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Abstract

Being able to accurately predict what a customer will purchase next is of paramount
importance to successful online retailing. In practice, customer purchase history
data is readily available to make such predictions, sometimes complemented with
customer characteristics. Given the large assortments maintained by online retail-
ers, scalability of the prediction method is just as important as its accuracy. We
study two classes of models that use such data to predict what a customer will buy
next: A novel approach that uses latent Dirichlet allocation (LDA), and mixtures
of Dirichlet-Multinomials (MDM). A key benefit of a model-based approach is the
potential to accommodate observed customer heterogeneity through the inclusion
of predictor variables. We show that LDA can be extended in this direction while
retaining its scalability. We apply the models to purchase data from an online re-
tailer and contrast their predictive performance with that of a collaborative filter
and a discrete choice model. Both LDA and MDM outperform the other meth-
ods. Moreover, LDA attains performance similar to that of MDM while being far
more scalable, rendering it a promising approach to purchase prediction in large
assortments.

1. Introduction

The ability to predict what a customer will purchase next is valuable in many marketing
applications and this holds especially true for online retailing. Adequate predictions
for the next products to be purchased enable online retailers to: implement a product
recommendation system; determine the positions of products in the result of a customer’s
search query; optimize the collection of products to be displayed on a personalized
landing page; or suggest products to complement the contents of a customer’s shopping
basket.

Examples of personalization in practice are Amazon’s “Customers Who Bought This
Item Also Bought” section, Apple’s iTunes Genius and the Netflix recommendation sys-
tem. There is also clear evidence that such personalized configurations influence behavior
(Ghose et al., 2014; Pan et al., 2007; Salganik et al., 2006). All these applications have
in common that they require a personalized selection of products out of a potentially
large assortment. Ideally, the selection contains those products that are most likely to
be of interest to the customer. Moreover, the selection should be relatively small as the
available space to show products is often limited.

The effectiveness of personalization attempts crucially depends on the accuracy of the
predictions. A complicating factor in purchase prediction is the fact that the typical
online retailer sells items from a very broad assortment to an even larger customer base.
Hence predictions should not only be accurate, but the prediction method should scale
to large applications as well (Naik et al., 2008). Additionally, in order to be useful
in an online setting the predictions should be available in near real-time. Obtaining
predictions, and updating them as new information comes in, should therefore be fast.

The typical data available at an online retailer for purchase prediction are the customer
purchase histories. In some cases additional customer characteristics (e.g. demographics)
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are also available. However, on the product level characteristics are often absent and if
such product descriptions are available, it is not obvious how to extract useful predictors
from this information. In this paper we therefore focus on predicting purchase behavior
based on purchase history data, possibly complemented with customer characteristics.

Many online retailers predict a customer’s next purchase using collaborative filtering
algorithms, for example, by relying on counts of the co-occurrence of items in purchase
history data (Jannach et al., 2011; Liu et al., 2009). In such a count-based approach
a decision has to be made on how to measure the co-occurrence of items, as one can
count pairs, triplets, or even higher-order product combinations. A choice for small
sets of items results in information loss, i.e. purchase patterns that span many products
might not be easily identified. On the other hand, for large combinations of products
the matrix of co-occurrence counts becomes very sparse, resulting in predictions that are
based on just a few matches in the customer base. Another challenge in collaborative
filtering algorithms is incorporating customer characteristics. One possible approach is
to partition the customer-base using such characteristics. However, this can only be
done for a couple of variables with a limited number of levels, as otherwise sample sizes
per subgroup become too small.

In contrast, model-based approaches to predict individuals’ choices have a long history
in marketing (Guadagni and Little, 1983; McFadden, 1986; Wagner and Taudes, 1986;
Fader and Hardie, 1996) and such methods are well-suited to include customer charac-
teristics. However, the usual implementations of these models tend to break down in the
typical online retail setting, where a wide variety of products is sold to a large number
of customers (Naik et al., 2008). One way to make methods more scalable is to consider
only a subset of the data in terms of customers and/or products (Zanutto and Bradlow,
2006). Clearly, this is not a viable solution if the aim is to predict purchase behavior for
each individual customer across the entire product assortment.

In this paper we try to bridge the gap between retail practice and marketing academia
by discussing model-based prediction methods that do work in the context of large
assortments. By developing such methods we open up an avenue for future research on
marketing interventions in large-scale assortments, for example on the effectiveness of
product recommendations, extending the work of Bodapati (2008). Note that this would
not be feasible with the heuristic, count-based approaches currently used in practice. We
consider two model-based approaches. In addition, we present (an implementation of) a
count-based collaborative filter and a scalable version of a discrete choice model that will
serve as benchmarks. We compare the methods on their (i) heterogeneity assumptions,
(ii) estimation complexity, (iii) memory requirements for real-time online predictions,
and (iv) predictive performance.

The first method we present is a novel approach inspired by topic models as used
in the text modeling literature. Traditionally, a topic model describes a document
by relating the words in the text to latent topics. We adapt this class of models to
the purchase prediction context: Words become product purchases, a document is a
customer’s purchase history, and a topic represents a certain preference for products in
the assortment. Given that the word “topic” does not make much sense in a retailing
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context, we refer to topics as motivations.1 Naturally, customers can have more than one
motivation, just like a document can cover multiple topics. This idea leads to a class of
models that can describe and predict customer purchase behavior in large assortments.

The most frequently used topic model is latent Dirichlet allocation (LDA) by Blei
et al. (2003). This model has been used to analyze very large text corpora (Ramage
et al., 2010; Mimno et al., 2012), showing that LDA provides the necessary scalability. In
contrast to the text modeling literature, where documents tend to contain many words,
customers often have only a couple of purchases, or they might even be entirely new to the
retailer. Given such limited information per customer, we need to formally estimate the
population-level a-priori probabilities of having particular motivations. This extends the
text modeling implementation of LDA, where these probabilities are typically considered
to be known, or at best calibrated using heuristics (Wallach et al., 2009; Asuncion et al.,
2009).

To account for observed heterogeneity, we extend LDA by relating customer charac-
teristics to the a-priori motivation probabilities. This can capture heterogeneity that is
related to variables such as referrer site, demographics, or other customer characteris-
tics. Most likely this increases the predictive power of the model, in particular for the
customers with few or no observed purchases. We refer to this model as LDA-X.

The next method we consider is a mixture of Dirichlet-Multinomials (MDM) (Jain
et al., 1990). MDM specifies individual-specific probability vectors that contain a cus-
tomer’s purchase probabilities over all products in the assortment. In turn, these prob-
ability vectors follow a discrete mixture of Dirichlet distributions. MDM has previously
been applied in marketing (Jain et al., 1990), but to the best of our knowledge never
to a large product assortment. Although, in theory customer characteristics can also be
included in MDM we will argue that the resulting model will no longer be feasible in
terms of estimation complexity, given the setting of our application.

The predictive performance of LDA(-X) and MDM is compared to that of a count-
based collaborative filter and a discrete choice model. We assess the predictive perfor-
mance using data from an online retailer. For each method, we create customer-specific
prediction sets that contain the products that are most likely to be purchased. These
sets are next matched with hold-out purchase data. To gain more insight into the dif-
ferences between the methods, we also consider the predictive performance for groups
of customers that differ in the length of their observed purchase history. Furthermore,
in a setting where repeat purchases are frequently made, e.g. fast moving consumer
goods, performing well by correctly predicting frequently purchased products or repeat
purchases might not be too difficult. Such recommendations might even be perceived
as trivial or boring (Fleder and Hosanagar, 2009). We therefore also study the predic-
tive performance for unexpected products, which we define as products that have not
previously been purchased by the customer and are in the tail of the assortment.

The remainder of this article proceeds as follows: In Section 2 we present the methods
used in this research and discuss their heterogeneity assumptions and scalability. Tech-

1While intuitively plausible, we do not claim that the actual decision process is driven by these
motivations.
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nical details are available in appendices. Subsequently, we apply the methods to data of
an online retailer. An overview of this data is provided in Section 3 and the results are
reported in Section 4. To conclude, we summarize our findings and provide directions
for future research in Section 5.

2. Methods

In this section we present the prediction methods we consider in this paper. First, we
introduce two model-based prediction methods, LDA(-X) and MDM, that infer latent
customer traits from purchase data. We compare these methods on their heterogeneity
assumptions and estimation complexity. Next, the two benchmark methods are intro-
duced: a set of collaborative filters (CF) and a model built on discrete choice method-
ology (DCM) that captures customer heterogeneity through constructed, but observed
predictor variables.

Subsequently, all methods are compared on their suitability to update predictions in
a real-time setting. Finally, we discuss how we assess the quality of predictions.

All methods share the following notation: The products from the J-dimensional assort-
ment are numbered j = 1, . . . , J . For each customer i = 1, . . . , I we observe ni product
purchases from this assortment. The purchase history of customer i is denoted by the
vector yi = [yi1, . . . , yini

], where yin ∈ {1, . . . , J} represents the n-th purchase of cus-
tomer i. In addition we have customer-level characteristics coded in the K-dimensional
vector xi = [xi1, . . . , xiK ]′. We combine the purchase histories in Y = {y1, . . . ,yI} and
the predictor variables in X = {x1, . . . ,xI}.

2.1. Latent Dirichlet allocation

Our first model is inspired on topic models. The key idea underlying our application
of these models to the context of purchase history data is that customer purchases are
driven by a (small) set of latent motivations (the topics). Each motivation then drives
preferences for a subset of products in the assortment, for example, a preference for
eco-friendly products, for low-fat products, or for products for the sensitive skin.

In general, customers are likely to be driven by different motivations over time and
even within a single purchase occasion. Additionally, the same product purchased by
different customers may be driven by different underlying motivations: A movie can be
purchased by a fan of the lead actor, or by a customer that is fond of the movie’s genre.
These features are embedded in topic models, in which customers may have multiple
motivations and products may be associated with more than one motivation.

The basis for our method is latent Dirichlet allocation (LDA) introduced by Blei et al.
(2003). LDA has been proven to scale to applications well beyond the dimensions of a
typical online retailer. For example, it has been used to analyze over 8 million posts on
Twitter that contain words from a vocabulary of more than 5 million entries (Ramage
et al., 2010), or for the analysis of 1.2 million out-of-copyright books (Mimno et al.,
2012). Below, we first present the details of our adaptation of LDA in the context of
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predicting customer purchase behavior. Next, we extend LDA by including customer-
level predictor variables.

