can strategically construct their social networks

to attain higher credit scores. We find that, if individuals are motivated to improve their

scores, they may form fewer ties and focus them on more similar partners. The impact of

such endogenous tie formation on the accuracy of consumer credit scores is ambiguous. Scores

can become more accurate as a result of modifications in social networks, but this accuracy

improvement may come with greater network fragmentation. The threat of social exclusion in

such endogenously formed networks provides incentives to low type members to exert effort that

improves everyone’s creditworthiness. We discuss implications for both managers and public

policy.
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Noscitur ex sociis.

Latin proverb

You are known by the company you keep.

English proverb

1 Introduction

When a consumer applies for credit, attempts to re-finance a loan, or wants to rent a house,

potential lenders often seek information about the applicant’s financial background in the form of

a credit score provided by a credit bureau or other analysts. A consumer’s score can influence both

the lender’s decision to extend credit and the terms of the credit. In general, consumers with high

scores are more likely to obtain credit, and to obtain it with better terms, including the annual

percentage rate (APR), the grace period, and other contractual obligations of a loan (Rusli, 2013).

Given that people use credit for a range of undertakings that affect social and financial mobility,

such as purchasing a house, starting a business, or obtaining higher education, credit scores have a

considerable impact on the access to opportunities and hence on social inequality among citizens.

Until recently, assessing consumers’ creditworthiness relied solely on their financial history. The

financial credit score popularized by Fair, Isaac and Corporation (FICO), for example, relies on

three key data to determine access to credit: consumers’ debt level, length of credit history, and

regular and on-time payments. Together, these elements account for about 80% of the FICO score.

Within the past few years, however, the credit scoring industry has witnessed a dramatic change

in data sources (Chui, 2013; Jenkins, 2014; Lohr, 2015). An increasing number of firms rely on

network based data to assess consumer creditworthiness. One such company, Lenddo, is reported

to assign credit scores based on information in users’ social networking profiles, such as education

and employment history, how many followers they have, who they are friends with, and information

about those friends (Rusli, 2013). Similar to Lenddo, a growing number of start-ups specialize in

using data from social networks. Such firms claim that their social network based credit scoring and

financing practices broaden opportunities for a larger portion of the population and may benefit

low-income individuals who would otherwise find it hard to obtain credit.

Our study is motivated by the growing use of such practices and investigates whether a move

to network based credit scoring affects financing inequality. In particular, we address the following

questions. First, from the perspective of lenders, is there an advantage to using network based

measures rather than measures based only on an individual’s data? Second, as the use of social
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network data becomes common practice, how may consumers’ endogenous network formation influ-

ence the accuracy of credit scores? Third, how does peer pressure operate in network based credit

scoring? Finally, and most importantly for public policy, how do these scores influence inequality

in access to financing?

1.1 Main insights

Access to financing is correlated with one’s credit score. Following Demirgüç-Kunt and Levine

(2009), we assume that credit scores can influence access to financing at both the extensive and

intensive margins, i.e., by increasing the number of individuals who are considered eligible for

financing as well as by providing access to credit at better terms. Although network based scoring

can affect access to financing at the extensive and intensive margin, the impact on each might be

uneven for different segments of society.

We first develop a model with continuous risk types incorporating network based data (Sec-

tion 2). Under the assumption of homophily, the notion that people are more likely to form social

ties with others who are similar to them, we show that network data provide additional informa-

tion about individuals and reduce the uncertainty about their creditworthiness. We find that the

accuracy of network based scores is dependent mostly on information from the direct ties, i.e., the

assessed consumers’ ego-network. This implies that credit-scoring firms can assess an individual’s

creditworthiness efficiently using data from a subset of the overall network.

In Section 3, we extend our model to allow consumers in a network to form ties strategically in

order to improve their credit scores. We find that they may then choose not to connect to people

with lower scores. This can result in social fragmentation within a network: individuals with bet-

ter access to financing opportunities choose to segregate themselves from individuals with worse

financing opportunities. As a result, individuals self-select into highly homogeneous yet smaller

sub-networks. The impact of such social fragmentation on credit scoring accuracy is ambiguous.

On the one hand, scores may more accurately reflect borrowers’ risk as each agent will be located

in a more homogeneous ego-network. On the other hand, scores may become less accurate be-

cause smaller ego-networks provide fewer data points and hence less information on each person.

How important financial scores are relative to social relationships determines whether strategic

tie formation improves or harms credit score accuracy. When accuracy declines, network based

scoring could put deserving individuals with low financing opportunities in further hardship. This

result supports concerns about social credit scoring from consumer advocates and regulators like

the Consumer Financial Protection Bureau and the Federal Trade Commission (Armour, 2014).

In Sections 2 and 3, we study environments where all individuals in the society, independent
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of their type, have similar needs for financing. We relax this assumption in Section 4 where we

introduce a formulation with discrete risk types that may vary in their needs for financing. When

studying this environment, we pay particular attention to the strategic formation of social ties. An

important result is the emergence of social exclusion or discrimination among low type individuals.

They avoid associating with one another, because such associations signal even more strongly to

lending institutions that their type is low. Such within group discrimination is different from

between-group discrimination studied commonly in the literature (e.g. Arrow, 1998; Becker, 1971;

Phelps, 1972).

In Section 5, again within a discrete setting, we allow individuals to exert effort to improve

their true creditworthiness or ‘type’. When social ties motivate effort, social credit scoring may

benefit individuals with poor financial health in two ways: not only by letting them benefit from

a positive signal from social ties with others having a stronger financial footing, but also by moti-

vating them to invest more in their own financial health. We consider environments with explicit

discrimination and with homophily. We find that when there are complementarities between the

effort exerted by individuals, the between-group connections can motivate effort and thus lead to

increased social mobility in both environments. The within-group connections also improve effort

in a discriminatory environment. In contrast, when homophily is the only factor determining tie

formation, a high number of low type friends who exert low effort will reduce an individual’s desire

to exert effort. In Section 6, we analyze another way individuals can exert effort to improve their

financial outcomes: actively networking to endogenously alter the probability of meeting people

with high creditworthiness. Our analysis demonstrates that low types exert effort to meet others

more aggressively than the high types only when they are in dire need of improving credit access.

Otherwise, high types exert higher effort.

1.2 Related literature

Though motivated by and couched in terms of social credit scoring, the insights we develop go

beyond that realm. Our models involve a relatively abstract notion of customer attractiveness or

‘type’ that has two properties: (1) social relationships are homophilic with respect to types and

(2) a third party like a firm or society at large values higher types more and bestows some rewards

(external to social relationships) that are monotonically increasing with one’s type. The notion

of homophily in customer value, i.e., the notion that attractive prospects or customers are more

likely to be connected to one another than to unattractive ones, and vice versa, underlies social

customer scoring in predictive analytics (e.g., Benoit and Van den Poel, 2012; Goel and Goldstein,

2013; Haenlein, 2011). It also is the basis for targeting friends and other network connections of
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valuable customers in new product launch (e.g., Haenlein and Libai, 2013; Hill et al., 2006), in

targeted online advertising (Bagherjeiran et al., 2010; Bakshy et al., 2012; Liu and Tang, 2011),

and in customer referral programs (e.g., Kornish and Li, 2010; Schmitt et al., 2011). The basic

insights also apply to employment settings, where firms have long used employee referral programs

to attract better applicants (e.g., Castilla, 2005) and many have started to use social network data

to gain more information about applicants’ character and work ethic (e.g., Roth et al., 2013).

The model construct that we label ‘social credit score’ captures a customer’s attractiveness

or type as perceived by a firm based on social network information, in which the firm bestows

some benefits that are monotonically increasing with type. Hence, our insights about social credit

scoring can also be interpreted as pertaining to consumers’ social status more broadly, i.e., their

“position in a social structure based on esteem that is bestowed by others” (Hu and Van den Bulte,

2014, p. 510). As such, our analysis involving endogenous tie formation adds not only to research

traditions in economics and sociology (e.g., Ball et al., 2001; Podolny, 2008) but also to the recent

work in marketing on how status considerations affect consumers’ networking behavior (Lu et al.,

2013; Toubia and Stephen, 2013), their acceptance of new products (Iyengar et al., 2015) and their

appeal as customers (Hu and Van den Bulte, 2014).

Even when limited to the realm of financial credit scoring, our analysis relates to several streams

of recent work. First is the large and growing amount of work on micro-finance and, more specifi-

cally, how group lending helps improve access to capital by reducing the negative consequences of

information asymmetries between creditor and debtor (e.g., Ambrus et al., 2014; Bramoullé and

Kranton, 2007a,b; Stiglitz, 1990; Townsend, 1994). Our analysis focuses on individual loans rather

than group loans, and on a priori customer scoring rather than a posteriori compliance through

group monitoring and social pressure. Hence, our result that social credit scoring can lead people

to form their network ties differently and to exert more effort in improving their financial health is

different from yet dovetails with the evidence by Feigenberg et al. (2010) that group lending tends

to trigger changes in network structure that in turn reduce loan defaults. The two different kinds

of “social financing” practices acting at two different stages of the loan (customer selection and

terms definition vs. compliance) can both lead to improved outcomes mediated through endogenous

changes in network structure.

Second, we provide new insights on the risk of discrimination and exclusion triggered by social

financing (Ambrus et al., 2014; Armour, 2014). Our model allows for the possibility of discrimina-

tion against less creditworthy individuals. There are two ways through which such discrimination

can come about. The first is that individuals may be subject to discrimination based on type. In

an endogenous network, borrowers will be more selective in forming relationships, and may pre-
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fer to form relationships with higher-type individuals to protect their credit score. Formation of

networks in order to attain a high credit score can be an indirect way of discrimination because

some individuals are systematically excluded from others’ networks. The second is that individuals

may observe each other’s effort to improve their score and may discriminate based on personal ef-

fort. Any low-type individual who does not exert effort may face disengagement by fellow low-type

contacts who do exert effort and who want to disassociate their own credit score from his.

Third, our work is also relevant to ongoing debates on the impact of new social technologies

on social integration versus balkanization. Rosenblat and Mobius (2004) find that a reduction

in communication costs decreases the separation between individuals but increases the separation

between groups. Along similar lines, van Alstyne and Brynjolfsson (2005) find that the internet

can lead to segregation among different types of individuals. In this study, we identify conditions

under which network based credit scoring (and customer scoring in general) may foster or harm

integration within vs. between groups.

Finally, our work will be of topical interest to the growing number of scholars seeking to better

understand consumers’ financial behaviors, especially the role of homophily (Galak et al., 2011)

and trust signaling (e.g., Herzenstein et al., 2011; Lin et al., 2013) in gaining access to credit. It will

also be of interest to researchers focusing on the practices in emerging economies where consumer

finance and access to credit are particularly important yet the traditional credit scoring apparatus

is found lacking. Creditors in these markets often seek to enrich scores based on individual’s history

with additional information (e.g., Guseva and Rona-Tas, 2001; Rona-Tas and Guseva, 2014; Sudhir

et al., 2014).

The rest of the article develops as follows. In Section 2, we present a benchmark model of

data collection from networks to assess one’s creditworthiness, and then provide justification for

the emergence of this industry. In Section 3, we investigate the possibility of networks forming

endogenously to the social credit scoring practice. We extend our model to allow individuals to

vary in their financing needs in Section 4. We consider the possibility of social mobility through

effort in Section 5. We extend the model in several directions in Section 6 and conclude with

implications for public policy and marketing practice in Section 7.

2 Model with Exogenous Network

Consider a society with a large population S of individuals. Each individual i is represented with

a type xi, and xi follows N(0, q−1) across individuals, with precision q > 0. We assume that each

agent knows his own type and discovers that of fellow consumers upon meeting them.
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The process of forming friendships is specified as follows. Each pair of individuals meet with a

very small independent probability of ν > 0. Between i and j there is an independent match value

mij ∼ χ2. A friendship between i and j creates utility mij − |xi − xj | for either individual. So,

our model features homophily based on preference rather than opportunity (Zeng and Xie, 2008):

Individuals enjoy the company of others like them more than that of others unlike them. Person i

accepts the formation of a friendship tie with j iff they have met and:

mij > |xi − xj |. (1)

Upon mutual consent of both parties, a friendship tie is created. The assumption of a χ2

distribution implies that the probability i and j become friends upon meeting is:

Pr(mij > |xi − xj |) = e−|xi−xj |
2/2. (2)

Let G denote the set of friendships (ties) in society and ni denote the number of friends of i, or,

the degree of i under G. The expected number of friends for i is E(ni|xi) = Sν
√

q
q+1e

− q
1+q

xi
2/2

.1 In

order to represent an environment with sufficient uncertainty about creditworthiness of individuals,

we make three assumptions: (i) the society is large (S → +∞), (ii) the probability that any pair of

individuals meet is very small (ν → 0), and (iii) types are diffuse (q → 0.) These three properties

characterize a society with sufficient uncertainty about individuals. They also allows us to assume

that the product term Sν
√

q
q+1 holds a constant, which we denote by N . 2

Suppose that friendships in the society have been formed. The lender is interested in updating

its information about the types of individuals using signals collected from the network. For any

individual i, the lender may observe a noisy signal yi about his type:

yi = xi + εi (3)

where εi ∼ N(0, c−1) and is independent across individuals. The firm observes the signals of a finite

set of individuals y, which we refer to as the vector of signals as well. For these individuals, the

firm may observe the presence or absence of a tie. We use g ≡ (g1, g0) to denote such information.

Specifically, g1 is the set of the dyads which the lender knows are friends, and g0 is the set of the

dyads which the lender knows are not friends. Furthermore, for each person in y, we allow g0 to

1E(ni|xi) = S
∫ +∞
−∞ νe−(t−xi)2/2

√
q
2π
e−qt

2/2dt = Sν
√

q
q+1

e
− q

1+q
xi

2/2
.

