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Test & Roll: Profit-Maximizing A/B Tests

Abstract

Marketers often use A/B testing as a tool to compare marketing treatments in a test stage

and then deploy the better-performing treatment to the remainder of the consumer population.

While these tests have traditionally been analyzed using hypothesis testing, we re-frame them

as an explicit trade-off between the opportunity cost of the test (where some customers re-

ceive a sub-optimal treatment) and the potential losses associated with deploying a sub-optimal

treatment to the remainder of the population.

We derive a closed-form expression for the profit-maximizing test size and show that it is

substantially smaller than typically recommended for a hypothesis test, particularly when the

response is noisy or when the total population is small. The common practice of using small

holdout groups can be rationalized by asymmetric priors. The proposed test design achieves

nearly the same expected regret as the flexible, yet harder-to-implement multi-armed bandit

under a wide range of conditions.

We demonstrate the benefits of the method in three different marketing contexts – website

design, display advertising and catalog tests – in which we estimate priors from past data. In all

three cases, the optimal sample sizes are substantially smaller than for a traditional hypothesis

test, resulting in higher profit.

Keywords: A/B Testing, Randomized Controlled Trial, Marketing Experiments, Bayesian

Decision Theory, Sample Size
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1 Introduction

Experimentation is an important tool for marketers in a wide range of settings including direct

mail, email, display advertising, social media marketing, website optimization, and app design. In

tactical marketing settings, which we call “test & roll” experiments, data on customer response is

first collected in a test stage where a subset of customers are randomly assigned to a treatment.

In the roll stage that follows, marketers deploy one treatment to all remaining customers based on

the test results.

Figure 1 shows an example test & roll setup screen. Emails with two different subject lines will

each be sent to 8,910 customers at random from a total list of 59,404 email addresses. Once the

test outcomes are measured, the platform sends the better-performing email to the remainder of

the list.

Figure 1: Typical test & roll setup. (Screenshots from the email marketing tool Campaign Monitor,

as described on the Zapier.com blog.)

Traditionally, such randomized controlled trials are analyzed with a significance test, where the

null hypothesis of equal mean response of two treatments is rejected if

y1 − y2 ≥ z1−α/2

√
s21
n1

+
s22
n2

(1)
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where y1 and y2 are the mean response for each test group, s1 and s2 are the standard deviation

of the response, n1 and n2 are the sample sizes, and the significance level α is the desired type I

error rate that determines the critical value z.1

When using hypothesis testing, the sample size is fixed prior to data collection and n1 and n2

are set to detect an effect of at least d with probability 1−β. When s1 = s2 = s, the recommended

sample size is:

nHT = n1 = n2 ≈ (z1−α/2 + zβ)2
(

2s2

d2

)
(2)

The recommendation is to set n1 = n2 because this maximizes the statistical power of the experi-

ment when s1 = s2.

We develop an alternative approach to planning and analyzing A/B tests with finite populations.

While null hypothesis testing is the “gold standard” in scientific and medical research and is often

recommended for marketing tests (e.g., Pekelis et al. 2015), the statistical significance threshold in

(1) is a poor decision rule for test & roll experiments aimed at maximizing profits, for four reasons.

First, hypothesis tests at typical significance levels (e.g., α = 0.05) are designed to avoid con-

cluding that two treatments perform differently when they do not. Yet these Type I errors have

little consequence for profit, assuming no deployment costs. If the null can not be rejected and

both treatments yield identical effects, the same profit will be earned regardless of which treatment

is deployed. Because of the profit trade-off between test-stage learning and roll-stage earning, con-

servative sample sizes based on null hypothesis testing lower overall expected profit, by exposing

too many people to the less effective treatment in the test.

Second, the population available for testing and deploying is often limited, but the recommended

sample size in (2) does not take this constraint into account. In online advertising experiments

where effects are often small (but profitable), the recommended sample size may be larger than

the size of the population itself (Lewis and Rao 2015).2 Yet, as we show, when the population is

limited, smaller tests that will never reach statistical significance can still have substantial benefit

1We focus on a z-test for simplicity. The test of proportions is similar.
2 The seldom-used finite population correction (FPC) will recommend sample sizes smaller than the population,

however this correction does not account for the opportunity cost of the test and does not maximize profit. The

FPC adjusts the standard error to correct for the inaccuracy of the central limit theorem when sampling from a finite

population of size N without replacement resulting in a recommended sample size of nFPC =
2N(z1−α/2+zβ)

2s2

(N−1)d2+4s2(z1−α/2+zβ)2
.

We thank an anonymous reviewer for suggesting this as a benchmark.
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in improving expected profit.

Third, the typical null hypothesis test in (1) provides no guidance on which treatment to

deploy when the results are not significant. Many A/B testers advocate deploying the incumbent

treatment (if there is one) in the interest of being “conservative”, choosing randomly (Gershoff

2017), or continuing the test until it reaches significance (e.g., Berman et al. 2018).

Fourth, practitioners often design tests with unequal sample sizes for each treatment (e.g.,

Lewis and Rao 2015, Zantedeschi et al. 2016). Our framework allows unequal sample sizes to arise

naturally from prior beliefs, whereas this can not be rationalized under classical hypothesis testing

when response variance is equal (s21 = s22).

We re-frame the test & roll decision problem in Section 2, focusing on profit and making an

explicit trade-off between the opportunity cost of the test (where some customers receive the sub-

optimal treatment) and the losses associated with deploying the sub-optimal treatment to the

remainder of the finite population. Effectively, the problem we define can be seen as a constrained

version of a multi-armed bandit, where there are only two allocation decisions instead of many.

We derive a new closed-form expression for the profit-maximizing sample size in Section 3,

assuming that the average revenue per customer is normally-distributed with normal priors. Test

sample sizes under this framework are often substantially smaller than those recommended by (2).

Unlike sample sizes for a hypothesis test that increase linearly with the variance of the response in

(2), profit-maximizing sample sizes increase sub-linearly with the standard deviation of the response,

leading to substantially smaller test sizes when the response is noisy. Profit-maximizing samples

are also proportional to the square root of the total size of the population available, and so they

naturally scale to both large and small settings.

Improved performance is achieved because profit-maximizing tests identify the best performing

treatment with high probability when treatment effects are large; the lost profit (regret) from

errors in treatment selection is small when treatment effects are small. We also show that a test &

roll with the profit-maximizing sample size achieves nearly the same level of regret as the popular

Thompson sampling solution to the multi-armed bandit problem (Scott 2010, Schwartz et al. 2017);

both have regret of O(
√
N). Although sub-optimal relative to a multi-armed bandit, the profit-

maximizing test & roll provides a transparent decision point and reduced operational complexity

without significant loss of profit.
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Section 4 extends the analysis to situations with different priors on treatments, and provides

an efficient numeric approach to computing optimal sample sizes. This allows us to rationalize the

common practice of using unequally-sized treatment groups when the two treatments are believed

a priori to produce different responses, e.g., a test comparing media exposure to no exposure or a

test comparing two different prices.

To illustrate how test & roll experiments should be designed in practice, Section 5 provides three

empirical applications: website design, online display advertising, and catalog marketing. For each

application, we estimate priors based on previous similar experiments. These applications show

the wide range of test designs that result from different priors and show that the “one-size-fits-all”

approach favored by null hypothesis testing does not maximize profit. We conclude in Section 6

with a discussion of potential extensions of the test & roll framework and implications for A/B

testers. Full statements of propositions and proofs appear in the Appendix.

2 The Test & Roll Decision Problem

A test & roll with a population of N customers has two stages: a test stage and a roll stage.

In the test stage, a random sample of n1 customers are exposed to treatment 1 and a random

non-overlapping sample of n2 customers are exposed to treatment 2, with n1 + n2 < N . In the

roll stage, all remaining N − n1 − n2 customers receive either treatment 1 or treatment 2 based

on a decision rule that incorporates the data observed in the test stage. The marketer’s goal is to

maximize the cumulative profit earned in both stages.

Assuming the profit for each customer receiving treatment j is an independent random variable

Yj that follows a distribution with parameters θj , the expected profit earned during the test phase

is:

EY1,Y2 [ΠT|θ1, θ2] = n1E[Y1|θ1] + n2E[Y2|θ2] (3)

Yj is the profit net of any costs related to the treatments, e.g., media costs or discounts. In website

and email tests, for example, the cost of both treatments is the same and can be ignored.

Denote the vector of observed profit from customers exposed to treatment j in the test as

yj = yj,1, . . . , yj,nj . Once y1 and y2 are observed, the analyst chooses a treatment to deploy with

the remaining N − n1 − n2 customers. Let δ(y1, y2) be the decision rule which takes the value 1

5



for the decision to deploy treatment 1 and 0 for treatment 2. The optimal decision rule is to select

the treatment with the highest posterior predictive mean E[Yj |yj ] (DeGroot 1970).

Depending on the decision rule, the expected profit in the roll stage is:

EY1,Y2 [ΠD|θ1, θ2] = (N − n1 − n2)EY1,Y2 [δ(y1, y2)Y1 + (1− δ(y1, y2))Y2|θ1, θ2] (4)

Increasing n1 and n2 provides more observations about the profitability of each treatment, and

thus has the potential to yield more correct decisions in the roll stage. Simultaneously, increasing

n1 and n2 decreases the population remaining in the roll stage and increases the test population,

some of which is exposed to the lesser-performing treatment. Thus, the test & roll framework

sets up an explicit trade-off between learning during the test phase and earning during the roll

phase. This trade-off is important when the total population size N is limited.3 Well-defined,

limited populations are common in marketing: in direct marketing N is the size of the customer

list (Bitran and Mondschein 1996, Bonfrer and Drèze 2009); in paid media, N is often determined

by a finite budget; in website or app tests, N reflects the expected traffic for some period after the

test.

