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Abstract 

The Capacitated Facility Location Problem (CFLP) is a well-known combinatorial op-
timization problem with applications in distribution and production planning. A variety 
of lower bounds based on Lagrangean relaxation and subgradient optimization has been 
proposed for this problem. However, in Order to solve large or difficult problem instances 
Information about a primal (fractional) Solution can be important. Therefore, we s tudy var-
ious approaches for solving the master problems exactly. The algorithms employ different 
strategies for stabilizing the column generation process. Furthermore, a new lower bound for 
the CFLP based on partitioning the plant set and employing column generation is proposed. 
Computational results are reported for a set of large problem instances. 

Keywords: Capacitated Facility Location Problem; Integer Programming; Lagrangean 
Relaxation; Column Generation 

1 Introduction 

The Capacitated Facility Location Problem (CFLP) consists in deciding which plants to open 
from a given set of potential plant locations and how to assign customers to those plants. The 
objective is to minimize total fixed and shipping costs. Constraints are that each customer's 
demand must be satisfied and that each plant cannot supply more than its capacity if it is open. 
Applications of the CFLP include location and distribution planning, lot sizing in production 
planning (Pochet and Wolsey 1988), and telecommunication network design (Kochmann and 
McCallum 1981, Mirzaian 1985). 

Mathematically, the CFLP can be stated as the following linear mixed-integer program: 

Z = min J2J2 CiiXii + Z 
iei j€J jeJ 

s.t. 5>« = 1. Vi Gl (D) 
jeJ 

^2 diXij < Sjyj V j € J (C) 
iei 
0<ZÜ<1,0<%<1, (N) 

%E{0,1}, VjGJ (I) 

where I is the set of customers and J the set of potential plant locations; is the cost of 
supplying all of customer i's demand dl from location j, fj is the fixed cost of operating facility j 
and Sj its capacity if it is open; the binary variable yj is equal to 1 if facility j is open and 0 
otherwise; finally, Xij denotes the fraction of customer i's demand met from facility j. The 
constraints (D) are the demand constraints and constraints (C) are the capacity constraints. 
Without loss of generality it is assumed that Cy > 0 V i ,j, fj > 0 V j, sj > 0 V j, di > 0 V i, 
and T,jeJs3 > di1) = Y.mdi-

Numerous heuristic and exact algorithms for the CFLP have been proposed in the literature, 
and most Solution approaches are based on Lagrangean relaxation (see Cornuejols et al. (1991) 
and Sridharan (1995) for a comprehensive survey). With the exception of Van Roy's (1986) 
cross decomposition algorithm, Lagrangean relaxation approaches for the CFLP generally use 
subgradient optimization in order to obtain an approximate Solution to the Lagrangean dual. 
For solving larger and/or more difficult instances of the CFLP, however, the knowledge of an 
exact Solution of the corresponding master problem can be advantageous. Firstly, this gives an 
improved lower bound and, secondly, the knowledge of a fractional optimal Solution of the primal 
master problem can be exploited to devise (better) branching decisions in the framework of a 
branch-and-price algorithm. The aim of this paper is, therefore, to investigate decomposition 



methods for solving the master problems exactly. To this end, different strategies for stabilizing 
the column generation process are employed. 

In §2 a new lower bound for the CFLP is proposed. Methods for stabilizing column generation 
are briefly summarized in §3 and used in §4 in order to compute important bounds for the CFLP 
exactly. Extensive computational experiments are presented and discussed in §5. Finally, the 
findings are summarized in §6. 

2 A New Lower Bound for the CFLP 

A common way to obtain lower bounds for the CFLP is to relax constraints (C) and/or (D) in 
a Lagrangean manner and to add some additional inequalities which are implied by the relaxed 
constraints and some of the other constraints. The valid inequalities which are usually considered 
for these purposes are the variable upper bound or trivial clique constraints 

x y < yj V i G I , V j G J (B) 

and the aggregate capacity constraint 

E > d(7). (TT) 
jeJ 

Besides the two additional constraints (B) and (T), one may devise a number of valid inequalities 
which can be useful to sharpen a relaxation, provided that the resulting subproblem is manage-
able. One group of redundant constraints is easily constructed as follows. Let {Jq : q G Q}, 
JqC\ Jh = <1 h, denote a given partitioning of the set J of potential plant locations. Then 
the "clique constraints" 

Y^Xij< 1 V*G/, VgGQ (U) 
j£Jq 

are implied by (D); however, they can be useful if constraints (D) are relaxed. 
Without taking constraints (U) into account, Cornuejols et al. (1991) examine all possible 

ways of applying Lagrangean relaxation/decomposition to the CFLP. Following their notation, 
let 

• Zft denote the resulting lower bound if constraint set S is ignored and constraints R are 
relaxed in a Lagrangean fashion, and let 

• ZR.I/R.2 denote the bound which results if Lagrangean decomposition is applied in such a 
way that constraints Ri and % are split into two subproblems. 
Regarding Lagrangean relaxation, Cornuejols et al. (1991, Theorem 1) show that 

ZBIU < ZIU < Zlu < Z% < Z, ZIU <Z%<Z%, and ZBIU < Zßu < Z%. 