In LDA each latent motivation m = 1, . . . ,M is represented by a probability vector
φm over the complete J-dimensional assortment. Given that a purchase is driven by
motivation m, the probability of buying product j is simply φmj. The motivation-specific
probability vectors are distributed as

φm|β ∼ DirichletJ(β). (1)

A priori there is no reason to favor one product over another in a motivation. This is
reflected in the parameterization of β, where we set each element equal to a common
value β0. This value determines whether the distribution in (1) tends to favor more
narrow (β0 close to zero) or more broad (large β0) motivations (Wallach et al., 2009).

Even though each purchase is driven by a single motivation, a customer’s entire pur-
chase history may be driven by multiple motivations. This variation is described by an
individual-specific discrete mixture θi over the M motivations. The probability that a
product purchase of customer i is driven by motivation m is then given by θim. These
probabilities differ across customers and are modeled as

θi|α ∼ DirichletM(α). (2)

Here, α is an M -dimensional vector that captures the relevance of each motivation across
the customer base. The expected value of the probability that motivation m drives a
purchase equals

E [θim|α] =
αm∑M
l=1 αl

. (3)

Therefore, the larger the value of αm, the more likely it is that a customer will make a
purchase driven by motivation m.

The last step is to link motivations to actual purchases. We denote by zin ∈ {1, . . . ,M}
the actual motivation that drives purchase yin. As motivations are latent, we have to
account for all possible motivations to obtain the marginal probability that customer i
will purchase product j, resulting in

Pr
[
yin = j| {φl}Ml=1 ,θi

]
=

M∑
m=1

Pr
[
yin = j|zin = m, {φl}Ml=1

]
Pr[ zin = m|θi ]

=
M∑
m=1

φmjθim.

(4)

In the topic modeling literature it is common practice to determine the parameters of
the Dirichlet distributions α (for θi) and β0 (for φm) by means of heuristics, rather than
formally inferring their values from available data (Wallach et al., 2009), for example,
imposing α = 50/M (Griffiths and Steyvers, 2004) and β0 = 0.01 (Steyvers and Griffiths,
2013), or by applying a grid search for α and β0 (Asuncion et al., 2009). These heuristics
are not directly applicable in our setting as they have been designed for text modeling.
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Given that purchase histories tend to be much shorter than documents, we expect the
LDA predictions to be more sensitive to the values of α and (to a lesser degree) of β0.
We therefore extend the common LDA model and place proper prior distributions on
both parameters and formally estimate α and β0 in a Bayesian setting.

We specify a log-normal distribution for αm, that is, we define

log(αm) = γm, (5)

and set a normal prior for γm. We set the mode of the log-normal distribution equal
to M−1, which is within the range of values frequently used in the literature on text
modeling, and place 10% of its probability mass above 1.2 This prior specification
favors θi-vectors that allocate the majority of the probability mass to a small number
of motivations, while it still allows for more uniformly distributed θi-vectors. Similarly,
we place a log-normal distribution on β0 with its mode equal to 0.01 and 10% of its
probability mass above 1. This specification supports φm-vectors where only a few
products from the assortment receive significant probability mass, representing fairly
specific motivations. Still, this prior is rather uninformative and broader motivations
that spread the probability mass more equally over the assortment remain quite likely.

These prior specifications also allow us to easily extend LDA by including customer
characteristics, coded in xi. Such variables are likely to improve the predictive per-
formance of the model. We extend the log-linear specification for αm in (5) to αim as
follows:

log(αim) = γm + x′iδm. (6)

This links customer preferences – represented by the likelihood of each of the motivations
– to the additional customer-level information, resulting in LDA-X. To illustrate the
effect of this specification on the distribution of θi consider the expected value of θim,
which gives the probability that a typical customer with characteristics xi makes a
purchase driven by motivation m:

E [θim|αi] =
αim∑M
l=1 αil

=
exp(γm + x′iδm)∑M
l=1 exp(γl + x′iδl)

. (7)

The δm parameters capture the dependence of the probability that motivation m is
used, on the customer-specific variables xi. The prior distribution of γm and δm can only
be sensibly determined if the level and scale of the xi variables are known. We therefore
standardize the customer-level variables such that they have mean zero and unit variance.
Given this scale, we assume that all elements in δm are normally distributed with zero
mean and variance equal to 0.04. This corresponds to a prior 95% confidence interval
that is approximately equal to [−0.4,+0.4]. Note that this prior distribution is chosen
to be relatively narrow on purpose, as the effect of δm on αim is exponential. As xi is
mean-centered, we use the same prior for γm as in LDA.

To obtain customer-specific predictive distributions, we condition on the model struc-
ture of LDA. In particular, given the model parameters α, β0 and the latent purchase

2These two conditions implicitly identify the two parameters of the log-normal distribution.
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assignments Z, the predictive distribution for a new purchase ỹin can be shown to equal
(Griffiths and Steyvers, 2004):

Pr[ ỹin = j|Z,α, β0,Y ] =
M∑
m=1

Pr[ ỹin = j|z̃in = m,Z, β0,Y ] Pr[ z̃in = m|zi,α ]

=
M∑
m=1

E[φmj|Z, β0,Y ]E[ θim|zi,α ]

=
M∑
m=1

(
β0 + cMJ

mj

Jβ0 +
∑J

p=1 c
MJ
mp

)(
αm + cIM

im∑M
l=1 αl + cIM

il

)
,

(8)

where cMJ
mj is the number of times a purchase of product j is driven by motivation m and

cIM
im is the number of purchases made by customer i that are driven by motivation m.

To obtain the predictive distribution for the LDA-X model one simply replaces α with
αi in (8).

2.2. Dirichlet-Multinomial models

The Dirichlet-Multinomial (DM) model (Jeuland et al., 1980; Goodhardt et al., 1984)
is a known model-based approach to capture heterogeneity in purchase behavior. Ap-
plications of this model can be found in Grover and Srinivasan (1987); Fader (1993)
and Fader and Schmittlein (1993). In this model, each customer is endowed with an
individual-specific vector ϕi containing the purchase probabilities for each product in
the J-dimensional assortment, where

∑J
p=1 ϕip = 1. The probability that customer i

purchases product j at a specific purchase occasion n is given by:

Pr[ yin = j|ϕi ] = ϕij. (9)

Large values for the purchase probability ϕij imply that customer i is likely to buy
product j. In the DM model the customer-specific ϕi-vectors are assumed to arise from
a single Dirichlet distribution:

ϕi|β ∼ DirichletJ(β). (10)

The β-vector describes the overall purchase behavior in the customer base: If product j
is frequently purchased, βj will have a large value relative to the other values in β and
vice versa.

The original DM model has been extended such that the probability vectors ϕi origi-
nate from a finite mixture of Dirichlet distributions (Jain et al., 1990), not from a single
Dirichlet distribution. This extension is known as a mixture of Dirichlet-Multinomials
(MDM).

In MDM, each customer is assigned to one of M segments and each segment is charac-
terized by its own Dirichlet distribution. Given that customer i is allocated to segment
m, denoted by si = m, the customer’s purchase probabilities ϕi are distributed as

ϕi|si = m,βm ∼ DirichletJ(βm). (11)
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The βm-vectors are segment specific, describing the distribution of the purchase proba-
bility vectors for customers in segment m. Customers are hence expected to be similar,
although not identical, within a segment, but rather different across segments.

Segment membership in MDM is described by an M -dimensional Categorical distri-
bution with probability vector π. The element πm gives the a-priori probability that a
customer is a member of segment m, that is,

Pr[ si = m|π ] = πm. (12)

As we consider MDM within the Bayesian paradigm we also specify prior distributions
over π and the βm-vectors. For π it is natural to favor no segment over any other a
priori, therefore we use a uniform distribution over the (M − 1)-dimensional simplex.
This corresponds to an M -dimensional Dirichlet distribution, parameterized by a vector
of ones. For each βmj we use a log-normal prior distribution with its mode located at
0.01 and 10% of the probability mass located above 1. This specification allows for ϕi-
vectors that allow many products to be purchased with a large probability, but it favors
segments of customers who purchase from a more limited subset of the assortment.

Similar to the approach in LDA, we obtain customer-specific predictive distributions
of a new purchase ỹin conditional on the data, parameters, and segment allocations. In
MDM this requires a prediction of segment membership of the customer, combined with
the purchase probabilities, conditional on segment membership:

Pr
[
ỹin = j|s\i, {βl}Ml=1 ,yi

]
=

M∑
m=1

Pr[ ỹin = j|si = m,βm,yi ] Pr
[
si = m|s\i, {βl}Ml=1 ,yi

]
=

M∑
m=1

E[ϕij|si = m,βm,yi ] Pr
[
si = m|s\i, {βl}Ml=1 ,yi

]
=

M∑
m=1

(
βmj + cIJ

ij∑J
p=1 βmp + cIJ

ip

)
Pr
[
si = m|s\i, {βl}Ml=1 ,yi

]
,

(13)

where Pr
[
si = m|s\i, {βl}Ml=1 ,yi

]
is specified in Appendix A (see equation (32)) and cIJ

ij

equals the number of times customer i has purchased product j. If i is a new customer
cIJ
ij = 0 for all j by definition. Note that both components in (13) depend on the

customer’s purchase history, unlike LDA where only the motivation probabilities are
customer specific.

2.3. Model inference

The predictive distributions specified above are conditional on the number of
segments/motivations M , the model parameters, and segment/motivation allocations
to customers/purchases. For a given number of M , we rely on Bayesian methodology
to infer the model parameters and latent variables of the models. Direct inference on
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the posterior distribution is not tractable and therefore we derive Markov Chain Monte
Carlo (MCMC) methods to generate samples from the posterior distribution. To be spe-
cific, we use a random walk Metropolis-Hastings within Gibbs sampler to draw samples
from the target posterior distribution. The predictive distributions can then be obtained
by averaging over these draws.

The full posterior of LDA(-X) is given by:

p(Z, {φl}Ml=1 , β0, {θi}Ii=1 ,γ, {δl}
M
l=1 |Y,X), (14)

where {δl}Ml=1 is only relevant when customer characteristics X are included. Straight-
forward use of a Gibbs sampler for this posterior distribution is very inefficient. This is
the result of a strong dependence between the latent motivation assignments Z on the
one hand and the parameters φm and θi on the other hand. A Gibbs sampler would
therefore require an excessive number of draws to properly explore this posterior. In-
stead, we take advantage of the fact that the Dirichlet distribution is the conjugate prior
for a Categorical random variable. This allows us to marginalize over the φm and θi pa-
rameters, while retaining closed-form expressions for the conditional distributions of the
other parameters in LDA. By doing so we substantially improve the mixing properties
of the Gibbs sampler (Griffiths and Steyvers, 2004). Hence, we examine the so-called
collapsed posterior distribution of LDA(-X), defined as:

p(Z, β0,γ, {δl}Ml=1 |Y,X). (15)

The elements of Z are sampled using a Gibbs sampler, while for the other parameters
we implement a random walk Metropolis-Hastings sampler.