The parameters θ1 and θ2 are unknown prior to the test (hence the need for the test). By

assuming a prior distribution over these parameters, we obtain the a priori expected profit of the

A/B test:

Eθ1,θ2 [EY1,Y2 [ΠT|θ1, θ2] + EY1,Y2 [ΠD|θ1, θ2]] (5)

Designing the test entails selecting the sample sizes n1 and n2 that maximize the total expected

profit:

(n∗1, n
∗
2) = argmax

n1,n2

Eθ1,θ2 [EY1,Y2 [ΠT|θ1, θ2] + EY1,Y2 [ΠD|θ1, θ2]] (6)

Thus a profit-maximizing test & roll runs a test with the sample size in (6) and deploys one

treatment based on the decision rule δ.

Both our approach and the hypothesis testing approach described in equations (1) and (2)

are decision-theoretic but differ in three aspects: (1) We define the decision as whether to deploy

treatment 1 or treatment 2, instead of deciding whether to reject the null hypothesis; (2) The

objective in hypothesis testing is to maximize statistical power while controlling type-I error, while

3Treatments may be defined as a single exposure (e.g., an email) or a series of exposures (e.g., a digital media

campaign).
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we focus on maximizing profits; (3) Hypothesis testing uses a 0/1 loss function, and so every

incorrect decision has the same cost, while our approach uses the actual opportunity cost as the

loss, including the cost of the test.

Similar two-stage decision problems have appeared in the literature. Chick and Inoue (2001)

analyze a two-stage decision problem where the cost of the test is a fixed multiple of the sample sizes,

rather than actual opportunity cost as we have here. In studying multi-armed bandits Schwartz

et al. (2017) and Misra et al. (2019) use a test & roll as a benchmark, but they do not optimize the

sample size. The closest work comes from the clinical trials literature, where Cheng et al. (2003)

defines the same test & roll problem with a finite “patient horizon” and approximates the optimal

sample size for Bernoulli responses with beta priors. Stallard et al. (2017) extends Cheng et al.

(2003) to exponential family responses with conjugate exponential family priors. As a result, they

also need to use approximations to compute the optimal sample size. In this paper, we focus on

Normal response distributions with Normal priors, which allows us to provide an exact closed-form

for the optimal sample size as well as exact expected profit and regret, which we show next.

3 Test & Roll with Symmetric Normal Priors

To derive a profit-maximizing sample size formula, we assume Y1 ∼ N (m1, s
2) and Y2 ∼ N (m2, s

2)

with identical priors m1,m2 ∼ N (µ, σ2). The variance of the response, s2 is known; in practice it

can be estimated from previously observed responses.4 The hyper-parameters µ and σ represent

expectations for how the two treatments may perform, which can be be informed by previous similar

marketing campaigns (as illustrated in Section 5).

The symmetric priors imply that neither treatment is a priori likely to perform better, but they

do not imply that m1 = m2. The implied prior on the treatment effect m1 −m2 is N (0, 2σ2) and

the absolute difference between treatments |m1 −m2| is distributed half-normal with mean
√
2√
π
σ.

Thus σ is related to the a priori expectation about the potential difference in treatment effects (as

well as the uncertainty).

The expected profit in the test stage for this model is:

E[ΠT] = (n1 + n2)µ (7)

4The assumption that s1 and s2 are known could easily be relaxed by putting priors on them, but this is not

necessary for deriving key insights.
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The expected profit in the roll stage depends on the decision rule δ(y1, y2). The profit-

maximizing decision rule is to choose the treatment with the greater expected posterior mean

response:

δ(y1, y2) = I

((
1

σ2
+
n1
s2

)−1( µ

σ2
+
y1
s2

)
>

(
1

σ2
+
n2
s2

)−1( µ

σ2
+
y2
s2

))
(8)

where yj is the average response observed for treatment j and I(·) is the indicator function. Since

the priors are symmetric, this reduces to δ(y1, y2) = I (y1 > y2) if n1 = n2, i.e., the highly-intuitive

“pick the winner” in the test.

Proposition A.1 shows that the decision rule in (8) yields an expected roll-stage profit of:

E[ΠD] = (N − n1 − n2)

µ+

√
2σ2

√
π
√

2σ2 + n1+n2
n1n2

s2

 (9)

The second addend in the square brackets is the expected incremental profit per customer earned

by (usually) deploying the better treatment relative to choosing randomly with expected profit of

µ. Unsurprisingly, the incremental gain per customer from the test is increasing in the sample sizes

n1 and n2. However, as (n1 +n2) increases, the number of customers for whom this higher profit is

earned is smaller. The incremental gain decreases with the noise in the data, s, as expected. The

a priori range of effect sizes is defined by σ. Higher a priori uncertainty about the mean response

increases the option value from the experiment and so the incremental gain increases with σ.

To find the optimal sample size, the sum of the test profit in (7) and the deployment profit in

(9) can be maximized over n1 and n2 resulting in optimal sample sizes (Proposition A.2):

n∗ = n∗1 = n∗2 =

√
N

4

( s
σ

)2
+

(
3

4

( s
σ

)2)2

− 3

4

( s
σ

)2
(10)

Since N
4

(
s
σ

)2
+
(
3
4

(
s
σ

)2)2 ≤ (√N s
2σ + 3

4

(
s
σ

)2)2
, (10) implies that n∗1 = n∗2 ≤

√
N s

2σ . The profit-

maximizing sample size is always less than the population size N and grows sub-linearly with the

standard deviation of the response s. By contrast, the recommended sample size for a hypoth-

esis test in (2) grows linearly with the variance s2 without regard to N . This explains why, for

noisy responses, hypothesis tests frequently require sample sizes that are larger than the available

population (Lewis and Rao 2015).

Notably, the profit-maximizing sample size decreases with σ. Large σ implies: (1) a larger
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expected difference between treatments and, (2) a lower error rate for a given sample size (see (12)

below), while (3) the opportunity cost remains the same.

3.1 Error rate

Test & roll does not require the planner to specify an acceptable level of error; the error rate follows

from optimally trading off the opportunity cost of the test against the expected loss in profit due to

deployment errors. However, practitioners may want to know the expected error rate. Conditional

on m1 and m2, the likelihood of deploying treatment 1 when treatment 2 has a better mean response

is:

Pr (δ(y1, y2) = 1|m1,m2) = 1− Φ

 m2 −m1

s
√

1
n1

+ 1
n2

 (11)

From (11), we see that when the difference in treatments m2 −m1 is positive and large, the error

rate is lower, i.e., the better treatment will be deployed. When m2−m1 is smaller, it is more likely

that the wrong treatment will be deployed, but this is less consequential for profit.

Integrating (11) over the priors on m1 and m2, the expected error rate is (Corollary A.3):

E[Pr(δ(y1, y2) = 1|m1 < m2)] = E[Pr(δ(y1, y2) = 0|m1 > m2)] =

1

4
− 1

2π
arctan

(√
2σ

s

√
n1n2
n1 + n2

)
(12)

As expected, the error rate decreases with the test sizes n1 and n2, increases with s, and decreases

with σ.

3.2 Regret

To provide an upper bound on the total expected profit, we compute the expected profit with

perfect information (PI). If an omniscient marketer were able to deploy the treatment with higher

expected profit to all N customers without testing, the expected profit would be (Proposition A.4,

part 1):

E[Π|PI] =

(
µ+

σ√
π

)
N (13)

The expected profit of any algorithm for choosing which treatment to deploy to each customer will

be between the expected value of choosing randomly, which is µN and the expected value of perfect

information in (13). The expected profit with perfect information scales with the variance of the

9



prior σ; the more potential difference there is between treatments, the more opportunity there is

to improve profits by choosing the better treatment.

The expected regret of the profit-maximizing test & roll experiment is (Proposition A.4, part

2):

E[Π|PI]− E[Π∗D + Π∗T ] =N
σ√
π

1− σ√
σ2 + s2

n∗

+
2n∗σ2

√
π
√
σ2 + s2

n∗

≤ 3s
√
N√
π

= O(
√
N) (14)

When populations are larger, the regret per customer decreases, hence marketers with larger popula-

tions have a greater opportunity to improve profits on a per-customer basis with a profit-maximizing

test. We also see that the regret has an upper bound that does not depend on σ, implying that

the potential regret is limited. Marketers can use the new closed-form formulas in (12) and (14) to

easily assess the potential value of running a test & roll.

To gain further insight into these results, we look at the expected relative regret of the profit-

maximizing test & roll with respect to the expected profit from perfect information:

E[Π|PI]− E[Π∗D + Π∗T ]

E[Π|PI]
(15)

As corollary A.5 proves, the relative regret reaches a maximum for an intermediate finite value of

σ. When σ is very small, there is not much to gain from having perfect information, and hence

the relative regret will be small, while when σ is large, the test stage will pick the best performing

treatment with a very high probability, also yielding low-regret. Only when σ is intermediate is

there some chance of substantial loss from using a simple method such as test & roll, but even in

this case the potential loss is limited.

In contrast, using the sub-optimal sample size recommended for a hypothesis test produces

substantially greater regret. Assuming that the better performing treatment will be deployed after

the test regardless of significance,5 we can substitute the value of nHT from (2) for n∗ in (14). The

regret from using the larger sample size is (Proposition A.4, part 3):

E[Π|PI]− E[ΠD + ΠT |HT ] ≥ N σ√
π

d2

4(z(1−α)/2 + zβ)2σ2 + 2d2)
= Ω(N) (16)

5As noted in the introduction, it is not clear what should be done if the null hypothesis cannot be rejected.
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implying that hypothesis testing has a lower bound expected regret of Ω(N), substantially larger

than the profit-maximizing sample size with regret O(
√
N) as N becomes large.6 Proposition A.4

also shows that this bound holds when a finite-population correction is included in the sample size

formula.