Furthermore, they provide instances showing that all the inequalities above can be strict. The 
subproblem corresponding to ZQ can be converted to a knapsack problem and is solvable in 
pseudo-polynomial time. Therefore, bounds inferior to Z^ seem not to be interesting. Fur­
thermore, as computational experiments show, Z^u = ZQ is usually not stronger than Z^. 
This leaves Zp and ZQ = Zc as candidate bounds. Since constraints (U) are implied by (D), 
constraints (U) can only be helpful if constraints (D) are relaxed. If the aggregate capacity con­
straint (T) is relaxed as well, the resulting Lagrangean subproblem decomposes into |Q| smaller 
CFLPs as will be made clear in §4. Obviously, 

ZTD = 
'z™ = Zlv = ZIU = Z* ,i{\Q\ = \J\ 

z ) if |Q| = 1 • 
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For 1 < \Q\ < |J|, however, the bound can be anywhere between the (strong) LP-bound 
ZIU — Z 1 and the Optimum value Z of the CFLP, i. e. Z1 < < Z. Although the subproblem 
corresponding to Zp has the same structure as the CFLP, the bound Zp may be advantegeous, 
if the set of potential plant locations is large and if the capacity constraints are not very tight. 

With respect to Lagrangean decomposition, Cornuejols et al. (1991, Theorem 2) proof that 

yU yU yU yU yU ma-v/7TU 7^ \ <r" 7U <" 7 U LCfD ~ C/DB ~ C/DT ~ &C/DBT ~ ^C > ™ax ^/,g, , Aß) 5: 6D/TC — > 
arlJ yU yU yU yXJ ana AD/BC — AD/TBC ~ ^TD/BC ~ AD • 

Since Lagrangean decomposition requires to solve two subproblems in each iteration and to 
optimize a large number of multipliers, Lagrangean decomposition should give a bound which is 
at least as strong as Zp. The only remaining interesting bound is, therefore, Z^jTC. As shown 
by Chen and Guignard (1998), the bound is also obtainable by means of a technique called 
Lagrangean substitution, which Substitutes the copy constraints x = x' by J2idi%ij = ^2i^ix'ij-
Compared to the Lagrangean decomposition, this reduces the number of dual variables from 
|/|.|J| + |J|to2|J|. 

In summary, interesting Lagrangean bounds for the CFLP are Zp, Zc, ZJJ/TC an(^' possibly 
the new lower bound ZCompared to Zc, the computation of the bound requires to 
optimize an increased number of dual variables. Furthermore, one of the subproblems corre­
sponding to ZD/TC is an Uncapacitated Facility Location Problem (UFLP) while the subproblem 
corresponding to Zc is an Aggregate Capacitated Plant Location Problem (APLP). Since the 
bound is no stronger than Zc and since an APLP is often not much harder to solve than 
an UFLP, the bound Z^iTC is not considered further in this paper. The computation of the 
other bounds by means of column generation, however, is described in detail in §4. 

3 Methods for Stabilizing Column Generation 

For larger instances of the CFLP, the computation of the above mentioned bounds requires the 
use of decomposition methods exhibiting good convergence behaviour. Furthermore, the choice 
and design of a decomposition method must also be guided by the degree of difficulty of the 
subproblem and (restricted) master problem resulting from the employed Lagrangean relaxation 
scheme. In the following, we summarize the main principles of the decomposition methods which 
we applied in pure or hybrid form in order to compute the bounds Zp, Zc and Zp. 