2In a small society where everyone is likely to be friends with others, or in a society where each type is organized
in perfectly homogeneous and mutually disconnected sub-graphs (“components”), there is little to no uncertainty
about an individual’s type, implying that network based scores are less useful.
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include all the dyads that involve him and someone outside y. 3

We first present some properties about the firm’s posterior on the types of individuals in a

network. Together with the nodes in y, the ties in g1 define a sub-network involving only nodes on

which a signal is observed. In this sub-network, let di be the degree of i, and r(i, j) be the length

of the shortest path (i.e., geodesic distance) between i and j.

Proposition 1. Let vector x indicate the types of individuals contained in vector y. Pr(x|g,y) is

a multivariate normal density with precision matrix Σ−1:

(Σ−1)ii = c+ di

(Σ−1)ij = −1{ij∈g1}

and mean vector µ:

µ = cΣy. (4)

Proposition 1 states that the lender’s beliefs about the types of individuals in the network follow

a multivariate normal distribution the parameters of which depend on the network structure. So,

two individuals with identical individual signals (such as personal financial history) may obtain

different network based scores because of social connections. These individuals would obtain similar

financing opportunities if credit scores relied solely on individual history. In the new regime, despite

identical individual financial histories, it is possible that they will have unequal access to financing

because of the score gains and losses from the social network.

Equation (4) shows that the weight that a contact j’s signal receives depends on his location

within the network. Proposition 2 states an upper bound on the weight of connection j’s signal

on i’s posterior mean. When all else is equal, the upper bound on the weight of j decreases in the

distance r(i, j). If i and j are not connected in the sub-network, the weight is zero.

Proposition 2. For all i 6= j and r(i, j) < +∞, the weight matrix of Proposition 1 satisfies

cΣij <
c

c+ di

δr(i,j)

1− δ
,

where

δ ≡
maxk∈y{dk}

c+ maxk∈y{dk}
.

3This type of information arises when the lender observes all of i’s friends and their signals, which implies that i
is not friends with the rest of the society. Corollary 1 demonstrates an example of such a situation.
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To generate further insights about how the weight of a connection’s signal changes with distance,

we follow with two examples.

Example 1. For a simple example, consider a star network g1 that is centered at 1.

1

23

4

With c = 1, cΣ equals: 
0.4 0.2 0.2 0.2

0.2 0.6 0.1 0.1

0.2 0.1 0.6 0.1

0.2 0.1 0.1 0.6


By Proposition 1, this is a “weight” matrix, suggesting that to calculate the posterior mean of x1,

for example, the firm should weigh the signals (y1, y2, y3, y4) by (0.4, 0.2, 0.2, 0.2). Note, further,

that direct neighbors (friends) for nodes 2, 3, and 4 receive more weight than indirect neighbors

(friends of friends).

Example 2. Consider the following g1.

2
1 3

4

With c = 1, the weight matrix is:
0.62 0.24 0.10 0.05

0.24 0.48 0.19 0.10

0.10 0.19 0.48 0.24

0.05 0.10 0.24 0.62


Note that direct neighbors are weighed more heavily than indirect neighbors, and that direct neigh-

bors need not receive equal weight. For instance, the updating of x2 weighs the signal from node 1

more heavily than that from node 3.
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The above examples convey the intuition that distant signals on average receive lower weight

in firm’s updating of the beliefs about a consumer’s type. In examples 1 and 2, the weight of the

signal of an individual who is two links away is always lower than the weight of the individual who

is only one link away. In the second example, although individual 2 is at equal distance to persons

1 and 3, their signals receive different weights: Individual 3’s signal is diluted as he is linked to

individual 4.

Propositions 1 and 2 together imply that agents who have lower distances to high type indi-

viduals can receive a more favorable posterior in credit score assessment. Conversely, proximity to

individuals with low signals may hurt an individual’s assessment. Individuals cannot choose their

distance as we have not yet considered active selection of friendship ties to attain such benefits (see

Section 3).

In the remainder of the paper, we assume that when evaluating a particular i, the firm observes

the complete ego-network of i, i.e., all the ties ij ∈ G, and receives a signal on each of i’s friends.

We collect the signals in the vector yi, which we will refer to as the set of i’s friends as well. Note

that this imposes an additional assumption on the previous analysis: We now require that g1 equals

the complete set of i’s direct ties. The posterior belief of the firm about an individual’s type can

then be stated as a special case of Proposition 1.

Corollary 1. For the evaluation of i, Pr(xi|yi) is normal with precision

ρi =

(
c+

c

c+ 1
ni

)
, (5)

and mean

µi =
1

ρi

cyi +
c

c+ 1

∑
ij∈G

yj

 .
Corollary 1 states that when an individual has a higher number of connections, the posterior

about his type will have higher precision. The assessment of an individual with a higher degree

is likely to be closer to this true type, xi.
4 More importantly, (5) implies that the precision of

lender’s beliefs is higher than the precision of the individual signal of i, even with data only from

the direct relationships of i. The corollary thus states useful information about the efficiency of

risk assessment based on network data. If gathering data on the whole network is impossible or

costly, efficiency gains can still be attained by using data from the focal consumer’s immediate

4Notice that ρi = 1/E((µi − xi)2|yi), which is the inverse of the conditional mean squared error. Since in (5) ρi
is increasing in ni, the conditional mean squared error is decreasing with ni.
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neighbors. Remember from Proposition 2 that first degree contacts of i receive a greater weight,

and that data from longer paths in the network are expected to receive gradually lower weights in

the beliefs about one’s credit-worthiness.

3 Endogenous Tie Formation

We next study individuals’ incentives to form network ties in order to improve their scores. This

suggests that the probability that two agents will become friends depends on their type, xi, and

the expected utility from improving their credit score.

Facing network based scoring, an individual has an incentive not to form ties with low types in

order to achieve a more favorable score. Such endogenous tie formation involves a trade-off between

utility from friendship ties with people one likes and utility from a high score. To formally express

this, we assume that the posterior mean µi enters the utility additively. The utility of individual i

is:

Ui =
∑
ij∈G

(mij − |xi − xj |) + αµi, (6)

where the first part of the utility, (mij − |xi − xj |), indicates a social utility taking into consideration

homophily; and the second part, αµi, indicates how much i enjoys having a high posterior mean.

Here, α calibrates the relative importance an individual places on receiving a high credit score vs.

the utility from friendship ties with people he likes. All individuals gain utility from their posterior

credit score at rate α.5 If α = 0, the individual cares only about forming friendships for social

utility. If α→ +∞, then the agent cares little about social utility but highly about improving his

score.

Parameter α can also be interpreted as a measure of the desire for status. How much people

care about how highly others evaluate them (i.e., generate a posterior about their type based on

characteristics of their network) captures the importance people place on their position in a social

structure based on esteem that is bestowed by others, i.e., their status. Let each individual i adopt

a tie formation rule a priori (i.e., before meeting j) which states that he will accept friendship with

5To allow for the possibility that some agents may have no interest in improving their scores when they meet
others with similar types, Section 4 presents a discrete formulation of our matching model and we provide a special
case where the high types have zero utility from credit scores.
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j iff mij > ηi|xi − xj | for xj ≥ xi,

mij > λi|xi − xj | for xj < xi.

The parameters λi and ηi represent the degree to which i is willing to accept a lower and a higher

type individual as a friend. These parameters are not exogenous but will be chosen simultaneously6

and optimally by individuals. Although individual i would prefer to be friends with others similar to

him, which was expressed in (1), he may have additional utility from adding high type or removing

low type friends due to the improvement in his credit assessment. This suggests that individuals will

form relationships with others who have lower types only if the match value mij yields sufficiently

high utility.

Comparing (6) with (1), a greater (lesser) desire to link to individuals with higher (lower) types

would indicate that an agent should pick ηi ≤ 1 and λi ≥ 1. 7 Remember that forming a friendship

tie requires mutual consent: for i and j to become friends, i should want to connect with j and j

should want to connect with i. 8 Thus ηi becomes irrelevant and λi becomes the parameter that

sets the level of mixing with ‘others’. In the rest of the paper we omit any further references to ηi.

Consider the symmetric case where λi = λ for all i. If everyone in the society applies the same

rule with common λ, a friendship is established after meeting iff mij > λ|xi−xj |. With the common

rule in place, the probability of becoming friends after meeting becomes:

Pr(|xi − xj |, λ) = e−λ|xi−xj |
2/2.

Compared to the tie formation probability in an exogenous setting (given by Equation 2), indi-

viduals will be more selective in linking to others. Fewer ties will be formed in the endogenous

case.

6Note that in this model individuals form ties simultaneously. A model with sequential friendship formation
would also need to consider, in addition to tie formation rules, rules about the order in which individuals form ties,
and would need to assume that individual beliefs about firms’ financial assessment are consistent with equilibrium
outcomes.

7The benefits from network based scoring is measured by the difference between one’s expected posterior mean
and one’s individual signal. This difference increases in λi (i.e., the rate at which the individual rejects ties with
low-type friends) and decreases in ηi (i.e., the rate at which the individual adds high-type friends). Choosing ηi > 1
is worse than ηi = 1, because it decreases both the expected score benefit and the social utility of a tie. Similarly,
choosing λi < 1 rather than λi = 1 would decrease the utility from a higher credit score and the social utility of a
well-matching tie. Together, these two arguments imply that: (i) any symmetric equilibrium derived with restrictions
is still an equilibrium even if we allow ηi > 1 or λi < 1; and more importantly, (ii) there is no symmetric equilibria
where η > 1 or λ < 1.

8If we allowed individuals to form friendships without the consent of the other, then we would be in a trivial world
where everyone can link to anyone to improve his own score. In such a world, the benefits of network based scoring
are limited since a connection to a high-type is not informative of one’s type.
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3.1 Credit Scoring with Endogenous Tie Formation

In this section we complete the analysis of endogenous relationship formation using an equilibrium

concept. We use (λ, λi) to denote the common rule with the possible deviation of i. The expected

utility of i becomes:

E (Ui|xi, λ, λi) = E

∑
ij∈G

mij − |xi − xj |

∣∣∣∣∣xi, λ, λi
+ αE [µi(λ)|xi, λ, λi] . (7)

where µi(λ) = E(xi|yi, λ) is the lender’s posterior. Each individual calculates his expected utility

from being in a friendship network before the network is formed, implying that expected utility

will depend on the friendship rule (λ, λi) adopted. The expectation E(·) is taken before meeting

others. We first display a version of Corollary 1 under a symmetric rule. In the following, when λi

conforms with the common rule, we omit λi in the expectation conditionals.

Lemma 1. Under a common relationship formation rule λ, the posterior Pr(xi|yi, λ) is normal

with precision

ρi(λ) =

(
c+

cλ

c+ λ
ni

)
, (8)

and mean

µi(λ) =
1

ρi(λ)

cyi +
λc

c+ λ

∑
ij∈G

yj

 .
Compared to Corollary 1, in Lemma 1, ρi and µi are scaled by the selection rule λ. When

borrowers are more selective in forming friendships with lower types (when λ is higher), a financial

institution will put more weight on friends’ signals to update beliefs about the type of an individual

(i.e., to calculate the posterior). In broad terms, this selectivity addresses our second main research

question: When individuals begin reacting to an environment with network based scoring, are scores

going to be less precise or even more precise? In other words, can assessments based on network

data yield better assessment of individual data? Our answer to this question is a qualified yes. We

explain the mechanism through which this improvement can be achieved via a lemma and then a

proposition.

Lemma 2. The expected degree under a symmetric rule λ satisfies

E(ni|λ) =
N√
λ
. (9)
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A lower rate of mixing between types (a higher λ) results in a smaller number of ties per

person. Ties are formed only between individuals who are highly similar to each other in type.

Such self-selection reduces the expected number of connections among consumers but increases the

information value of any single link and the signal it conveys. The net effect on the formation of

ties is not clear yet. We address it next.

Proposition 3 shows that, under the limits of S, ν and q, there is a symmetric equilibrium λ∗

where λi = λ∗ which maximizes (7) for any individual i, given that λ = λ∗ is the common rule

adopted by everyone else. In other words, there exists a common tie formation rule no individual

wants to deviate from, with which the lender’s posterior is consistent.

Proposition 3. For 0 < α < N , there exists at least one symmetric equilibrium, and any symmetric

equilibrium λ∗ must satisfy

1 < λ∗ <
(

1− α

N

)−1
. (10)

Corollary 2. If c ≥
√

N
N−α , then E [ρi(λ

∗)|λ∗] > E [ρi(1)|λ = 1], where ρi ≡ Prec(xi|yi, λ). On

average, the network based score becomes more accurate when consumers are averse to connecting

with lower type peers. Otherwise, if c ≤ 1, then E [ρi(λ
∗)|λ∗] < E [ρi(1)|λ = 1]. On average, the

network based scores are less accurate.

Social credit scoring changes the incentives of individuals to form relationships. There are two

directions of change. Compared to the exogenous setting (λ = 1), in the endogenous setting with

λ = λ∗ > 1, individual relationships are formed more selectively. This has several consequences.

First, relationships are more strongly homophilous, that is, individuals form relationships with

others who are closer to their own type. This first effect has a positive impact on network scores for

lenders: The accuracy of their assessment will improve as a result of obtaining signals from closer

types. Network based scores will prove to be even more precise due to data from others who are

expected to be more similar in type.

Second, individuals will reject friendship ties with others who have lower types, implying that

ego-networks will shrink in size (Lemma 2). This second effect has a negative impact on the accuracy

of network scoring. The two forces, the homogenization and the shrinkage of ego-networks, work

against each other. The net effect is ambiguous.