We can also compare a test & roll with profit-maximizing sample size to a multi-armed bandit

where allocation to treatments is determined probabilistically for each customer based on previous

responses. Agrawal and Goyal (2013) show that the expected regret of a multi-armed bandit with

Thompson sampling (Thompson 1933)7 and Normal rewards also has regret O(
√
N), and that this

bound is tight. Thus, the regret of a test & roll with the profit-maximizing sample size has the

same order as a multi-armed bandit with Thompson sampling. Because the actual regret depends

on parameter values and can not be computed in closed-form for Thompson sampling with Normal

response, we compare them in specific application settings in Section 5, and show that test & roll

achieves comparable average regret in several realistic cases.

The normal model developed in this section can also be used in situations where the response

is Bernoulli (e.g., clicks, purchase incidence) using the standard approximation s = µ(1 − µ) and

has a convenient closed-form solution. Alternatively, Appendix B develops a beta-binomial version

where sample size must be computed numerically. Figure 8 compares exact sample sizes from the

beta-binomial with the normal approximation and shows that the normal approximation provides

accurate sample sizes when µ is between 0.05 and 0.95; for smaller or larger µ the sample size

computed using the normal approximation is too small and we suggest using the beta-binomial

formulation.

4 Test & Roll with Asymmetric Normal Priors

The analysis thus far focused on cases with a common prior for both treatments. However, there are

many situations where the priors might be different, e.g., comparing a marketing communication

against a holdout control.

6Ω denotes a lower asymptotic bound while O denotes an upper asymptotic bound.
7Thompson sampling uses a decision rule based on the posterior similar to (8), but continuously updates the

posterior and makes a probabilistic decision for each customer proportional to the probability that each treatment is

best.
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Relaxing the assumptions from the previous section, assume Y1 ∼ N (m1, s
2
1) and Y2 ∼ N (m2, s

2
2)

with priors m1 ∼ N (µ1, σ
2
1) and m2 ∼ N (µ2, σ

2
2) that represent the information about the treat-

ments available prior to the test.

Under these priors, the a priori expected profit in the test stage is:

E[ΠT] = µ1n1 + µ2n2 (17)

Decision rule (8) is still optimal in this case, but does not imply selecting the treatment that

performs better in the test anymore; the prior information now also affects the decision. Using the

decision rule in (8), the a priori expected profit in the roll stage is (Proposition A.1):

E[ΠD] = (N − n1 − n2)
[
µ1 + eΦ

(e
v

)
+ vφ

(e
v

)]
where e = (µ2 − µ1) and v =

√
σ41

σ21 + s21/n1
+

σ42
σ22 + s22/n2

(18)

The expected total profit E[Π] = E[ΠT] +E[ΠD] can be maximized over n1 and n2 to find the

optimal sample size. The optimal sample sizes can not be solved for analytically, but the function

can be easily optimized numerically.8

4.1 Incumbent/Challenger Tests

One example of an asymmetric test & roll experiment arises when the experimenter has more

past experience with treatment 1 vs. treatment 2, implying that σ1 < σ2. We dub this an

“incumbent/challenger” test. For example, an incumbent can be an ad copy or page design that

follows the traditional firm branding strategy, while a challenger uses a new creative approach.

When σ1 < σ2, the optimal sample size will be larger for the challenger treatment, to gain more

information about the challenger in the test. A proof of this alongside sample size formulas can be

found in Appendix C.

4.2 Pricing Tests

A second common case for asymmetric test plans are pricing experiments. Because companies face

uncertainty about which prices are optimal, they often experiment with multiple prices. Different

8Functions for finding optimal sample sizes for asymmetric normal priors or beta-binomial priors will be included

in an R package to be published to CRAN.
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prices, however, influence two important factors. First is the amount of people who will purchase

the product; higher prices will elicit fewer purchases. Second is the profit per person; higher prices

yield higher profits conditional on purchase. Thus, setting different prices effectively changes the

priors on the mean profit per customer, which implies different optimal sample sizes for the two

price levels.

An example application that fits our framework is as following. Suppose the firm would like to

pick between two known prices, p1 and p2, and that demand from customer i presented with price

j is dij = a−m ·pj +εij . In this model, demand is linear in price, a is the willingness to pay for the

product, m is the uncertain price sensitivity with a prior distribution N (µ, σ2), and εij ∼ N (0, s2).

The profit from a customer i presented with price j will be yij = pjdij . This model translates

directly to a Normal-Normal model with asymmetric priors, when we denote µj = pj(a − µpj),

σj = p2jσ and sj = pjs. Consequently, the profit and optimal sample size formulas derived for

the asymmetric case can be applied directly to pricing experiments, and will recommend different

sample sizes depending on the levels of prices being tested. A marketer could further optimize the

test prices, p1 and p2. More distant prices help to identify m, but increase the opportunity cost of

the test.

A more comprehensive approach to this problem was taken by Misra et al. (2019), where the

goal is not to test specific prices, but rather to learn the demand curve while maximizing profits.

The test & roll setup can be adapted to solve a similar problem, but the solution will require a

numerical approach for calculating sample sizes and optimal prices.

5 Applications

Designing a profit-maximizing test & roll requires priors on the distribution of the mean response

rate (profit) of the treatments. This section illustrates how to estimate these priors using data

on past marketing interventions.9 We then use the estimated priors to provide optimal test plans

for three different marketing contexts and compare them to hypothesis testing and multi-armed

bandits using Thompson sampling, based on expected profit and regret. The first two applications

use symmetric priors, while the third presents a situation where asymmetric priors are appropriate.

9This is similar to using a pre-test to inform priors for conjoint design (Arora and Huber 2001).

13



0.00 0.05 0.10 0.15

0
5

10
15

Prior on Treatment Effect |m2 − m1|

Absolute Difference in Profit Per Customer

P
rio

r 
D

en
si

ty

Figure 2: Implied prior on treatment effect for website example.

5.1 Website testing

To set priors based on past data, we analyze 2,101 website tests from Berman et al. (2018) which

were conducted across a wide variety of websites. For each treatment arm in each experiment

we observe the click rate, ȳ and sample size n.10 Fitting a hierarchical model to this data, we

estimate that the mean responses (click rates) are distributed N (0.68, 0.03) across treatment arms.

(Appendix E.1 details the data and estimation.)

To plan a new test, we assume this as a symmetric prior on mean response (m1 and m2).

Assuming symmetric priors is reasonable as there is typically no prior information that one version

of a web page will perform better than the other. The implied prior on the treatment effect is

shown in Figure 2 and has mean E[|m1−m2|] = 0.023. We compute the sample size based on (10),

using
√
µ̂(1− µ̂) to approximate s. The population size N is set based on the expected number of

people who will visit the website over the deployment period. As an example, with N = 100, 000,

the optimal test size is n∗1 = n∗2 = 2, 284 in each test group. The expected number of clicks is

3,106 in the test and 66,430 more when the better-performing treatment is deployed, for a total

10While it would be ideal to observe sales and revenue for each visitor, this is not always possible. As a proxy, we

assume for this example that profit is proportional to the number of clicks.
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of 69,536 conversions. Following (12), this test will deploy the worse-performing web page 10.0%

of the time, and this represents the optimal trade-off with the opportunity cost of the test. The

profit-maximizing test & roll has expected regret of 0.22% relative to expected profit with perfect

information11 and achieves 90.7% of the potential gains over choosing randomly.

Figure 3 shows the overall expected conversion rate (in the test and roll phases combined) as

a function of the test size. Since small tests rapidly improve the deployment decision and increase

profits, practitioners should be encouraged to run small tests and act on them. Tests that are

larger than optimal decrease the error rate marginally (Figure 3b), but erode overall expected

profit (Figure 3a). Notice that the slope of expected profit falls more swiftly when sample sizes are

sub-optimal; a test is that is too large is preferable to one that is too small by the same amount.
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Figure 3: Total expected profit (a) and error rate (b) as a function of test size for website test

example. (N = 100, 000, µ = 0.68, σ = 0.03, s = 0.466).

Computing the profit-maximizing test size formula in (10) requires the user to specify a full

prior distribution on the mean response for each arm, which requires the test designer to think

about how the treatments will perform and can be informed by past data. In contrast, finding the

recommended sample size for a hypothesis test following (2) requires selecting the minimum effect

size to detect (d) and acceptable levels of type I and type II errors (α, β). This can be challenging;

11To facilitate comparisons across applications, we report the regret relative to the expected value of perfect

information, i.e. the ratio of (14) to (13).
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many test planners have difficulty defining type I and type II error, let alone estimating the costs

of those two errors to set desired levels of α and β. There are numerous blog posts devoted to

explaining how to apply hypothesis testing to A/B tests (Gershoff 2017, Wortham 2018). In most

applications, standard values of α = 0.05 and β = 0.8 are used despite the fact that type I error is

often inconsequential.

To estimate a typical recommended sample size for a hypothesis test for this example, we use

standard values for α and β and set d = 0.68 × 0.02 = 0.0136, i.e., a 2% lift. This value for d

is the 25.1 %-tile of the prior distribution of treatment effects implied by µ and σ. The resulting

recommended sample size for a hypothesis test is 18,468 in each group (or 13,487 with a finite

population correction), an order of magnitude larger than the profit-maximizing test size. This

larger sample size is set to control type I and type II error tightly irrespective of the opportunity

cost of the test, resulting in much larger sample sizes than are necessary to maximize expected

profit. In this application, the oversized test reduces the remaining population that can receive the

better treatment and results in 476 fewer expected conversions (see Figure 3 and Table 1).

Table 1: Comparison of test plans for website test example. (N = 100, 000, µ = 0.68, σ = 0.03,

s = 0.466).