When Lagrangean relaxation is applied to min{cz : Ax — b , x 6 X}, the Lagrangean dual 
is to maximize the piecewise linear and concave function 

v(u) — ub + min{(c — uÄ)x : x G X] = ub + min{(c - uA)xt : t G T} , (1) 

where {z* : t G T} is the set of all vertices of the convex hull of X (for simplicity it is assumed 
that X is nonempty and bounded). For a given known subset T C T of columns, the function 

v(u) = ub + min{ (c - uA)xt : t G T} 

is an outer approximation of u(u). The restricted dual and primal master problem is then given 
by 

ü(uh) = max v{u) = max{uo +ub : UQ + uAx4 < cxl V t G T} (2) 
U UQJU 

= = ^ (Ac4)^ = b, = lj , (3) 
tef tef tef 
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where UQ = min{(c — uA)xt : t £ T} and is the dual variable corresponding to the dual 
cut UQ + uAxt < cl for t G T. At each iteration of the Standard column generation algorithm 
(Kelley 1960, Dantzig and Wolfe 1960), the restricted master problem (2) is solved and an 
optimal Solution xh of the Lagrangean/pricing subproblem (1) for fixed u = uh is determined. 
The outer approximation ü(u) is then refined by adding h to the set T* of columns. Since this 
algorithm suffers from bad convergence behaviour (Lemarechal 1989), a variety of approaches 
for stabilizing column generation has been proposed in the literature. 

In order to avoid large oscillations of the dual variables u, Marsten et al. (1975) put a box 
centered at the current point, say uh~l, around the dual variables u and solve 

vs{üh) = max{i/(u) : uh~l — 6 <u < uh~l + <5} . 

The next iterate uh is then found by performing a line search into the direction [üh — uft_1). 
Du Merle et al. (1999) generalize the boxstep method of Marsten et al. They allow the next 

proposition to lie outside the current box, but penalize violations of the "box constraints". For 
these purposes they use the perturbed (restricted) dual master program 

max uo + ub — io+7r+ — W~TT~ 

s.t. UQ + uAx1 < cxl, 
ö~ -w~ <u<ö+ + w+ , 
w~, w+ > 0. 

Du Merle et al. propose different strategies to initialize the parameters ir+, ir~, S+, ö~ and to 
adapt them in case that an optimal Solution uh of (4) improves (not improves) the best dual 
Solution found so far or in case that uh is dual feasible. 

As Neame et al. (1998) show, the method of du Merle et al. can be viewed as a penalty 
method which subtracts the penalty function 

fiM = ^]max{0, TT - 5f), TTr(S~ - Ui)j (5) 
i 

from the outer approximation ü{u) in order to determine the next point. The method of du 
Merle et al. is, therefore, closely related to bündle methods (Lemarechal 1989, Carraresi et al. 
1995, Frangioni and Gallo 1999) which use a quadratic penalty function 

P2(u) = z/(u/l_1) + i||u - u/l~1||2 , 

where t > 0 is a "trust" parameter and uh~l the current point. 
Let v{uh) = max{i/(«() : t G T } denote the best lower bound found so far. Optimal dual 

variables u are then located in the set 

L = {(uo, u) : uo + ub-wo = v{ub), uo + w(Ar*) + wt = (cx*) V t G T, 

w0 > o, wt>ovteT}. 

Select any point (iig, uh) G L with wß = uj + uhb - v{ub) > 0. If (u(f, uh) is dual feasible, that 
is w!f = cxt — UQ — u h(Ax4) > 0 V t G T, then 

v(uh) = min{ca^ + uh(b - Axf) : t 6 7} 

= cxk + uh{b — A xk) , for some k G 7~ , 

= + UQ + Uhb > UQ + Uhb = WQ + v(uh) > v(uh) , 

VteT 
(4) 
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and the best lower bound increases at least by WQ. Otherwise, the localization set L is reduced 
by adding a column k G T \ T which prices out at the current proposition uh. Thus, a method 
which selects in every Iteration such a point (uft, uh) € L converges in a finite number of steps 
to an e-optimal dual Solution u. 

Interior point decomposition methods choose a point (UQ, u h) £ L obeying some centrality 
property. The analytic center cutting plane method (Goffin et al. 1992, 1993) selects the point 
(UQ, uh) which maximizes the (dual) potential function 

^(IU) = + In 
tef 

over L. This requires to solve the system 

ßowo — T , fj,twt — T V t G 7" , ^ ^ fit = ßo > ^ ;Mt(Ar ) = Hob, 
tef tef 

WQ = uo+ub — v(ub) > 0 , Wt = cxl — uo — u(Axe) >0 V t G T , 

where r = 1. If (WQ, wh, UQ, uh, pft, fih) is a Solution to the system above, then (UQ, uh) and 
ah = iih/ßo gives a feasible Solution to the restricted dual master (2) and primal master (3), 
respectively. It is straightforward to show (Goffin et al. 1993) that the primal Solution ah has 
objective function value 