Corollary 2 identifies a further condition, which we interpret using the parameter α, to char-

acterize situations in which the net effect is positive and network score accuracy improves with

endogenous tie formation. For some sufficiently small α, lenders may benefit from using network
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based credit scoring as it becomes even more precise with self-selection of individuals to form net-

works to improve their credit scores. The improvement in precision is conditional on consumers

placing sufficiently low weight on financial outcomes relative to the utility derived from social

connections. Paradoxically, when individuals care greatly about their score or status, they may

reduce the size of their social networks so much that network based scoring becomes less reliable

in equilibrium.

Can societal tissue make network based scoring more effective in some societies than others?

Corollary 2 states that the parameter range under which network based scores are more precise is

larger when the average number of friends is higher. If everything else remains the same, the benefits

of network based scoring may be greater in societies where people maintain a large number of

connections, which are likely to be societies with collectivist cultures (Hofstede, 2001). Interestingly,

several start-ups turning to social scoring have been growing in countries known to have collectivist

cultures where the density of relationships is generally higher. Lenddo, for instance, operates in

Mexico, Colombia, and the Philippines, and reports that Mexico is its fastest growing market.9

3.2 Lending Rates with Endogenous Network Formation

We now relate our scoring formulation to lending rates, i.e., access to finance at the intensive

margin. The discussion in this section implies that network based scoring affects the rates at which

individuals can borrow, even if these individuals would qualify to receive credit using the individual

score system. For simplicity and concreteness of discussion, we specify the perceived probability of

repayment of credit by individual i, Pi as

Pi =
1

1 + e−µi

which increases from 0 to 1 as the lender’s assessment of the borrower’s posterior mean, µi, increases

from −∞ to +∞. Consider a risk-neutral lender who earns a rate of ro from a non- risky investment.

Let ri be the lending rate to be charged to individual i with type xi. The firm determines the rate

by solving:

Pi · (1 + ri) + (1− Pi) · 0 = 1 + ro.

This formulation takes into account not only the expected creditworthiness of an individual, µi,

but also the outside options of the lender, ro. For ro = 0, the borrowing rate for i equals the log

9http://techonomy.com/2014/02/lenddos-borrowers-mexico-philippines-get-credit-via-facebook/
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odds of default vs. repayment:

ri =
1− Pi
Pi

= e−µi . (11)

As the consumer’s likelihood of a default increases, he faces a higher borrowing rate. Notice that

the financial utility of consumers given in Equation (6) can be derived by assuming that the lending

rate enters the utility through −α log(ri). If lending rates can be interpreted within the context

of economic opportunities available to consumers, then an individual with a better network score

will be likely to receive a loan on better terms. This links network based credit scores to financing

access at the intensive margin.

4 Role of Signals from Social Contacts

In the preceding sections, we developed a model with continuous types and assumed that every

individual had identical incentives to improve his credit score. In reality, there may be differences

among individuals about how much utility they can gain from improving their credit score condi-

tional on their type. In this section, we introduce a discrete version of the model to allow for this

possibility. The discrete version allows us to analyze in greater detail how the firm utilizes signals

of low vs. high type friends when assessing an individual’s creditworthiness. This enables us to

disentangle and contrast the role of high and low type contact signals in the network.

4.1 Credit Scoring and Tie Formation with High and Low Types

Consider a society with two types of borrowers: high types (h) and low types (`) where the prior

is uniform, with Pr(xi = `) = Pr(xi = h) = 1
2 . Whereas high types have a low risk of credit

default, low types have a higher risk. With probability ν, any two individuals will meet. Upon

meeting, they learn each other’s type and their match value mij > 0, which is i.i.d. across pairs,

with positive distribution density f . For i, the utility of becoming friends with j is

mij − 1{xj 6=xi}, (12)

where the disutility of becoming friends with a different type is normalized to 1. The utility of not

becoming friends is 0. Given the specification, the probability that two same-type consumers will

become friends conditional on meeting is 1, while the probability of two different types becoming

friends is p ≡ Pr(mij > 1) < 1; hence the network features preference-based homophily. We retain
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Figure 1: Pr(xi = h|yi) vs. Hi (ε = 0.4, p = 0.6, Li = 10, yi = −1)

10 20 30 40 50
Hi

0.4

0.6

0.8

Pr Hxi=h È yiL

the assumptions S → +∞ and ν → 0 and set Sν = N for some positive number N . With the

discrete formulation, the expected number of friends for any type is 1
2Sν(1 + p): increasing the

degree of homophily (a lower p) reduces the expected number of friends.

Network based score. We assume that the lender may observe a signal yi which is -1 or 1,

indicating a low or high type. The signal is credible but incorrect with probability ε < 1
2 . This

implies, for example, that if the lender receives a signal from an `-type consumer, with probability

1 − ε it observes yi = −1 and with the remaining probability it observes yi = 1. Let yi be

the collection of signals from i and the friends of i. We first explore how the firm perceives the

probability of an agent being of h-type conditional on the structure of his social network.

Lemma 3. In evaluating i, the posterior for him to be high type is

Pr(xi = h|yi) =

[
1 +

(
ε

1− ε

)yi (εp+ (1− ε)
ε+ (1− ε)p

)Li (ε+ (1− ε)p
εp+ (1− ε)

)Hi]−1
(13)

where yi is the signal observed for agent i, Hi is the number of friends with high signal, Li is the

number of friends with low signal.

Lemma 3 suggests that low and high type signals observed for an individual’s social connections

affect the lender’s assessment of that individual’s creditworthiness in different directions. Notice

that
(
ε+(1−ε)p
εp+(1−ε)

)
< 1 and

(
εp+(1−ε)
ε+(1−ε)p

)
> 1. Thus, high type signals increase the likelihood that an

agent will be categorized as being of high type, whereas low type signals reduce this likelihood.

Figures 1 and 2 illustrate how Pr(xi = h|yi) changes with Hi and Li. The firm would prefer to

extend credit to `-types with a higher number of h-type connections, if everything else remained the
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Figure 2: Pr(xi = h|yi) vs. Li (ε = 0.4, p = 0.6, Hi = 10, yi = −1)
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same. This suggests that in a given network where `-types are fairly segregated from the h-types

due to homophily, `-types who are bridges between `-types and h-types may be favored by the

lender (compared to `-types surrounded by the same-types). Put differently, in-group centrality of

`-types will hurt their financing opportunities whereas between-group centrality will improve them.

Endogenous Network Formation. Eq. (13) applies only when tie formation is based only on

social utility and excludes the credit score (α = 0). We now consider the case where consumer

utility includes credit score. We construct the utility of a borrower similar to Section 3.2. Pi is

the firm’s assessment of borrower i’s probability of repayment, which we may take as the posterior

probability that i is a high type. The lending rate for borrower i is again given by ri = 1−Pi
Pi

. Since

the lending rate enters the utility additively through −αxi log(ri), we have

Ui =
∑
ij∈G

(
mij − 1{xi 6=xj}

)
+ αxiRi (14)

where Ri ≡ log
(

Pi
1−Pi

)
. A higher Ri implies a lower risk of extending credit to an individual.

Further, the parameter αxi calibrates the importance of improving access to financing. Notice

that this formulation allows low and high types to have two different levels of financial need.

When αh < α`, high types’ utility is less dependent on improving financing compared to the low

types. When αh = α`, both types have identical financial needs. The exposition here mirrors our

continuous-type model, except that different types may weigh financial concerns (represented by

Ri) differently when forming ties.

Let individuals choose tie formation rules before the meeting process. Intuitively, given the

network based score, individuals will be more selective towards low types and less selective towards

high types. Due to the simplicity of the discrete-type model, friendship rules we allow are general
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and flexible. More specifically, two high types will continue to form a tie with probability 1 after

they meet. As to the friendship between low types, a low type i will set a threshold θi and accept

another low type j iff:

mij − θi > 0.

Since friendships are formed based on mutual consent, a friendship between a high and low type

can only be formed when the high type accepts friendship. A high type i will accept a low type j

iff:

mij − βi > 0.

As in the continuous case, social credit scoring makes individuals wary of forming ties with low

types. In the discrete case low and high types are allowed to differ in their need for financing,

and low types face discrimination or social rejection from both low and high types. This result is

interesting since discrimination is often thought to take place between groups, or is believed to be

exercised by one group on another. Interestingly, ‘within-group’ discrimination arises endogenously

with the use of the network based scoring for the low types, in addition to the more common

between-group discrimination. Within-group discrimination may make the surviving within-group

ties more valuable, as we will see next in Lemma 4.

Let’s define a symmetric profile characterized by two thresholds (θ, β), where θi = θ for all low

type i and βi = β for all high type i. Let (θ, β, θi) denote a symmetric profile except for possible

deviation of a low type i. Let E(Ui|`, θ, β, θi) represent the expected utility prior to the meeting

process for a low-type individual i:

E(Ui|`, θ, β, θi) = E

∑
ij∈G

mij − 1{xi 6=xj}|`, θ, β, θi

+ αxi=`E [Ri(θ, β)|`, θ, β, θi]

where the lender’s posterior assessment is Pi(θ, β) = Pr(xi = h|yi, θ, β), consistent with the profile.

Similarly, E(Ui|h, θ, β, βi) is the corresponding expected utility of a high type. Using this utility

formulation, we first lay out the lender’s prior about individuals’ types in Lemma 4.

Lemma 4. Let (θ, β) be the symmetric criterion, pθ ≡ Pr(mij > θ) the probability of two `-types

forming tie, and pβ ≡ Pr(mij > β) be the probability of a tie formation between h and ` types.

Then the posterior probability of i being high type is

Pr(xi = h|yi, θ, β) =

[
1 +

(
ε

1− ε

)yi (εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)Li (εpθ + (1− ε)pβ
εpβ + (1− ε)

)Hi
e

1
2
N(1−pθ)

]−1
(15)
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where Hi is the number of friends with high signal, and Li is the number of friends with low signal.

Lemma 4 presents a slightly different result compared to Lemma 3 in decomposing the con-

tributions of high and low signals. When individuals form ties endogenously, the probability of a

favorable risk assessment, Pi(θ, β) (or the corresponding Ri(θ, β)), is increasing in the number of

high signals (i.e., Hi) for any level of pθ. In contrast, Ri(θ, β) increases in the number of friends

with low signals (i.e., Li) only if pθ is sufficiently small10, and decreases in Li otherwise. In other

words, when `-types are very selective in forming ties amongst themselves (pθ low), then in-group

ties help to achieve a more favorable assessment from the firm, as low types have fewer ties than the

high types and a large friendship circle becomes a conspicuous signal, suggesting that one is more

likely to be a h-type. That is the reason low-type signals can increase the high type perception,

Pi(θ, β). But when low types are less selective towards other own types, the negative signal begins

to dominate the positive impact from size of social circle and Pi decreases in Li.

We now turn to the impact of how selective low types are in forming ties amongst themselves,

characterized by the selection rule θ. Ri(θ, β) is not always decreasing in Li. In particular, we

can define a value θ(β) such that the expected effect of an additional low type friend on Ri(θ, β) is

positive iff θ > θ(β). Formally, θ can be defined as

(
εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)1−ε(εpθ + (1− ε)pβ
εpβ + (1− ε)

)ε
= 1

It can be easily shown that 0 < θ(β) < β. We detail how an individual’s odds of a favorable risk

assessment vary with respect to the selectivity of `-types in Lemma 5.

Lemma 5. The expected log odds for a low type under a common tie formation criterion (θ, β),

E [Ri(θ, β)|`, θ, β], is strictly quasi-concave in θ and achieves its maximum at θ(β). Further, 0 <

θ(β) < β.

Figure 3 plots a numerical example for the expected log odds of repayment as a function of θ.

Notice that very high or very low levels of within-group selectivity results in lower expected odds;

whereas medium levels of selectivity among low types yield the most favorable risk assessment

for them. The inverse U-curve relationship stems from two competing forces that shape low-type

borrowers’ chances of receiving a loan. As the level of selectivity begins to increase from zero,

the expected assessment improves at first. Consumers benefit from disassociating themselves from

`-types, improving the appearance of being an h-type. As selectivity increases further, however, a

10Precisely, when pθ < pβ + ε
1−ε (1− pβ).
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Figure 3: Expected Log Odds of Repayment vs. Selectivity θ.(ε = 0.2, f ∼ Γ(3, 2), β = 5).
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second and competing effect starts to dominate: Individuals’ ego-networks start to shrink exten-

sively. Recall that the size of a borrower’s network becomes a conspicuous signal of his type when

individuals can form ties endogenously. Extreme selectivity leads to a smaller number of ties and

so reveals the true low type of a borrower, reducing his chances of a favorable credit assessment.

Lemma 6. The expected log odds for a low type is strictly decreasing in β for θ < β.

The lemma states that unlike the within-group exclusion which helps low types to some degree,

between-type exclusion strictly reduces their chances of improving their financial outcomes. As

high types exclude lower types from their networks, the latter’s chances of a favorable assessment

from the firm goes down, resulting in further hardship for this segment.

We will seek for a symmetric equilibrium where no individuals have ex-ante incentive to deviate,

and company’s posterior is consistent with their equilibrium behaviors. More precisely, (θ∗, β∗) is

a symmetric equilibrium if for all i, E(Ui|`, θ∗, β∗, θi) (or E(Ui|h, θ∗, β∗, βi), depending on i’s type)

is maximized by θi = θ∗ (or βi = β∗). While ensuring that there will be no unilateral deviation, a

Nash equilibrium in social networks does not necessarily allow for mutual improvement in the utility

of individuals. For example, a very high acceptance criteria such as θ∗ = ∞ can always be part

of an equilibrium, because if no `-type accepts another `-type, an `-type would have no incentive

from deviating from this threshold unilaterally. We remove “unintuitive” equilibria similar to the

one described from consideration. Formally, we will not consider tie formation criteria (θ∗, β∗) an

equilibrium if there is another profile (θ∗∗, β∗) such that (i) low types are better off, (ii) given that

high types choose β∗ and every other low type chooses θ∗∗, a low type is willing to set his criterion
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θ∗∗ as well. Similarly, we do not consider (θ∗, β∗) an equilibrium if there is a profile (θ∗, β∗∗) with

unintuitive properties alike.