Expected Conversions Exp. Roll

n1 n2 Test Roll Overall Regret Error

No Test (Random) - - - - 68,000 2.43% 50.0%

Std. Hyp. Test 18,468 18,468 25,116 43,944 69,060 0.91% 3.6%

Hyp. Test FPC* 13,487 13,487 18,342 50,883 69,225 0.67% 4.2%

Test & Roll 2,284 2,284 3,106 66,430 69,536 0.22% 10.0%

Thompson Sampling - - - - 69,672 0.03% -

Perfect Information - - - - 69,693 0% -

* Hypothesis test with finite population correction

Figures 4(a)-(c) show the sensitivity of the profit-maximizing sample size to N , σ and s. Panel

(a) shows how the sample size scales with the population N , allowing marketers with lower-traffic

websites or pages to appropriately size website A/B tests. Panel (b) shows how sample size grows

linearly with the response noise s, unlike the recommended sample size for a null hypothesis test

which increases with s2. Panel (c) shows that when σ is larger, smaller test sizes are sufficient to

16



(a) (b)

0 2 4 6 8 10

0
50

00
10

00
0

20
00

0

Population Size (N, millions)

Te
st

 S
iz

e

n*

nFPC

nHT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
50

00
10

00
0

20
00

0

StDev of Response (s)
Te

st
 S

iz
e

n*

nFPC

nHT

(c)

0.00 0.05 0.10 0.15

0
50

00
10

00
0

20
00

0

StDev of Prior (σ)

Te
st

 S
iz

e

n*

nFPC

nHT

Figure 4: Optimal sample size (n∗) for website test as a function of (a) Population Size N , (b)

standard deviation of response s and (c) σ as compared to the sample size for a hypothesis test

(nHT ) and a hypothesis test with finite population correction (nFPC). Other parameters fixed at

N = 100, 000, µ = 0.68, σ = 0.03, s = 0.466.
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detect treatments that on average perform substantially better.12

To compare test & roll to a multi-armed bandit, Table 1 shows the expected conversions and rela-

tive regret for multi-armed bandit with Thompson sampling where units are allocated to treatments

sequentially based on the posterior predictive probabilities that each treatment is best (Thompson

1933). See Appendix D for implementation details. The dynamic Thompson sampling algorithm

produces 136 more conversions than a test & roll with optimal sample size. Both methods use

a decision rule based on the same posterior, but the multi-armed bandit has more flexibility to

recover from early observations that favor the wrong treatment. However, the difference is small:

Thompson sampling achieves expected relative regret of 0.03%, while test & roll achieves 0.22%.

For this example, profit-maximizing test & roll becomes an attractive option, once the operational

complexity of integrating a dynamic algorithm into the website is considered.

To provide guidance as to when a test & roll and Thompson sampling are most comparable, we

compute relative regret for both algorithms, under a variety of conditions. For each condition, we

simulated R = 10, 000 sets of potential outcomes on which to compare algorithms. The resulting

densities of relative regret are plotted in Figure 5. In general, an optimized test & roll has a

wider distribution of regret with a longer right tail due to occasional deployment errors. Thompson

sampling can recover from these errors and so achieves a tighter distribution of regret. The difference

between algorithms is more pronounced when there are a greater number of treatment arms, where

dynamic allocation provides a stronger advantage. As discussed in Section 3, the difference is also

more pronounced when there is a moderate expected difference between treatments (governed by σ),

which leads to a greater risk deployment error for test & roll. When σ is small, there is little to be

gained by selecting the right treatment. When σ is large, the difference between treatments is large

and both algorithms will detect the better treatment. Thompson sampling performs remarkably

well over a wide range of conditions, usually producing relative regret less than 1%. However, even

in the worst conditions we test, the test & roll has expected relative regret that is close to Thompson

sampling, making it a reasonable alternative when there are high costs of implementing a dynamic

algorithm or when greater transparency is desired. Decision makers can compute expected regret

for Thompson sampling versus test & roll for their specific priors to evaluate whether the difference

in performance exceeds the additional cost of implementing a dynamic algorithm.

12The values of nHT and nFPC shown in Panel (c) assume d is set at the 25%-tile of the prior of the absolute

treatment effect.
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Figure 5: The a priori relative regret of Thompson sampling (dark blue) and profit-maximizing test &

roll (light orange) are remarkably similar under wide range of conditions. Parameters not varied are fixed

at the website example N = 100, 000, K = 2, µ = 0.63, s = 0.466, σ = 0.03. Density plots are computed

from R = 10, 000 draws of potential outcomes. For K > 2 treatments, we computed the Test & Roll profit

numerically for all possible sample sizes to find the optimum. Sometimes, the algorithm achieves profit

higher than the ex-ante expected value of perfect information resulting in negative relative regret.
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Table 2: Comparison of test plans for online display example. (N = 1, 000, 000, µ = 10.36, σ = 4.40,

s = 103.77).

Expected Sales ($000)

n1 n2 Test Roll Overall Regret Roll Error

No Test (Random) - - - - 10,360 19.32% 50.0%

Standard Hyp. Test* 4,782,433* 4,782,433* n/a n/a n/a n/a n/a

Hyp. Test FPC** 452,673 452,673 9,380 1,125 10,595 17.5% 1.1%

Test & Roll 11,391 11,391 236 12,491 12,727 0.89% 6.9%

Thompson Sampling - - - - 12,803 0.29% -

Perfect Information - - - - 12,840 0% -

* Recommended test size is larger than assumed population.

** Hypothesis test with finite population correction as defined in Footnote (2).

5.2 Display advertising testing

As a second example of a profit-maximizing test & roll, we base priors on online display ad ex-

periments reported by Lewis and Rao (2015). We focus on 5 experiments reported for “Advertiser

1”. Lewis and Rao (2015) report the mean and standard deviation of the sales response ($) in the

control group for each experiment (m1 and s = s1 = s2 in our notation). Applying a hierarchical

model to the reported summaries, we estimate m1 ∼ N (10.36, 4.40) and the standard deviation of

response s is 103.77. See Appendix E for details.

Ideally, we would estimate a similar distribution for the treated group, creating asymmetric

priors, but Lewis and Rao (2015) do not report the treatment effects for these experiments. Instead,

we assume the profit per customer m2 has the same prior distribution as m1. That is, on average

the ads produce a lift that precisely covers the cost.

Assuming a total population size of N = 1, 000, 000, the profit-maximizing sample size is n1 =

n2 = 11, 391. Even with this small test, the decision of whether or not to advertise to the remainder

of the population is incorrect only 6.9% of the time. By contrast, these tests would require a sample

size of 4,782,433 in each group for a standard hypothesis test to detect a difference of d = 0.19

at α = 0.05 and β = 0.80.13 As Lewis and Rao (2015) point out, tests of this size are infeasible

within the budget of most advertisers and the population available on most ad platforms. Even

13The difference of 0.19 is approximately the difference between ROI= -100% and 0% assuming the ads cost 0.094

per user (the average reported cost across experiments) and the margin on retail sales is 0.5. This sample size is

similar to those calculated by Lewis and Rao (2015) in Table III.
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with a finite population correction, the sample size for a hypothesis test is 452,673, which results

in substantially higher regret. A risk-neutral firm can reliably determine whether advertising is

more profitable than not and maximize expected profits with far smaller tests. As can be seen

by comparing (2) and (10), the difference in sample size is larger when s large, as it is for the

display advertising tests. Even if we cut the prior variance σ in half and increase the population to

N = 10, 000, 000, the profit-maximizing sample size only increases to n1 = n2 = 234, 361, still half

that required for a hypothesis test with finite population correction. Test sizes, profits and error

rates are summarized in Table 2.

5.3 Catalog holdout testing

Finally, we illustrate how asymmetric priors described in Section 4 lead to unequal test group

sizes. We estimate priors based on 30 catalog holdout tests conducted by a specialty retailer. For

each customer in each test, we observe all-channel sales ($) in the month after the catalog is sent.

Appendix E details how the data is used to estimate the distribution of mean catalog responses for

the treated and holdout groups. Figure 6 shows the fitted priors for mean revenue per customer,

which are N (30.06, 13.48) for the treated groups and N (19.39, 20.97) for the holdout groups. That

is, we expect the customers who receive the catalog to purchase more. The standard deviation in

response within a group is estimated at s1 = 87.69 and s2 = 179.36.

After accounting for the cost of the media (approx. $0.80), 23.2% of catalog campaigns are

expected to decrease profit based on the priors in Figure 6. A test & roll experiment can be used

with future campaigns to prevent mailing to the entire list when it is unprofitable. Assuming a

population size of N = 100, 000, the profit-maximizing sample sizes are n∗1 = 588 (control) and

n∗2 = 1, 884 (treated). An experiment with these sample sizes achieves expected total sales of

$3,463,250. The recommended sample size for a hypothesis test to detect a 25% sales lift is 7,822 in

the control group and 15,996 in the treated,14 resulting in a much larger test that achieves a lower

expected profit of $3,287,412. Correcting for finite sampling reduces sample sizes to 6,317 (control)

and 12,921 (treated) and improves overall profit slightly. These test plans are summarized in Table

3.

14When σ1 6= σ2, then the sample sizes n1 =
(
z(1−α)/2 + zβ

)2 ( s21+s1s2
δ2

)
and n2 =

(
z(1−α)/2 + zβ

)2 ( s1s2+s22
δ2

)
minimize n1 + n2 while achieving the desired confidence and power. See Luh and Guo (2007).
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Figure 6: Fitted distributions for mean response estimated from previous catalog mailings for a

specialty retailer (left) and the implied prior on treatment effects (right).

Table 3: Comparison of test plans for catalog holdout example (N = 100, 000, µ1 = 30.06, σ1 =

13.48, s1 = 87.69, µ2 = 19.39, σ2 = 20.97, s2 = 179.36).
Expected Sales ($000)

n1 n2 Test Roll Overall Regret Roll Error

No Test (Random) - - - - 2,433 30.75% 50.0%

Hypothesis Test 7,822 15,999 620 2,668 3,287 7.85% 1.9%

Hypothesis Test (FPC) 6,317 12,921 501 2,828 3,328 5.23% 2.2%

Test & Roll 588 1,884 67 3,409 3,476 1.68% 6.4%

Thompson Sampling - - - - 3,504 0.57% -

Perfect Information - - - - 3,512 0% -

The profit-maximizing test and the null hypothesis test both allocate a larger sample to the

treatment group, but for different reasons. The hypothesis test does so because the treatment

group has a noisier response (s1 < s2). The profit-maximizing test additionally considers that we

a priori expect greater profits from customers who receive the catalog (m1 < m2). Even if we fix

s1 = s2 and re-estimate the hierarchical model (see Appendix E), the resulting test & roll sample

size is n1 = 771 and n2 = 1, 949, due to the remaining differences in the priors.