^ = |f|w& + (%o + ""O -
<ef 

Instead of Computing the analytic center, Gondzio and Sarkissian (1996) as well as Martinson 
and Tind (1999) propose to use points on the central path between the analytic center and an 
optimal Solution of the restricted master program (2). For these purposes a centrality parameter 
r > 0 not necessarily equal to 1 is used and iteratively adjusted. Finally, Wentges (1997) simply 
proposes to select the point 

(4, uh) =l{üo,üh) + (l-'j)(ub0,ub) eL (0 < 7 < 1), (6) 

where (UQ = v(ub) — ubb, ub) is the best dual Solution found so far and (ÜQ, ü h) is an optimal 
Solution of the restricted master program (2). The parameter 7 is first set to 1 and declined 
to a given threshold value in subsequent iterations. The convex combination (6) generally does 
not lie in the vicinity of a central path; nevertheless, the method is somehow related to interior 
point methods. 

Last but not least, subgradient optimization and Dantzig-Wolfe decomposition can be com-
bined in various ways in order to improve convergence. Guignard and Zhu (1994) use a two-phase 
method, which takes an optimal Solution of the restricted dual master program (2) as next propo­
sition only if subgradient steps fail to generate new columns for a given number of subsequent 
iterations. The restricted master is solved in every Iteration in order to use the objective value 
maxu ü(u) as (improved) estimator of maxu v{u) in a commonly used Step length formula. 

4 Computation of the Lower Bounds 

4.1 Relaxation of Demand Constraints 

Ignoring the artificial constraints (U) and dualizing constraints (D) with multipliers %, gives 
the Lagrangean subproblem 

4) W = E % + + Z : (C), (N), (I), (B), (T)} . (7) 
ia x'y iei jeJ j<=J 
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It is easy to show, that optimal multipliers rjopt can be found in the Intervall r^max], where 
rjf1"1 = minjyj(i){cy}) j(%) = arg minj{ctj}, and r?™ax = max^c^}. Purthermore, it is well-
known that (7) can be reduced to a knapsack problem. To this end, define 

vj = max|^(?7i - Cij)x{j : Y2diXii < «; , 0 < ^ < 1 Vi G fj (8) 
iei iei 

in order to obtain Zp(rj) = % + Y^iei % > where 

770 = min{^(/j - Vj)yj : ^ sjyj > d(I), yj G {0,1} V j G j} . (9) 
V jeJ jeJ 

Let {y4 : t G Ty} denote the set of feasible solutions to the knapsack problem (9) and let 
{xj : t G 7~ x} denote the vertices of the set of feasible solutions to (8). For t £ Ty and t G Tf, 
define Ft = Y,jej fjVj &nd Qj = Y^iei cijx\j- If Ty C Ty and 7~x C Tf, j G J, are sets of 
already generated columns, the restricted dual and primal master problem can be written as 

Z% = max TJO + ̂ 2 % (10) 
iei 

s.t. TJO + ̂ 2 y)v3 ^ Ft) VteT" (11) 
jeJ 

-Vj <Ctj, VjGJ, VtG%? (12) 
iei 
f Vief (13) 
rjo G R, Vj > 0, V j G J (14) 

and 

Zg = min Ft"t + E E CtfAi + E W"ft - C,na) (15) 
ter» ieJ iei 

s-t. ^2 at = 1 > (16) 
tefv 

Ytytjat-Y/ßtj> 0, VjGJ (17) 
tef» 

J2 E > 1 > Vi G / (18) 
tetf 

at>0, Vf Gf^ (19) 

Äj>0, VjeJ,\/te7? (20) 

Pi,Pi> 0 ViG/. (21) 

If (%, 77, € ) denotes an optimal dual Solution of the master problem, new columns Xj and yh 

price out, if 

Vj < ~ Vj < Vj = maxjj^fä - cl3)x\3 : t G lj\ 
iei iei 

and 

Vo > £(/; ~ Vj)Vj =» Vo> mm{j2(fj ~ Vj)y) : t£V\. 
jeJ jeJ 
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Since Vj > Vj V j G J, using v instead of v in order to price out columns yh is generally 
preferable; it leads to an earlier detection of required columns yh. 

