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ABSTRACT 

Many decision makers operate in dynamic environments, in which markets, competitors, 
and technology change regularly.  The ability to detect and respond to these regime shifts is 
critical for economic success.  We conduct three experiments to test how effective individuals 
are at detecting such regime shifts.  Specifically, we investigate when individuals are most likely 
to under-react to change and when they are most likely to over-react to it.  We develop a system-
neglect hypothesis:  individuals react primarily to the signals they observe and secondarily to the 
environmental system that produced the signal.  Three experiments, two involving probability 
estimation and one involving prediction, reveal a behavioral pattern consistent with our system-
neglect hypothesis:  under-reaction is most common in unstable environments with precise 
signals and over-reaction is most common in stable environments with noisy signals.  We test 
this pattern formally in a statistical comparison of the Bayesian model with a parametric 
specification of the system-neglect model. 
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1. INTRODUCTION 

Decision makers must often make decisions in unstable environments.  An investor must 

elect whether to keep her investments in equity.  A Central Bank must decide whether a weakening 

economy merits an interest rate cut.  A conventional retailer must decide whether to embrace an 

Internet strategy.  In each of these examples a decision maker receives a “signal” (e.g, a series of 

poor earnings announcements, an unexpectedly high unemployment figure, an onslaught of “e-

tailers”) and must judge whether that signal augurs a new regime (e.g., the onset of a bear market, an 

economy headed toward recession, a shift to an online economy), or is just an extreme outcome from 

the incumbent regime.   

The ability of decision makers to correctly identify the onset of a new regime can mean the 

difference between success and failure.  Indeed, the difficulty of separating “signal” from “noise” has 

led to well-publicized instances of over-reaction (i.e., believing a regime shift has occurred before it 

actually has), as well as under-reaction (i.e., believing a regime shift has not occurred when in fact it 

has).  Consider two examples.  In the late-1980’s, Xerox observed Japanese semiconductor 

manufacturers shifting resources to a new, X-ray-based manufacturing method.  Xerox, believing this 

indicated a fundamental shift in semiconductor technology, reallocated significant company 

resources to this new approach.  Years later it was clear that such a shift did not occur and, in fact, 

would not for the foreseeable future (Grove, 1999).  Conversely, in the late-1970’s, Schwinn was 

slow to respond to the advent of the mountain bike.  Management believed that the surge in mountain 

bike popularity was just another “fad”.  Schwinn’s reluctance to introduce a mountain bike cost the 

company its dominance in the American bicycle market and contributed to its eventual bankruptcy 

(Crown & Coleman, 1996). 

For obvious reasons, these examples must be interpreted with caution.  In order to understand 

the factors that impact the ability of individuals to detect regime shifts more precisely, we investigate 

under- and over-reaction experimentally.  We conduct three studies and find that individuals exhibit 

systematic biases in their ability to detect regime shifts.  Subjects in our studies observe signals, and 

based on these signals indicate whether there has been a shift from one regime to a second regime.  
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We employ an experimental paradigm in which the first regime is represented by an urn that contains 

more red than blue balls (a “red urn”), and the second regime is represented by an urn that contains 

more blue than red balls (a “blue urn”).  At any time, the experiment may switch from drawing balls 

from the red urn to drawing balls from the blue urn.  In this setup, three values are needed for 

determining the appropriate (Bayesian) reaction: (i) the signal: the sequence of red and blue balls 

observed; (ii) signal diagnosticity: the degree to which the red urn differs from the blue urn; and (iii) 

transition probability: the chance that the system will remain with the red urn, or switch to the blue 

urn.  This simple experimental paradigm is intended to capture the essential features of many real-

world situations.  For an investor deciding whether to keep her investments in equity, the two states 

might be a “bull market” and “bear market”.  An earnings announcement is an informative but 

imprecise signal, with the informativeness of this signal varying across markets and over time.  

Finally, the market may vacillate between these two states, with the historical frequency of change 

captured by the transition probability.   

We posit and find strong evidence for a system-neglect hypothesis:  individuals pay 

inordinate attention to the signal, and neglect diagnosticity and transition probability, the aspects of 

the system that generated the signal.  Moreover, we suggest that system neglect leads to a predictable 

pattern of under- and over-reaction:  individuals are most prone to under-reaction in unstable 

environments with precise signals and to over-reaction in stable environments with noisy signals.  

Our three studies, two judgment tasks and a choice task, show that subjects do exhibit substantial 

system neglect and that such system neglect does indeed result in the posited pattern of under- and 

over-reaction. 

The paper proceeds as follows.  In Section 2, we review previous empirical research on the 

detection of regime shifts, as well as relevant research on judgment in stationary environments.  We 

extend these ideas and develop the system-neglect hypothesis.  We test this hypothesis in three 

studies.  In Section 3, we present a judgment study in which subjects judge the posterior probability 

that the process has switched regimes (from the red urn to the blue urn).  In Section 4, we present a 

second judgment study that rules out error as an explanation for our results.  In Section 5, we present 

a choice study in which subjects predict the next observation.  In all three studies we find strong 
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evidence of system neglect, a lack of sensitivity to the system characteristics, diagnosticity and 

stability, and the predicted pattern of over- and under-reaction.  We provide formal support for this 

insensitivity by estimating a family of “quasi-Bayesian” models.  We conclude in Section 6 with a 

discussion of the implications of the research and an outline of future work. 

2. BACKGROUND 

Previous Research 

We briefly outline some of the major empirical findings in the study of regime-shift 

detection.  The studies have varied considerably in methodology.  In some studies, the sequences 

were presented sequentially (Robinson, 1964; Chinnis & Peterson, 1968, 1970; Barry & Pitz, 1979), 

while in other studies, a sequence was provided in its entirety (Theios et al., 1971).  Some subjects 

estimated when the process changed from one regime to another (Barry & Pitz, 1979; Theios et al., 

1971), whereas other subjects estimated the probability that the data were drawn from one regime or 

another (Chinnis & Peterson, 1968, 1970).  Studies have also varied environmental parameters such 

as diagnosticity (Robinson, 1964; Chinnis & Peterson, 1968, 1970), the payoff structure (Barry & 

Pitz, 1979), and the rate at which subjects receive stimuli (Robinson, 1964).  

These studies have shown that individuals generally respond to the possibility of change and 

do so in the right direction.  Beyond that, though, results are mixed.  Across these studies, some 

behavior is approximately optimal (Chinnis & Peterson, 1968), but most is not (Barry & Pitz, 1979; 

Theios et al., 1971).  Studies find both under-reaction (Barry & Pitz, 1979; Chinnis & Peterson, 

1968) and over-reaction (Brown & Bane, 1975; Chinnis & Peterson, 1970; Estes, 1984).  One of the 

few themes connecting this literature is the idea that individuals respond partially to changing 

environmental conditions.  Chinnis & Peterson (1968) state: “(t)he subjects, while sensitive to the 

difference in diagnostic value of the data in the two conditions, were not adequately sensitive” (p. 

625).  For example, Barry & Pitz (1979) systematically vary payoffs and find individual behavior 

largely unchanged.  This theme resonates with the system-neglect hypothesis we develop in the next 

section. 

Rapoport et al. (1979) provide a more comprehensive treatment of change detection, formally 
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modeling the decision environment and evaluating optimal policies.  They develop and test three 

descriptive models in which individuals act only when the signal provides evidence exceeding some 

“threshold”.  Critically, these models incorporate extreme versions of system neglect that do not 

reflect any sensitivity to environmental conditions.  For example, one model recognizes a change 

when the signal exceeds some fixed probability threshold.1 

We suggest that the threshold model is too extreme.  Instead, we hypothesize that individuals 

respond to changes in environmental conditions, but insufficiently so.  In other words, their behavior 

is dictated more by signals than by the system generating the signals.  We call this the system-neglect 

hypothesis.  In the next section, we show how system neglect leads to under-reaction in some 

conditions and over-reaction in others. 

Research Hypothesis 

Our system-neglect hypothesis draws on judgment and decision making research in static 

environments.  Our specific point of departure is Griffin & Tversky (1992), who reconciled two well-

established, but seemingly contradictory, findings: conservatism and representativeness.  