Figure 7 shows the sensitivity of the sample sizes to the expected catalog lift. We analyzed this

sensitivity by varying µ2, leaving all other parameters of the priors fixed. As the plot shows, when

the expected lift is very high, a small holdout group is optimal. Thus, the common practice of using
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small holdout tests can be rationalized by a prior expectation that the treatment increases sales

(or other desired behavior) more than the cost of marketing. The test & roll framework provides a

principled way to set the size of the holdout group by making these priors explicit.
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Figure 7: Sensitivity of optimal test sizes to the a priori expected increase in sales from the catalog

(µ2 − µ1).

6 Discussion

We present a new approach to planning sample sizes for A/B tests. Unlike the classic hypothesis test

that emphasizes high confidence and power, our approach optimally balances the trade-off between

not deploying the best treatment in the roll stage and the cost of identifying this treatment in

the test stage. The practical result is far smaller recommended test sizes that scale to the size of

the available population. Most importantly, by focusing on profit, we show that marketers should

not be discouraged from running smaller tests and acting on the findings; while imperfect, such

smaller tests increase profit. Profit-maximizing tests may split the test sample unequally between

the treatments allowing us to rationalize this common practice in marketing experiments.

The profit-maximizing sample size is optimized for marketing campaigns, which typically have

a limited target population. Direct marketing campaigns are conducted with finite mailing lists.

Media campaigns have a fixed budget. Webpages have limited traffic. With finite populations, the
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firm should identify which treatment to deploy to the majority of the population without “wasting”

too many exposures on suboptimal treatments in the test.

Unlike fully-dynamic approaches (Bertsimas and Mersereau 2007, Chick and Frazier 2012,

Schwartz et al. 2017) that vary allocation continuously, our method fits within the typical A/B

testing framework, and requires no changes in testing software other than the recommended sam-

ple size. Operational complexity is reduced by providing a definitive end to the test phase, limiting

the number of alternative treatments that must be maintained and providing transparency about

what treatment is being selected, what evidence led to the selection of this treatment and what the

expected benefit (or regret) is. Managers can interject if they wish before “rolling.” These features

make the profit-maximizing test & roll attractive to marketers.

One limitation of our method is that the best treatment will not always be selected. Al-

though the error-rate may be higher than the one guaranteed by typical null hypothesis testing,

the profit-maximizing test size sets the error rate optimally, based on the potential differences be-

tween treatments and resulting opportunity costs. In contexts where the decision maker is risk

averse or the cost of deploying a subpar treatment is very high, as in clinical trials (Berry et al.

1994, Cheng et al. 2003), then other approaches are warranted.

Further extensions of the test & roll framework presented in Section 2 would be useful. As

data from sets of experiments becomes available (Johnson et al. 2017, Bart et al. 2014), there is

opportunity to develop a catalog of priors for different test settings. Other forms for prior distri-

butions could be considered. For example, Stallard et al. (2017) extend the test & roll framework

to response distributions from the exponential family using approximations. (Azevedo et al. 2019)

focus on priors with fat tails.

The test & roll method is easily extended to more than two treatments, potentially allowing for

correlated priors, e.g., for a holdout group versus several alternative marketing treatments. The cost

of switching between treatments, which can be substantial for offline marketing treatments, could

also be incorporated into the decision problem. If it is possible to deploy different treatments to sub-

populations, then the potential to identify heterogeneous treatment effects (Hitsch and Misra 2018,

Simester et al. 2019) can be considered in the test design. Similarly, time dependency in response

could be considered, e.g. day-of-week or “novelty” effects. These extensions all fit naturally within

the test & roll framework.
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Appendix

A Normal-Normal Model Derivations

Proposition A.1 (Expected roll stage profit). When the mean profit yj is distributed yj ∼

N (mj , s
2
j/nj) with prior mj ∼ N (µj , σ

2
j ), and when the decision rule picks the arm with the highest

posterior mean, the expected profit in the roll stage is:

E[ΠD] = (N − n1 − n2)


√

σ41
σ21 + s21/n1

+
σ42

σ22 + s22/n2
φ

 µ1 − µ2√
σ4
1

σ2
1+s

2
1/n1

+
σ4
2

σ2
2+s

2
2/n2



+(µ1 − µ2)Φ

 µ1 − µ2√
σ4
1

σ2
1+s

2
1/n1

+
σ4
2

σ2
2+s

2
2/n2


 (19)

Proof. Denote the decision rule δ(y1, y2) = I(a1 + b1y1 > a2 + b2y2). The linear decision rule

includes the optimal one that uses the posterior predictive distribution with aj =
s2j/njµj

σ2
j+s

2
j/nj

and

bj =
σ2
j

σ2
j+s

2
j/nj

. Denote the pdf of yj as fj and its cdf as Fj . Denote the pdf of mj as gj and its cdf

as Gj .

The expected value from the roll stage is:

E[ΠD] =

∫
m1

∫
m2

∫
y1

∫
y2

(N − n1 − n2) (δ(y1, y2)m1 + (1− δ(y1, y2))m2) f2(y2)f1(y1)g2(m2)g1(m1)dy2dy1dm2dm1

(20)

In the derivation, we will make multiple uses of the following identities:∫ ∞
−∞

yΦ

(
y + b

a

)
φ(y)dy =

1√
a2 + 1

φ

(
b√

a2 + 1

)
(21)

and: ∫ ∞
−∞

Φ

(
y + b

a

)
φ(y)dy = Φ

(
b√

a2 + 1

)
(22)

The expression (N − n1 − n2) can be taken out of the integrand. Continuing with the first
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additive in the integral (the second will be symmetric):∫
y1

∫
y2

δ(y1, y2)m1f2(y2)f1(y1)dy1dy2 (23)

=

∫
y1

∫ a1−a2+b1y1
b2

−∞
m1f2(y2)f1(y1)dy1dy2 (24)

= m1

∫
y1

F2

(
a1 − a2 + b1y1

b2

)
f1(y1)dy1 (25)

= m1

∫
y1

Φ

(
a1−a2+b1y1

b2
−m2

s2/
√
n2

)
1

s1/
√
n1
φ

(
y1 −m1

s1/
√
n1

)
dy1 (26)

= m1

∫
y

Φ

y + a1−a2+b1m1−b2m2
b1s1/

√
n1

b2s2/
√
n2

b1s1/
√
n1

φ(y)dy (27)

The last equation uses y = y1−m1

s1/
√
n1

as a change of variables.

Using identity (22), the final integral equals:

m1

∫
y

Φ

y + a1−a2+b1m1−b2m2
b1s1/

√
n1

b2s2/
√
n2

b1s1/
√
n1

φ(y)dy (28)

= m1Φ

(
a1 − a2 + b1m1 − b2m2√

b21s
2
1/n1 + b22s

2
2/n2

)
(29)

Plugging back into the expected value in (20), the expected value of the roll stage equals:

(N − n1 − n2)

(∫
m1

∫
m2

m1Φ

(
a1 − a2 + b1m1 − b2m2√

b21s
2
1/n1 + b22s

2
2/n2

)
g2(m2)g1(m1)dm1dm2

+

∫
m2

∫
m1

m2Φ

(
a2 − a1 + b2m2 − b1m1√

b21s
2
1/n1 + b22s

2
2/n2

)
g1(m1)g2(m2)dm1dm2

)
(30)

Using identity (22) again, the first additive equals:∫
m1

∫
m2

m1Φ

(
a1 − a2 + b1m1 − b2m2√

b21s
2
1/n1 + b22s

2
2/n2

)
g2(m2)g1(m1)dm1dm2 (31)

=

∫
m1

m1

∫
m

1− Φ

m+ a2−a1−b1m1+b2µ2
b2σ2√

b21s
2
1/n1+b22s

2
2/n2

b2σ2

φ(m)dmg1(m1)dm1 (32)

=

∫
m1

m1Φ

(
a1 − a2 + b1m1 − b2µ2√
b21s

2
1/n1 + b22s

2
2/n2 + b22σ

2
2

)
1

σ1
φ

(
m1 − µ1
σ1

)
dm1 (33)

=

∫
m

(mσ1 + µ1)Φ

 m+ a1−a2+b1µ1−b2µ2
b1σ1√

b21s
2
1/n1+b22s

2
2/n2+b22σ

2
2

b21σ
2
1

φ(m)dm (34)
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where the last equation uses the change of variables m = m1−µ1
σ1

.

Using identities (21) and (22), we receive:

∫
m

(mσ1 + µ1)Φ

 m+ a1−a2+b1µ1−b2µ2
b1σ1√

b21s
2
1/n1+b22s

2
2/n2+b22σ

2
2

b21σ
2
1

φ(m)dm (35)

=
b1σ

2
1√

b21s
2
1/n1 + b22s

2
2/n2 + b21σ

2
1 + b22σ

2
2

φ

(
a1 − a2 + b1µ1 − b2µ2√

b21s
2
1/n1 + b22s

2
2/n2 + b21σ

2
1 + b22σ

2
2

)

+ µ1Φ

(
a1 − a2 + b1µ1 − b2µ2√

b21s
2
1/n1 + b22s

2
2/n2 + b21σ

2
1 + b22σ

2
2

)
(36)

Using symmetry, the a priori expected value of the roll stage is:

E[ΠD] = (N − n1 − n2)

[
b1σ

2
1 + b2σ

2
2√

b21s
2
1/n1 + b22s

2
2/n2 + b21σ

2
1 + b22σ

2
2

φ

(
a1 − a2 + b1µ1 − b2µ2√

b21s
2
1/n1 + b22s

2
2/n2 + b21σ

2
1 + b22σ

2
2

)

+(µ1 − µ2)Φ

(
a1 − a2 + b1µ1 − b2µ2√

b21s
2
1/n1 + b22s

2
2/n2 + b21σ

2
1 + b22σ

2
2

)]
(37)

Plugging in the posterior mean parameters for aj and bj (as they are optimal), the roll stage

expected value in the fully asymmetric model is:

E[ΠD] = (N − n1 − n2)


√

σ41
σ21 + s21/n1

+
σ42

σ22 + s22/n2
φ

 µ1 − µ2√
σ4
1

σ2
1+s

2
1/n1

+
σ4
2

σ2
2+s

2
2/n2



+(µ1 − µ2)Φ

 µ1 − µ2√
σ4
1

σ2
1+s

2
1/n1

+
σ4
2

σ2
2+s

2
2/n2


 (38)

where in the text we set e = µ1 − µ2 and v =

√
σ4
1

σ2
1+s

2
1/n1

+
σ4
2

σ2
2+s

2
2/n2

in Equation (18). Thus we

have completed the proof for the asymmetric case.