Notice that from Lemma 5, for any equilibrium, θ∗ < β∗ should hold. In words, when both

low and high types need financing, regardless of how dire the needs of the low types are (i.e.,

independent of the value of α`), low types will face within and between group exclusion. More

importantly, since high types are more successful in tie formation, they afford to be selective in

forming friendships. The low types, on the contrary, cannot be picky choosers: If they set the

friendship threshold too high, they find themselves on the downhill side of the expected log odds

curve (Figure 3). They would achieve a higher score and higher social utility by being less selective.

As a result, the within-group discrimination against low types is always lower than the between-

group discrimination against them. This result is formally stated in Proposition 4.

Proposition 4. Suppose αh, α` > 0. In any symmetric equilibrium (θ∗, β∗), we have 0 < θ∗ < θ(β∗)

and β∗ > 1.

In summary, two forces influence the network-based score in equilibrium to be more or less

diagnostic for detecting a low type. Compared to the scenario before people react, higher exclusion

amongst low types make social network based scoring less powerful, by Lemma 5. In a similar vein,

higher levels of exclusion on low types by high types increase the accuracy of the scores by Lemma

6.

4.2 Special Case: Lower Financing Needs for High Types

Up to now, we focused on an environment where the high types need financing. In reality, it is often

the case that the need for financing (i.e., obtaining a credit or a loan) is markedly more severe for

low types. To address this possibility, we provide the outcomes from the special case when αh = 0.

Notice, by continuity, this implies that similar results would hold if αh is a very small positive

number. Note that when αh = 0, β is no longer material, and high types form a tie with low type

only when mij > 1 (i.e., β = 1).

Proposition 5. When αh = 0, there exists a unique equilibrium among low types such that 0 <

θ∗ < θ(1).

Proposition 5 suggests that when high types put no or very little weight on access to financing,

high types may reject many social ties with low types due to homophily. In addition, due to

financial concerns, `-type individuals are systematically excluded even from the networks of others
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similar to them. Put differently, existing financial inequality breeds within-group discrimination

and social isolation among those of lower type and greater need.

4.3 Explicit Discrimination against Low Types

We have shown how strategic discrimination against low types may emerge endogenously even in the

presence of non-strategic homophily among low types. To extend the discussion on discrimination,

we analyze an environment with exogenous discrimination against `-types. To formally express

such discrimination, we construct the utility for i of becoming friends with j in a manner similar

to but different from the specification in Equation (12):

mij − 1{xj=`}.

Keeping the discrete matching formulation with this slight modification, the probability that two

h-type individuals will become friends conditional on meeting is 1 and the probability that any

other type of pairs will become friends is p1 ≡ Pr(mij > 1) < 1. The social utility is penalized

whenever one becomes friends with an individual who is an `-type.

Parallel to Lemma 3, the following lemma gives the posterior before individuals strategically

form their social ties to obtain better network based score. Notice that mathematically the Lemma

is a special case of Lemma 4 where pθ = pβ = p1.

Lemma 7. Let p1 ≡ Pr(mij > 1) be the probability of formation of a tie with at least one low type.

Then,

Pr(xi = h|yi) =

[
1 +

(
ε

1− ε

)yi ( p1
ε+ (1− ε)p1

)Li ( p1
εp1 + (1− ε)

)Hi
e

1
2
N(1−p1)

]−1
(16)

where Hi is the number of friends with high signal, Li is the number of friends with low signal.

The lemma says that having a friend with a low signal actually improves one’s score. When

explicit discrimination is present, the expected number of friends varies for each type: For a high

type, the expected degree is 1
2Sν(1+p), whereas for a low type it is Sνp. Similar to the endogenous

rise of discrimination, a larger social network is a conspicuous signal. An individual with a larger

network emits a stronger signal that he is a high type. Since in expectation low types have a smaller

social circle, any tie becomes a signal of being high type.
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Endogenous Network Formation. What happens when both exogenous discrimination and

endogenous tie formation are at work? Lemma 7 implies that individuals will be less selective

towards low types in an attempt to obtain better scores. Similar to the thresholds we defined for

the homophily case, we let low types choose a criterion θi ≤ 1 towards their same type fellows, and

let high types choose βi ≤ 1 towards low types. High types continue to form ties with probability

one upon meeting, and a tie between two different types forms only when the high type accepts the

low type. It is not difficult to see that Lemma 5 and 6 can be stated here without change. Further,

a result can be derived that corresponds to Proposition 4.

Proposition 6. When low-types are exogenously discriminated against and α`, αh > 0, in a sym-

metric equilibrium, θ(β∗) < θ∗ < 1 and β∗ < 1.

5 Effort to Become a High Type

Our results thus far relied on the assumption that individuals in society are endowed with ‘types’

that cannot be changed. In other words, we assumed that there is no social mobility. Although

some indicators of type (e.g., family, race, birth place, country of origin) cannot be altered, other

potential indicators, such as occupation or financial discipline, can be improved if low types exert

effort (e.g., by investing in education). In this section, we extend our discussion to allow for this

possibility. An array of factors may force `-type individuals to exert effort, but we will focus on

factors endogenous to tie formation such as the reduction of borrowing costs and the threat of

social exclusion.

We model the mechanism in the following fashion. Consider a friends network G among ` and

h type individuals. Let G` denote the sub-network among the low types. Further, let Hi denote

the number of h-type contacts of a low-type i, which collectively are represented with the vector H

for all the low types. Similarly, let Li denote the number of `-type contacts of a low-type i. Each

low-type individual may then exert effort ei ≥ 0 such that with probability ei he will become a

high type. Notice, the effort therefore projects types of contacts one may have in the future. We

assume that given the network and the parameters of our model, ei ≤ 1 for all low type i. High

type consumers exert zero effort and remain high types.

The utility that a low-type individual i derives from exerting effort ei consists of two parts:

Ui(e, G) =
∑
ij∈G

{
mij − 1{xj=`}(1− ej)

}
+ ui (17)
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where

ui = aei − b

ei
2
− φ

Hi +
∑

ij∈G,xj=`
ej

 ei (18)

The term in curly brackets in equation (17) captures individual i’s expected social utility under the

assumption of explicit discrimination (Section 4.3) and exertion of own and friends’ effort. Given

the effort of a friend ej , there is 1− ej probability that j will remain a low type, in which case i’s

utility from forming ties with j will be discounted by a unit normalized to 1.

The term ui expresses the non-social benefits and costs of exerting effort. First, term aei

captures the expected intrinsic benefits of becoming a high type. Second, the cost of effort is

captured with the marginal cost bei/2 that is increasing in effort. Third, under social network-

based scoring, a (potential) high-type friend j has a positive effect on i’s credit score and thus

reduces i’s financing burden. We formally express this “network effect” by allowing the marginal

cost of effort for i to decrease in the number of the high-type friends he has and in the efforts of

his low-type friends to become high types, at rate φ > 0. Alternatively, bφ
(
Hi +

∑
ij∈G,xj=` ej

)
ei

can be thought of as an interaction term, representing how the return to one’s own effort (ei)

is expected to be amplified by the number of friends one expects will be considered high-type.

Some investors, for instance, may prefer if they have friends who are also invited to participate in

exclusive investment opportunities (Bursztyn et al., 2014). In a very different setting, one is likely

to gain admission to an exclusive bar or dance club if both oneself and the rest of one’s party is

dressed attractively.

It is important to make two notes here. First, the derivation of the functional form of ui is

a“reduced-form” approach to motivate the complementarity between one’s effort and his friends’

efforts. It is possible to derive this form of complementarity based on the results provided in the

earlier sections. (In the Web Appendix, we offer a more detailed description of how equation (18)

can be derived from this channel.) As demonstrated in Section 4, under network-based credit scoring

with non-zero financing needs for both types, low types will face both within-group and between-

group discrimination. Under such pressure, `-type individuals would exert effort to increase their

social and credit scoring utility from friendships. The benefits to exerting effort depend on the

expected number of low and high type friends.

Second, notice that it is also possible to consider alternate specifications of social utility. For

instance, we could also investigate an environment with pure homophily instead of discrimination,

in which case Equation (17) would be replaced with:

Ui(e, G) =
∑
ij∈G

{
mij − ei1{xj=`}(1− ej)− (1− ei)

[
1{xj=h} + 1{xj=`}ej

]}
+ ui. (19)
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In an environment with homophily, individual i will become a high type with probability ei, in

which case there will be a disutility for a tie with individual j who, after exerting effort ej , remains

a low type (which happens with probability 1−ej). With probability 1−ei, individual i will remain

a low type, in which case he will face a disutility from ties with high types (including low types

who become high types after exerting effort ej).

Next, given the utility form in (18), we will first derive the optimal effort level in a given

network.

Effort in an Exogenous Network. We are interested in the Nash equilibrium when people si-

multaneously choose their efforts when the network is exogenously given. Proposition 7 summarizes

the optimal level of effort for an individual conditional on his social network, following Ballester

et al. (2006).

Proposition 7. Let A` be sociomatrix (i.e., the adjacency matrix) of G`.

(i) Under a discriminating social utility, if the largest-magnitude eigenvalue of A` is smaller than

|φ|−1, then the equilibrium effort is

e∗ =(I− φA`)
−1(ab−1 + φH)

=(I + φA` + φ2A2
` + ...)(ab−1 + φH). (20)

(ii) Under a homophilic social utility, if the largest-magnitude eigenvalue of A` is smaller than

|2b−1 + φ|−1, the equilibrium effort is:

e∗ =
[
I− (2b−1 + φ)A`

]−1 [
(a+ H− L)b−1 + φH

]
=
[
I + (2b−1 + φ)A` + (2b−1 + φ)2A2

` + ...
] [

(a+ H− L)b−1 + φH
]
. (21)

Proposition 7 states that the effort exerted by individuals to improve their score relies on several

factors. A discriminatory environment and an environment with homophily differ in the role of the

low types in inducing effort. In both environments, an individual with higher number of high-type

friends is likely to exert more effort, as his overall cost of borrowing is lower. In an environment

with discrimination, if two `-type individuals are connected to the same number of h-type friends,

the one with higher number of `-type friends is incentivized to exert more effort. This is perhaps

surprising, as sufficiently high within-group connectivity can be a stronger motivator of effort. In

contrast, in homophily, increasing proportions of low type friends can reduce effort due to enhanced

social utility when an individual with low-type friends remains low type with low effort.

Observation The expression for the equilibrium level of effort given in Equations (20)
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and (21) are forms of Bonacich centrality. The effort exerted by an agent to improve

his credit score is proportional to his centrality measure.

Further, the Nash effort in both environments is proportional to the Bonacich centrality measure,

which is the ‘summed connections to others, weighted by their centralities of connections to others’

(Bonacich, 1987, p. 1172). With a discriminating social utility, an individual who is located at the

center of a social network is likely to be exposed to higher positive network effects, therefore may

exert greater effort. As a result, individuals who are more central in the network are more prone

to social mobility when there are complementarities. In an environment with pure homophily,

there will be two conflicting forces determining centrality and social mobility relationship. First,

being central in a network of high types and low types who exert effort can increase an individual’s

chances of social mobility. Second, if a low type individual is central among other low types who

exert little effort, he will reduce his effort to ‘fit’ and be similar to his network to enhance his social

utility. Therefore, in tie formation based on homophily, it is possible for central low types to exert

low effort leading to ‘permanent’ low class membership and stagnant financial hardship.

Effort with Endogenous Network Formation among Low Types Under Discriminating

Utility. As we have specified in (17)–(19), the friendship utility of a friend of i depends on the effort

that i will exert. Hence the effort of i plays an important role in his friends’ network formation.

Moreover, in the last section we saw that i’s effort depends on his position in the network. This

mutual dependence between the network position and effort suggests the possibility of multiple

stable situations. With discriminating social utility, for example, in one society, people may exert

low effort, and as a result, may become sparsely connected. This in turn gives little incentive for

them to exert effort. Conversely, in another society, people may exert high effort and thus may

become more densely connected, reinforcing their high-effort behavior.

To further explore how effort mitigates the likelihood of exclusion, we consider a two-stage game

under the discrimination environment. In the first stage, individuals choose friends and friendships

are formed bilaterally. In the second stage, individuals exert efforts. Let e∗(G) be the Nash effort

for a given network G, which is characterized in Proposition 7. The first-stage reduced form utility

for i depends on G only:

Ui (e∗(G), G) .

We look for pairwise-stable networks G under U . G is pairwise stable if (i) for any ij ∈ G, we have

both Ui(G) > Ui(G − ij) and Uj(G) > Uj(G − ij); (ii) for any ij /∈ G, either Ui(G) ≥ Ui(G + ij)

or Uj(G) ≥ Uj(G + ij). Example 3 provides an application of different stability outcomes in
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equilibrium.

Example 3. Consider a society with four low-type individuals featured with explicit discrimination,

and assume a = 1, b = 5, and mij = 1
2 for all i, j. Let φb = 1

5 . It can be easily verified that both

the empty network and the complete network are pair-wise stable. For the empty network, each

individual exerts effort 1
5 and obtains utility of 1

10 . For the complete network, each individual exerts

effort 1
2 and has utility 5

8 .