Conservatism posits that individuals update their beliefs too slowly in the face of new evidence 

(Edwards, 1968; Grether, 1980).  Representativeness, on the other hand, suggests that individuals 

extrapolate too readily from small samples, leading to belief revisions that are too dramatic 

(Kahneman & Tversky, 1973).  Griffin & Tversky showed that sample size can account for this 

apparent contradiction.  Most conservatism studies involve large samples, while most 

representativeness studies involve smaller samples.  Misunderstanding the impact of sample size on 

the posterior probability leads subjects to make conservative revisions with large samples and radical 

revisions with small samples.  

More generally, Griffin & Tversky distinguished between the strength and weight of 

evidence.  Informally, the strength of evidence is its magnitude, while the weight of the evidence is 

its reliability.  Imagine you are asked which way a coin is biased, 70% heads or 70% tails.  Here, the 

proportion of heads represents the strength of evidence, while the sample size represents the weight 

                                                 
1 This modeling approach is similar to that taken by Barry & Pitz (1979), Brown & Bane (1975), Estes 
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of evidence.  Thus, 4 heads out of 5 flips has high strength but low weight, while 32 heads out of 60 

flips has low strength but high weight.  Griffin & Tversky showed that individuals systematically 

overweight the strength of evidence or how well that evidence matches the hypothesis in question, 

and underweight the weight of evidence or the diagnosticity of the signal.  As a result, 4 heads out of 

5 is seen to be more compelling than 32 heads of out of 60, contrary to Bayes Rule (since the 

difference between the number of heads and tails is a sufficient statistic). 

We apply this idea to the problem of regime-shift detection.  In such problems, an individual 

receives signals that are generated from one of two regimes.  As in static environments, a decision 

maker must consider the diagnosticity of the signal, i.e., how strongly correlated the signal is with the 

regime that it favors.  In a dynamic environment, a decision maker must also take into account the 

transition probability, i.e., how likely it is to change from one regime to another.  Although a 

judgment about the likelihood of change should depend on both diagnosticity and transition 

probability, we suggest that individuals will not incorporate these two system parameters optimally.  

Instead, our system-neglect hypothesis posits that individuals respond primarily to the signal and 

secondarily to the system that generated the signal.  In the parlance of Griffin & Tversky (1992), the 

signals provide the strength of evidence and the system parameters provide the weight of evidence. 

A major reason that the signal is overweighted is that it is more salient:  the signal is usually 

in the foreground while the system parameters are in the background.  In many situations, the system 

parameters are not known and perhaps unknowable.  In this sense, the system-neglect hypothesis is 

akin to the correspondence bias or fundamental attribution error in social psychology (Jones & 

Harris, 1967): Individuals tend to overestimate the extent to which behavior is due to disposition or 

personality and underweight the extent to which behavior is caused by the underlying situation. 

The system-neglect hypothesis yields an important prediction:  overemphasizing the strength 

of evidence at the expense of its weight means that individuals are most likely to under-react to an 

indication of change when the weight of that evidence is high and over-react when the weight is low.  

The weight of evidence is highest when diagnosticity is high and the system is unstable (i.e., high 

transition probability), and lowest when diagnosticity is low and the system is stable (i.e., low 

                                                                                                                                                             
(1984), and Robinson (1964).  
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transition probability).  Thus, individuals should be most responsive to indications of change in 

precise (high diagnosticity) and unstable (high transition probability) environments and least 

responsive in noisy (low diagnosticity) and stable (low transition probability) environments.  If 

individuals behave similarly across systems, we should see a pattern with relatively more under-

reaction in precise/unstable environments and relatively more over-reaction in noisy/stable 

environments.  Griffin & Tversky (1992) apply a similar logic and show that a strength and weight 

account predicts overconfidence when evidence has high strength and low weight (e.g., low 

diagnosticity or small sample size), and underconfidence when evidence has low strength and high 

weight (e.g., high diagnosticity or large sample size). 

Over-
Reaction

Under-
Reaction

High     
(Precise)  

Low      
(Noisy)   

Signal 
Diagnosticity

High 
(Unstable)

Transition Probability
Low 

(Stable)

 
Figure 1: The system-neglect hypothesis: Predicted pattern of over- and under-reaction as 

function of system parameters 

Figure 1 depicts these predictions succinctly.  It is important that our prediction is a relative 

one: there should be relatively more over-reaction in the northwest cell, and relatively more under-

reaction in the southeast cell.  The hypothesis is silent about absolute levels.  Indeed, the system-

neglect hypothesis is consistent with over-reaction everywhere, under-reaction everywhere, or a 

mixed pattern, provided that the gradient slopes in the predicted direction.  Note also that the 

predictions of Figure 1 apply to indications-of-change. Reactions to indications-of-no-change (or 

“business as usual”) should not follow this pattern.  Rather, under-reaction to indications-of-no-

change should be strongest in unstable systems with imprecise signals, since the base-rate of change 

is highest and the signal least informative. 
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We test the system-neglect hypothesis in three studies by manipulating diagnosticity and 

transition probability and varying the task participants face. 

3. STUDY 1: JUDGMENT TASK 

Our experimental setting allows us to compare individual performance against a normative 

standard and thus test our behavioral predictions.  The decision makers in our experimental paradigm 

have all the information necessary to calculate Bayesian responses and hence provide optimal 

judgments.  This allows us to focus our analysis very specifically on the manner in which individuals 

revise probability judgments, and how these judgments deviate from Bayesian updating. 

Statistical Process 

We begin by describing the statistical process used in our experiment.  The statistical process 

is depicted in Figure 2.  Subjects observe signals generated by one of two regimes.  The task is to 

detect if and when the system shifts from one regime to the other.  The two possible regimes are red 

and blue.  Let tR  ( tB ) indicate that the process is in the red (blue) regime in period t.  Each of the 

two regimes produces two possible signals: a red ball or a blue ball.  While both regimes can produce 

either color, the red regime favors red balls (producing them with probability 0.5Rp > ) and the blue 

regime favors blue balls (producing red balls with probability 0.5Bp < ).  In our studies, these 

probabilities are always symmetric, i.e., 1R Bp p= − .  Thus, /R Bp p  is a measure of the diagnosticity 

(d) of the signal, with a higher value indicating a more diagnostic signal. 

The transition between the two regimes is defined by three characteristics.  First, in period 0, 

before the first signal is drawn, the process is in the red regime ( 0Pr( ) 1R = ).  Second, before each 

signal is produced, including the first one, the process might switch to the blue regime.  The 

probability of such a switch is the transition probability, 1Pr( | )t tq B R+= .  (This is called a “switch 

probability” in our experimental stimuli.)  Third, the blue regime is an absorbing state, i.e., if the 

process switches to the blue regime it remains there until the end of the trial ( 1Pr( | ) 1t tB B+ = ). 

Again recall the investor example from our introduction.  Diagnosticity captures the 

informativeness of a signal such as an earnings announcement, while the transition probability 
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captures the stability of a bull or bear market, e.g., the likelihood that a bull market turns into a bear 

market.  Although the absorbing state is a simplifying assumption in our model, for many decision 

horizons there will be at most one change.  For example, most equity markets cycle between bull and 

bear markets at a sufficiently low frequency that for a given decision one can (and probably should) 

think of the new regime as an absorbing state.  Of course, there are many other situations in which 

there is truly an absorbing state (e.g., an equipment failure, an obsolete technology, etc.). 

Red Bin
60% Red Balls
40% Blue Balls

Blue Bin
40% Red Balls
60% Blue Balls

Regimes

Instability
(Transition 
Probability)

Signal

System

Reliability
(Diagnosticity)

2%

Transition Probability  

Figure 2: Statistical Process 

Methodology 

Study 1 was conducted on computer using a specially designed Visual Basic program.  We 

recruited 40 University of Chicago subjects, advertising the task as a “probability estimation task” in 

order to yield subjects comfortable with probability.  The median number of undergraduate and 

graduate mathematics and statistics classes taken by each subject was three. 

The computer program began by introducing the statistical process used in the experiment, 

and illustrated the process using 4 demonstration trials and 2 practice trials.  Detailed instructions and 

screen shots of the program are found in the Electronic Companion Paper (henceforth, ECP).  