To get the expression in (9) we plug-in µ1 = µ2 = µ, σ1 = σ2 = σ and s1 = s2 = s into the

above expression.

Proposition A.2 (Profit maximizing sample size). When the mean profits yj are distributed yj ∼

N (mj , s
2/nj) with prior mj ∼ N (µ, σ2), the profit-maximizing sample size is:

n∗1 = n∗2 =

√
N

4

( s
σ

)2
+

(
3

4

( s
σ

)2)2

− 3

4

( s
σ

)2
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Proof. Because the priors are symmetric, the optimal sample sizes will be equal. Denote them as

n = n1 = n2.

The expected profit of the experiment with symmetric priors is:

E[ΠT ] + E[ΠD] = Nµ+ (N − 2n)

 √
2σ2

√
π
√

2σ2 + 2
ns

2

 (39)

The FOC w.r.t to n is:

σ2
√

s2

n + σ2
(
4n2σ2 + 6ns2 −Ns2

)
2
√
π (nσ2 + s2)2

= 0 (40)

which is equivalent to solving 4n2σ2+6ns2−Ns2 = 0, yielding the optimal sample size formula.

Corollary A.3 (Expected error rate). Under symmetric priors, the expected rates of making the

incorrect choice in the roll stage, E[Pr(δ(y1, y2) = 1|m1 < m2)] and E[Pr(δ(y1, y2) = 0|m1 > m2)],

both equal 1
4 −

1
2π arctan

(√
2σ
s

√
n1n2
n1+n2

)
.

Proof. Using the fact that yj ∼ N (mj , s
2/nj) and because in the symmetric case the decision rule

is to pick the treatment with the highest mean:

Pr(δ(y1, y2) = 1|m1,m2) = Pr(y1 − y2 > 0|m1,m2) = Φ

 m1 −m2

s
√

1
n1

+ 1
n2

 (41)

If we denote m = m1 −m2, then m1 −m2 has a prior N (0, 2σ2). The expected error rate is

therefore:

E[δ(y1, y2) = 1|m1 > m2] =

∫ 0

−∞
Pr(y1 − y2 > 0|m)Pr(m)dm

=

∫ 0

−∞
Φ

 m

s
√

1
n1

+ 1
n2

 1√
2σ
φ

(
m√
2σ

)
dm (42)

Using the identity
∫ 0
−∞ φ(ax)Φ(bx)dx = 1

2π|a|

(
π
2 − arctan

(
b
|a|

))
, we get the expression:

E[δ(y1, y2) = 1|m1 > m2] = E[δ(y1, y2) = 0|m1 < m2] =
1

4
− 1

2π
arctan

(√
2σ

s

√
n1n2
n1 + n2

)

Proposition A.4 (Regret). In the symmetric Normal-Normal model with a population size N :
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1. The expected value of perfect information is E[Π|PI] = N
(
µ+ σ√

π

)
.

2. The regret of the profit-maximizing design is O(
√
N).

3. The regret from using a classic hypothesis test is Ω(N).

Proof. Perfect information allows the marketer to pick the treatment with the highest mean mj

without testing, yielding expected profit of N · E[max(m1,m2)]. Because both treatments come

from the same prior N (µ, σ2), the mean of the maximum of two i.i.d Normal variables is µ + σ√
π

,

proving the first item.

To prove the second item, we calculate the regret from using the profit maximizing design:

E[Π|PI]− E[Π∗D + Π∗T ] = N
σ√
π

1− σ√
σ2 + s2

n∗

+
2n∗σ2

√
π
√
σ2 + s2

n∗

(43)

Using the inequality
√
x+ 1−

√
x < 1

2
√
x

for x > 0, and denoting x = n∗σ2/s2, the first additive

results in:

N
σ√
π

1− σ√
σ2 + s2

n∗

 (44)

≤ N σ√
π

1

2
√
σ2n∗/s2 + 1

√
σ2n∗/s2

(45)

≤ N σ√
π

1

2n∗σ2/s2
(46)

(47)

Plugging in n∗ =

√
N
4

(
s
σ

)2
+
(
3
4

(
s
σ

)2)2 − 3
4

(
s
σ

)2
, the denominator 2n∗σ2/s2 is larger than

1
2
σ
s

√
N when N > 4 s

2

σ2 . Hence, we can bound the first additive in the regret (43) from above by:

N
σ√
π

1− σ√
σ2 + s2

n∗

 ≤ 2s
√
N√
π

(48)

To bound the second additive:

2n∗σ2

√
π
√
σ2 + s2

n∗

≤ 2n∗σ2
√
π
√
σ2

=
2n∗σ√
π

<
s
√
N√
π

(49)

The first inequality uses the fact that s2

n∗ is positive, while the second uses the fact that n∗ <
√
N s

2σ

as shown in the main text.
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Summing the two additives shows that the regret of the profit maximizing design is smaller

than 3s
√
N√
π

proving the second item that the regret is O(
√
N).

To prove the third item, we plug-in the sample size from (2) for n in the regret formula:

E[Π|PI]− E[ΠD + ΠT ] = N
σ√
π

1− σ√
σ2 + s2

n

+
2nσ2

√
π
√
σ2 + s2

n

(50)

> N
σ√
π

1− σ√
σ2 + s2

n

 = N
σ√
π

1− σ√
σ2 + δ2

2z2

 (51)

> N
σ√
π

1

2(2z
2σ2

δ2
+ 1)

= Ω(N) (52)

where the equality in (51) follows from plugging-in the NHST sample size denoting z = z(1−α)/2+zβ,

and the last inequality follows from
√
x+ 1−

√
x > 1

2
√
x+1

when x ≥ 0, with x = nσ2/s2.

When using the sample size for the NHST with finite population correction, we can use the

same approach where in Equation (51) we plug-in n =
(z1−α/2+zβ)

22s2N

(N−1)d2+4s2(z1−α/2+zβ)2
.

This results in:

E[Π|PI]− E[ΠD + ΠT ] = N
σ√
π

1− σ√
σ2 + s2

n

+
2nσ2

√
π
√
σ2 + s2

n

(53)

> N
σ√
π

1− σ√
σ2 + s2

n

 > N
σ√
π

1

2(nσ
2

s2
+ 1)

(54)

= N
σ√
π

1

2
(

2Nz2σ2

(N−1)d2+4z2s2
+ 1
) > N

σ√
π

1

2
(

2Nz2σ2

(N−1)d2 + 1
) (55)

> N
σ√
π

1

2
(
2Nz2σ2

1/2Nd2
+ 1
) = N

σ√
π

1

2
(
4z2σ2

d2
+ 1
) = Ω(N) (56)

The last inequality follows from the fact that 1/2N ≤ N − 1 for N ≥ 2, which completes the

proof.

Corollary A.5 (Maximum relative regret). There is an intermediate value of σ for which the

profit-maximizing test & roll achieves the maximum relative regret.

Proof. The relative regret at the optimal sample size equals:√√
4Nσ2+9s2−3s√
4Nσ2+9s2+s

(
s
(√

4Nσ2 + 9s2 − 3s
)

+ 2σ

(√
N
(
s
(√

4Nσ2 + 9s2 + 3s
)

+Nσ2
)
−Nσ

))
2Nσ (

√
πµ+ σ)
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Using L’Hôpital’s rule, the limit as σ → 0 is zero. Similarly, the limit as σ → ∞ is zero. The

relative regret is always positive. Consequently, the relative regret achieves a maximum for a value

of σ which is not zero or infinity.

B Derivations for Beta-Binomial model

Let the profit yij from customer i exposed to treatment arm j be vj with probability pj and 0 with

probability 1−pj , and let yj =
∑nj
i=1 yij
nj

be the average number of conversions with treatment j, when

nj is the number of individuals assigned to treatment j. We put a Beta(α, β) prior distribution on

pj and denote its pdf as f(·).

Proposition B.1 (Beta-Binomial expected profit). If profit yij from customer i exposed to treat-

ment j is vj with probability pj and zero otherwise with priors pj ∼ Beta(α, β):

1. The expected profit in the test stage is (n1v1 + n2v2)
α

α+β

2. The expected profit in the roll stage is:

(N − n1 − n2)

n2∑
y2=1

(
n2

y2

)
Γ(y2 + α)Γ(n2 − y2 + β)

B(α, β)Γ(n2 + α+ β)
·

(
n1∑

y1=ỹ1

(
n1

y1

)
Γ(y1 + α)Γ(n1 − y1 + β)

B(α, β)Γ(n1 + α+ β)
v1

α+ y1
α+ β + n1

+

ỹ1−1∑
y1=0

(
n1

y1

)
Γ(y1 + α)Γ(n1 − y1 + β)

B(α, β)Γ(n1 + α+ β)
v2

α+ y2
α+ β + n2

)
(57)

with

ỹ1 = α

(
v2
v1

α+ β + n1
α+ β + n2

− 1

)
+ y2

(
v2
v1

α+ β + n1
α+ β + n2

)

Proof. To prove the first item, the expected profit in the test stage is:

E[πT ] =

∫
p1

n1∑
y1=0

v1y1Pr(y1|p1)f(p1)dp1 +

∫
p2

n2∑
y2=0

v2y2Pr(y2|p2)f(p2)dp2 (58)

Because
∑nj

yj=0 yjPr(yj |pj) = njpj , then
∫
p1

∑n1
y1=0 y1Pr(y1|p1)f(p1)dp1 = nj

α
α+β , and plugging

this in yields the expression in in the proposition.