The example demonstrates that the empty network is pair-wise stable because everyone exerts

very low effort, and a single link between a pair won’t generate a change sufficiently large. The

disutility of friendship with a low type (which is normalized to 1) prevents any pair from becoming

friends. Moreover, a complete network is pair-wise stable because everyone exerts reasonable effort.

The effort reduces the disutility of friendship between low types, and the friendship utility between

any pair is exactly zero. Breaking any one link increases the costs of effort for the pair, and they

will decrease their efforts. This leads to higher costs for their friends and eventually the effort

of everyone will decrease. As a result, everyone receives less utility from both the friendship and

effort.

Overall, the example suggests that the network structure in different societies may facilitate

social pressure to exert effort at different rates. In particular, in societies where network structure

is sparse, it is expected to be less effective and social mobility may remain limited. In contrast, in

denser societies, social pressure can be more effective, motivating higher levels of social mobility.

The difference suggests that network based scoring practices are expected to reach different levels

of success in different societies; and the performance is conditional on the network structure of

society.

6 Extensions

6.1 Uncertainty about Friends’ Types

In our main model, the underlying assumption was that upon meeting, individuals learn about each

others’ types with certainty. In reality, types may be observed with some noise. Let’s consider the

case when individuals meet others but observe their types imperfectly. Let individual i observe a

signal of xj upon meeting with j, which is correct with probability 1 − τ with 0 < τ < 1
2 . This

implies that the added utility from homophily relies on how the uncertainty about the other’s type

is resolved: expected social utility is mij − τ if the signal is the same as one’s own type, and

27



mij − 1 + τ otherwise. Respectively, probabilities pτ ≡ P (mij > τ) and p1−τ ≡ P (mij > 1 − τ)

define how likely two individuals are to become friends upon meeting.

Compared to the benchmark model, the added uncertainty implies that ties will be less informa-

tive for the firm to predict an individual’s type. To see this, first notice that under this formulation,

the probability that two individuals of the same type will form ties upon meeting is

qs ≡(1− τ)2pτ + (1− (1− τ)2)p1−τ , (22)

and two individuals of opposite types will form a tie is

qd ≡τ2pτ + (1− τ2)p1−τ . (23)

Utilizing these probabilities, we can formulate how the firm will assess a borrower’s type to be

high as given in Lemma 8.11

Lemma 8. When individuals learn about each others’ types with uncertainty,

Pr(xi = h|yi) =

[
1 +

(
ε

1− ε

)yi (εqd + (1− ε)qs
εqs + (1− ε)qd

)Li (εqs + (1− ε)qd
εqd + (1− ε)qs

)Hi]−1

where Hi is the number of friends with high signal, Li is the number of friends with low signal.

We are interested in how presence of noise in detecting each other’s true types in social rela-

tionships may influence the firm’s ability to rely on social credit scores. We compare Lemma 8 with

Lemma 3. Since p1 < qd < qs < 1, 1 < εqd+(1−ε)qs
εqs+(1−ε)qd <

εp1+(1−ε)
ε+(1−ε)p1 and ε+(1−ε)p1

εp1+(1−ε) <
εqs+(1−ε)qd
εqd+(1−ε)qs < 1.

In words, signals from contacts carry less weight to form beliefs about an individual’s type when

types cannot be perfectly observed in friendship.

There are two observations related to this finding. First, the level of information sharing between

individuals can change the appropriateness of a social network for credit scoring. For example, if an

online network allows individuals to frequently communicate and exchange in depth information,

this may positively influence the efficiency of credit assessment by reducing the uncertainty about

friends’ types. Second, the ability of peers to observe each other’s types may correlate with the

characteristics of the network, including tie strength. For example, the parameter τ could reflect

the strength of ties correlating with the ability to convey complex or subtle information (Van den

11The derivation of this Lemma follows the derivation of Lemma 4.
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Bulte and Wuyts, 2007, pp. 71-72) and hence with one’s ability to observe a friend’s type. Next,

in Section 6.2, we detail this discussion.

6.2 Friendship Formation and Strength of Ties

In Section 6.1, we maintained the assumption that all relationships carry equal information and

pointed out that the informativeness of a link may relate to tie strength. We will adjust the earlier

model slightly to extend the earlier discussion.

Specifically, let’s assume that individuals can form weak and strong ties, and that they learn

about others’ type with certainty only if they have strong ties with them. After meeting, a match

value mij > 0 and the tie type are randomly determined. If the tie is strong, individuals obtain

the utility mij − 1{xi 6=xj} by forming a friendship. If the tie is weak, types remain unknown, and

the social utility of forming a tie is mij − κ. The parameter κ captures the disutility from forming

a weak tie.

Since weak ties do not carry information about the type or the type difference between the ego

and the friend, a firm cannot use them to update its posterior belief about an individual’s type.

Only the strong ties will reveal information about a contact’s type and become eligible for the firm

to use to determine the social score.

The general implication is straightforward. Since strong ties are more homophilous than weak

ties and since they provide a greater ability to learn about one’s contacts, the accuracy of social

scoring increases with the relative prevalence of strong vs. weak ties.

6.3 Effort to Enhance Probability of Meeting High Types

In Section 5, the model was built such that the low type individuals exerted effort to climb social

ladders by improving their type. It is possible, under some circumstances, that individuals cannot

change their type but can exert effort to increase the probability of meeting high types. Networking

is an example of such directed effort. In this section we explore this possibility which also allows

us to endogenize the probability of meeting between two individuals.

We use the settings of the discrete-type model in Section 4 and allow individual i to choose an

effort level ei. Conditional on the effort exerted, the individual is likely to meet another person

randomly with probability M
S ei, where M is a constant that calibrates the chance of meeting another

person proportional to the effort exerted in a society of size S. A meeting between i and j happens

when either of the two individuals “runs into” the other. Suppose a common effort e is exerted by
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everyone but i. Then the expected number of meetings for i becomes:

S

[
1− (1− ei

M

S
)(1− eM

S
)

]
=

(
ei + e− eieM

S

)
M.

When S → +∞, the expected number of meetings go to (ei + e)M .

First consider the scenario of exogenous tie formation where an individual’s utility only depends

on the social utility from friendships. Recall that, upon meeting with j, i always forms a tie if j is

of the same type, and forms a tie iff mij > 1 if j is of the different type. Let f be the density of

the matching value distribution. The expected social utility for i, given that a symmetric effort e

is used except for possible deviation of i to ei, can be derived from

E

∑
ij∈G

mij − 1{xi 6=xj}

∣∣∣xi, e, ei
 = (ei + e)

M

2

(∫ ∞
0

tf(t)dt+

∫ ∞
1

(t− 1)f(t)dt

)

Let Λ denote the term in the last parenthesis. Let 1
2e

2
i be the cost of effort. The equilibrium effort

is then given by

e∗ =
MΛ

2
(24)

Under this common effort level, the firm’s posterior on type is again given by (13) in Lemma 3.

Next, we will set this equilibrium effort level as the baseline, and compare it to that when social

relationships affect financial benefits. Since the credit score introduces asymmetric desirability of

low-type and high-type friends, the effort levels exerted by low types and high types will be different

in general. In principle, the firm’s posterior needs to incorporate the difference in efforts. Here for

simplicity, we focus on how effort level will differentiate between types but leave out how it would

affect firm’s posterior assessment.

Formally, we let the credit score enter utility additively through αxiRi with Pi simply given by

(13). We characterize a symmetric equilibrium, by which we mean the effort pair (e∗` , e
∗
h) where

every low type chooses e∗` and every high type chooses e∗h such that no individual has incentive to

deviate.

The following proposition summarizes how the motivation of individuals to meet others change

compared to the effort they would exert simply to maximize their utility from friendships.

Proposition 8. (i) for α` = αh > 0, e∗h > e∗ > e∗` , and

(ii) for α` sufficiently larger than αh, e∗` > e∗h ≥ e∗.

The proposition suggests that when both ` and h type individuals have identical needs for

financing, high types exert higher levels of effort to increase their probability of meeting others
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compared to low types and compared to the effort exerted when individuals only want to maximize

social utility. This is because high types have higher marginal return on effort than the low types

(i.e., are more likely to form new ties as a result of effort). As a result, independent of their financial

needs, high types always exert more effort than they would when they earn utility from improving

their access to credit in addition to the gains in social utility. Low types, in contrast, have lower

returns, but when high types make an effort to meet others, they also benefit from it. With some

probability, a meeting will take place between a low and a high type and a friendship will be formed

if mij is sufficiently high.

If, on the other hand, the low types’ utility from improving their credit scores is very high (α`

very high), this pattern result could reverse. Low types would feel an immense pressure to increase

the probability of becoming friends with high types, resulting in a higher level of effort exerted by

low types compared to that of high types.

7 Conclusion

7.1 Main Insights

Increasing access to financing is important in many countries where institutions and contract en-

forcement are weak (e.g., Feigenberg et al., 2010; Rona-Tas and Guseva, 2014). In low-income

countries, in particular, part of the credit access problem stems from the fact that reliable data on

financial history do not exist, are limited, costly to collect, or hard to verify. In these countries,

lenders tend to be very conservative in accepting borrowers’ credit applications. This, of course,

makes it even harder for individuals who are in financial hardship to obtain credit and generate

a financial track record. Group lending has proven to be a popular way to address this problem.

An alternative and possible complement is to use additional available data to assess individuals’

creditworthiness. Using social data is one such option.

Motivated by the importance of consumer access to credit and by the increasing use of network

based credit scoring, we analyzed the potential implications of such practices for consumers. Our

study shows that there are indeed benefits to collecting information from a consumer’s network

rather than only individualized data. Simply put, when people have an above-average chance of

interacting with others of similar creditworthiness, then network ties provide additional reliable

signals about a consumer’s true creditworthiness. Hence, social scoring can reduce lenders’ mis-

givings about engaging people with limited personal financial history, which include many who are

economically disadvantaged and “underbanked”.
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As these new scoring methods gain popularity, consumers may adapt their personal networks,

which in turn may affect the usefulness of these scores. If one’s network can influence one’s financing

chances, some individuals, particularly those in more dire need of improving their credit score, may

be inclined to form social ties more selectively. If all consumers behave in this manner and forming

social ties requires mutual agreement, the end result of such behavior will be social fragmentation

into sub-networks where people connect only to others who are very similar to them. Though we

expect that such fragmentation and balkanization will be deemed socially undesirable by many,

its implications for network scoring accuracy is not straightforward. People will have fewer ties

conveying information about one’s contacts useful in updating lenders’ prior beliefs, but each of

the ties will be more informative. We find, however, that there are situations in which social

scoring is beneficial even when consumers adjust their networks. Specifically, when consumers place

sufficiently low importance on the posterior mean of the firm, higher accuracy in risk assessment

with network based scoring is possible even when individuals form their ties endogenously.

To focus on the role of connections to consumers with different levels of financial strength in the

emergence of balkanized societal structures, we introduce discrete types and discrete type matching.

Unsurprisingly, connections to individuals with high type signals have an overall positive impact.

More interesting is that the impact of connections to low type signal individuals can be positive or

negative, depending on the tie formation rules used in society. We find that consumers with poor

financial health and in great need for credit would prefer others not to be too selective but also

not to be too liberal in their willingness to associate with people having poor financial health and

a great need for credit. As a result, disadvantaged consumers would prefer some intermediate level

of ostracism and social isolation.

In our extensions, we discussed two scenarios which may reduce the reliability of social scores.

First, if individuals cannot observe their social contacts’ types perfectly upon meeting, the added

noise will imply that in formation of social networks homophily will play a lesser role. As a result,

firms’ ability to detect a borrower’s type by looking at his friends will be limited. In a similar vein,

if the network consists mainly of weak rather than strong ties, then this will also reduce social

scores’ diagnosticity, since strength correlates with how well individuals know each other. In both

of these scenarios, contacts’ signals carry lower value to the firm in assessing the risk of a borrower.

We also considered the possibility of exerting effort in two different ways. First, we move away

from the static type model and allow individuals to improve their type. We find that when there is

discrimination against low types, both low and high type contacts play a role in motivating effort,

but high types, in general, have a stronger effect. In an environment with only homophily, these

results hold as well, unless an individual is highly embedded in a network with many low-type
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friends who exert low effort. Such individuals are not motivated to exert effort towards improving

themselves and are more likely to remain a low type. Second, when types are sticky and cannot be

altered, we allow individuals to exert effort to improve their chances of meeting other people. This

second model shows that individuals’ networking effort will depend on their need for financing.

When high and low types have comparable needs for financing, high types have higher returns on

their effort of creating new ties and thus exert more effort to meet others. Since the types are

revealed only after meeting, low types’ likelihood of running into a higher type increases when high

types exert effort too. Therefore they choose to free ride on others’ efforts. This outcome reverses

when low types are in dire need of financing, and they become the primary driver of meetings in

society.

One possible outcome of social scoring which is not addressed in this research is the possibility

that individuals strategically manipulate the perception of their type by trading friendships for

financial access. In particular, realizing their ‘higher’ financial status, high types may want to offer

their friendships in exchange for monetary rewards. To model an environment where friendships

are traded, we could need to consider several additional layers of complexity. First, rationally,

traded friendships would need to be formed such that the credit scoring firm should not be able

to distinguish a fake relationship from a true friendship. Otherwise, low types would have no

incentive to pay for a high type’s friendship. Second, high types must be financially motivated and

the benefit from forming a friendship with a low type must exceed the losses from less favorable

risk assessment. Third, trading friendships must be rare enough that a credit scoring firm still

benefits and desires to use data from the social networks. Altogether, modeling an environment of

this sort would require a fairly complicated model which goes beyond the purposes of the current

study. Despite the complication, our expectation for the findings, would be fairly simple: In line

with the extensions we discussed in Sections 6.1 and 6.2, if social ties have lower informative value

and homophily is diluted, social credit scores will be less diagnostic in detecting one’s true credit

worthiness.