Following the introduction, each subject completed 18 trials consisting of 10 signals (periods).  Each 

trial was governed by a different set of parameters (see below).  Subjects were first shown the 

parameters, Rp , Bp , and q, governing that trial.  These parameters were displayed continuously 
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throughout each trial, and subjects were told that the parameters would change across trials.  They 

were then shown a sequence of red or blue balls drawn randomly based on the set of parameters.  

After seeing each signal, subjects indicated the probability that the last ball was drawn from the blue 

regime (i.e., the probability that the statistical process had changed).  Subjects were not allowed to 

change a probability once it was entered. 

We used 3 different diagnosticity levels and 4 different transition-probability levels, yielding 

12 experimental conditions.  Diagnosticity levels ( /R Bd p p= ) were 1.5, 3, and 9, corresponding to 

( , )R Bp p  values of (.6,.4) , (.75,.25) , and (.9,.1) .  The transition probabilities were .02, .05, .10, and 

.20.  We chose the diagnosticity levels and transition probabilities to span a “reasonable” range of the 

parameter space.  For example, 3 of 15 sequences show a regime shift for .02q = , while 12 of 15 

sequences do so for .20q = , so moving the transition probability in either direction would yield a 

process that either always or never produced regime change during our series.  We randomly 

generated 5 unique sequences for each condition, using a statistical process with the true parameter 

values, yielding 60 sequences in total (the actual sequences are found in ECP).  Each of the subjects 

received 18 of the 60 sequences in a randomized order, and at least one sequence from each of the 12 

conditions.  Each of the 60 sequences was judged by a total of 12 subjects.   

We paid subjects according to a quadratic scoring system that paid $0.10 maximum (e.g., if a 

subject indicated with certainty that the process was in the blue regime, and the process was in fact in 

the blue regime) and -$0.10 minimum (e.g., if a subject indicated with certainty that the process was 

in the blue regime, and the process was in fact in the red regime).  Such a scheme is proper, and thus 

truth-revealing for risk-neutral subjects (Brier, 1950). 

Subjects were given feedback at the end of each trial about if and when the process shifted 

from the red regime to the blue regime.  They were also informed how much money they made or 

lost on that particular trial. 

Normative Model 

Our dependent measures are the probability judgments provided by subjects.  We evaluate 

these probabilities by comparing them to a Bayesian standard.  To do so, we derive the Bayesian 
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solution for our experimental framework (see Appendix).  Let tr  denote the t-th signal, where 1tr =  

( 0tr = ) if a red (blue) ball is drawn in period t, and 1( ,..., )t tH r r=  be the sequence of signals through 

period t.  The Bayesian posterior odds of a change to the blue regime after observing history tH  can 

be expressed as 

 
1 1 2

1

Pr( | ) 1 (1 ) (1 )

Pr( | ) (1 ) 1 (1 )1

t

k
k j

t j t j rt
t

t t
jt

b
t t

b
t t

B H q q q

R H q q

p
d

p
=

− + − −

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑− − −
=

− − −

⎛ ⎞
= ⎜ ⎟

− ⎝ ⎠
∑ , (3.1) 

where b
tp  denotes the Bayesian probability that the process has switched to the blue regime by t.  

The expression can be decomposed into several components.  The first component, 

( )1 (1 ) /(1 )t tq q− − − , is a function only of the transition probability q and the number of signals t and 

provides a base rate for the likelihood of a change, i.e., the likelihood of change in the absence of any 

data.  The last component, 
1 2

t

k
k j

t j r

d =

+ − −
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
, is simply the diagnosticity raised to an exponent reflecting the 

difference between number of blue balls and red balls drawn over the part of the history from period j 

to period t.  (This last component determines the posterior probability in a stationary environment [cf. 

Edwards, 1968].)  The middle component provides mathematical weights accounting for the various 

paths through which the process can change from the red regime to the blue regime. 

Experimental Results 

We present both aggregate and individual-level results.  Recall that our experiment required 

that each of our 40 subjects provide subjective probabilities that the process had switched to the blue 

regime for each of 10 signals in 18 trials.  Consider first an overview of these judgments.  Let e
tp  be 

the empirical judgment and | |e b
t tp p−  be the absolute difference between the subject’s judgment and 

the Bayesian probability for signal t.  The mean absolute difference was .17 (median=.08, sd=.21).  

Subjects’ payments were based on the difference between their subjective probability of a change to 

the blue regime and the actual regime (1 if blue, 0 if red).  The mean of this absolute difference was 

.25 (median=.05, sd=.34), generating an average payment of $11.62 (median=$11.99, range of $6.60 
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to $14.67).  The average payment to a Bayesian agent would have been $14.23 (median=$14.22, 

range of $12.72 to $15.38). 

Our primary interest, however, is belief revision – how probability judgments respond to new 

signals.  Thus, we consider changes in probabilities rather than absolute levels and compare 

empirical changes in probability judgments with normative changes.  Defining empirical change is 

straightforward: 1
e e e
t t tp p p −∆ = − .  Constructing a proper normative measure of change requires a bit 

more care.  In calculating the normative response to a signal t, we take a subject’s previous 

probability judgment 1
e
tp −  as the “prior” rather than the previous Bayesian probability, 1

b
tp − .  If we 

use Bayes Rule with 1
e
tp −  as the “prior”, we get 

 
1 2 1 2

1

1

1
1 1 1 1

t tr rb e
t t R R

b e
t t B B

p p p q p
p p q p q p

− −

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, (3.2) 

where b
tp  is the Bayesian response to signal tr  taking 1

e
tp −  as the prior. 

This redefinition allows our “normative change” measure to reflect a subject’s belief prior to 

receiving a signal.  Thus, regardless of the accuracy of a subject’s prior belief, our procedure 

automatically adjusts to that prior in order to evaluate the subject’s belief revision.  If, for example, a 

subject’s previous judgment was low relative to the Bayesian probability, she should be “allowed” to 

make a more dramatic revision in light of the new signal (indeed, she is expected to).  Conversely, if 

a subject’s previous judgment was too high relative to Bayes Rule, there is less room for her to 

subsequently increase her judgment and therefore she should make a more conservative revision.  

Since the objective is to focus on the revision itself, we take as the normative change measure, 

1
b b e
t t tp p p −∆ = − , and compare this measure to the empirical change measure, 1

e e e
t t tp p p −∆ = − . 

We restrict our attention to median judgments to minimize the role asymmetric error may 

play in generating system neglect (Erev, Wallsten, & Budescu, 1994).  Erev et al. offer an error 

account in which responses are unbiased “true judgments” perturbed by error.  This account requires 

that the median response be unbiased.  In Study 2, we control for error more systematically.  We also 
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report mean judgments in ECP.2   

We first show that subjects are attentive to differences in signals.  As expected, the median 

empirical change, e
tp∆ , is considerably different for blue signals than red signals, .084 versus .001.  

The median normative change measures are .158 and −.028 for blue and red, respectively.  Thus, the 

median difference between the empirical change and normative change, e b
t tp p∆ − ∆ , our summary 

measure of over- and under-reaction, is slightly negative for blue signals (−.074), indicating a small 

overall tendency to under-react to indications of change.   

To test for system neglect, we consider how our measure of under-reaction, e b
t tp p∆ − ∆ , varies 

across conditions.  Recall that the predicted gradient shown in Figure 1 applies only to indications of 

change, thus we restrict our attention to blue signals.  The system-neglect hypothesis implies that 

under-reaction is more common when diagnosticity and transition probability are high than when 

diagnosticity and transition probability are low.  Indeed, the median normative change, b
tp∆ , is .231 

in the high transition-probability/high diagnosticity condition, and .056 in the low transition-

probability/low diagnosticity condition.  In contrast, the median empirical change, e
tp∆ , across the 

two conditions is much less differentiated, .116 and .022, respectively.  