The prove the second item, the a priori expected profit in the roll stage is:

(N − n1 − n2)

∫
p2

∫
p1

n1∑
y1=1

n2∑
y2=1

[δ(y1, y2)p1v1 + (1− δ(y1, y2))p2v2]Pr(y2|p2)Pr(y1|p1)f(p1)f(p2)dp1dp2 (59)
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Focusing on the first additive (the second will be symmetric because of the symmetric prior),

it can be written as:

(N − n1 − n2)v1
∫
p2

∫
p1

n1∑
y1=1

n2∑
y2=1

δ(y1, y2)Pr(y2|p2)Pr(y1|p1)p1f(p1)f(p2)dp1dp2 (60)

The optimal decision rule δ(y1, y2) is to pick the treatment with the highest expected posterior

profit vjE[pj |yj ] = vj
α+yj

α+β+nj
, resulting from the fact that the profits are Binomially distributed

with a Beta prior. Hence, by denoting ỹ1 = α
(
v2
v1
α+β+n1

α+β+n2
− 1
)

+ y2

(
v2
v1
α+β+n1

α+β+n2

)
, and by applying

Fubini’s theorem, we can rewrite (60) as:

(N − n1 − n2)v1
n2∑
y2=1

n1∑
y1=ỹ1

∫
p2

Pr(y2|p2)f(p2)dp2

∫
p1

p1f(p1)Pr(y1|p1)dp1 (61)

The derivation above assumes that if the expected posterior profit of both treatments is equal,

then treatment 1 is chosen as a tie-breaking rule. We will show that this tie-breaking rule does not

change the result if we opt for another rule (e.g., pick treatment 2 if tied, or pick one randomly).

Using Bayes rule, Pr(yj |pj)f(pj) = Pr(yj)f(pj |yj). This implies that:∫
p2

Pr(y2|p2)f(p2)dp2 = Pr(y2) (62)∫
p1

p1f(p1)Pr(y1|p1)dp1 = Pr(y1)
α+ y1

α+ β + n1
(63)

The second equation stems from the fact that f(p1|y1) is the pdf of a Beta(α + y1, β + n1 − y1)

distribution.

We can calculate Pr(yj) as:

Pr(yj) =

∫ 1

pj=0
Pr(yj |pj)f(pj)dpj =

(
nj
yj

)
Γ(yj + α)Γ(nj − yj + β)

B(α, β)Γ(nj + α+ β)
(64)

Plugging into (61), the total roll stage profit is:

(N − n1 − n2)

n2∑
y2=1

(
n2

y2

)
Γ(y2 + α)Γ(n2 − y2 + β)

B(α, β)Γ(n2 + α+ β)
·

(
n1∑

y1=ỹ1

(
n1

y1

)
Γ(y1 + α)Γ(n1 − y1 + β)

B(α, β)Γ(n1 + α+ β)
v1

α+ y1
α+ β + n1

+

ỹ1−1∑
y1=0

(
n1

y1

)
Γ(y1 + α)Γ(n1 − y1 + β)

B(α, β)Γ(n1 + α+ β)
v2

α+ y2
α+ β + n2

)
(65)

If there is a tie such that v1
α+y1

α+β+n1
= v2

α+y2
α+β+n2

, it does not matter if we take the left or the right

additive within the parenthesis. Hence, any tie-breaking rule will yield an equivalent profit.
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Figure 8: Comparison of optimal sample sizes computed exactly using the Beta-Binomial model

versus the Normal-Normal approximation for various values of mean response rate (µ = α
α+β ) and

prior precision (α+ β).

To design a test for binomial experiment, the expected profit from Proposition B.1 can be

numerically optimized, using a discrete optimization heuristic. However, since the normal-normal

model is more computationally convenient, it can be used to approximate the beta-binomial using

the usual binomial approximation: µ = α
α+β , s =

√
µ(1− µ) and σ =

√
αβ

(α+β)2(α+β+1)
. Figure 8

shows that this approximation results in nearly the same sample size except when the response rate

µ is close to zero (or equivalently close to 1) and the prior is relatively informative (prior precision

= α+ β > 100) .

C Asymmetric Tests

C.1 Incumbent Challenger Test

In an incumbent/challenger test more is known about one treatment than the other. Denote

σ2 = cσ1 with c > 1. To analyze this scenario in closed form, we will assume that µ1 = µ2 and

that s1 = s2 = s, although the solution can be found numerically for any set of values. Because the

uncertainty is larger for treatment 2, it is always the case that n∗2 > n∗1 in an incumbent/challenger
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test. When the population size is small enough, it is too wasteful to experiment with treatment 1,

and the test will only include exposures to treatment 2. After this test phase, comparison will be

made to the prior on treatment 1 to select which treatment to deploy. This is shown formally in

Proposition C.1:

Proposition C.1 (Incumbent/Challenger sample sizes). In an asymmetric test when treatment 1

is an incumbent and treatment 2 is a challenger such that µ1 = µ2, s1 = s2 = s and σ2 = c · σ1

with c > 1:

1. The optimal sample sizes are:

n∗1 =
s
(√

2c2 (c2 + 1)Nσ21 + (2c4 + 5c2 + 2) s2 − cs(1 + 2c2)
)

2 (c3 + c)σ21
(66)

n∗2 =
s
(
c
√

2c2 (c2 + 1)Nσ21 + (2c4 + 5c2 + 2) s2 −
(
c2 + 2

)
s
)

2c2 (c2 + 1)σ21
. (67)

2. n∗2 > n∗1 for any value of N , s, c > 1 and σ.

3. n∗2 > 0, for any value of N , s, c > 1 and σ. n∗1 > 0 ⇐⇒ N >
(2c4−c2−1)s2

c2σ2
1

Proof. Plugging µ1 = µ2 = µ, s1 = s2 = s and σ2 = cσ1 into the expected profit derived in

Proposition A.1, the expected profit in an incumbent/challenger experiment is Nµ + (N − n1 −

n2)
v√
2π

with v =

√
σ4
1

σ2
1+s

2/n1
+

c4σ4
1

c2σ2
1+s

2/n2
.

After simplifying and re-arranging, the first order conditions for finding the optimal n1 and n2

are:

−s
2(−N + n1 + n2)(
n1σ21 + s2

)2 = 2

(
c4n2

c2n2σ21 + s2
+

n1
n1σ21 + s2

)
(68)

c4s2(N − n1 − n2)(
c2n2σ21 + s2

)2 = 2

(
c4n2

c2n2σ21 + s2
+

n1
n1σ21 + s2

)
(69)

Dividing the two equations and solving for n1, the only possible solution such that n∗1 > 0 for

some values is n∗1 =
c2n2σ2

1−c2s2+s2
c2σ2

1
. Plugging this into Equation (69) yields the expression in the

proposition, proving the first item.

To prove the second item, the inequality n∗2 − n∗1 > 0 can be written as:

(n∗2 − n∗1)
2σ21c

2(1 + c2)

s
= 2

(
c4 − 1

)
s > 0 (70)
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which always holds because c > 1.

To prove the third item, we solve for n∗2 > 0, which holds for the described parameter values,

and n∗1 > 0 which holds if and only if N >
(2c4−c2−1)s2

c2σ2
1

.

D Thompson Sampling for the Normal-Normal model

Thompson sampling (Thompson 1933) has recently become the prominent heuristic for solving

multi-armed bandit problems, due to its superior performance and ease of implementation (Scott

2010, Schwartz et al. 2017). Here we describe the Thompson sampling algorithm we use, which is

the standard implementation applied to the normal symmetric model.

Opportunities to apply the treatment are assumed to come in one at a time for each i = 1 . . . N .

Under the symmetric normal model, treatment j generates outcomes yji drawn from N (mj , s
2).

The algorithm is initialized with with priors mj ∼ N (µj(0), σ2j (0)). For each i, the algorithm

makes a dynamic decision whether to deploy treatment 1 or treatment 2 as follows:

1. Draw a mean m1(i) from N (µ1(i− 1), σ21(i− 1)) and m2(i) from N (µ2(i− 1), σ22(i− 1)).

2. If m1(i) > m2(i), treatment 1 is deployed. Otherwise treatment 2 is deployed.

3. Either y1i or y2i is observed based on the decision. In simulation yji is drawn from its true

distribution N (mj , s
2).

4. The hyperparameters µj(i) and σ2j (i) are updated given the new data. If treatment j was

not deployed, the hyperparameters at time i equal those at time i− 1. If the treatment was

deployed, the hyperparameters are calculated as the posterior of the normal distribution, with

the observed outcome used as data and the hyperparameters from period i − 1 used for the

prior.

Thus, treatments are probabilistically sampled according to the current probability that each

treatment is best, i.e., treatment 1 is sampled at the rate of Pr(µ1(i) > µ2(i)). This rule favors

treatments with higher expected response and, as a result, the algorithm will quickly converge to

the best-performing treatment as data accumulates. However, it also is also more likely to sample

treatments with higher uncertainty, because of the high potential upside for those treatments, which

helps to avoid converging to the wrong treatment.
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The explicit explore versus exploit trade-off in a multi-armed bandit is similar to the tradeoff

between the size of the test sample and the remaining population in a test & roll, albeit more

dynamic. The dynamic approach works better when opportunities to apply the treatment are

spread out over time and the desired response is immediately available (e.g., website tests where

the response is a click), but can be difficult to execute when the response is not immediately

observable (e.g., sales) or when the treatments are sent out in batches (e.g., direct mail).