The set-up for inference in MDM is very similar to LDA(-X). The complete posterior
distribution is given by:

p(s, {ϕi}Ii=1 , {βl}
M
l=1 ,π|Y). (16)

Again, we marginalize over the discrete distributions ϕi and π, resulting in a collapsed
posterior distribution of MDM:

p(s, {βl}Ml=1 |Y). (17)

Here the segment allocations s can be sampled in a Gibbs step, while the βl parameters
require a random walk Metropolis-Hastings sampler.

LDA(-X) and MDM are both members of the general class of mixture models. This
class of models is well known to be susceptible to end up in an area around a local
maximum of the posterior distribution. As is common in this literature, this risk is
reduced by using multiple random starts (Wedel and Kamakura, 2000; Train, 2009). For
each value of M , we consider 250 different random starts. We reduce the computational
burden of this approach by evaluating each random start at several intermediate steps
of the estimation routine. At each step, we continue only with the best performing
candidates. The performance is measured by the likelihood that results from the model’s
predictive distributions, averaged over purchases in a model-selection data set. This
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measure is closely related to the goal of predicting a new purchase as accurately as
possible.

The same performance measure is also used to determine the number of motivations
(for LDA(-X)) or segments (for MDM). In particular, for each model we increase the
value of M until we find a decrease in the average predictive likelihood of the model-
selection data.3 More details on the estimation routines are provided in Appendix A.

2.4. Comparison of LDA(-X) and MDM

Although the structures of LDA(-X) and MDM might appear quite similar at first sight,
these models differ fundamentally on various grounds. In this subsection we first discuss
this difference in terms of customer heterogeneity. Next, we consider the estimation
complexity of the LDA(-X) and MDM models.

Heterogeneity assumption

MDM assumes that heterogeneity in purchase behavior can be described by segmenting
the customer base in groups of customers. Customers across segments are expected
to be dissimilar, while customers within a segment are expected to be rather similar.
Hence, similarity between customers is mainly driven by segment membership. In LDA(-
X) purchase behavior is described by motivations, where each motivation represents a
preference for certain products in the assortment. Heterogeneity in purchase behavior is
described by customer-specific probabilities for these motivations. This leads to a model
where the purchases of a single customer are driven by multiple motivations. Here
similarity between customers is motivation specific. Customers can have very similar
purchase behavior for one set of products – corresponding to a shared motivation – and
be very different for a set of products that belong to another motivation.

Which heterogeneity structure fits best depends on the specific situation. If customers
typically have one or very few motivations, grouping customers in segments might be
beneficial. If many combinations of motivations are present, the continuous mixture of
motivations in LDA(-X) will be more parsimonious. Therefore, if a retailer has many
different (latent) subcategories in its product assortment, and preferences across these
subcategories vary rather independently across individuals, it is likely that the hetero-
geneity can be specified more parsimoniously by LDA(-X).

Although MDM assumes a hard clustering of customers into segments, one will use
posterior segment probabilities to eventually make predictions. This will typically lead
to a form of soft clustering, where a weighted combination of different segments is used.
This brings the heterogeneity structure of MDM closer to that of LDA(-X). As we observe
more purchases, the posterior segment probabilities in MDM will of course become more
and more extreme, and in the end this converges to strictly assigning a customer to a
single segment.

3In order to validate this approach we also consider the models for larger values of M . The predictive
performance stabilized at the values obtained with the selected value of M .
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Estimation complexity

The different heterogeneity assumptions underlying LDA(-X) and MDM have a large
impact on estimation complexity through the number of customer-specific parameters.
In MDM each customer is endowed with a distribution over the J-dimensional assort-
ment, while in LDA(-X) a customer is described by a probability distribution over the
M motivations, where M is generally much smaller than J . Even though we marginalize
over these customer-specific distributions, this still affects the scalability of the models.
Table 1 summarizes for each model the parameters that need to be sampled to infer the
model structure after marginalization. We differentiate between the sampling technique
required, as Gibbs steps tend to be much faster and have better mixing properties than
Metropolis-Hastings steps (Damien et al., 1999).

Table 1: Parameters to sample in the MCMC estimation procedures across different
models.

Gibbs sampler Metropolis-Hastings sampler
Model Parameters No. parameters Parameters No. parameters

MDM s I {βl}Ml=1 M × J
LDA Z N β0, γ 1 +M
LDA-X Z N β0, γ, {δl}Ml=1 1 +M × (1 +K)

where
I: number of customers M : number of segments/motivations
J : assortment size K: number of predictor variables in xi

N : total number of purchases

In LDA(-X) we need as many motivation allocations as purchases (N in total), whereas
for MDM we only need to sample one segment allocation per customer (I in total).
Although the number of allocations is larger in LDA(-X), this does not imply that
the total allocation in LDA(-X) is computationally more demanding. The sampling
step for each motivation assignment in LDA(-X) involves only elementary arithmetic
operations, while for each segment allocation in MDM we have to evaluate complex
Gamma functions. It is difficult to exactly quantify the difference in computational
complexity as it also depends on the (latent) structure in the data, but we anticipate
that MDM will be slightly more complex for these Gibbs sampling steps.4

The remaining model parameters are sampled using Metropolis-Hastings steps and
each of these steps is computationally demanding. For LDA we sample 1+M parameters
and for LDA-X this increases to 1 + M × (1 + K) parameters. These numbers are in
sharp contrast to MDM in which M × J parameters are sampled. This renders MDM
much more demanding in terms of estimation time, as the assortment size J is large.
This is the price that has to be paid for the many degrees of freedom per customer.
The number of Metropolis-Hastings steps in LDA(-X) is largely insensitive to the size
of the assortment, the number of customers, and the number of purchases. In MDM,

4More details on the required sampling steps can be found in Appendix A.
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on the other hand, the number of Metropolis-Hastings steps linearly increases with the
assortment size. This limits the scalability of MDM, which is why we can only extend
LDA by including observed heterogeneity through xi.

2.5. Benchmark methods

In this section we present the two benchmark methods to which we will compare the
predictive performance of LDA(-X) and MDM. The first benchmark is a collaborative
filter while the second is built on standard discrete choice modeling.

Collaborative filtering

A collaborative filter is a deterministic algorithm that predicts purchases by matching
customers to each other based on purchase histories. There are many possible ways to
implement a collaborative filter. Details of the actual implementations used in industry
are not common knowledge. Therefore, below we develop our own implementation of a
collaborative filter.

Ideally, a focal customer is matched to customers who purchased the focal customer’s
previously purchased products and at least one additional item. However, such a match-
ing on the complete purchase history is in general not feasible due to the curse of dimen-
sionality; the larger the purchase history, the less likely it matches with other customers’
histories.

We alleviate this curse of dimensionality by instead matching on parts of the purchase
history. First, for each customer i we replace the complete purchase history vector yi by
the set of unique sorted subvectors of length k that can be created from yi. We denote
this set of vectors by Hk

i . For example, for k = 2 a customer’s purchase history is
replaced by all the unique sorted pairs that can be formed using the purchase history, so
yi = [1, 1, 1, 2, 3] would be reduced to the set H2

i containing the pairs (1, 1), (1, 2), (1, 3),
and (2, 3).5 Next, for each subvector in this set we match the focal customer against all
customers. If k is relatively small, this will result in many more matches compared to
a matching on the complete purchase history. This solves the curse of dimensionality
problem at the cost of a loss of information.

We refer to a subvector of a customer’s purchase history as a product combination, de-
noted by h, and c(h) gives the number of customers who purchased product combination
h, that is,

c(h) =
I∑
i=1

I
[
h ∈ Hdim(h)

i

]
, (18)

where dim(h) denotes the dimension of h and I[A] equals 1 if condition A is true and 0
otherwise. To obtain purchase predictions for customer i, using product combinations
of size k, we score all products in the assortment based on their co-occurrence with each
of the product combinations in Hk

i . For product combination h ∈ Hk
i the prediction

5The use of unique sorted pairs implies that (1, 1) occurs in H2
i only once and that H2

i contains the
pair (1, 2) and not (2, 1).

13



score for product j equals the number of customers who purchased j and the products
in h, normalized by the sum of the score for h and any product p = 1, . . . , J . This
normalization ensures that each product combination h ∈ Hk

i receives the same weight,
independent of the prevalence of h in other customers’ purchase histories. The final
product score is the sum of the normalized scores across all h ∈ Hk

i . Formally, for
combination size k, the overall score of product j for customer i equals

skij =
∑
h∈Hk

i

c(〈h, j〉)∑J
p=1 c(〈h, p〉)

, (19)

where the arguments between angle brackets represent a single product combination
of size k + 1.6 Hence, to obtain product scores skij, by matching customers based on
purchase histories that are reduced to combinations of size k, we need the summary
of all purchase histories reduced to product combinations of size k + 1. So, matching
customers on pairs of products requires counts over triplets of products as input for the
purchase predictions.

The product ranking for each customer is constructed by sorting the products on the
product score defined above.7 This ranking obviously depends on k. In our application
we consider collaborative filters with two combination sizes, k = 1 and k = 2, denoted
by CF-1, and CF-2 respectively. Using k = 1, customers are matched on the presence
of single products in their purchase history. For k = 2 customers are matched on the
presence of pairs of products in their purchase history. Larger product combinations
are not desirable in our application, both in terms of computational feasibility and the
degree of sparseness in these larger combinations.

Discrete choice models

Random utility based multinomial choice models (Maddala, 1983; McFadden, 1986) have
been extensively used in marketing to model discrete choices from a set of given alter-
natives. Implementing a traditional discrete choice model that directly uses purchase
history data from a large assortment, however, is not feasible. Such a model would have
to predict purchases for J products based on J predictor variables, where each predictor
variable describes whether a product was purchased by the customer in the past, or not.
This model specification would require the simultaneous estimation of J(J − 1) param-
eters, which is infeasible from a computational perspective and will also likely result in
identification issues due to sparse data. Hence, traditional discrete choice models do not
scale well when the number of products J becomes large.