Figure 3 depicts the difference between the empirical and normative change measures in each 

of our 12 experimental conditions.  Note first that we observe under-reaction in 11 of the 12 

conditions and over-reaction in 1 of the 12 conditions.  By itself this pattern does not provide 

evidence for or against the system-neglect hypothesis.  What matters is the gradient between the 

southeast cell (high diagnosticity and transition probability) and the northwest cell (low diagnosticity 

and transition probability).  Consistent with system neglect, the greatest under-reaction occurs in the 

southeast-most cell, while the second least under-reaction occurs in the northwest-most cell.  In the 

majority of the pairwise comparisons (37 of 48), the pattern of under-reaction is monotonic as 

                                                 
2 We calculate the median change for each of the 600 observations (60 trials and 10 observations per trial) 

and then take the average across the appropriate category.  For example, to calculate the median empirical change 
for a red ball, we take the median empirical change for the 329 (of 600) observations in which the signal is a red 
ball.  We then take the average of these 329 medians.  This method reflects the lumpiness with which subjects use 
the response scale.  Taking the average over the medians provides us with a “smoother” measure. 
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transition probability and diagnosticity increase, as predicted by system neglect.  The lack of perfect 

monotonicity partially reflects stimuli which are randomly generated and hence not necessarily 

“representative” of the underlying process. 
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Figure 3: Over- and under-reaction, by condition, as measured by the median difference 
between change in empirical probability judgments and change in Bayesian probabilities, 

∆ − ∆e b
t tp p (Study 1, Judgment Task). 

Estimation 

The pattern in Figure 3 provides support for the system-neglect hypothesis.  It is possible but 

unlikely that the hypothesized pattern reflects artifacts in the randomly generated sequences.  Thus, 

we provide a formal test of the system-neglect hypothesis by generalizing (3.1).  We call these 

generalizations quasi-Bayesian models in the spirit of Edwards (1968), who examined signal 

sensitivity in his study of conservatism (see also Chinnis & Peterson, 1968, 1970).  The models are 

Bayesian in structure, but include additional parameters to accord more closely with the empirical 

observations.   

In order to model sensitivity to the two critical dimensions, transition probability and 

diagnosticity, we add two parameters, α and β, to our Bayesian expression (3.1).  Adding these 

parameters yields 
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where e
tp  is the subject’s probability judgment that the process has switched to the blue regime by t.  

In (3.3), α captures sensitivity to transition probability, while β captures sensitivity to diagnosticity.  

This specification has several useful properties.  The expression is Bayesian when 1α =  and 1β = .  

As α shrinks, the transition probability plays an increasingly small role (as 0α → , 0e
tp → ).  As 

β shrinks, the signal has an increasingly small impact (as 0β → , /(1 )e e
t tp p− →  

(1 (1 ) ) /(1 )t tq q− − α − α , i.e., the “base rate” odds of change in the absence of information).  We term 

the model in (3.3) the power model.   

The formulation in (3.3) is well-suited for evaluating the degree of conservatism in belief 

revision (cf. Edwards, 1968).  However, the power model is inadequate for evaluating system 

neglect, because it explicitly assumes that parameter values are constant across different systems.  

System neglect, on the other hand, suggests that these parameter values will vary systematically, 

reflecting insensitivity to system changes.  To clarify the limitations of the power model, consider a 

more general formulation in which β depends on the diagnosticity condition n, n
nd β .  For example, in 

the Bayesian model 1nβ =  for all n, implying that n
nd β  increases linearly as diagnosticity increases.  

In the power model, β may be less than 1 (as in conservatism) or greater than 1 but must be constant 

across all conditions.  Thus, the power model is actually quite sensitive to changes in environmental 

conditions.  Indeed, the responsiveness in the power model increases proportionally with the 

underlying parameter, with the proportion determined by the degree of conservatism.  Note also that 

this model restricts behavior to be exclusively conservative (if 1nβ < ) or exclusively “radical” (if 

1nβ > ), and thus permits only under-reaction or over-reaction, respectively. 

The system-neglect hypothesis predicts that parameter values differ systematically in each 

condition.  To illustrate, consider the extreme case of complete system neglect, in which individuals 

respond to signals identically regardless of the system producing the signals.  For β, complete system 
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neglect requires that 31 2
1 2 3d d d ββ β= = .  In our experimental design, 1 21.5, 3.0d d= = , and 3 9.0d = . 

Thus, the equality required by complete system neglect implies that 1 kβ = , 2 .37kβ = , and 

3 .18kβ = , where k is any positive constant.  Of course, this illustrates only the extreme version of 

system neglect.  More generally, system neglect requires that for m nq q<  and m nd d< , parameter 

estimates be ordered so that m nα > α  and m nβ > β . 

To evaluate this prediction, we generalize (3.3) as follows.  Let 

 1 1 2 2 3 3 4 4Q Q Q Qα = α + α + α + α  and 1 1 2 2 3 3D D Dβ = β + β + β ,  (3.4) 

where mQ  is a dummy variable corresponding to transition probability mq , and nD  is a dummy 

variable corresponding to diagnosticity condition nd .  This approach explicitly allows mα  and nβ  to 

vary across environmental conditions, thus providing a formal test of the system-neglect hypothesis.  

The power model is a special case of this model in which 1 2 3 4α = α = α = α  and 1 2 3β = β = β , and 

the Bayesian model is a special case of the power model in which 1m nα = β =  for all ,m n . 

Note that while the system-neglect hypothesis does not make any predictions about the 

overall level of conservatism in a particular environment, it does make explicit predictions, via the 

monotonic ordering of mα  and nβ , about the pattern of over- and under-reaction.  The system-

neglect model explicitly allows for mixed patterns of over-reaction ( , 1m nα β >  for some ,m n ) and 

under-reaction ( , 1m nα β <  for some ,m n ).  

We fit e
tp , using the model in (3.3) and manipulating the odds form.  We use nonlinear 

regression with the usual assumption that errors are normally distributed around zero.3  We estimate 

this model for each of the 600 observations using the median judgment for each observation.  We 

also estimate the model for each of the 40 individual subjects. 

We estimate both the “power model” and the “system-neglect model” (3.4).  The estimates 

for the models are shown in Figure 4.  Recall that system neglect predicts m nα > α  and m nβ > β  for 

m n> .  These orderings provide 9 pairwise comparisons as empirical tests of the system-neglect 

                                                 
3 Residual analysis indicates this is a good assumption. 
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hypotheses, 6 for the α-coefficients and 3 for the β-coefficients. All 9 pairs of estimates are in the 

direction predicted by system neglect, and all are significantly different (all comparisons, .01p < ).4  

Note also that parameter values are both greater than and less than one.  This implies the coexistence 

of conservative and radical belief-revision, an important fact concealed by the power model.   

There are three inferences to draw from Figure 4.  First, comparing the level of the system 

neglect plot with the Bayesian plot reveals the overall level of conservatism: lower levels imply 

greater conservatism.  Second, comparing the slope of the system-neglect model with the Bayesian 

model and complete-neglect models reveals the degree of system neglect: the steeper the slope, the 

more system neglect.  The parameter estimates are close but distinguishable from complete neglect.  

Finally, comparing the system-neglect model with the power model reveals the benefit of using the 

system-neglect model: greater differences imply greater value.  Figure 4 shows system neglect for 

both parameters.5   

We also estimated the system-neglect model for individual subjects.  Overall, this model fits 

the individual-level data reasonably well, with most individual-level parameter estimates ordered as 

predicted.  Recall that the system-neglect hypothesis suggests that as system parameters increase, 

model estimates will decrease, suggesting 9 pairwise comparisons (6 for the α-coefficients and 3 for 

the β-coefficients).  Across all subjects, 79% of the α-coefficients and 77% of the β-coefficients are 

ordered in the predicted direction.   

Finally, we evaluated performance at different points in time to consider the effect of 

experience.  Recall that subjects experience 18 trials over the course of the experiment (in addition to 

two practice trials) and thus might learn to avoid system neglect.  We divide the session into four 

“quarters” comprising of 4, 5, 5, and 4 trials, estimating system-neglect models for each quarter 

separately.  Because behavior in the final 3 quarters appears similar and learning appears limited to 

the first quarter, we aggregate those 3 quarters and compare them against the first quarter.  While we 

                                                 
4 The fits of the models are as follows: power model ( 2 .86R = ), system-neglect model ( 2 .95R = ), and 

Bayesian model ( 2 .84R = ).  Since the purpose of the estimation is to test our psychological hypothesis, we do not 
emphasize the goodness of fit. 
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find significant system-neglect in both periods, it is more pronounced in the first quarter.  