7.2 Implications for Public Policy

The link between credit scores and income is hard to ignore.12 It is reported that most U.S.

consumers with an income lower than $60K have a poor credit score.13 Moreover, a significant

portion of the individualized credit score calculation relies on an individual’s existing debt level.

12This is so even though FICO and other leading institutions state that income is not a part of one’s individual
credit score, as it is a self-reported item of assessment.

13http://www.creditsesame.com/about/press/consumers-who-earn-60000-or-less-have-dangerously-high-credit

-usage-levels-according-to-credit-sesame/
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Someone owing higher amounts, all else equal, is expected to have a lower credit score. With

network based assessment, it is possible for immigrants, “underbanked” consumers, recent college

graduates, and other individuals who do not have a credit history but are creditworthy to signal

this to lenders with higher accuracy. The benefits introduced through network based systems may

help overcome a portion of the financing problems, particularly if networks are created based on

attributes correlated to financial health.

However, our analysis also raises an important concern about discrimination against already

financially disadvantaged and underbanked groups. For instance, the U.S. Equal Credit Oppor-

tunity Act (ECOA) prohibits lenders to discriminate based on sex, race, color, religion, national

origin, or age. To the extent that some of these characteristics correlate with creditworthiness and

that homophily along those dimensions correlate with homophily along levels of creditworthiness,

there is a concern that a side-effect of social credit scoring may be discrimination in access to credit

along characteristics prohibited by the ECOA (National Consumer Law Center, 2014, pp. 27-29).

Aside from strict legality, there is a concern that social scoring opens an additional back door

to discrimination along dimensions that many may find objectionable (Dixon and Gelman, 2014;

Pasquale, 2015).

Matters are even more complex since our results also show that social scoring may lead people

with low creditworthiness to prefer being discriminated against- in tie formation at least- to some

moderate extent. So, moderate levels of discrimination and social ostracism by fellow consumers

may actually help rather than harm disadvantaged consumers. Also, one hitherto ignored societal

benefit of social scoring is that it can motivate rather than demotivate financially disadvantaged

citizens to greater exert effort to improve their creditworthiness. The financial discrimination and

social exclusion implications of social credit scoring, and how they balance against its benefits,

warrant attention from policy makers and researchers alike.

Finally, our study’s findings are of interest to policy makers keen on understanding the mutual

interaction between social status and network structure. As we noted at the outset, our mathemat-

ical analysis of credit scoring applies to social status broadly. Some people command less respect

than others. Differences in status are rarely based solely on differences in true but hard-to-observe

ability or character. Often, people use the company others keep as a signal when assessing the

respect they deserve. Our analysis of the benefits and challenges of social credit scoring – including

improved diagnosticity paired with the risk of unwitting discrimination and the seeming paradox

of optimal ostracism – extends to situations where citizens, employees, or customers are valued and

accorded status based on the company they keep.
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7.3 Implications for Management

To managers in the financial industry, our analysis suggests that lenders can expect to reduce

their risk by incorporating network based measures in the short run. This dovetails with new

governmental policies on risk. For example, as part of the regulations posed by the Basel Committee

on Banking and Supervision, banks in Europe have been encouraged to reduce the level of risk they

undertake (Sousa et al., 2013). Regulations in the banking industry encourage financial institutions

to better manage risk in the U.S. as well. These regulations have come at a time when big data

analytics are enabling financial institutions to access larger and richer datasets. Indeed, it has been

reported that social media and social network data are being used not only by start-ups, but also

by established and more institutionalized credit scoring firms, such as Experian (Armour, 2014).

The trend to use social data may prove to be useful in the post crisis environment.

Our study also offers some insight to managers outside the financial industry who use social

scoring for targeting customers when launching new products, targeting ads, or designing referral

programs. (i) The effectiveness of social scoring need not decrease when customers purposely

adapt their networks in order to improve their score and their access to the benefits it entails.

(ii) Marketers do not need information on the complete network. Data on the focal consumer’s

immediate contacts already provide an improvement in scoring accuracy. (iii) Social scoring is

likely to be most diagnostic in societies and communities (online or not) where consumers maintain

many strong rather than weak ties. (iv) Smart marketers will go beyond generic ties and seek

to leverage specific ties that correlate highly with the traits they seek in their target customers.

A car manufacturer like Audi, for instance, will benefit from focusing on Twitter connections

pertaining to cars (personal communication). (v) The benefits of social scoring to the marketer

are greater when the benefits of having a high score matters little to customers, or at least has

little impact on who they choose to form ties with. More generally, the benefit of social scoring

are greater when it involves networks of ties that not only exhibit great homophily but also are

built and maintained for intrinsic rather than extrinsic reasons. Examples of the former used in

social scoring include telephone call data and kinship data (Benoit and Van den Poel, 2012; Hill

et al., 2006). Examples of the latter are many ties in general-purpose online social networking

platforms, where linking is very easy and often between casual contacts. (vi) Customers with a

high number of connections (degree centrality) in an undirected network like Facebook or LinkedIn

are not necessarily the most attractive. The reason is not only that centrality in such networks

cannot distinguish between opinion seekers and opinion leaders (indegree vs. outdegree centrality),

but also that –as our analysis shows– the most active networkers may be either high-type or

low-type customers, depending on whether low-types value the benefits of a high consumer score
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more than high-types do. (vii) Marketers should be concerned that social customer scoring may

create the impression of unfair discrimination. This is not only a legal and an ethical issue, but

also a commercial one. For instance, in January 2015, users of WeChat, the Chinese chat app,

protested against discrimination after they were not targeted to seer an ad for BMW, the luxury

car maker – with some believing that the targeting algorithm involved social scoring based on

who potential targets were connected to (Clover, 2015). Since social scoring uses inputs beyond

the individual’s traits and history, it requires marketers to balance improved diagnosticity against

actual and perceived fairness.

Appendix: Proofs

Proof of Proposition 1: Because once conditional on the types x, the signals y are independent

of the network, we have Pr(y|x) = Pr(y|g,x). Using Bayes’ rule we have

Pr(x|g,y) ∝ Pr(x) Pr(g,y|x)

= Pr(x) Pr(y|x) Pr(g|x)

Thus

Pr(x|g,y) ∝
∏
i∈y

e−qxi
2/2 ×

∏
i∈y

e−c(yi−xi)
2/2 ×

∏
ij∈g1

νe−(xi−xj)
2/2 ×

∏
ij∈g0:i,j∈y

[1− νe−(xi−xj)2/2]×
∏

ij∈g0:j /∈y

(
1− E(ni|xi)

S

)
. (A.1)

In the expression above, (1− E(ni|xi)/S) is the probability that “i is not friends with j” for some

i whose type is xi and some j whose type is unknown. Fix some i ∈ y and consider the term∏
ij∈g0:j /∈y (1− E(ni|xi)/S). If {ij ∈ g0 : j /∈ y} is not empty, then by our assumption on the

information structure, it multiples across everyone in the rest of the society. So its value under the

limits of S, ν and q is

lim
S→∞,E(ni|xi)→N

(
1− E(ni|xi)

S

)S−|y|
= e−N

which isn’t a function of x thus does not contribute to the conditional density. Notice that the rest

of the terms in the right hand side of (A.1) multiple across finite items. It is easy to see that as

ν → 0 and q → 0,

Pr(x|g, y) ∝
∏
i∈y

e−c(yi−xi)
2/2 ×

∏
ij∈g1

e−(xi−xj)
2/2. (A.2)

This implies that Pr(x|g,y) is a multivariate normal density N(µ,Σ). To find the parameters µ

and Σ, all we need to do is matching the coefficients. The coefficients of x2i , xixj and xi in the
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quadratic form −1
2(x− µ)′Σ−1(x− µ) are −1

2(Σ−1)ii, −(Σ−1)ij and (Σ−1)i1µ1 + (Σ−1)i2µ2 + ...,

while the corresponding coefficients in the right hand side of (A.2) are −1
2(c+ di), 1{ij∈g1} and cyi.

Matching them gives us the results in the Proposition.

Proof of Corollary 1: This is just a special case of Proposition 1, where i is fixed and y =

{j| ij ∈ G}, g1 = {ij| ij ∈ G} and g0 = {ij| ij /∈ G, j 6= i}.

Proof of Proposition 2: Let D be the diagonal matrix where Dii = c + di, and B = D−1A

where A is the adjacency matrix of g1. We can express the precision matrix by

Σ = (I−B)−1D−1

Let B0 denote the matrix B when c = 0. Since B0 is a stochastic matrix (i.e., each row summing

up to 1), its largest-magnitude eigenvalue is 1. When c > 0, B is non-negative and it is easy to see

that

B < δB0

By the Perron-Frobenius Theorem, we know that the largest-magnitude eigenvalue of B is smaller

than that of δB0, which is δ. Given that δ < 1, we may write

Σ = (I + B + B2 + ...)D−1

Because for any k ≥ 1, Bk is non-negative and
∥∥Bk

∥∥ < δk, we have,

(Bk)ij < δk

Now consider a node j whose distance from i in the sub-network defined by g1 is r(i, j) ≥ 1.

Because A is the adjacency matrix of g1, and there is no path between i and j whose length is less

than r(i, j), we know (Bk)ij = 0 for all k < r(i, j). Hence an upper bound of (I + B + B2 + ...)ij is

+∞∑
k=r(i,j)

δk = δr(i,j)/(1− δ).

Proof of Lemma 1: Derivation of the lemma follows similarly to the proof of Corollary 1.
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Proof of Lemma 2: Under a symmetric rule λ, i and j become friends iff they have met and

mij > λ(xi − xj)2. Thus

E(ni|xi, λ) = S

∫ +∞

−∞
νe−λ(t−xi)

2/2

√
q

2π
e−qt

2/2dt = Sν

√
q

q + λ
e
− λq
λ+q

xi
2/2

Recall that Sν
√

q
q+1 = N . Taking q → 0 gives the result.

Proof of Proposition 3: For notational simplicity, the expectation sign E(·) throughout this

proof refers to the conditional expectation E(·|xi, λ, λi), which is computed conditional on the type

xi and a symmetric rule λ except for possible deviation of i to λi. Similarly, the notation Pr(·) also

refers to the probability with the same conditionals.

First let us calculate the expected social utility, E
∑

ij∈G(mij − |xj − xi|), which we will denote

more compactly as Eui. For any j we have:

Pr(xj , ij ∈ G) = Pr(xj) Pr(ij ∈ G|xj)

=

√
q

2π
e−qx

2
j/2 ×

νe−λi(xi−xj)
2/2 if xj ≤ xi

νe−λ(xi−xj)
2/2 if xj > xi.

(A.3)

(A.3) enables us to calculate the probability of being friends with j:

Pr(ij ∈ G) =

∫ +∞

−∞
Pr(xj , ij ∈ G)dxj

=
1

2

(
1√
λi

+
1√
λ

)
ν

√
q

q + 1
e
− q
q+1

x2i /2

and in particular, its limiting value:

S Pr(ij ∈ G)→ 1

2
N

(
1√
λi

+
1√
λ

)
(A.4)

In a similar way, (A.3) also enables us to calculate the conditional type difference and its limiting

value:

E
(
−|xj − xi|

∣∣∣ij ∈ G) =

∫ +∞

−∞
−|xj − xi|Pr(xj |ij ∈ G)dxj

→
√

2

π

(
1

λi
+

1

λ

)/( 1√
λi

+
1√
λ

)
(A.5)
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Next we turn to the matching value. We have

Pr(mij , ij ∈ G) = Pr(mij) Pr(ij ∈ g|mij)

= mije
−m2

ij/2

(
ν

√
q

2π

∫ xi+mij/
√
λ

xi−mij/
√
λi

e−qx
2
j/2dxj

)

So,

S Pr(mij , ij ∈ G)→ N√
2π
m2
ije
−m2

ij/2

(
1√
λ

+
1√
λi

)
which, with (A.4), implies that

Pr(mij |ij ∈ G)→
√

2

π
m2
ije
−m2

ij/2

This is the density of a χ3 distribution. So we have

E
(
mij

∣∣∣ij ∈ G)→ 2

√
2

π
(A.6)

The expected social utility can be computed by summing over i’s expected social utility from each

j in the society:

Eui =
∑
j 6=i

Pr(ij ∈ G)
[
E
(
−|xj − xi|

∣∣∣ij ∈ G)+ E
(
mij

∣∣∣ij ∈ G)]
= S Pr(ij ∈ G)

[
E
(
−|xj − xi|

∣∣∣ij ∈ G)+ E
(
mij

∣∣∣ij ∈ G)]
Equipped with (A.4), (A.5) and (A.6), we are able to find its limiting value,

Eui →
N√
2π

[
2

(
1√
λi

+
1√
λ

)
−
(

1

λi
+

1

λ

)]
(A.7)

A nice intuitive result from this is that the social utility is maximized at λi = 1. Any deviation

from that “distorts” the friendship formation and is suboptimal in terms of social utility.

Next we look at the expected utility from the network based score. The bias from using network

based scoring is:

Eµi(λ)− xi = E
[
λ
∑

ij∈G(xj − xi)
c+ λ+ λni

]

= E

 λ

c+ λ+ λni
E

∑
ij∈G

(xj − xi)
∣∣∣ni


= E
[

λni
c+ λ+ λni

E
(
xj − xi

∣∣∣ij ∈ G)]
= E

(
λni

c+ λ+ λni

)
E
(
xj − xi

∣∣∣ij ∈ G)
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The first equality comes from the fact that yi (and yj) are unbiased signals of xi (and xj). The

second equality makes use of the iterated law of expectation. The last equality makes use of the

fact that E(xj − xi|ij ∈ G) is not a function of ni.