The benchmark discrete choice model that we propose, resolves these problems by
constructing the predictor variables in a smart way, enabling a huge reduction in the

6For k > 0 it is possible that a product combination h is never purchased with another product,
i.e. for all p we have

∑J
p=1 c(〈h, p〉) = 0 in (19). If a customer’s purchase history contains such a

combination, we regress to a lower value of k for this customer.
7In the rare case that two or more products receive the same score, they are ranked according to their

order in the data set, which is alphabetic.
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number of parameters to be estimated. To get there, we first review the structure of the
regular logit model.

In the binary logit model, the probability that customer i purchases product j is
specified by:

Pr[yin = j] =
exp(θij)

1 + exp(θij)
.

Here, θij represents the log odds of having purchased product j. Ignoring heterogeneity
among customers for the moment, these odds will largely be driven by the log of the
number of (unique) products purchased by customer i, denoted by ui, and the relative
attractiveness of product j. We capture the relative attractiveness of product j using
the log odds of this product based on the observed product-purchase frequencies in the
purchase data at the customer-base level. This leads to the following expression for the
log odds of customer i buying product j:

θij = α + β log(ui) + γ log(oddsj). (20)

The product ranking resulting from this specification will be the same for all customers
as the product attractiveness is defined at the customer-base level, not the customer level.
To obtain predictions that do differ across customers, we need to introduce heterogeneity
in the model. To achieve this without resorting to a model with unobserved heterogene-
ity, as in LDA(-X) or in MDM, or requiring an excessive number of parameters, as in
a regular choice model implementation, we construct variables at the customer-product
level that characterize the attractiveness of product j for customer i using the available
purchase history data.

The first step is to characterize customers based on their purchase history. We describe
each customer’s purchases by vi, a J-dimensional vector containing the proportions of
each product in the customer’s purchase history, with

∑J
p=1 vip = 1.8 We then perform k-

means clustering on these proportion vectors using M clusters. Customer heterogeneity
can now be characterized by a customer’s similarity with respect to each of the cluster
means. We define the similarity of customer i with cluster m as:

wim =
1

1 + ||vi − v̄(m)||
,

where ||vi − v̄(m)|| measures the Euclidean distance between customer i’s proportion
vector and the m-th cluster mean v̄(m).

We can now introduce customer-level heterogeneity in a parsimonious way by com-
bining the cluster-level product attractiveness and the similarity measures wim, that
capture the relevance of each cluster for each customer. In particular, we can specify
the log odds of customer i purchasing product j as:

θij = α + β log(ui) +
M∑
m=1

log(omj)(γ1m + γ2mwim), (21)

8For smoothing purposes we add one pseudo observation to each customer’s purchase history that is
equal to the relative market shares of each product.
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where omj denotes the odds for product j that corresponds to the purchase proportions
in cluster mean v̄(m). Note that in this model specification, the parameters are not
product specific, as the relative attractiveness of each product is captured through the
summary of the purchase behavior of the various clusters.9

Maximum Likelihood estimation of this parsimonious discrete choice model (DCM) is
relatively straightforward and including the other available predictor variables is there-
fore feasible. To do so, we extend the specification in (21) to include interactions with
the customer-specific predictor variables in xi, resulting in:

θij = α + β log(ui) +
M∑
m=1

log(omj)

(
γ1m + γ2mwim +

K∑
k=1

xik(δ1km + δ2kmwim)

)
. (22)

2.6. Real-time online predictions

For each of the prediction methods, it is straightforward to construct a product ranking
over the assortment for each individual customer. In the context of online retailing it is
important to continuously update this ranking based on the customer’s new purchases.
Re-estimating the (population-level) parameters can be done offline after a substantial
amount of new data has been collected. However, updating the predictions for a spe-
cific customer should be feasible online. This allows the retailer to update predictions
while customers select products during a shopping trip. For all methods, the real-time
update step itself consists of simple arithmetic operations with the details provided in
Appendix B. A possible bottleneck could be the amount of data that has to be available,
retrieved and processed to enable the updates. In the top half of Table 2 we display
the number of elements needed in order to update a single customer’s product ranking
in real-time, for each new product purchase that is observed. The bottom half of the
table provides information on the amount of data that needs to be stored for the entire
customer base to enable the aforementioned real-time update step.

The first row in Table 2 mimics the context of our application: A medium-sized
online retailer with an assortment of 500 products, 10,000 customers, and on average 10
purchases per customer. The number of segments/motivations/clusters (M) is set to 20,
which is slightly larger than our empirical findings in this paper, and we consider our
implementation of a collaborative filter with combination size k = 2. In this context,
the number of elements that have to be selected for the real-time update step is of the
same order of magnitude across the prediction methods. The storage requirements, on
the other hand, are of a different order of magnitude, i.e. millions for the collaborative
filter versus thousands for the model-based approaches. However, for these settings all
methods can easily be used in practice.

To illustrate the scalability of the various methods we increase the size of the assort-
ment and customer base by a factor of ten and we double both the average purchase
history size and M . Naturally, all memory requirements increase in this setting, but the

9Model specifications where the coefficients were allowed to be product specific suffered from severe
identification problems in our application as the number of parameters is increased by a factor J .
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Table 2: Comparison of memory requirements for real-time updating.

No. selected data elements for each real-time update step

Retailer context
I J ni M LDA(-X) MDM CF-2 DCM

10,000 500 10 20 1.00 · 104 1.00 · 104 5.51 · 103 1.01 · 104

100,000 5,000 20 40 2.00 · 105 2.00 · 105 1.05 · 105 2.00 · 105

1,000,000 50,000 40 80 4.00 · 106 4.00 · 106 2.05 · 106 4.00 · 106

No. stored data elements for the real-time update step

Retailer context
I J N/I M LDA(-X) MDM CF-2 DCM

10,000 500 10 20 2.10 · 105 3.10 · 105 6.77 · 107 1.10 · 105

100,000 5,000 20 40 4.20 · 106 6.20 · 106 6.30 · 1010 2.20 · 106

1,000,000 50,000 40 80 8.40 · 107 1.24 · 108 6.26 · 1013 4.40 · 107

where
I: number of customers M : number of segments/motivations/clusters
J : assortment size ni: number of purchases made by customer i
N : total number of purchases

rate of growth differs significantly. For the collaborative filter the storage requirements
increase approximately by a factor of thousand, while the model-based approaches only
increase by a factor of twenty. The same holds for the third context, in which we again
increase the dimensions. This illustrates that the dimension reduction achieved by the
model-based approaches ensures that they are suitable for real-time predictions in large
scale applications, even if the number of underlying dimensions grows with the amount
of available data. In addition, it is not feasible to use a combination size larger than
k = 2 in our implementation of a collaborative filter, as in that case the storage re-
quirements would increase even faster. For very large applications, one might even need
to rely on the simpler CF-1, which only matches purchase histories on the presence of
single products.10

2.7. Performance measures

To evaluate the methods for a range of different customization applications, we consider
prediction sets of different sizes. A prediction set of size S contains the S highest ranked
products for a customer. In case one is interested in recommending a single product, the
prediction set of size 1 is most relevant. However, when customizing a page with search
results the prediction set of size 10 may be more relevant. We assess the quality of a
prediction set by matching its contents against hold-out purchase data. These purchases
are denoted by y′i for customer i and the number of unique purchased products in y′i is

10In our application, this simpler collaborative filter performs systematically worse than CF-2.
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given by u′i.
We denote a complete ranking of all J products for customer i by the vector ri. The

first element, ri1, is the product that has the highest predicted purchase probability for
the model-based rankings, the highest product score for the collaborative filters, and
the highest odds for DCM. The quality of a prediction set of size S can be measured by
the number of products in the prediction set that overlap with the hold-out purchases:∑S

s=1 I[ris ∈ y′i]. This number should be seen relative to the maximum number of hits
possible in order to obtain a hit rate that may be compared across prediction sets of
different sizes. This maximum is bounded by S, the size of the prediction set, and the
number of unique hold-out purchases u′i. Hence, the hit rate for customer i could be
defined as:

∑S
s=1 I[ris ∈ y′i]/min (S, u′i).

If a prediction set is presented to a customer in an application, such as a recommen-
dation list, the positions within the set are also of importance (Xu and Kim, 2008). We
incorporate this notion in our hit rate by weighing the hits according to their ranks.
For the s-th ranked product in a prediction set of size S this weight is specified as:
w(s, S) = 1− s−1

S
. Combining the above, we obtain our final performance measure, the

weighted hit rate:

hi(ri, S) =

∑S
s=1 I[ris ∈ y′i]w(s, S)∑min(S,u′i)

s=1 w(s, S)
. (23)

3. Data

We apply the prediction methods to purchase data from a medium-sized online retailer
in the Netherlands.11 The data starts at the launch of the retailing platform and it
covers a period of approximately 67 weeks. The product assortment primarily consists
of non-food fast-moving consumer goods, such as detergents, deodorants and shampoo.
The assortment is complemented with a small selection of high turnover products for
infants and toddlers, such as diapers and baby food. As a consequence, the data contains
many repeat purchases.

Initially, the data contains 3,226 unique products IDs. These IDs correspond to a
very fine-grained classification, e.g. different package sizes of the same product each re-
ceive a unique ID. We opt for a more coarse-grained classification and combine products
on the category-brand level. For example, different fragrances of the same deodorant
brand are aggregated to one category-brand combination. This approach results in a
total of 440 unique category-brand combinations. Additionally, this aggregation step is
applied to the customer orders: if an order contains multiple products from the same
category-brand, we consider this as a single purchase from this category-brand. Finally,
the category-brands that are purchased five times or fewer across all purchases are re-
moved from the data. Below we will simply refer to the category-brand combinations as
“products”. After the aggregation steps the data contains 95,208 product purchases of
394 products made by 11,783 distinct customers.

11The authors wish to thank Christian van Someren, former Managing Director of Truus.nl, for kindly
providing us this data.
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We chronologically split the data in two parts: The first 80% of the purchases are used
as in-sample data, while the hold-out data comprises the last 20% of the purchases. The
hold-out data is used to assess the predictive performance of the methods. This division
mimics the setting of predicting future purchase behavior. Subsequently, we split the in-
sample data into an estimation and a model-selection subset. We randomly select half of
the customers from the in-sample data and for each of these customers, a single product
purchase is randomly selected as model-selection data. The remaining in-sample data
is used to estimate LDA(-X), MDM, DCM, and to create the collaborative filters. The
model-selection data is used to determine the number of motivations/segments/clusters
(M) in LDA(-X), MDM and DCM respectively. Table 3 summarizes the three subsets
of the data, in terms of number of customers, unique products, and number of product
purchases.