Specifically, we observe much greater sensitivity to low transition-probabilities in the first quarter 

than in the subsequent quarters.  Nevertheless, significant system-neglect persists throughout the 

experiment.  Parameter values for each quarter are reported in ECP. 
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Figure 4: Parameter estimates for models fitting Study 1 median data using nonlinear 

regression.  The left panel depicts the α parameters (transition probability), and the right panel 
depicts the β parameters (diagnosticity).  Standard errors for the system neglect and power 

models are in parentheses and indicated by the vertical bars.  A version of the complete neglect 
model is given as a theoretical baseline.  Note that the complete-neglect model is not unique 

and includes all parallel translations. 

Discussion 

Study 1 reflects system neglect at two levels.  First, subjects show the hypothesized gradient 

of under- and over-reaction: under-reaction is most prevalent in high diagnosticity/high transition 

probability systems, and over-reaction occurs most in low diagnosticity/low transition probability 

systems.  Second, this pattern is reflected in our formal test of system neglect.  Estimation of our 

quasi-Bayesian model produced diagnosticity and transition-probability parameters that were all 

ordered consistently with the system-neglect hypothesis.  These estimates indicate that individuals 

are sensitive to changes in normatively relevant environmental parameters, but insufficiently so.  

Indeed, the parameter estimates are much closer to complete neglect than Bayesian updating.  These 

findings echo the observations of previous researchers in non-stationary environments (Chinnis & 

                                                                                                                                                             
5 We also estimated a “decay” model in which more distant observations received less weight.  Although 

this model revealed reliable decay, the magnitude was slight and incorporating this additional parameter did not 
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Peterson, 1968; Barry & Pitz, 1979).  Individual-level analyses provide similar support.  Though 

there is significant heterogeneity, the vast majority of subjects exhibit system neglect.  

On the whole, although we see slightly more under-reaction than over-reaction, we reiterate 

that the system-neglect hypothesis is agnostic about the overall level of under- and over-reaction.  

Rather, system neglect predicts a relative effect, not an absolute one.   

4. STUDY 2: JUDGMENT AND ERROR 

It is possible that the behavior we observe in Study 1 is a statistical artifact generated by 

regression effects or asymmetric error (Budescu, Erev, & Wallsten, 1997).  For example, if the 

Bayesian standard calls for an estimate of 1, the only possible error is under-estimation.  Erev et al. 

show how an error model can explain the co-existence of under- and over-confidence.  Such error 

models are increasingly popular in both psychology and economics, and have been used to explain 

non-expected utility behavior (Hey & Orme, 1994; Hey, 1995; Ballinger & Wilcox, 1997), as well as 

overconfidence (Erev, Wallsten, & Budescu, 1994; Brenner, 2000).  While there is little doubt that 

asymmetric error contributes to under- and over-reaction in both experimental and real-world 

settings, we believe that error is not necessary for producing the patterns observed in Study 1.  To 

investigate this, we conducted a second judgment study to test specifically for the necessity of the 

error explanation.   

In Study 2 we matched sequences to systems to produce the same Bayesian posterior.  In 

some cases the system was strongly suggestive of change (e.g., an unstable and precise system) while 

the signal was not, while in other cases the signal was strongly suggestive of change while the 

system was not (e.g., a stable and noisy system).  This design allows us to differentiate the system-

neglect hypothesis from an error explanation.  An error model of the type suggested by Erev et al. 

would predict no differences in reaction across the systems since we hold the Bayesian posterior 

constant.  On the other hand, system neglect predicts a gradient identical to the one shown in Study 

1, in which suggestive signals are given much more weight than suggestive systems. 

                                                                                                                                                             
significantly improve the model.   
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Methodology 

The methodology used is identical to that used in Study 1 with a few notable exceptions.  The 

experiment consisted of 2 practice trials followed by 30 trials, each consisting of 6 periods. 

Our study used a 3 × 3 × 3 design, crossing three different transition probability levels (.05, 

.10, and .15), three different diagnosticity levels ( /R Bd p p=  of 1.5, 2.33, and 4), and three Bayesian 

posterior probabilities (.4, .5, and .6).  We constructed 3 sequences for each of the 9 system cells to 

correspond to each Bayesian posterior probability level.  Thus, sequences were matched to systems 

to produce nearly identical posterior probabilities.  For example, sequences of 

( 1 1r = , 2 1r = , 3 1r = , 4 0r = , 5 0r = , 6 0r = ) and ( 1 1r = , 2 1r = , 3 0r = , 4 1r = , 5 0r = , 6 1r = ) yielded 

posteriors of .413 and .415 for ( 1.5d = , .05q = ) and ( 4.0d = , .15q = ), respectively.  The matches 

were approximate, ranging from posteriors of .381 to .420, .470 to .520, and .586 to .619.  The 

average across all 3 matches ranged from .491 to .511 across the 9 cells.  We also included 3 

additional “filler” sequences to yield a total of 30 sequences.  Each of the subjects received all 30 

sequences in a randomized order.  The actual sequences are found in ECP. 

The need to match Bayesian posteriors across different systems influenced our decision to 

use sequences of 6 observations (as opposed to 10), as well as more moderate parameter values (e.g., 

maximum diagnosticity of 4) and Bayesian posteriors (40-60%).  Since the sequences were not 

drawn randomly, we also matched the frequency of the “actual regimes” to the Bayesian posteriors.  

For example, of the 15 instances in which the Bayesian posterior was between .45 and .55, we let 8 

of 15 (53%) be generated by the blue bin and 7 of 15 (47%) be generated by the red bin. 

We recruited 32 University of Chicago undergraduates as subjects.  The scoring scheme was 

similar to that used in Study 1.  We used a quadratic scoring system that paid $0.08 maximum (e.g., 

if a subject indicated with certainty that the process was in the blue regime, and the process was in 

fact in the blue regime) and -$0.08 minimum (e.g., if a subject indicated with certainty that the 

process was in the blue regime, and the process was in fact in the red regime).   
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Subjects were given feedback at the end of each trial as to if and when the process shifted 

from the red regime to the blue regime.  They were also informed how much money they made (or 

lost) on that particular trial. 

Results 

We present both aggregate and individual-level results.  Recall that our experiment required 

that each of our 32 subjects provide subjective probabilities that the process had switched to the blue 

regime for each of 6 signals in 30 trials.  Let e
tp  be the empirical judgment and | |e b

t tp p−  be the 

absolute difference between the subject’s judgments and the Bayesian probability for signal t.  

Payments were based on the difference between their subjective probability of a change to the blue 

regime and the actual regime (1 if blue, 0 if red).  The mean of this absolute difference was .33 

(median=.20, sd=.35), generating an average payment of $7.70 (range of $4.80 to $9.35).  The 

average payment to a Bayesian agent would have been $10.16. 

To test for system neglect, we consider how our measure of under-reaction, 6 6
e bp p− , changes 

across the 9 experimental cells.  We consider only the 6th observation since posteriors are matched 

only on this observation.  We show this measure pooled across the 3 posterior probability levels in 

Figure 5.  We see the predicted gradient: over-reaction tends to be strongest when diagnosticity and 

transition probability are low, and under-reaction tends to be strongest when diagnosticity and 

transition probability are high.  In pairwise comparisons of cells, the pattern of under-reaction is 

generally as predicted, with pairwise comparisons correctly ordered in 23 of 27 comparisons.   

We also performed a similar individual-level analysis of the data.  For each subject, we 

considered the pattern of under- and over-reaction, averaging the measure of reaction, 6 6
e bp p− , over 

each of the 3 Bayesian posterior levels.  We then counted how many of the 27 pairwise comparisons 

were ordered as required by system neglect.  29 of 32 subjects had a majority of comparisons in the 

predicted direction (14 or higher of 27).  The number of pairwise comparisons in the predicted 

direction ranged from 5 to 27 (median=19, mean=18.6).   
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Estimation 

We fit the system-neglect model to the Study 2 data using the same basic procedure outlined 

earlier.  As before, we fit e
tp , using nonlinear regression and the model in (3.3).  This model was 

estimated for the 162 observations using the median judgment for each observation.  The estimates 

are found in Figure 6.  The pattern of parameter estimates looks very similar to that found with Study 

1.  The slope of the estimates is consistent with system neglect, and the parameter estimates are close 

to what would be obtained by a complete-neglect model. 
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Figure 5: Over- and under-reaction, by condition, for each of the 3 levels of posterior probability 

and aggregated over the 3 levels, as measured by the difference between median empirical 
probability judgments and the median Bayesian probabilities, −6 6

e bp p  (Study 2) 

Discussion 

Study 2 investigated the possible role of random error in the pattern found in Study 1.  