Agrawal and Goyal (2013) have shown that the regret from Thompson sampling with Normal

outcomes and Normal priors is O(
√
N). This has been shown before to be the best achievable regret

for any dynamic multi-armed bandit approach when compared to having perfect information, and

hence Thompson sampling is an ideal benchmark for comparison.

E Application Details

If a firm has data on response to prior marketing treatments that are similar to those that will be

tested, this data can be used to estimate the distribution of mean response needed to compute the

test & roll sample size. For example, if the firm has past data on response yij for each customer i

in each of j = 1, . . . J previous marketing campaigns, then we can fit a hierarchical model:

yij ∼ N (mj , s) for observations i = 1, . . . Nj in campaigns j = 1, . . . J (71)

mj ∼ N (µ, σ) in campaigns j = 1, . . . J (72)

Estimates of µ and σ can be plugged into (10) to compute the test & roll sample size. For binary

responses, with small samples, we could estimate a similar beta-binomial model.

The campaigns j can be defined by a particular period of time when a marketing treatment

was in place and the response was stable, such as response rates to direct marketing campaigns

or customers visiting a website in a particular month. The key assumption is that these prior

campaigns represent the range of likely mean responses for the treatments in the test that is being

planned. We provide more details for specific applications below.

E.1 Website Testing Example

The data on website tests is adopted from Berman et al. (2018) and contains the results for 2,101

A/B tests. These tests were conducted across a wide variety of pages and websites. For each test
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we observe the number of times the page was served with each of the two variations and the total

number of times a user clicked on the page for each variation. Our goal is to use this data to

estimate the range of lifts in click rates that one might expect from a website test and then use

this to size a test & roll experiment.

Figure 9 displays the distribution of observed lift values between -0.6 and 0.6. This range

contains 2,084, or 99.15% of the experiments. The distribution is long tailed with a small number

of experiments having higher lifts than 0.6. The interquantile [1%, 99%] lift range is [-.213, .327]

with a mean of .112 and a median of .0015. For treatment effects, the range is [-.10, .16] with a mean

of 0.005 and a median of 0.001. The sample sizes range from 100 to 17.4M, with an interquantile

[1%, 99%] range of [116, 903,850], a mean of 574,474 and median of 3,864 users per treatment.
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Figure 9: Distribution of lift values for experiments. Adopted from Berman et al. (2018)

.

Because these tests were conducted across many websites with a wide range of click rates, there

tends to be correlation in the click rate between the two arms in the same experiment. To account

for this, we assume that each experiment k has it’s own mean click rate tk and assume that the

means for the treatment arms within the experiment are distributed normal around the click rate
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for the experiment as follows:

yijk ∼ N (mjk, s) (73)

mjk ∼ N (tk, σ) (74)

tk ∼ N (µ, ω) (75)

Because the data is binary, we follow the binomial approximation and assume s = m1k(1 −m1k),

reducing the number of estimated population parameters to three. The model is estimated using

the HMC algorithm implemented in Stan (Stan Development Team 2018) with diffuse priors on

the hyper-parameters and the estimates are reported in Table 4.

Table 4: Model estimates for meta-analysis of website tests provide an estimate of the distribution of

mean response to be used in planning future tests with similar treatments and targeted populations.

mean sd 2.5%-tile 97.5%tile

µ 0.676 0.004 0.667 0.685

σ 0.030 0.001 0.029 0.031

ω 0.199 0.003 0.193 0.206

In the empirical model, ω captures the variation in mean response across experiments, while

σ captures the variation between arms within an experiment. In sizing a test & roll experiment

following (10), we are interested in the potential differences between arms within a single experi-

ment, so we use the estimate of σ and ignore ω. In addition, we assume s = µ(1 − µ), but if the

experimenter has other information about the likely click rate for these particular web pages, then

s can be appropriately adjusted or conservatively set at 0.25, while still using σ as an estimate of

the range of mean responses expected for treatments within an experiment.

E.2 Display Ad Testing Example

We illustrate how “Advertiser 1” in Lewis and Rao (2015) might obtain the parameters µ and σ

in order to find the profit-maximizing sample size for a new test & roll with treatments that are

expected to perform similarly to experiments 1.1, 1.2, 1.3, 1.5 and 1.6 reported in Table 5. We

eliminated experiment 1.4 because it had a substantially different media cost and response rate for

the control group versus the other experiments and appears to be targeting customers with higher

baseline purchase propensity.
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Table 5: Reported mean and standard deviation for control group in display advertising tests

reported by Lewis and Rao (2015, Table I). These are used to estimate mean and variance for

display advertising response for “Advertiser 1”’s typical campaign

Test Mean (ȳj) Pooled St. Dev (ŝ) Group Size (n)

1.1 9.49 94.28 300,000

1.2 10.50 111.15 300,000

1.3 4.86 69.98 300,000

1.5 11.47 111.37 300,000

1.6 17.62 132.15 300,000

Table 6: Model estimates for meta-analysis of display advertising tests provide an estimate of

the distribution of mean response to be used in planning future tests with similar treatments and

targeted populations.

Parameter mean sd 2.5%-tile 97.5%-tile

µ 10.36 1.99 6.16 14.17

σ 4.40 1.17 2.63 7.17

Using the data in Table 5, we estimate the following hierarchical model for the mean response

in the control group reported for each experiment j.

ȳj ∼ N
(
mj ,

ŝ√
n

)
(76)

mj ∼ N (µ, σ) (77)

where the sampling distribution for yijk in equation 74 has been replaced with ȳj , since we do

not have access to the user-level data. The estimates of µ and σ reported in Table 6 are used

in designing a new test & roll for Advertiser 1. s is estimated as the average of sj across the 5

experiments, which is 103.77.

Because we are estimating the variance in mean response σ from just 5 experiments, the posterior

of σ is relatively wide. As can be seen from (10), the profit-maximizing sample size will be largest

when σ is smallest. Conservatively, one might use the posterior 2.5%-tile for σ, instead of the

posterior mean. This results in a profit-maximizing sample size of 18,486, still far smaller than that

recommended for a hypothesis test.
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E.3 Catalog Holdout Testing Example

The catalog holdout data describe 30 catalog holdout tests conducted in October 2013 through

March 2014. In each month, 6 tests were conducted using the same print catalog and different

targeted populations. This data is provided by the same retailer as in Zantedeschi et al. (2016),

but is a different sample of tests. For each customer i in each test k, we observe the all-channel

sales yijk for one month after the catalog is delivered. The sample sizes and holdout rates for these

tests vary with a [10%, 90%] interquartile range for the sample size of [346.7, 1395.5] with a mean

of 658.3 and a median of 437.0. The holdout rates also varied widely with a range of [1.1%, 95.1%],

a median of 5.4% and a mean of 21.0%.

The distribution of the estimated treatment effects are shown in Figure 10. The interquartile

range for the point estimates of the treatment effects is [-10.77, 39.15] with a median of 6.23 and

a mean of 11.34 (all $US). Lifts can not be computed for 7 of the tests because no purchases were

made in the control group, but the median lift is 1.48 and the 10th percentile is -0.549. The 1-

month purchase amounts for individual customers have a median of 0, a mean of 43.64 and a 90th

percentile of 113.00.

Treatment Effects

P
er

ce
nt

−60 −40 −20 0 20 40 60 80

0.
00

0
0.

01
0

0.
02

0

Figure 10: Distribution of catalog holdout test treatment effects (y2 − y1)

Individually, the catalog holdout tests have very imprecise estimates for response due to small

sample size and high noise in the data. The hierarchical model is particularly valuable in pooling
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information across the tests and propagating uncertainty due to small sample sizes. We fit a model

similar to that used for the website tests, except that we allow for µ1 6= µ2 and σ1 6= σ2, because

unlike for the website tests, there is a clear distinction between the treated and holdout conditions.

The model we fit is:

yi1k ∼ N (m1k, s1) for customers in control group (78)

yi2k ∼ N (m2k, s2) for customers in treatment group (79)

m1k ∼ N (tk, σ1) (80)

m2k ∼ N (tk + ∆, σ2) (81)

tk ∼ N (µ1, ω) (82)

By modeling the overall response rate for the experiment tk, we allow for the different targeted

populations to have different response rates and account for the correlation in response within

experiments. In planning a new test, we focus on the the variation in response rates within the

experiment, as estimated by σ1 and σ2.

Samples from the posterior are obtained using the HMC algorithm implemented in Stan with

uniform priors on the hyper-parameters. The posterior means for µ1, ∆ = µ2 − µ1, σ1 and σ2

reported in Table 7 are used as point estimate to compute the asymmetric test & roll sample size.

Table 7: Model estimates for meta-analysis of catalog holdout tests provide an estimate of the

distribution of mean response to be used in planning future tests.

mean sd 2.5%-tile 97.5%tile

s1 87.69 1.21 85.41 90.06

s2 179.36 0.97 177.46 181.24

µ1 19.39 7.13 5.32 33.17

∆ 10.67 6.19 -1.30 22.77

σ1 20.97 5.85 8.81 32.25

σ2 13.48 5.88 4.01 26.78

ω 27.25 5.18 18.27 38.57

We also estimated a version of the model where s1 was constrained to be the same as s2 and

used these estimates to show that unequal group sizes can arise from the priors (unlike in null

hypothesis testing). The resulting estimates are reported in Table 8.
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Table 8: Model estimates for catalog holdout tests assuming s1 = s2 = s.

mean sd 2.5%-tile 97.5%tile

s 170.17 0.86 168.48 171.91

µ1 23.32 8.38 6.64 40.06

∆ 6.39 7.48 -7.78 21.93

σ1 18.54 7.08 5.55 33.62

σ2 9.79 5.98 2.37 23.73

ω 28.75 4.87 20.20 39.15
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