Table 3: Characteristics of the three subsets of the purchase data.

Subset Customers Unique products Purchases

Full data 11,783 394 95,208

Estimation data 8,831 393 71,346
Model-selection data 4,820 323 4,820
Hold-out data 3,745 369 19,042

It is quite likely that the type of customer acquired by the retailer changes over time,
for example due to (a shift in) brand awareness or the mix of advertising channels
that are used. Therefore, we investigate whether the customer’s time of adoption at
the retailer systematically shifts customer preferences. Model-free evidence for such
a shift is provided in Table 4, which shows the purchase frequencies of the 10 most
frequently purchased products in the estimation data for the first 25% of the estimation
customer base, the early adopters, and similarly for the late adopters, the last 25% of
the estimation customer base. The ordering of the 10 products for early versus late
adopters is not only different, but the relative difference in purchase frequencies is quite
substantial as well. For example, the product ‘Baby/toddler nutrition – Olvarit’ is
purchased more than twice as often by early adopters relative to late adopters. In the
tail of the assortment such relative shifts may even be larger.

This model-free evidence suggests that the predictive performance could be improved
by including customers’ time of adoption. We define the time of adoption as the number
of days between a customer’s first order, and the starting date of the retailing platform.
We take the natural logarithm of this variable to allow for larger shifts in the preferences
of customers acquired during the early stages of the retailing platform. Finally, this
variable is standardized using the mean and variance in the in-sample data.
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Table 4: Purchase frequencies of the 10 products that are most frequently purchased in
the estimation data by the early and late adopters, respectively.

Early adopters Late adopters
Rank Products % Products %

1 Diapers – Pampers 9.40 Diapers – Pampers 8.95
2 Baby/toddler nutrition – Nutrilon 5.20 Laundry – Ariel 4.73
3 Baby/toddler nutrition – Olvarit 4.65 Dishwashing – Dreft 3.70
4 Baby care – Zwitsal 3.65 Dental care – Oral-B 3.33
5 Laundry – Ariel 3.41 Baby care – Zwitsal 3.13
6 Paper towels – Page 3.01 Baby care – Pampers 3.00
7 Baby/toddler nutrition – Bambix 3.01 Baby/toddler nutrition – Nutrilon 2.79
8 Baby care – Pampers 2.14 Cleaning – Ambi Pur 2.04
9 Dishwashing – Dreft 2.07 Baby/toddler nutrition – Olvarit 2.02

10 Shaving – Gillette 1.95 Laundry – Lenor 1.98

4. Results

In this section we present the results of the prediction methods considered in this paper.
First, for LDA(-X), MDM, and DCM we determine M , the number of motivations,
segments, and clusters respectively. Next, we focus on some details of the model results
to highlight the concepts that underlie LDA(-X) and MDM. In this part we also illustrate
how predictions are updated when a new purchase is observed for a customer. Finally,
we compare the prediction methods by evaluating their predictive performance on the
hold-out data, using the weighted hit rate.

4.1. Model selection

In all model-based approaches we have to determine M : the number of motivations,
segments, and clusters. We evaluate LDA(-X) for M = 3, . . . , 30 and MDM for M =
1, . . . , 30, where MDM with M = 1 corresponds to the DM model. For each of these
model configurations (choice of model plus a value of M) we use 250 different random
starts to avoid local maxima. Throughout the estimation procedure the performance
of each random start is measured by the average predictive likelihood for the model-
selection data and, as discussed in Section 2.3, at several points during the procedure
we drop the worst-performing starting values (see Appendix A). At the end of the
estimation routine we use the parameter estimates that result from the random start
that has the highest average predictive likelihood. We evaluate DCM for M = 2, . . . , 30.
To avoid local maxima in the k-means algorithm used in DCM, we use 1000 different
random cluster initializations. For each value of M , the clustering that obtains the
lowest within cluster sum-of-squares is selected.

The average predictive likelihoods for the model-based approaches are displayed in
Figure 1a. We find that for each method the average predictive likelihood steeply in-
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Figure 1: Average predictive likelihood for the model-selection data as a function of M .

creases for the first few values of M and then levels off for larger values of M . This result
indicates that choosing M too small likely impedes performance more than choosing M
too large. The average predictive likelihood of LDA and LDA-X is similar, reaching a
value of approximately 0.05 for the larger values of M . MDM performs slightly better,
reaching a value close to 0.055. DCM performs similar and in between LDA(-X) and
MDM, although its performance fluctuates across values of M . Note that the average
predictive likelihood is merely an indicator for the actual predictive performance in our
application, as we will consider the rank assigned to purchased products to evaluate the
predictive performance and not the actual purchase likelihoods.

To determine the number of motivations and segments in LDA(-X) and MDM, we
select the first value of M for which the average predictive likelihood decreases when
M is increased by 1, i.e. we select the first local maximum. As the graphs in Figure 1a
stabilize after their first local maximum, this approach results in a parsimonious, yet
high performing model specification. Figure 1b shows the differences in performance
between subsequent values of M . The first negative value – corresponding to a decrease
in performance – is obtained at M = 14 for LDA, M = 16 for LDA-X, and M = 12
for MDM. Hence, we select M = 13 for LDA, M = 15 for LDA-X, and M = 11 for
MDM. The average predictive likelihood is more volatile across values of M for DCM,
resulting in the first local maximum for M = 4. In the spirit of our M selection criterion
for LDA(-X) and MDM, we instead select the smallest value of M that corresponds to
a local maximum in the range of the values of M where the predictive likelihood has
leveled off. For DCM, this happens at M = 14.
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4.2. Model results for LDA(-X) and MDM

Both LDA(-X) and MDM require quite a large number of parameters to capture the
heterogeneity in preferences across the full assortment. For example, to characterize
purchase behavior across the segments/motivations the models use M × J parameters.
Clearly it does not make sense to display all these parameters. However, as LDA(-X)
and MDM approach heterogeneity in a very different way, it is interesting to consider
some differences in the estimation results across the models. In MDM heterogeneity
is defined at the customer-segment level, while LDA(-X) models heterogeneity through
motivations, i.e. preferences for a set of coherent products, with customers differing in
the strength of these motivations. To illustrate this difference, we display the 10 most
likely products in the two most likely segments/motivations for each model in Table 5.

Table 5: The 10 most likely products in the two most likely motivations (LDA and LDA-
X) or segments (MDM).

LDA Motivation 1 (Probability 0.21) Motivation 2 (Probability 0.12)
M=13 Product % Product %

1 Diapers – Pampers 20.25 Shampoo – Andrelon 3.86
2 Baby/toddler nutrition – Nutrilon 19.13 Paper towels – Page 3.47
3 Baby/toddler nutrition – Olvarit 15.63 Laundry – Ariel 2.94
4 Baby/toddler nutrition – Bambix 9.87 Cleaning – Glorix 2.82
5 Baby care – Zwitsal 7.77 Laundry – Robijn 2.79
6 Baby care – Pampers 4.49 Conditioner – Andrelon 2.40
7 Pacifiers – Bibi 2.17 Shaving – Gillette 2.32
8 Bottle appliances – Philips AVENT 2.03 Deodorant – Dove 2.27
9 Diapers – Huggies 1.56 Baby care – Zwitsal 2.09

10 Bottle appliances – Nuby 1.21 Dishwashing – Dreft 2.05

LDA-X Motivation 1 (Probability 0.21) Motivation 2 (Probability 0.13)
M=15 Product % Product %

1 Diapers – Pampers 20.11 Cleaning – Glorix 5.79
2 Baby/toddler nutrition – Nutrilon 19.26 Paper towels – Page 5.37
3 Baby/toddler nutrition – Olvarit 16.04 Dishwashing – Dreft 3.78
4 Baby/toddler nutrition – Bambix 10.13 Laundry – Robijn 3.54
5 Baby care – Zwitsal 7.94 Cleaning – Ajax 3.50
6 Baby care – Pampers 4.10 Laundry – Ariel 3.27
7 Pacifiers – Bibi 2.13 Disposables – Komo 3.08
8 Bottle appliances – Philips AVENT 2.05 Paper towels – Edet 3.03
9 Diapers – Huggies 1.70 Cleaning – Sorbo 2.97

10 Bottle appliances – Nuby 1.25 Cleaning – Cif 2.29

MDM Segment 1 (Probability 0.32) Segment 2 (Probability 0.23)
M=11 Product % Product %

1 Diapers – Pampers 11.35 Diapers – Pampers 16.23
2 Laundry – Ariel 4.05 Baby/toddler nutrition – Nutrilon 14.34
3 Baby care – Zwitsal 4.03 Baby/toddler nutrition – Olvarit 11.76
4 Baby/toddler nutrition – Nutrilon 3.50 Baby/toddler nutrition – Bambix 7.08
5 Baby/toddler nutrition – Olvarit 3.37 Baby care – Zwitsal 6.50
6 Baby care – Pampers 3.14 Baby care – Pampers 4.05
7 Dishwashing – Dreft 3.12 Bottle appliances – Philips AVENT 1.82
8 Paper towels – Page 3.01 Laundry – Ariel 1.70
9 Dental care – Oral-B 2.60 Pacifiers – Bibi 1.64

10 Baby/toddler nutrition – Bambix 2.20 Diapers – Huggies 1.44
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The top 10 most likely products are primarily baby related for the largest as well as
the second largest segment in MDM. Additionally, there is much overlap at the product
level: 7 products appear in both top 10 lists. For LDA and LDA-X the largest motivation
relates to baby products and the order of the top 10 is the same, with only minor
differences between the purchase probabilities. The second motivation for LDA-X is
driven by cleaning products, while in LDA it is a mix of cleaning and personal care
products (and one baby related product). So, for both LDA and LDA-X the second
motivation is very different from the first, which contrasts with the results for MDM.

This difference can be explained by the distinction between a motivation and a seg-
ment. Motivations represent coherent sets of products, where customers can be inter-
ested in multiple of these sets. Segments capture the purchase behavior of groups of
customers, and purchase behavior across groups likely overlaps. In other words, the
motivations in LDA(-X) correspond to a clustering on the product level, whereas the
segments in MDM represent a clustering on the customer level.