Whereas asymmetric error almost certainly contributes to system neglect, Study 2 indicates there is 

more to system neglect than just error. We find the same strong pattern of under- and over-reaction 

predicted by the system-neglect hypothesis even after neutralizing the role of error.  This study also 

demonstrates the extent to which signals are privileged over systems.  By design, the gradient we 

observe in this study reveals the relative emphasis of signals over systems.   
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Unlike Study 1, the sequences used in Study 2 were not randomly generated.  We did so to 

create a very stark test between the error account and system neglect.  In theory, this approach could 

bias judgments in favor of the system-neglect hypothesis, as subjects may discount system 

parameters after observing a sequence that is not representative of a particular system. We regard this 

possibility as highly unlikely since it would require that subjects are sensitive to both the underlying 

systems and the representativeness of sequences drawn from them.  Overall, we believe the approach 

in this study complements Study 1, in which we use randomly generated sequences. 
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Figure 6: Parameter estimates for models fitting Study 2 median data using nonlinear 

regression.  The left panel depicts the α parameters (transition probability), and the right panel 
depicts the β parameters (diagnosticity).  Standard errors for the system-neglect and power 

models are in parentheses and indicated by the vertical bars.  A version of the complete-neglect 
model is given as a theoretical baseline.  Note that the complete-neglect model is not unique 

and includes all parallel translations. 

5. STUDY 3: CHOICE TASK 

The experimental design of Study 3 was similar to that of Studies 1 and 2.  The major 

difference was that subjects were asked to predict the color of the next ball rather than to provide a 

probability estimate.   

Experimental Design 

The program, written in Visual Basic, included several screens of introduction, 2 practice 

trials, and 18 trials of 10 periods each.  For each trial, subjects were shown the relevant parameters, 

Rp , Bp , and q, governing that trial.  They were then shown a sequence of red or blue balls drawn 
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randomly based on the set of parameters.  Before seeing each signal, subjects were asked to predict 

the color of the next ball. 

As in Study 1, we varied diagnosticity and transition probability.  Study 3 used almost the 

same parameters as Study 1: ( , ) (.6,.4), (.75,.25), and (.9,.1)R Bp p = and q =.025, .05, .10, and .20 

( .02q = was used in Study 1).  Thus our 3 4×  design yields 12 experimental conditions.  We 

randomly generated 3 unique sequences for each of these 12 conditions, creating 36 total sequences.  

Each subject experienced half of the sequences, and either 1 or 2 of the 3 sequences from each 

condition.  Sequences were randomized for each subject. 

We recruited 50 University of Chicago students to participate in this study.  The median 

number of undergraduate and graduate mathematics and statistics classes taken by our subjects was 

again 3.  Subjects did not receive feedback regarding if or when a change actually occurred, nor were 

they shown the optimal (Bayesian) responses.  They did, however, find out immediately whether 

their prediction was correct.  We paid subjects 9 cents for each correct prediction (out of 180). 

Normative Model 

As in Study 1, we use the Bayesian response as the standard for evaluating subject behavior.  

Recall that (3.1) gives us the Bayesian probability that the process has switched to the blue regime 

at 1t − : 1 1 1Pr( | )b
t t tp B H− − −= .  The probability, then, that a ball is drawn from the blue regime at t, 

1Pr( | )t tB H − , is 1 1(1 )b b
t tp p q− −+ − , and the probability that a blue ball is observed, 1Pr( 0 | )t tr H −= , is 

1 1 1( (1 ) )(1 ) (1 )(1 )(1 )b b b
t t B t Rp p q p p q p− − −+ − − + − − − , which is greater than .5 if and only if 

1 1 1Pr( | ) (1 ) .5b b
t t t tB H p p q− − −= + − > .  Normatively, then, a subject should predict a blue ball if she 

believes the process is in the blue regime, and predict a red ball otherwise (assuming the rewards for 

correct predictions are symmetric, as is true in our study). 

Experimental Results 

We begin by comparing the accuracy of the empirical predictions to the accuracy of the 

Bayesian predictions.  The Bayesian predictions (69%) were better than the empirical predictions 

(64%).  However, there was considerable heterogeneity in accuracy across subjects, with accuracy 
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rates ranging from 59% to 73%.  Thus, payments ranged from $9.63 to $11.79 (mean=$10.62).  A 

Bayesian agent would make $11.20 on average. 

As in Study 1, our primary interest is belief revision.  In the present context, we observe 

belief revisions when subjects change their predictions.  Let e
tc  ( b

tc ) be the subject’s prediction 

(Bayesian prediction) of the color of the t-th ball ( 0tc = if a blue ball is predicted).  Thus, an 

empirical belief-revision corresponds to 1
e e
t tc c −≠ , whereas a Bayesian belief-revision corresponds to 

1
b b
t tc c −≠ .  Fewer empirical than Bayesian belief-revisions implies under-reaction, while the opposite 

implies over-reaction.  Across all conditions, we observe belief revisions at the rate of 16.1% 

(empirical) and 11.3% (Bayesian).  Thus, on average, subjects revise their predictions 42% more 

often than the normative prediction.  By this measure, there is an overall tendency to over-react. 

We next turn to how this measure varies across experimental conditions.  Recall that system 

neglect implies over-reaction will be most extreme in stable/noisy environments and least extreme in 

unstable/precise environments.  Figure 7 depicts the difference between the percentage of empirical 

and Bayesian belief-revisions across all 12 experimental conditions.  Positive values indicate that 

empirical changes exceed Bayesian changes, and, thus, over-reaction.  We observe the predicted 

gradient between the southeast cell (unstable/precise) and the northwest cell (stable/noisy).  Under-

reaction is concentrated in the southeast corner and over-reaction in the northwest corner, as system 

neglect suggests.   

As an alternative measure of over- and under-reaction, we consider the amount of evidence 

required to induce a blue-ball prediction.  Normatively, this threshold should not vary across 

conditions:  as soon as the data suggest that the blue regime is more likely than the red regime, 

subjects should predict a blue ball.  The system-neglect hypothesis, on the other hand, suggests that 

individuals will require substantially more evidence, objectively measured, in unstable/precise 

environments than in stable/noisy environments.  

To test this prediction, we analyzed behavior in the following way.  For every trial that a 

subject completed, we identified the period in which she first predicted a blue ball.  This period 

indicates the point at which the subject believes a regime shift has occurred.  We then calculate the 
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normative probability underlying that prediction, i.e., the Bayesian prior that a blue ball will be 

drawn in that period.  This is the evidence, objectively measured, on which the subject bases her 

prediction.  Finally, we take the mean of these probabilities for each experimental condition, pooling 

all trials and subjects within each condition.  Figure 8 compares these means across all 12 

experimental conditions.   
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Figure 7: Over- and under-reaction as measured by belief revisions (Study 3, Choice Task).  

Plotted are the differences in the frequency of Empirical and Bayesian belief-revisions for each 
condition. 

As predicted, thresholds are considerably higher in the southeast corner than in the northwest.  

On average, subjects in the most unstable/precise environment required evidence indicating a .90 

chance that the system has shifted to the blue regime in order to make their first blue prediction, i.e., 

they under-reacted.  Conversely, when in the most stable/noisy environment they required only a .11 

chance that the system has shifted to the blue regime in order to make their first blue prediction, i.e., 

they over-reacted. 

Estimation 

To formally test the system-neglect hypothesis for our choice task, we adapt our estimation 

procedure to account for the binary dependent variable.  We take a “single-agent stochastic choice 

model” approach (e.g., Camerer & Ho, 1994; Wu & Gonzalez, 1996), modeling a “representative 
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agent” with noise (see also, McFadden, 1981).  There are two steps to this process.  In the first step, 

we obtain a subjective probability of drawing the next ball from the blue regime.  We assume 

subjects base their prediction on this probability.  In the second step, we transform this subjective 

probability into a stochastic prediction about the next observation, i.e., the probability that subjects 

will predict a blue ball.  The objective of this model is to match this probability with the observed 

percentage of subjects predicting a blue ball. 
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Figure 8: Mean Bayesian probability of having changed to the blue regime at the time of the 

first blue prediction (Study 3, Choice Task).  Bayesian probabilities are calculated at the time of 
the first blue-ball prediction by each subject in each trial.  This summary pools subjects and 

trials within each condition. 