Using (A.3), we may calculate, in a way similar to (A.5),

E
(
xj − xi

∣∣∣ij ∈ G)→√
2

π

(
1

λ
− 1

λi

)/( 1√
λ

+
1√
λi

)
So under the limits, we have the equality:

Eµi(λ)− xi = E
(

λni
c+ λ+ λni

)
︸ ︷︷ ︸

ϕ

×
√

2

π

(
1

λ
− 1

λi

)/( 1√
λ

+
1√
λi

)
︸ ︷︷ ︸

ξ

(A.8)

It is a bit difficult to find an explicit expression for ϕ even under limits, so we will deal with it

implicitly. From this point on, notations EUi, Eui and Eµi all refer to their limiting values.

As a first step to find the equilibrium, we look at the “best response” correspondence for i, that

is, the value of λi that maximizes EUi for any λ. We will make use of the derivative of EUi:

F (λi, λ) :=
∂Eui
∂λi

+ α
∂(Eµi(λ)− xi)

∂λi

By (A.8),
∂(Eµi(λ)− xi)

∂λi
=
∂ϕ

∂λi
ξ +

∂ξ

∂λi
ϕ

Notice that (i) ξ has the same sign as λi− λ, (ii) ∂ξ/∂λi > 0, and (iii) 0 < ϕ < 1, (iv) ∂ϕ/∂λi < 0.

The first three points are easy to be seen. The last point can be seen by noticing that ni is

binomially distributed, and under the limits, Poisson distributed with the mean given in (A.4).

Using (i)-(iv), we see two useful properties for the second component of F :

∂(Eµi(λ)− xi)
∂λi

<
∂ξ

∂λi
, for λi ≥ λ (A.9)

and
∂(Eµi(λ)− xi)

∂λi
> 0, at λi = 1 (A.10)

Next we will translate these two properties into two properties of F . First, (A.10) tells us that

F (1, λ) > 0 (A.11)

because ∂Eui
∂λi

= 0 at λi = 1, by (A.7).

To obtain the second property, we need to look at a simpler case of F where ϕ is ignored in the

derivative:

F̃ (λi, λ) :=
∂Eui
∂λi

+ α
∂ξ

∂λi

40



It can be easily verified that as long as α < N , there is an invariant solution to F̃ (·, λ) = 0:

λo ≡
(

1− α

N

)−1
and F̃ (λi, λ) ≤ 0 for λi ≥ λo . Together with (A.9), this tells us that

F (λi, λ) < F̃ (λi, λ) ≤ 0, for any λi ≥ max(λ, λo) (A.12)

These two properties about F are sufficient to derive the proposition. Define Ξi(λ) := argmaxλi≥1EUi
as the “best response” correspondence. Using Berge’s Theorem one can show that it is upper semi-

continuous. Furthermore, (A.11) and (A.12) imply

1 < Ξi(λ) < max(λ, λo)

This tells us that any fixed point of Ξi(·) must be between 1 and λo. Using Kakutani Fixed-Point

Theorem one can show that a fixed point exists.

Proof of Corollary 2: For the precision,

E[ρi(λ)|λ] = c+
cλ

c+ λ
Eλni

= c+
c
√
λ

c+ λ
N

The first equality uses (8) for the expression of ρi(λ). The second equality comes from (9).

If c ≤ 1, then the precision is decreasing in λ after 1. So it is smaller at λ∗ than at 1. If

c ≥
√

N
N−α > 1, then the precision is no larger at 1 than at

(
1− α

N

)−1
, which is the upper bound

of λ∗. Noticing that the precision is also quasi-concave in λ, we see it is smaller at 1 than at λ∗.

Proof of Lemma 3: Using the definition of conditional probability, we have

Pr(xi = h,yi) = Pr(yi|xi = h) Pr(xi = h)

The prior Pr(xi = h) = 1/2 by our assumption. The likelihood Pr(yi|xi = h) has three parts: (i)

the probability that i is friends with those whose signals are collected in yi and these friends have

the signals as collected in yi, (ii) the probability that i is not friends with anyone outside yi, (iii)
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the probability that i’s own signal is as that collected in yi. Formally,

Pr(yi|xi = h) =
∑
xi

∏
ij∈G

ν
(
1{xj=h} + p11{xj=`}

) ∏
ij∈G

Pr(yj |xj)

×
∏

ij /∈G,j 6=i

(
1− 1

2
ν(1 + p1)

)
× Pr(yi|xi = h)× 1

2

where
∑

xi
is the summation across all possible vectors of friends’ types, which contains 2ni items.

Another way of expressing the probability Pr(xi = h,yi) is

Pr(xi = h,yi) =
∏
ij∈G

ν [Pr(yj |xj = h) + p1 Pr(yj |xj = `)]×

∏
ij /∈G,j 6=i

(
1− 1

2
ν(1 + p1)

)
× Pr(yi|xi = h)× 1

2
(A.13)

Similarly we can find the corresponding expression for Pr(xi = `,yi).

Pr(xi = `,yi) =
∏
ij∈G

ν [p1 Pr(yj |xj = h) + Pr(yj |xj = `)]×

∏
ij /∈G,j 6=i

(
1− 1

2
ν(1 + p1)

)
× Pr(yi|xi = `)× 1

2

Hence we may compute the following ratio:

Pr(xi = `|yi)
Pr(xi = h|yi)

=

(
ε

1− ε

)yi ( εp1 + 1− ε
ε+ p1 − εp1

)Li (p1 − εp1 + ε

1− ε+ εp1

)Hi
This ratio, together with Pr(xi = `|yi) + Pr(xi = h|yi) = 1, proves the proposition.

Proof of Lemma 4: Similar to the proof of Lemma 3, we can find the expression Pr(xi = h,yi)

by replacing p1 in (A.13) with pβ. The expression for Pr(xi = `,yi) is

Pr(xi = `,yi) =
∏
ij∈G

ν [pβ Pr(yj |xj = h) + pθ Pr(yj |xj = `)]×

∏
ij /∈G,j 6=i

(
1− 1

2
ν(pθ + pβ)

)
× Pr(yi|xi = `)× 1

2
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So the ratio becomes:

Pr(xi = `|yi)
Pr(xi = h|yi)

=

(
1− ν(pθ + pβ)/2

1− ν(1 + pβ)/2

)S−ni
×(

ε

1− ε

)yi (εpβ + pθ − εpθ
ε+ pβ − εpβ

)Li (pβ − εpβ + εpθ
1− ε+ εpβ

)Hi
Taking limits of S and ν completes the proof.

Proof of Lemma 5: We want to study the expected log odds as a function of θ. By Lemma 4,

we have,

E [Ri(θ, β)|`, θ, β] = (1− 2ε) log

(
ε

1− ε

)
− 1

2
N [εpβ + (1− ε)pθ] log

(
εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)
−1

2
N [εpθ + (1− ε)pβ] log

(
εpθ + (1− ε)pβ
εpβ + (1− ε)

)
− 1

2
N(1− pθ) (A.14)

Since pθ =
∫ +∞
θ f(t)dt where f is the density of the matching value, the derivative of the above

expected log odds w.r.t. θ is

∂E [Ri(θ, β)|`, θ, β]

∂θ
=
∂E [Ri(θ, β)|xi = `, θ, β]

∂pθ
· ∂pθ
∂θ

=
1

2
N

[
(1− ε) log

(
εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)
+ ε log

(
εpθ + (1− ε)pβ
εpβ + (1− ε)

)]
f(θ) (A.15)

Note that the derivative is strictly increasing in pθ, thus strictly decreasing in θ. By the definition

we gave to θ, the derivative is zero at θ(β). So we can conclude that the expected log odds as a

function of θ is quasi-concave with the maximum attained at θ(β).

Proof of Lemma 6: We want to study the expected log odds as a function of β. First, the

expected log odds is expressed as in (A.14). We take its derivative w.r.t. β:

∂E [Ri(θ, β)|xi = `, θ, β]

∂β
=

1

2
N

[
ε log

(
εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)
+ (1− ε) log

(
εpθ + (1− ε)pβ
εpβ + (1− ε)

)
+
ε2 − (1− ε)2pθ
ε+ (1− ε)pβ

+
(1− ε)2 − ε2pθ
εpβ + (1− ε)

]
f(β)

Since f is positive, we focus on the term within the brackets. Using the inequality log(t) < t − 1

except for t = 1, we have

[...] <
ε2pβ + ε(1− ε)pθ
ε+ (1− ε)pβ

+
ε(1− ε)pθ + (1− ε)2pβ

εpβ + (1− ε)
−
ε(1− ε)pβ + (1− ε)2pθ

ε+ (1− ε)pβ
−
ε(1− ε)pβ − ε2pθ
εpβ + (1− ε)
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Notice that the right side is (linearly) decreasing in pθ. Recall the condition of the Lemma is

θ < β which implies pθ > pβ. Hence we may replace pθ by pβ on the right hand side of the above

inequality,

[...] <

[
ε2 − (1− ε)2

ε+ (1− ε)pβ
+

(1− ε)2 − ε2

εpβ + (1− ε)

]
pβ

which is smaller than zero because the denominator in the first term is smaller than that of the

second.

Proof of Proposition 4: For notational simplicity, we omit the (θ, β) in the conditional of any

expectation operator. We also use Ri short for Ri(θ, β).

We start with a low type person. With Pi(θ, β) given by (15), we can easily write down i’s

expected credit score for any θi ≥ θ:

E(Ri|`, θi) = (1− 2ε) log

(
ε

1− ε

)
− 1

2
N

[
εpβ + (1− ε)

∫ +∞

θi

f(t)dt

]
log

(
εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)
−

1

2
N

[
ε

∫ +∞

θi

f(t)dt+ (1− ε)pβ
]

log

(
εpθ + (1− ε)pβ
εpβ + (1− ε)

)
− 1

2
N(1− pθ)

Thus for any θi ≥ θ,

∂E(Ri|`, θi)
∂θi

=
1

2
N

[
(1− ε) log

(
εpβ + (1− ε)pθ
ε+ (1− ε)pβ

)
+ ε log

(
εpθ + (1− ε)pβ
εpβ + (1− ε)

)]
f(θi) (A.16)

Next for the social utility E
(∑

ij∈Gmij − 1{xj=h}|`, θi
)

, which we will use E(ui|`, θi) as a shorthand

for, we have for any θi ≥ θ,

E(ui|`, θi) =
1

2
N

(∫ +∞

β
(t− 1)f(t)dt+

∫ +∞

θi

tf(t)dt

)
Thus for any θi ≥ θ,

∂E(ui|`, θi)
∂θi

= −1

2
Nθif(θi) (A.17)

First let us show that θ∗ > 0. Consider the case where every low type chooses θ = 0. It is easy

to see that at ∂E(ui|`,θi)
∂θi

= 0 but ∂E(Ri|`,θi)
∂θi

> 0 at θi = 0 for any β ≥ 1. Hence ∂E(Ui|`,θi)
∂θi

> 0 and

the low type wants to increase θi above 0 and be more exclusive towards his fellows. This incentive

to deviate means θ = 0 cannot be part of an equilibrium.

Second, to show that θ∗ < θ(β∗), we use our refinement. Suppose (θ∗, β∗) is an equilibrium

where θ∗ ≥ θ(β∗). Now consider a behavior θ∗∗ that is smaller than but sufficiently close to θ(β∗)

for the low type. Every low type will be better off in (θ∗∗, β∗) than in (θ∗, β∗), because (i) by

Lemma 5, we know that E(Ri|`) is quasi-concave in θ and differentiably maximized at θ(β), (ii) the

social utility

E(ui|`) =
1

2
N

(∫ +∞

β
(t− 1)f(t)dt+

∫ +∞

θ
tf(t)dt

)
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is strictly decreasing in θ:
∂E(ui|`)
∂θ

= −1

2
Nθf(θ) (A.18)

Further, given that every other low type chooses θ = θ∗∗ and every high type chooses β = β∗, a low

type i has no incentive to increase his criterion θi beyond θ∗∗ because (i) by (A.17) ∂E(Ri|`,θi)
∂θi

< 0

and, (ii) by (A.16) and our choice of θ∗∗, ∂E(ui|`,θi)
∂θi

< 0 so. Nor does he have incentive to lower the

criterion, because doing so changes nothing (friendship must be mutual). We conclude that (θ∗, β∗)

fails the refinement.

Lastly, we turn our attention to the high types. We want to show that β = 1 cannot be part of an

equilibrium. The argument is similar to that for the low types. Briefly, consider a symmetric profile

(θ, β = 1). To be an equilibrium, it must be that θ < θ(1). This will imply that ∂E(Ri|h,βi)
∂βi

> 0

at βi = 1. But ∂E(ui|h,βi)
∂βi

= 0 at βi = 1. Hence a high type wants to raise her βi above 1. This

incentive to deviate means that β = 1 cannot be part of an equilibrium.

Proof of Proposition 5: Let Θ be the set of equilibria without refinement. Given that αh = 0

and β = 1, we are effectively looking for the point(s) in Θ that maximizes the expected total utility

of low types.

Using (A.15) with β = 1, we see that E(Ri|`)
∂θ /f(θ) is strictly decreasing in θ and equals 0 at

θ = θ. Using (A.18), we see E(ui|`)
∂θ /f(θ) is strictly decreasing in θ and equals 0 at θ = 0. These

imply that
∂E(ui|`)
∂θ

+ α`
∂E(Ri|`)

∂θ

is strictly decreasing and has a single point within (0, θ) where it is zero. It is also where E(Ui|`) is

maximized. Denote this point by θ∗. We would be done if θ∗ is shown to be an equilibrium without

refinement. By comparing (A.15) with (A.16) and (A.18) with (A.17), it is not difficult to see that

at θi = θ∗ and θi ≥ θ∗,
∂E(ui|`, θi)

∂θi
+ α`

∂E(Ri|`, θi)
∂θi

≤ 0

and the inequality is strict for θi > θ∗. This implies that a low type i has no incentive to deviate

if every other low type chooses θ∗.