As the models differ substantially in terms of the underlying data structures that are
captured, their predictions are also likely to be different. We investigate these differences
in a hypothetical scenario. First, let us consider a customer with average customer
characteristics who is new to the store, i.e. without previous observed purchases. Each
model approximately yields the marginal distribution as predictive distribution for this
customer. The top 5 products in the marginal distribution of the estimation data are
displayed in Table 6.

Table 6: Purchase frequencies of the 5 products that are most frequently purchased in
the estimation data.

Rank Product Frequency

1 Diapers – Pampers 9.20 %
2 Baby/toddler nutrition – Nutrilon 4.09 %
3 Laundry – Ariel 4.07 %
4 Dishwashing – Dreft 3.65 %
5 Baby/toddler nutrition – Olvarit 3.47 %

Next suppose that the customer purchases ‘Shampoo – Herbal Essences’. For each
model the updated top 5, conditional on this purchase, is displayed in Table 7. Indeed,
each model now provides a different ranking. It is interesting to focus on the new
rank of the shampoo itself and the complementary conditioner of the ‘Herbal Essences’
brand. In the marginal distribution the shampoo and conditioner are ranked 113 and
119, respectively. Conditional on the purchase of the shampoo, these two products reach
the top 5 in LDA (they get rank 3 and 2). For LDA-X the products do not occur in
the top 5 but receive rank 17 and 16. Finally, in MDM the rank of the shampoo shifts
to 26, while the rank of the conditioner barely changes and reaches only 117. This
indicates that MDM fits the observed purchase well, but is hardly able to discover that
the conditioner is a complement to the shampoo.
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Table 7: Purchase probabilities of the 5 most likely product for each model, conditioned
on the purchase of a single product.

Purchased product:
Shampoo – Herbal Essences

LDA Product Probability

1 Diapers – Pampers 0.05
2 Conditioner – Herbal Essences 0.05
3 Shampoo – Herbal Essences 0.05
4 Baby/toddler nutrition – Nutrilon 0.02
5 Paper towels – Page 0.02

LDA-X Product Probability

1 Diapers – Pampers 0.05
2 Paper towels – Page 0.04
3 Laundry – Ariel 0.03
4 Dishwashing – Dreft 0.03
5 Baby care – Zwitsal 0.03

MDM Product Probability

1 Diapers – Pampers 0.09
2 Baby/toddler nutrition – Nutrilon 0.04
3 Baby care – Zwitsal 0.03
4 Laundry – Ariel 0.03
5 Paper towels – Page 0.03
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4.3. Predictive performance

To assess a method’s predictive performance we evaluate its weighted hit rate for the
hold-out data, see (23). In the weighted hit rate, each hit receives a weight that depends
on the rank assigned to the prediction. A better (numerical lower) rank receives a
larger weight than a worse (numerical higher) rank. Figure 2 presents the predictive
performance on the complete hold-out data for the model-based approaches, LDA(-X),
MDM, DCM, and the two count-based collaborative filters, CF-1, and CF-2.
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Figure 2: Predictive performance for the complete hold-out data, as a function of pre-
diction set size.

In case we predict only a single product for each customer, i.e. a prediction set of size
one, LDA-X has the best performance with a hit rate close to 0.45. For most prediction
set sizes, LDA(-X) and MDM outperform the collaborative filters. The best performing
collaborative filter is CF-2, which matches customers on the presence of pairs of products
in their purchase history.

Given the decent predictive likelihoods generated by DCM (see Figure 1), it has an
unexpected poor performance in terms of ranking the purchased products.

Note that the average hit rate declines for the first few prediction set sizes. This is
a direct consequence of the denominator in the definition of the hit rate in (23), which
divides the total number of hits by the maximum number of hits possible for a given
customer and prediction set size. This number increases with the size of the prediction
set until it reaches the number of unique products purchased by the customer. As the
average number of unique purchases per customer in the hold-out data is almost 5, we
indeed see the hit rates increase beyond that value for most methods.
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We study the difference in performance for the prediction methods in more detail by
separately considering specific groups of customers and products. In particular, we first
divide the customers in the hold-out data into three groups based on the number of
purchases in the estimation data: (i) 2185 customers with no prior observed purchases
(Figure 3); (ii) 809 customers with a moderate amount (1-9) of purchases (Figure 4);
and (iii) 751 customers with many (10 or more) purchases (Figure 5).

The most apparent difference in performance between these groups is visible in the
range of the y-axis. If we observe many purchases for a customer the average hit rates
are twice as large for the smaller prediction sets, compared to those for customers with
no purchases in the estimation data. This is exactly according to our expectations, and
provides empirical evidence that purchase history data is indeed very informative about
a customer’s future purchases.

By examining Figure 3 we see that for customers without previous purchases the
collaborative filters perform very well (particularly for moderate-sized prediction sets).
Note that for this specific group of customers the collaborative filters rank the products
according to their market penetration in the customer base. Also for LDA and MDM
there is no information that can be used to make a personalized prediction. LDA-X uses
the time of adoption, although this does not seem to shift the baseline predictions a lot.
Hence, the performance differences between LDA(-X) and MDM are small.
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Figure 3: Predictive performance for the customers with no purchases in the estimation
data.

In the absence of a purchase history, the similarity of a customer to each of the M
clusters, used to create predictor variables in DCM, is rather meaningless. As a result,
the DCM’s predictive power is low for these customers. In fact, a large part of the
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performance gap on the complete hold-out data between DCM and the other prediction
methods is driven by the poor performance for the group of customers without a purchase
history.
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Figure 4: Predictive performance for the customers with a few purchases (1-9) in the
estimation data.

We observe a different pattern for customers with a moderate number of past purchases
in Figure 4, where LDA(-X) and MDM consistently outperform the collaborative filters.
This indicates that these model-based methods are better able to learn from a customer’s
previous purchases than the collaborative filters. Comparing the methods, LDA(-X)
attains the highest overall performance and performs best when we predict only a single
product, while MDM performs better for larger prediction sets. The performance of
DCM is competitive for the smaller prediction sets, although its relative performance
drops substantially for larger prediction set sizes.

The final group of customers that we consider consists of those who made many pur-
chases, displayed in Figure 5. The general conclusion is similar to that of the customers
with a moderate number of purchases. However, in this case MDM obtains the highest
performance for prediction sets that contain more than one product. This result, com-
bined with the previous findings, may be explained by the flexibility of the customer-level
heterogeneity structure. In MDM preferences are modeled by a customer-specific proba-
bility vector over the product assortment. On the other hand, in LDA(-X) a customer’s
individual preferences are described by a lower-dimensional probability vector over the
M motivations. Both models learn from previous purchases, but in MDM this learning
is directly incorporated in the preferences over the assortment, while in LDA(-X) it is
done indirectly through the probabilities for the motivations. As a consequence, MDM
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Figure 5: Predictive performance for the customers with many purchases (10 or more)
in the estimation data.

has more degrees of freedom at the level of the individual customer as the assortment
size J is much larger than the number of motivations M . This additional flexibility
turns out to pay off when many purchases are observed for a customer.

The results above highlight the performance of the methods for the complete assort-
ment. However, many of the highly-ranked products are products that are frequently
purchased, or products that have been previously purchased by the focal customer. Cus-
tomers can easily anticipate such recommendations and might even be bored by them
(Fleder and Hosanagar, 2009). It is therefore interesting to evaluate the performance of
the methods when predicting products that may be more unexpected.

To assess the performance of the methods for predicting such unexpected products, we
evaluate the predictive performance for a restricted subset of the product assortment.
This subset is constructed as follows: First, we remove 20% of the products in the
assortment that are most frequently purchased in the estimation data. Second, we
create a customer-specific restriction by removing the products that have previously
been purchased by this customer. Subsequently, for each individual customer, we only
consider the predictions and hold-out purchases for products that are contained in this
restricted subset of the assortment. As customers are less likely to be aware of these
products, performing well on this aspect could potentially increase the cross-selling
performance of marketing actions that are based on such predictions.

The predictive performance for the restricted set of products is displayed in Figure 6.
LDA and MDM perform better than the collaborative filters and DCM, but LDA-X
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Figure 6: Predictive performance for the restricted subset of the hold-out data.

clearly outperforms all the other prediction methods. This remarkable performance
difference primarily arises for the highly-ranked products. By examining these products,
we find that the product ‘Slimming nutrition - Weight Care’ appears in the top of
many of the LDA-X customer-level prediction sets. The prediction sets resulting from
the other methods, however, do not contain this product. In fact, it turns out that
‘Slimming nutrition - Weight Care’ is the most frequently purchased product in the
hold-out data. Its purchase frequency has shifted from 0.04% in the estimation data to
4.88% in the hold-out data. LDA-X is able to capture this shift through the time of
adoption variable.12 This shows that the inclusion of predictor variables has merit in
the context of purchase prediction, even though the time of adoption variable in general
does not add much explanatory power. The reason why we do not see a similar shift for
DCM can be explained by the way the predictor variables enter the model. In LDA-X,
it directly influences the likelihood of a certain motivation, in effect being able to boost
a motivation that is relevant for customers who adopted later in time. In this case, it
boosts the motivation that contains products that are purchased more frequently later in
the observation period, including the period of the hold-out predictions. In contrast, in
DCM the clusters are determined ‘outside’ the model, using the k-means algorithm. The
performance of the clustering algorithm does not benefit from selecting a cluster that
is linked to the other prediction variables, as the predictor variables are not included
when constructing the clusters. In the absence of such clusters of customers, inclusion

12We acknowledge that there can be many external influences that drive this shift in purchase behavior.
Our predictor variable (time of adoption) most likely serves as a proxy for the actual causes.
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of the predictor variables cannot shift the importance of these products, as they are not
contained in a separate cluster.

5. Conclusion

In this paper we have evaluated several methods for purchase prediction in large assort-
ments using purchase history data. Inspired by the text modeling literature, we have
introduced a novel model-based approach that uses latent Dirichlet allocation (LDA(-X))
to predict purchases. In addition, we have considered mixtures of Dirichlet-Multinomials
(MDM), a framework well known in the brand-choice modeling literature. The perfor-
mance of these model-based approaches has been contrasted against two benchmarks:
a set of count-based collaborative filters, in which customers are matched on the con-
tents of their purchase history, and a scalable implementation of a discrete choice model
(DCM), that does not break down when used with a large product assortment. All
methods are able to construct customer-specific product rankings over the assortment
that can be used for purchase prediction.