Recall that 1
e
tp −  denotes the subjective probability that the 1t − -th ball was drawn from the 

blue regime.  Since our subjects predict the t-th ball, we need to advance 1
e
tp −  one period as we did 

with the normative model.  Therefore, we take 1 1( (1 ) )(1 )e e e
t t t Bp p q p− −π = + − − +  

1(1 )(1 )(1 )e
t Rp q p−− − −  to be the subjective probability that a blue ball will be drawn from the blue 

regime at t.  Note that this is simply the normative expression with 1
e
tp −  substituted for 1

b
tp − . 

Next we fit this subjective probability using (3.3) to the observed predictions.  We denote the 

percentage of subjects who predicted a blue ball for ball t, % tB .  In the normative model, subjects 
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would predict a blue ball if .5e
tπ >  (thus, % itB  would always be either 0 or 1). To fit empirical 

observations, we assume a stochastic choice functional which allows the representative agent to be 

imperfectly sensitive to e
tπ ,  

( )1/ 1 exp e
t⎡ ⎤+ η − ψπ⎣ ⎦ ,  (5.1) 

where e
tπ  is estimated, as detailed in the previous paragraph, using either the power model or the 

system-neglect model.  Note that the response function captures how discriminating the pattern of 

predictions is to changes in e
tπ  with discriminability increasing in η , and that (5.1) is symmetric if 

.5η = ψ .  We estimate η  and ψ  (as well as the parameters needed to fit e
tπ ) using nonlinear least-

squares.  We take the “error” to be the difference between (5.1) and % tB , the percentage of subjects 

who predicted a blue ball, and choose the parameters that minimize the sum of squared errors. 
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Figure 9: Parameter estimates for models fitting Study 3 using the stochastic choice functional.  
The left panel depicts the α parameters (transition probability), and the right panel depicts the β 

parameters (diagnosticity).  Standard errors for the system-neglect and power models are in 
parentheses and indicated by the vertical bars.  A version of the complete-neglect model is 

given as a theoretical baseline.  Note that the complete-neglect model is not unique and 
includes all parallel translations. 

The estimates for the power model and the system-neglect model are found in Figure 9.  

Most significantly, model estimates for both parameters are ordered in the manner predicted by the 

system-neglect hypothesis.  As in Study 1, we take this ordering as the formal test of the system-

neglect hypothesis.  Recall that system neglect predicts that parameter estimates will decrease as 
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system parameters increase, which for the present study implies m nα > α  and m nβ > β  for m n< .  

All 9 (6 α and 3 β) of the comparisons are ordered in the direction predicted by system neglect and 

highly significant ( .001p < ).  The estimates also indicate significant variation in the degree of 

reaction across environments: for both parameters we find a mixed pattern of over-reaction 

( , 1m nα β >  for low m and n) and under-reaction ( , 1m nα β <  for high m and n).6   

Figure 9 also shows the estimates for the system-neglect model relative to the Bayesian, 

power, and complete-neglect models.  Note that the system-neglect model is significantly steeper 

than either the Bayesian model ( 1m nα = β = ) or the power model ( .71, 1.41α = β = ), reflecting the 

importance of incorporating system neglect when modeling behavior in this domain.  Note also that 

whereas the system-neglect model differs from the complete-neglect model for the α parameters, it is 

virtually indistinguishable from the complete-neglect model for the β parameters. 

Discussion 

In Study 3, we changed the task from judgment to choice.  We again see evidence of system 

neglect at two levels, graphically and formally in our parameter estimates.  We measure under- and 

over-reaction two different ways: switches in predictions or evidence required to make first blue 

prediction.  Both measures show the posited pattern: the greatest under-reaction occurs in the 

stable/noisy conditions (southeast), and the greatest over-reaction occurs in the unstable/precise 

conditions (northwest).  It is noteworthy that we observe the same general pattern even though the 

measure of reaction is very different in Study 3 than in Study 1 (change in probability judgments), 

and the task is in Study 3 is more natural and less cognitively taxing.   

We also find formal support for system neglect.  The system-neglect model gives a perfect 

ordering of the parameter estimates.  In sum, as in Study 1, subjects are sensitive to changing 

environmental conditions, but insufficiently so.7  The estimation method used in Study 3 differs from 

                                                 
6 The response function is close to symmetric: 7.58η =  and 14.22ψ =  for the system-neglect model. The 

system-neglect model ( 2 .97R = ) fits the data better than either a power model ( 2 .83R = ) or a Bayesian model 
( 2 .82R = ).   

7 We do not estimate individual-level parameter values in Study 3 because the binary nature of the 
dependent variable does not provide the statistical power to estimate individual-level models. 
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the method used in Study 1 in that the dependent variable in Study 3 is the percentage of blue ball 

predictions. Thus, we should be cautious in comparing the parameter estimates across the three 

studies.  That said, the estimates for α-parameters are remarkably similar, while the β-parameters in 

Study 3 are more elevated than the β-parameters in Study 1, indicating a greater tendency to over-

react in Study 3.   

Recall that the system-neglect hypothesis addresses the relative likelihood of under- and 

over-reaction across two environments and hence is agnostic on the overall level of over-reaction in a 

particular environment.  However, we believe psychological research in two other areas sheds light 

on why these differences might occur.  First, anchoring and insufficient adjustment (Tversky & 

Kahneman, 1974) is more likely to occur in Study 1 than in Study 3.  Subjects in Study 1 may anchor 

on the system’s initial values (i.e., 0) or on their own previous estimates, then adjust too slowly in 

response to new data.  This process is less pronounced in Study 3 because binary choices preclude 

small adjustments, as large discrete jumps are required.  Second, stimuli-response compatibility is 

different in the two studies.  In both studies subjects respond to binary stimuli, either red or blue 

balls.  However, the manner in which subjects respond is different: with probability estimates in 

Study 1 and with choices in Study 3.  Thus, stimuli and response are compatible (both binary) in 

Study 3 and incompatible in Study 1.  Psychological research in other domains has emphasized the 

influence of this type of compatibility (Slovic, Griffin & Tversky, 1990; Fischer & Hawkins, 1993).  

Indeed, compatibility has been put forth as one explanation for the classic preference-reversal 

demonstrations (Slovic & Lichtenstein, 1968; Grether & Plott, 1979; Tversky, Slovic, & Kahneman, 

1990).  It may also be that stimuli-response compatibility leads to more over-reaction in Study 3 

since it facilitates “chasing noise.”  Although a more complete psychological story awaits future 

research, together these two lines of research offer complementary explanations for the observed 

levels of responsiveness: anchoring facilitates under-reaction in Study 1, and compatibility facilitates 

over-reaction in Study 3.  Again, however, absolute levels of responsiveness are not the focus of this 

paper. 
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5. CONCLUSION 

We investigated the ability of individuals to detect and respond to changes in a dynamic 

environment.  Normatively, behavior in these environments should depend on the system governing 

the dynamic process.  We find that while subjects are sensitive to system parameters (namely, 

diagnosticity and transition probability), they are insufficiently so.  We investigated system neglect 

using different tasks (a judgment task in studies 1 and 2 and a choice task in study 3) and tests (by 

evaluating the pattern of under- and over-reaction and by formally estimating parameter values 

across experimental conditions).  In all cases we found strong support for the system-neglect 

hypothesis.  

Contributions 

Our findings extend research in both stationary and non-stationary environments.  First, it 

adds to a growing body of psychological research that shows that individuals consistently overweight 

the strength of evidence (such as indications of change) at the expense of the weight of evidence 

(such as the system that produced those indications).  The same psychological mechanism that 

reconciles conservatism and representativeness in stationary judgment tasks seems to explain our 

results.  Koehler, Brenner, & Griffin (2002) have argued for a more general case-based approach to 

judgment: individuals evaluate the particular case at hand, with little regard to the class to which the 

case belongs.  This attractive account unifies many of the classic findings in the heuristics and biases 

literature. 