Proof of Lemma 7: Mathematically it is really a special case of Lemma 4, with pβ = pθ =

p1.

Proof of Proposition 6: The arguments closely resemble those of the proof of Proposition 4.

Here we discuss them briefly.

First, consider a candidate profile (θ, β) with θ ≤ θ(β). One can show that a low type has

incentive to increase his criterion because doing so increases both his social utility and credit score.

So it cannot be an equilibrium.
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Second, we filter θ∗ = 1 with refinement. Suppose that (θ∗, β∗) is an equilibrium. Compare

it with (θ∗∗, β∗) where θ∗∗ is smaller but sufficiently close to 1. One can show that low types are

better off under θ∗∗ and no single low type has incentive to increase criterion under θ∗∗.

Lastly, consider a candidate profile (θ, β) with β = 1. From the above we know for it to be

an equilibrium it must be that θ > θ(β), which says that removal of one low type friend strictly

increases one’s expected credit score. Hence a high type has incentive to raise her criterion above

1. So it cannot be an equilibrium.

Proof of Proposition 7: First we look at the case of discrimination. Taking first-order condition

w.r.t. ei, we have for each i:

e∗i = ab−1 + φ(Hi +
∑

ij∈G,xi=`
e∗j )

which we may write in the matrix form:

e∗ = ab−1 + φH + φA`e
∗

This implies

(I− φA`) e∗ = ab−1 + φH

By Perron-Frobenius Theorem, the largest-magnitude eigenvalue of A` is real and positive. Fur-

thermore, if this eigenvalue is smaller than |φ|−1, then ‖φA‖ < 1, which implies that the series∑∞
k=0 φ

kAk
` exists. One can readily check that the series is the inverse of (I− δA`).

The case of homophily can be proved similarly. In particular, the first-order condition is

e∗i = (Hi − Li)b−1 + 2b−1
∑

ij∈G,xi=`
e∗j + ab−1 + φ(Hi +

∑
ij∈G,xi=`

e∗j )

One can again write it into matrix form and solve for e∗.

Proof of Lemma 8: Using

Pr(xi = h|yi) =
∏
ij∈G

ν [qs Pr(yj |xj = h) + qd Pr(yj |xj = `)]×

∏
ij /∈G,j 6=i

(
1− 1

2
ν(qs + qd)

)
× Pr(yi|xi = h)× 1

2
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Pr(xi = `|yi) =
∏
ij∈G

ν [qd Pr(yj |xj = h) + qs Pr(yj |xj = `)]×

∏
ij /∈G,j 6=i

(
1− 1

2
ν(qs + qd)

)
× Pr(yi|xi = `)× 1

2

So the ratio is:

Pr(xi = `|yi)
Pr(xi = h|yi)

=

(
ε

1− ε

)yi (εqd + qs − εqs
εqs + qd − εqd

)Li (qd − εqd + εqs
qs − εqs + εqd

)Hi
which, together with Pr(xi = `|yi) + Pr(xi = `|yi) = 1, gives us the result.

Proof of Proposition 8: Again for notational simplicity, all expectation operators in this proof

are conditional on the symmetric profile (e`, eh). So for example, E(Ui|`, ei) actually refers to

E(Ui|`, e`, eh, ei) which is the expected utility of a low type when he chooses ei while everyone else

follows (e`, eh).

Given (13), we see that for any individual i, an additional high type friend increases (and an

additional low type friend decreases) the expected utility from credit score by

Dxi = αxi

[
ε log

(
ε+ (1− ε)p1
εp1 + (1− ε)

)
+ (1− ε) log

(
εp1 + (1− ε)
ε+ (1− ε)p1

)]
It is not difficult to see that the friendship formation criteria will be: a low type accepts another

low type iff mij > D`, a high type accepts a low type iff mij > 1 + Dh, a low type accepts a high

type iff mij > 1 − D`, and a high type accepts another high type iff mij > −Dh (which always

holds). Using these criteria and the requirement that a tie is formed upon mutual acceptance, the

expected utility of a low type when he chooses ei is

E(Ui|`, ei) = (ei + e`)M

∫ ∞
D`

(t−D`)f(t)dt+ (ei + eh)M

∫ ∞
1+Dh

(t− 1 +D`)f(t)dt,

and the expected utility of a high type when she chooses ei is

E(Ui|h, ei) = (ei + e`)M

∫ ∞
1+Dh

(t− 1−Dh)f(t)dt+ (ei + eh)M

∫ ∞
0

(t+Dh)f(t)dt.

Using first-order conditions, we have, in an equilibrium,

e∗` = M

∫ ∞
D`

(t−D`)f(t)dt+M

∫ ∞
1+Dh

(t− 1 +D`)f(t)dt. (A.19)

and

e∗h = M

∫ ∞
1+Dh

(t− 1−Dh)f(t)dt+M

∫ ∞
0

(t+Dh)f(t)dt. (A.20)
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Comparing (A.19), (A.20) and (24), one can verify that: (i) e∗` < e∗ < e∗h for α` = αh > 0, (ii)

e∗` > e∗h iff ∫ D`

1+Dh

(D` − t)f(t)dt >

∫ 1+Dh

0
Dhf(t)dt+

∫ 1+Dh

0
tf(t)dt

which holds for D` sufficiently large.
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Web Appendix

Justification of the functional form of credit score utility (Section 5)

This appendix sketches a micro-model that justifies how equation (18) can be derived from the

models and results of Section 4.

We assume the following two-stage game structure: Before the game starts, a network has been

exogenously formed. After the network is formed, the use of social network data in credit scoring

is suddenly announced. In stage 1 of the game, low type individuals are given the opportunity to

exert effort to improve their types. If a low type exerts effort e, then with probability e she will

become a high type. After individuals make effort decisions, in stage 2 new types are revealed,

individuals are given the opportunity to drop friendships, and credit score utility is realized on the

basis of the final network. Based on the general results of Section 4, we assume that high types who

care about their credit score, will drop low type friends with some probability pHL and low types

will, similarly, drop other low types with probability pLL. The specific values and relationships

between pHL and pLL are not crucial for the analysis that follows, so these assumptions are very

general.

Recall that the general form of credit utility Ri = −αlog(1−PiPi
), Pi = (1 + k0k

yi
1 k

hi
2 k

li
3 )−1 that

is implied by the general functional form of results of Section 4 is:

Ri = K0 + yiK1 + hiK2 + liK3

where yi ∈ {−1, 1}, Ki are (positive or negative) constants, and hi, li denote the number of friends

with high and low signals. If we assume that the actual numbers of individual i’s high and low

friends in stage 1 are Hi, Li respectively, and that `-type friend j exerts effort ej , the expected

numbers of individual i’s high and low type friends in stage 2 (before any friendship ties are

dropped) are Hi +
∑

ij∈G` ej and Li−
∑

ij∈G` ej respectively. Under these assumptions, individual

i’s expected stage 2 credit score utility is approximately14 given by:

ucredit =

 K0 +K1 + (Hi +
∑
ij∈G`

ej)K2 + (Li −
∑
ij∈G`

ej)pHLK3 if i becomes high type in stage 2

K0 −K1 + (Hi +
∑
ij∈G`

ej)pHLK2 + (Li −
∑
ij∈G`

ej)pLLK3 if i remains low type in stage 2

Therefore, low type individual i who is pondering what level of effort to exert, is faced with expected gains

14Signals are noisy and, thus, the number of friends with high and low signals is not always the same as the actual
number of friends with high and low types. For the sake of simplicity, we assume here that the expected number of
friends with high and low signals in stage 2 is approximately equal to the expected number of friends with high and
low types in stage 2 respectively.
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of:

ui = ei

[
K0 +K1 + (Hi +

∑
ij∈G`

ej)K2 + (Li −
∑
ij∈G`

ej)pHLK3

]
+(1− ei)

[
K0 −K1 + (Hi +

∑
ij∈G`

ej)pHLK2 + (Li −
∑
ij∈G`

ej)pLLK3

]
which can be rewritten as:

ui =
[
K0 −K1 + (Hi +

∑
ij∈G`

ej)K2 + (Li −
∑
ij∈G`

ej)pHLK3

]
+ei [2K1 +Hi(1− pHL)K2 + Li(pHL − pLL)K3

+
(∑

ij∈G`
ej

)
[(1− pHL)K2 − (pHL − pLL)K3]

]
The returns to own effort, thus, have:

1. a term
[
K0 −K1 + (Hi +

∑
ij∈G`

ej)K2 + (Li −
∑
ij∈G`

ej)pHLK3

]
that does not depend on one’s

own effort, which we may omit.

2. a second term ei [2K1 +Hi(1− pHL)K2 + Li(pHL − pLL)K3] that multiplies one’s own effort by an

expression that has the general form a+ c1Hi + c2Li.

3. a third term ei

(∑
ij∈G`

ej

)
[(1− pHL)K2 − (pHL − pLL)K3] that interacts own effort ei with the

expected sum
(∑

ij∈G`
ej

)
of every `-type friend’s effort, times a constant.

If we assume a quadratic cost of effort
be2i
2 , the above analysis sketch justifies the form of equation (18) used

in the text:

ui = (a+ c1Hi + c2Li) ei + bφ

∑
xj=`

ej

 ei −
be2i
2

Technical Note about Outside Options

This technical note addresses the possibility of individuals choosing to remain outside of the network. Let’s

assume that a friendship network is formed exogenously based on social utility as in our baseline discrete-

type model. The probability of same-type tie after meeting is 1 while the probability of different-type tie

after meeting is p1 < 1.

Given the network, each individual may opt in social-network-based scoring system or opt out. If she

opts out, the lender only observes her individual signal (yi), otherwise the lender sees the signals on her

friends as well.

To simplify the analysis, assume that the individual observes her own signal and her friends’ signals

before making the in-or-out decision. So individual’s in-or-out decision is a function of her own signal and

signals of her friends: oi = ô(yi, Hi, Li) ∈ {1, 0}. Strictly speaking, oi could be a function of her own type as

well. But since the lender’s posterior only depends on the signals, there is no reason for a high type and low

type to choose differently if they have the same signal and signals of friends. This point will become clearer

as we go deeper into the analysis.
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If the individual opts in, then lender’s posterior is

Pi = Pr(xi = h|yi, oi = 1)

Since oi is a function of yi, Pi = Pr(xi = h|yi), which we have derived in our baseline discrete-type model,

Pi =

[
1 +

(
ε

1− ε

)yi (ε+ (1− ε)p1
εp1 + (1− ε)

)Hi−Li
]−1

. (A.21)

If she opts out, the lender’s posterior for her would be

Pi = Pr(xi = h|yi, oi = 0)

which depends on yi ∈ {1,−1}.
An equilibrium is some individual behavior rule ô such that (i) lender’s posterior is consistent with the

behavior, (ii) the behavior is optimal for the individuals.

Proposition 9. There is no equilibrium in which some people opt out.

The intuition for the Proposition 9 is in “The Market for Lemons” (Akerlof 1979). The lender treats

someone that opts out as an average in the pool of the people that opt out. The person that is above that

average in the pool thus finds it undesirable to opt out and subsequently be treated so. This leads to a

“market failure” where no one likes to opt out, and the lender puts the worst possible belief (i.e., Pi = 0) on

the off-equilibrium action of opting out.

Proof. If an individual opts in, she will receive a score given by (A.21) which depends on both her own

signal and the relative number of friends she has with high signals. If she opts out, she will receive a score

which only depends on her own signal. So it is easy to see that ô should be a cut-off rule. In particular, for

someone with yi = 1,

ô(yi = 1, Hi, Li) = 1 iff Hi − Li ≥ ∆

for some ∆. Suppose that ∆ is finite. In other words, both {yi = 1, oi = 0} and {yi = 1, oi = 1} happen for

nonzero proportions of the society. We will show this cannot be the case.

Let us consider someone with yi = 1 and on the edge of opting out: Hi − Li = ∆, it must be that her

opt-in score is no less than her opt-out score:

[
1 +

(
ε

1− ε

)yi (ε+ (1− ε)p1
εp1 + (1− ε)

)∆]−1
≥ Pr(xi = h|yi = 1, oi = 0) (A.22)

= Pr(xi = h|yi = 1, Hi − Li < ∆)
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Noticing that

Pr(xi = h|yi = 1, Hi − Li = ∆) =

[
1 +

(
ε

1− ε

)yi (ε+ (1− ε)p1
εp1 + (1− ε)

)∆]−1

and because ∆ is finite,

Pr(xi = h|yi = 1, Hi − Li = ∆) > Pr(xi = h|yi = 1, Hi − Li < ∆)

So we must have the exact opposite of (A.22). By contradiction, it must be that ∆ is infinite. If ∆ is +∞,

that is, everyone opts out, then the opt-out score Pr(xi = h|yi = 1, oi = 0) = Pr(xi = h|yi = 1), which

equals 1 − ε. However, in this case an individual with enough many friends with high signals would like to

opt in and get a score given by (A.21). The only possible equilibrium left is then ∆ = −∞, everyone opts

in. The equilibrium is easily supported by the lender putting the worst belief on opting out, which is off

equilibrium path.

A similar argument applies to someone with yi = 0. To conclude, there is no equilibrium in which

someone opts out and everyone opts in.

Reference:

Akerlof, George A. “The Market for Lemons: Quality uncertainty and the market mechanism.” The Quar-

terly Journal of Economics 84.3 (1970): 488-500.
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