Naturally, the prediction methods differ in their heterogeneity assumptions, estimation
complexity, and memory requirements. In MDM purchase heterogeneity is specified
at the customer level by segmenting the customer base. In LDA(-X), on the other
hand, this heterogeneity is specified at the motivation level, which groups products, not
customers. These heterogeneity assumptions also affect the estimation complexity of the
models. MDM has more flexibility to model an individual customer’s purchase behavior
than LDA(-X), but this comes at the price of increased estimation complexity as more
parameters have to be estimated. The estimation complexity of the logit part of the
DCM is relatively low, but it does depend on customer clusters from an external method
(i.e. the k-means algorithm). The collaborative filter has as advantage that no (latent)
model structure has to be estimated, but its storage requirements for generating real-time
online predictions rapidly increase for large applications. In contrast, the model-based
approaches require less storage and additionally this grows much slower with the size of
the application.

The performance of the methods was assessed based on purchase prediction sets de-
rived from the product rankings, and comparing these sets to actual hold-out purchases.
In general, LDA(-X) and MDM perform best and, even though these two models are
conceptually rather different, their predictive performance is comparable. In addition,
we have considered the setting where we focus on the predictive performance for prod-
ucts in the tail of the assortment that have not been purchased yet by the customer. In
this case LDA-X clearly outperforms the other methods, which can be attributed to the
time of adoption variable that is included in LDA-X. Although DCM also includes this
predictor variable, its dependence on the k-means algorithm prevents it from effectively
using the additional information to generate better predictions.

In summary the LDA(-X) prediction method that we have introduced in this paper is
the most promising approach to purchase prediction, particularly in the context of large
online retailers. Its predictive performance is very competitive compared to the other
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methods and it scales well with the size of the application. Finally, it is a self-contained
prediction method that can readily accommodate additional information available to
the retailer. In our application we only had access to a fairly weak predictor, but the
potential benefits of including stronger predictors of customer preferences into the model
could be large.

To conclude, LDA(-X) can be readily used as a stepping stone for further model-
based research that quantifies and optimizes the impact of marketing interventions in
large-scale retailing environments. For example, one could optimize a recommendation
system that differentiates between the likelihood of purchasing a product and the added
benefits from recommending that product (Bodapati, 2008; Wagner and Taudes, 1986);
something that is difficult to implement in a count-based method such as a collaborative
filter. We obviously consider such extensions an interesting avenue for further research.
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A. Estimation details for LDA(-X) and MDM

In this appendix we present the estimation details for LDA(-X) and MDM. First, we
discuss our random start routine, aimed at minimizing the risk of ending up in locally
optimal solutions. Second, we present the conditional posterior distributions that are
used in the MCMC samplers. Finally, at the end of this appendix we provide a high-level
description of the inference algorithm for LDA(-X) in pseudocode.

A.1. Random start routine

LDA(-X) and MDM are both members of the general class of mixture models. This class
of models is well known to be susceptible to end up in an area around a local maximum
of the posterior distribution. We reduce this risk by considering multiple random starts.
For MDM a random start is an initialization of the segment assignments s, while in
LDA(-X) it is an initialization of the motivation assignments Z.

For each model, we initially consider 250 different random starts. For each of these
starts we draw 1,000 samples using our MCMC methodology. These samples are used
to infer each customer’s posterior predictive distribution and to calculate the average
predictive likelihood of the model-selection data. The 50 starts that obtain the highest
average predictive likelihood are selected. For these starts, we repeat the above procedure
and next select the 15 best performing starts. Again, we repeat the procedure but this
time draw 20,000 samples. Finally, we continue with the random start that obtains the
highest average predictive likelihood.

The 22,000 draws that are generated within the random start routine for the single
remaining model are considered as the burn-in period of the chain. For this selected
random start we finally draw another 10,000 samples. We thin this chain by selecting
every tenth draw, resulting in 1,000 posterior samples.

A.2. Conditional posterior distributions

In this section we present the details of our MCMC sampler. For each sampling step
in each model, we present the corresponding conditional posterior distribution. In the
presentation below we use the notation superscript \n to indicate that the n-th element
is excluded from a vector, matrix, or set. A general density function is denoted by
p(), while we use π() in case the density corresponds to a prior distribution in which
the parameters are fixed. The probability density function of the standard normal
distribution is denoted by φ() and the Gamma function is denoted by Γ(). Finally, in
LDA-X we replace γ and {δl}Ml=1 by {αi}Ii=1, whenever this simplifies notation.

As the derivations in this appendix rely heavily on the Dirichlet-Multinomial dis-
tribution, we first provide its density in terms of Gamma functions. The Dirichlet-
Multinomial distribution corresponds to a data generating process where first a prob-
ability vector θ ∼ Dirichlet(α) is generated and subsequently, this vector is used to
generate a set of Categorical random variables, denoted by z. The marginal density of z

32



in terms of α is called the Dirichlet-Multinomial distribution. This density is given by:

p(z|α) =

∫
θ

p(z|θ)p(θ|α)dθ

=
Γ
(∑M

l=1 αl

)
Γ
(∑M

l=1 αl + cM
l

) M∏
m=1

Γ
(
αm + cM

m

)
Γ (αm)

,

(24)

where cM
m is the number of elements in z that are equal to m and M gives the number

of categories.

A.2.1. LDA

The joint density for the collapsed LDA model can be written as

p(Y,Z, β0,α) ∝ p(Y|Z, β0)p(Z|α)π(β0,α). (25)

In our implementation of LDA we impose β0 ∼ logN(µβ0 , σ
2
β0

) and αm ∼ logN(µα, σ
2
α).

The prior distributions, combined with the LDA model specification, define the complete
joint distribution in (25). The MCMC sampler for this model contains Gibbs steps for
all the separate elements of Z and Metropolis-Hastings steps for β0 and the elements
of α.

The conditional posterior probability that zin = m, i.e. that the n-th purchase of
customer i is driven by motivation m, is proportional to:

Pr
[
zin = m|yin = j,Z\in, β0,α,Y

\in ]
∝ Pr

[
zin = m|Z\in,α

]
Pr
[
yin = j|zin = m,Z\in, β0,Y

\in ]
∝
(
αm + c

IM\in
im

) β0 + c
MJ\in
mj

Jβ0 +
∑J

p=1 c
MJ\in
mp

,

(26)

where c
MJ\in
mj is the number of times a purchase of product j is driven by motivation m

and c
IM\in
im is the number of purchases made by customer i that are driven by motivation

m, excluding zin and yin. This result can straightforwardly be used to obtain samples
for Z.

The conditional posterior density of β0 is given by

p(β0|Z,α,Y) ∝ π(β0)p(Y|Z, β0)

∝ π(β0)
M∏
l=1

Γ (Jβ0)

Γ
(
Jβ0 +

∑J
p=1 c

MJ
lp

) J∏
p=1

Γ
(
β0 + cMJ

lp

)
Γ (β0)

.
(27)

As (27) results in a non-standard density, we use a random walk Metropolis-Hastings
step to obtain samples for β0. Candidate values are generated from logN(β0, s

2
β0

), where
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β0 denotes the current value of the parameter and the variance s2
β0

is calibrated during
the start value selection procedure such that we obtain an acceptance rate of about 50%.

The conditional posterior density of αm is

p(αm|α\m,Z, β0,Y) ∝ π(αm)p(Z|α)

∝ π(αm)
I∏
i=1

Γ
(∑M

l=1 αl

)
Γ
(∑M

l=1 αl + cIM
il

) (Γ
(
αm + cIM

im

)
Γ (αm)

)
.

(28)

Again this is a non-standard density and the same type of random walk Metropolis-
Hastings step as before is used to obtain samples for αm.

A.2.2. LDA-X

LDA-X extends LDA by allowing customer-specific predictor variables X to affect the
motivation probabilities. The collapsed joint density for the LDA-X model can be rewrit-
ten as

p(Y,Z, β0,γ, {δl}Ml=1) ∝ p(Y|Z, β0)p(Z| {αi}Ii=1)π(β0,γ, {δl}Ml=1), (29)

where αim = exp(γm + x′iδm), γm ∼ N(µγ, σ
2
γ), and δmk ∼ N(µδ, σ

2
δ ).

The MCMC sampler for LDA-X includes a Gibbs step for every element of Z and
random walk Metropolis-Hastings steps for β0 and all elements of γ and {δl}Ml=1. Con-
sidering the relation αim = exp(γm+x′iδm), it is easy to see that we obtain the conditional
posterior distributions for the elements of Z by writing αim instead of αm in (26). The
conditional posterior for β0 is exactly the same as in (27).

The conditional posterior density of δmk equals

p(δmk|δ\km ,Z, β0,γ, {δl}l 6=m ,Y,X) ∝ π(δmk)
I∏
i=1

p(zi|αi)

∝ π(δmk)
I∏
i=1

Γ
(∑M

l=1 αil

)
Γ
(∑M

l=1 αil + cIM
il

) Γ
(
αim + cIM

im

)
Γ (αim)

,

(30)

where δmk influences the likelihood through αim. A random walk Metropolis-Hastings
step in the MCMC sampler is used to obtain samples for {δl}Ml=1. Candidate values are
obtained from N(δmk, s

2
δmk

), where δmk denotes the current value of the parameter and
the variance s2

δmk
is calibrated during the start value selection procedure such that we

obtain an acceptance rate of about 50%. The Metropolis-Hastings sampler for γm can
be derived in an analogous way.

A.2.3. MDM

The joint collapsed density for the MDM model may be rewritten as

p(Y, s, {βl}Ml=1) ∝ p(Y|s, {βl}Ml=1)π({βl}Ml=1)

∫
π

p(s|π)π(π)dπ, (31)
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where the priors are given by π ∼ Dirichlet(1, . . . , 1) and βmj ∼ logN(µβ, σ
2
β). As is clear

from the notation we integrate over the prior of distribution π. The prior distributions,
combined with the MDM model specification, define the complete joint distribution in
(31). In our MCMC sampler we use separate Gibbs sampling steps for all segment
assignments in s and Metropolis-Hastings sampling steps for the elements of {βl}Ml=1.

The conditional posterior probability that si = m, i.e. that customer i is allocated to
segment m, is

Pr
[
si = m|s\i, {βl}Ml=1 ,Y

]
∝ Pr

[
si = m|s\i

]
p(yi|si = m,βm)

∝
(
1 + cM\i

m

) Γ
(∑J

p=1 βmp

)
Γ
(∑J

p=1 βmp + cIJ
ip

) J∏
p=1

Γ
(
βmp + cIJ

ip

)
Γ (βmp)

,

(32)

where cIJ
ip is the number of times customer i purchased product p and c

M\i
m denotes the

number of customers allocated to segment m, excluding customer i. Equation (32)
implies probabilities that can straightforwardly be used to obtain samples for si.