Second, our results contribute empirically and theoretically to our understanding of how 

individuals make judgments in nonstationary settings.  Fischhoff & Beyth-Marom (1983) noted that 

research in conservatism “was quietly abandoned” partly because of the mixed results and failure to 

identify definitive psychological mechanisms.  For many of the same reasons, research in regime-

shift detection has been dormant for thirty years.  Our studies find both under- and over-reaction, as 

was first demonstrated in the 1960’s, but explain both types of responses in terms of a single 
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theoretical notion.8  Our models have the additional advantage of providing a continuous parametric 

specification that ranges from complete neglect to Bayesian. 

Third, research in financial economics has documented the tendency of investors to under-

react to short-term earnings news and over-react to long-term earnings news.  Griffin & Tversky’s 

(1992) strength and weight account has motivated theoretical models designed to explain these 

findings (e.g., Barberis et al. 1998; Daniel et al. 1998), as well as experimental financial economics 

investigations (e.g., Nelson et al. 2001; Bloomfield et al. 2002).  Indeed, Barberis et al. (1998) and 

Brav & Heaton (2002) have used regime-shift models to explain these regularities.  In these models, 

investors’ belief-revisions are Bayesian, an assumption challenged by the system-neglect hypothesis.  

Our research suggests a very specific way in which individuals are quasi-Bayesian, and thus calls for 

greater attention to the precision of market information about valuation-relevant parameters, as well 

as the stability of those parameters.  Investor insensitivity to these “system” parameters may well be 

a culprit in the under- and over-reaction found in asset prices. 

Alternative Explanations 

We consider two possible alternative explanations for our results, risk aversion and random 

error.  In Study 1, we used a quadratic scoring rule that is truth-revealing for risk-neutral subjects.  

Risk-neutrality is commonly assumed for the stakes involved in this study (Davis & Holt, 1993).  

However, the quadratic scoring rule has a “flat maximum”, thus shading stated probabilities toward 

.5 reduces variance substantially while sacrificing little expected value.  Consequently, risk-aversion, 

if sufficiently extreme, could play a role in the pattern demonstrated in Study 1.  However, it would 

not predict the pattern found in Study 2, where we held the Bayesian posterior probability constant.  

It also plays no role in Study 3, since optimal behavior relies only on monotonic subjective 

probabilities. Thus, risk-aversion cannot provide a general explanation for all experimental results.  

Moreover, we have found results similar to those in Study 1 using linear payoff schemes that do not 

have a “flat maximum”. 

                                                 
8 Indeed, Edwards (1968) actually reports evidence contrary to conservatism.  His Figure 2.2 reports accuracy ratios 
for three diagnosticity levels (accuracy ratios less than 1 indicate conservatism, while those greater than 1 indicate 
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Likewise, error cannot provide a complete account of our pattern of data.  Erev et al. offer an 

error story in which responses are unbiased “true judgments” perturbed by error.  This account 

requires that the median response be unbiased.  As expected, our pattern of over- and under-reaction 

is less pronounced in median than mean data, but still highly significant.  Study 2 deals with the error 

account directly.  Consistent with system neglect, we found a gradient identical to the one shown in 

Study 1: subjects believed that the chance of a change was significantly higher when given a strong 

signal in a weak system than when given a weak signal in a strong system. 

Future Directions 

Our evidence for system neglect thus far is limited to an experimental framework with 

symmetric probabilities, binary signals, and absorbing states.  Although we expect these findings to 

be robust, system neglect in alternative environments merits direct investigation.  We have 

communicated the true parameters of the statistical processes to our subjects, but in most situations a 

decision maker is not aware of these parameters.  The question of how individuals identify the 

relevant parameters of an unspecified process is an important question that deserves further 

investigation.  It is also important to know whether experience improves performance, i.e., whether 

subjects can learn to detect regime-shifts more effectively.  We have conducted judgment and choice 

studies in which subjects remain in one system for the entire study.  These preliminary learning 

studies indicate that experience can improve performance, but that this improvement is slight and 

does not occur in all conditions (Wu & Massey, 2003).  

While the system-neglect hypothesis is agnostic about levels of under- or over-reaction, a 

number of psychological factors might influence the responsiveness to signals in the laboratory and 

real world.  We have found that the decision task, judgment versus choice, influences the level of 

under- or over-reaction.  An additional factor that deserves attention is motivated reasoning.  Kunda 

(1990) has argued that individuals are motivated processors of ambiguous evidence.  Thus, a decision 

maker with a vested interest in the continuation of an incumbent regime (such as a “bricks and 

                                                                                                                                                             
radical belief-revision).  The accuracy ratios differ in the direction system neglect would predict, with the lowest 
diagnosticity condition (d=.55/.45) actually showing radical belief-revision.  
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mortar” retailer) might be slower to react than someone who profits from a new regime (such as an 

“e-tailer”). 

In addition, the payoffs in most business situations are not symmetric, i.e., under-reaction and 

over-reaction are not punished equally.  Rather, changing strategies is costly in real terms, whether it 

be shifting resources, building or closing new facilities, or acquiring new expertise.  These costs may 

provide an economic rationalization, legitimate or not, for under-reaction.  Moreover, the 

susceptibility of decision makers to sunk costs and commitment escalation creates a psychological 

asymmetry as well, which can lead decision makers to believe too long in the current regime (e.g., 

Thaler, 1980; Staw, 1981).  

We conclude by discussing some implications for decision making.  Much popular 

management literature has called for organizations to be nimble, reactive, and flexible (Bhide, 2000; 

Hamel, 2000; Schoemaker, 1995).  What often goes unsaid is that organizations must be 

appropriately reactive.  Clearly there is a trade-off between flexibility and perseverance.  This 

research suggests there are environments in which decision makers are prone to stay the course when 

they should change direction, and change direction when they should stay the course.   

Dixit & Nalebuff (1991) suggest, “Even though you can’t guess right all the time, you can at 

least recognize the odds.” (p.169)  We push that sentiment back a step: “Even if you can’t calculate 

the odds, you can at least understand your environment.”  Our research shows that understanding 

one’s environment is critical to reacting appropriately.  Indeed, regardless of whether the task is to 

“guess right” or to “calculate the odds”, individuals emphasize indications-of-change over the 

environment producing those indications.  Decision makers would be well served to counter this bias 

by allocating more resources to evaluating their environment, actively investigating signal 

diagnosticity and system stability.  Understanding one’s environment is crucial to correctly 

interpreting events and, hence, managing the tension between under- and over-reaction. 
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APPENDIX: DERIVATION OF BAYESIAN RESPONSE 

 Consider a Bernoulli process that can take on one of two regimes, a “red” probability regime 
(R) and a “blue” probability regime (B).  Let tθ  be the regime in period t.  tR ( tB ) indicates that the 
process is in the red (blue) regime in period t, i.e., t Rθ = (and t Bθ = ).  The process begins in the red 
regime (i.e., 0 Rθ = or 0R ).  However, the process may switch to the blue regime at any time 
including period 1.  The probability of the process changing from the red regime to the blue regime is 
given by a “transition probability”, 1Pr( | )t tq B R −= .  We assume that the blue regime is an absorbing 
state, 1Pr( | ) 1t tB B − = . 

 Let tr  be an indicator variable, such that 1tr =  if a red ball is drawn and 0tr =  otherwise, 
and 1( ,..., )t tH r r=  be the history of signals.  Finally, let Pr( 1| )R t tp r R= =  and Pr( 1 | )B t tp r B= =  for 
all t denote the probability of a red signal in the Red and Blue regimes respectively, and /R Bd p p=  
denote diagnosticity.   

 To calculate the posterior odds, 
Pr( | )
Pr( | )

t t

t t

B H
R H

, we consider the numerator and denominator 

separately: 
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Note that (1) captures the multiple paths that might result in t Bθ = , i.e., 1{ },Bθ =  

1 2 1 1{ , },...,{ ,..., , }t tR B R R B−θ = θ = θ = θ = θ = .  Using (1) and (2), we write the posterior odds as 
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Noting that 
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 and, for the special case of a symmetric process, 
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we can simplify (3) to 
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The exponent on d  is simply the difference between the number of blues and number of reds over 
the path being evaluated. 

 Note that the unconditional likelihood is given by  

 Pr( ) 1 (1 )
Pr( ) (1 )

t
t

t
t

B q
R q

− −
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−
, (5) 

which expresses the “base rate” odds of being in tB  and tR .  Factoring (5) out of (4), we get 
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