The conditional posterior density of βmj is given by

p(βmj|β\jm , s, {βl}l 6=m ,Y)

∝ π(βmj)
I∏
i=1

p(yi|si = m,βm)I[si=m]

∝ π(βmj)
I∏
i=1

 Γ
(∑J

p=1 βmp

)
Γ
(∑J

p=1 βmp + cIJ
ip

) Γ
(
βmj + cIJ

ij

)
Γ (βmj)

I[si=m]

.

(33)

As (33) clearly results in a non-standard density we use a random walk Metropolis-
Hastings step in the MCMC sampler to obtain samples for {βl}Ml=1. Candidate values
are obtained from logN(βmj, s

2
βmj

), where βmj denotes the current value of the parameter

and the variance s2
βmj

is calibrated during the start value selection procedure such that

we obtain an acceptance rate of about 50%.

A.3. Pseudocode for LDA(-X)

In this section we provide pseudocode for the inference algorithm for LDA(-X). Algo-
rithm 1 contains a high-level description of the inference algorithm for LDA(-X). More
detailed pseudocode for our initialization procedure, sampling, and calibration of the
Metropolis-Hastings proposal variances can respectively be found in Algorithms 2, 3,
and 4. The pseudocode depends on the implementation details of our random start
routine, discussed in Appendix A.1, as well as the conditional posterior distributions
for LDA(-X) presented in Appendix A.2. The target acceptance rate for all univariate
Metropolis-Hastings samplers is set to 50%.
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Algorithm 1 Pseudocode for LDA(-X)

Q: number of estimation rounds
K(q): set of random starts in round q
T (q): number of samples to be drawn in round q
for each estimation round q = 1, . . . , Q do

for each random start k in K(q) do
if q is the first round then initialize the k-th random start

Initialization (Algorithm 2)
end if
for t = 1, . . . , T (q) do

// Sample a new state from the MCMC chain
Sampling (Algorithm 3)
for each parameter sampled with a Metropolis-Hastings step do

Calibration (Algorithm 4)
end for

end for
Calculate the average predictive likelihood of the model-selection data over the last

T (q) states
end for
if q is not the last round then

Select the random starts with the highest average predictive likelihood in this round
for K(q + 1)

end if
end for
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Algorithm 2 Initialization of a random start in LDA(-X)

N : number of purchases in the estimation data
procedure Initialization

// Set the initial model parameters
β0 = 0.01
if the model is LDA then

αm = 1
M for m = 1, . . . ,M

else if the model is LDA-X then
γm = log 1

M for m = 1, . . . ,M
δmk = 0 for m = 1, . . . ,M , k = 1, . . . ,K

end if
Set all counts cIM

im and cMJ
mj to zero

// Initialize the motivation assignments Z in random order
for each n in random permutation of 1 to N do

Sample zin with a Gibbs step, using the distribution in Equation (26)
Increase the corresponding elements cIM

im and cMJ
mj using sampled zin and yin

end for
// Set the initial Metropolis-Hasting variances and calibration window sizes
s2
β0

= 0.1, wβ0 = 10
if the model is LDA then

s2
αm

= 0.01, wαm = 10, for m = 1, . . . ,M
else if the model is LDA-X then

s2
γm = 0.01, wγm = 10 for m = 1, . . . ,M
s2
δmk

= 0.01, wδmk
= 10 for m = 1, . . . ,M , k = 1, . . . ,K

end if
end procedure
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Algorithm 3 Sampling a new state for LDA(-X)

I: number of customers
ni: number of purchases by the i-th customer
M : number of motivations
K: number of predictor variables in xi
procedure Sampling

for each customer i = 1, . . . , I do
for each datapoint n = 1, . . . , ni do

Decrease the corresponding elements cIM
im and cMJ

mj using current zin and yin
Sample zin with a Gibbs step, using the FCD in Equation (26)
Increase the corresponding elements cIM

im and cMJ
mj using new zin and yin

end for
end for
Sample β0 with a Metropolis-Hastings step, using the distribution in Equation (27)
if the model is LDA then

for each motivation m = 1, . . . ,M do
Sample αm with a Metropolis-Hastings step, using the distribution in Equa-

tion (28)
end for

else if the model is LDA(-X) then
for each motivation m = 1, . . . ,M do

Sample γm with a Metropolis-Hastings step, using the distribution similar to Equa-
tion (30)

for each predictor variable k = 1, . . . ,K do
Sample δmk with a Metropolis-Hastings step, using the distribution in Equa-

tion (30)
end for

end for
end if

end procedure
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Algorithm 4 Calibration of the Metropolis-Hastings proposal variance s2

n: number of samples drawn in this calibration window
nA: number of accepted samples in this calibration window
w: size of the calibration window
s2: current proposal variance
AR: target acceptance rate
procedure Calibration

if n is equal to w then
// Calculate the 95% confidence bounds of the Binomial(n, w ×AR) distribution
bounds = quantile function for Binomial(n, w ×AR) evaluated at 0.025 and 0.975
if nA is outside these bounds then calibrate the proposal variance

if nA > w ×AR then the variance is increased

s = s×min

(√
nA

w ×AR
, 4

)
else if nA < w ×AR then the variance is decreased

s = s×max

(√
nA

w ×AR
, 1

4

)
end if

end if
// Reset n and nA for new calibration window and increase w
n = 0, nA = 0
if w < 500 then

w = w + 10
end if

end if
end procedure
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B. Real-time online predictions

Once we observe a new purchase for a customer we naturally want to update the pre-
dictions based on this new information. However, in an online setting it is not feasible
to re-estimate a complete model in real-time. Instead, we update the customer-specific
elements in real-time based on the new information, and fix the parameters that are
specified at the customer-base level to their posterior means. Naturally, after observing
new purchases for many customers, it makes sense to re-estimate the model structure
including this new data. In this appendix we discuss for each of the prediction methods
how the predictions may be updated in real-time and what the corresponding memory
requirements are.

B.1. LDA(-X)

The predictive distribution for customer i in LDA(-X) is given in (8). To calculate
the predictive distribution we need to evaluate two expectations: E[φmj|Z, β0,Y ] and
E[ θim|zi,α ]. The first expectation is the expected value of the purchase probability for
product j under motivation m. As this expectation is specified at the customer-base
level, we fix it to its posterior mean. The second expectation is the expected value of
the individual-specific discrete mixture over the M motivations. This expectation is
customer-specific and hence we update it after observing a new purchase.

For this update of E[ θim|zi,α ] we use an approximation step. First we define ηim =
αm + cIM

im and use the property of the Dirichlet distribution that E[ θim|zi,α ] is propor-
tional to ηim. To update ηim, we add the expected value of the motivation allocation of
the new purchase (denoted by ỹin) to its previous value. To be more precise, after each
new purchase ỹin we increase ηim by:

∆ηim = Pr
[
z̃in = m|ỹin = j, {φl}Ml=1 ,ηi

]
=

Pr[ ỹin = j|z̃in = m,φm ] Pr[ z̃in = m|ηi ]∑M
l=1 Pr[ ỹin = j|z̃in = l,φl ] Pr[ z̃in = l|ηi ]

=
φmjηim∑M
l=1 φljηil

,

(34)

for m = 1, . . . ,M . Subsequent updates of the posterior mean of θi can be obtained by
sequentially updating the value of ηi. This approximating update procedure provides an
effective and efficient way to incorporate new information from purchases in LDA(-X).

The number of elements that have to be retrieved for an individual update step is
equal to (M × J) +M , namely the {φl}Ml=1 vectors and the individual-specific ηi vector.
To be able to perform this step for each customer, (M × J) + (I ×M) elements have to
be stored in total.
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B.2. MDM

The predictive distribution for customer i in MDM is given in (13). The {βl}Ml=1 vectors
describe the probability distributions that correspond to the purchase behavior of the
customer segments and hence, are not individual-specific. As a consequence we fix
them to their posterior mean. The customer-specific purchase counts cIJ

ij are updated
straightforwardly according to the new purchase, while the current segment probabilities

Pr
[
si = m|s\i, {βl}Ml=1 ,yi

]
can be updated using the recursive property of the Gamma

function, i.e. Γ(n+ 1) = Γ(n)n, see equation (32) in Appendix A.
The number of elements that have to be retrieved for an individual update step is

equal to (M × J) +M + ni, namely the {φl}Ml=1 vectors, the customer-specific segment

probabilities Pr
[
si = m|s\i, {βl}Ml=1 ,yi

]
, and yi the purchase history of customer i. To

be able to perform this step for each customer, (M × J) + (I ×M) + N elements have
to be stored in total.

B.3. Collaborative filters

Suppose that a customer has ni previously observed purchases. A new purchase made
by this customer adds a maximum of

(
ni

k−1

)
product combinations to Hk

i . In order
to incorporate this new information in the product ranking of customer i, we need to
add for every new product combination the corresponding normalized score to skij (see

(19)). Hence, this update step requires the retrieval of
(
ni

k−1

)
rows with J counts, the J

current scores skij, and the purchase history yi containing ni purchases. This results in((
ni

k−1

)
× J

)
+ J + ni elements to be retrieved when making an individual update.

To enable real-time updates for all customers, we have to combine each of the J
products with each of the

(
J+k−1

k

)
possible product combinations of size k and store the

count for this combination of size k+ 1. In addition, we have to store the current scores
and purchase history of each customer. In total this requires

(
J+k−1

k

)
× J + (I × J) +N

elements to be stored. Dependent on the combination of k and the dimensions of the
application, storage of this information and real-time updating of predictions may or
may not be feasible.

B.4. Discrete choice model

The predictive distribution for customer i in the DCM is obtained by calculating the
log odds for all J products, as specified in (22). To calculate these log odds we need the
model parameters and the cluster centroids, which are both specified at the customer-
base level. Updating the customer-specific purchase history yi according to the new
purchase and calculating the new weights for the M customer clusters is straightforward.

The number of elements that have to be retrieved for an individual update step is

equal to (M × J) + (2 + 2M(1 +K)) + ni, namely the cluster means
{
v̄(l)
}M
l=1

, the logit
parameters, and yi the purchase history of customer i. To be able to perform this step
for each customer, (M ×J) + (2 + 2M(1 +K)) +N elements have to be stored in total.
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