Even the restricted master problem (15)—(21) is quite large, and the effort required for iter-
atively (re-)optimizing the restricted master problem can be tremendous. On the other hand, 
the subproblem (7) is generally relatively easy to solve. Stabilization methods which may save 
calls to the oracle at the expense of an increased effort for determining new propositions r] fro m 
the localization set are, therefore, not adequate in this case. Good approximations of optimal 
multipliers rj a re, however, easily found by means of subgradient optimization. Thus, we com-
bined subgradient optimization and "weighted" Dantzig-Wolfe decomposition in the following 
way in order to solve the füll master problem: 

Procedure for Computing Zp 
Phase 1 (subgradient phase) 
Step 0: Set h = 0, Ty = T? = 0 V? G J , LB = 0, UB - oo, Zp = oo, = 2, and rf1 - r)mm. 

Step 1: Solve (7) for r\ = rf1. Let (yh, xh) denote the corresponding Solution and let vh, rjg = 
Zp(r)h) — Yjiei Vi denote the values of v and % corresponding to rf1. Set O = {j G J : yj = 1}. 
If Zp(r)h) > LB, then set: 

LB = Z^(rjh), (yb, xb) = (yh, xh), rf = rjh, vb = vh, and rfQ = r]%. 

Otherwise, half Oh if the lower bound has not improved for a given number H* of subsequent 
steps (e. g. H* = 10). If (min{Zp, UB} — LB )/LB < e, then terminate. 

Step 2: Set f* = f?U {h} and Tf = Tf U {&} V j G O . 

Step 3: Solve the transportation problem with plant set O. If this gives a Solution improving 
UB, update UB and record the Solution in (yB, xB). 
Step 4: Set rj^+1 = max{?;™"\ minj^™^, rf> + 6hgh}} Viel, where 

g? = l-]] and ^ = ^([m-Zg(^))/||/||\ 
jeJ 

Set h := h-1-1. If h exceeds the Iteration limit H (e. g. H = 100), go to Step 5, eise go to Step 1. 
Step 5: For each j G J compute 

pj = minj^(/i - f)b)yt : ^sm > d{I), yj = 1 - yj, yt G {0,1} V l G j} . (22) 
y ieJ ieJ 

If UB < Ylier Vi + Pj, then fix variable yj to value yb. If any (additional) binary variable could 
be fixed this way, recompute 77min, 7?max and perform some additional subgradient steps, that is 
set e. g. H := H + 5 and go to step 1. Otherwise, continue with Step 6. 

Phase 2 (column generation phase) 

Step 6: Initialize the primal master problem with columns {yf : t G 711} and {xj : t G TjX} for 
which 

(1 - e)Ft <VQ + Y1 v)y) and (1 - e)Ctj < V\A3 ~ Vj (23) 
jeJ iei 

holds, using e. g., e = 0.01. Furthermore, add columns {yB} and {xB : yf = 1} to the master 
problem. 

Step 7: Solve the primal master problem (15)—(21) and obtain an optimal dual Solution (%, i), v) 
with objective value Zp. Remove all columns from the master which have been nonbasic for a 

7 



certain number of subsequent iterations. If (Zp — LB ^/LB < e, then terminate. Otherwise, set 
h := h + 1, rjh = jfj + (1 — 7)r}b, where 0 < 7 < 1, and go to Step 8. 

Step 8: Solve the subproblem as in Step 1. If columns {yh} or {xj} price out at the current dual 
prices (fjo, fj, v), add them to the master problem and go to Step 9. Otherwise, go to Step 10. 

Step 9: Apply a limited number AH of additional subgradient steps, that is repeat Step 3, 
Step 4 and Step 1 AH times in this order. Düring this intermediate subgradient phase, add all 
columns which price out at the current dual prices (fjo, fj, v ) to the master problem. Furthermore, 
apply Step 5 whenever an improved feasible Solution (yB, xB) is found. Return to Step 7 after 
completion of this intermediate subgradient phase. 

Step 10: As long as no column prices out at the current dual prices (fjo, fj, v), increase 7 in small 
steps and repeat Step 1 and Step 3 with 

r)h = 777 + (l - 7)rib. (24) 

Düring this "line search" also apply Step 5 whenever an improved feasible Solution is found. 
Afterwards, go to Step 7. 

In order to further explain some of the above steps, it is appropriate to comment on the 
following points: 

• The step size strategy employed in phase 1 is proposed in Ryu and Guignard (1992). 
• The tolerance e in Step 1 and Step 7 was set equal to l/(215 — 1). 
• The restricted master becomes too large, if all different columns generated during the 

subgradient phase are added. Since (77Q, i] b, vb) approximates an optimal Solution of the dual 
master, it is expected that columns not meeting the selection criterion (23) will be nonbasic. 

• In order to limit the size of the master problem, inactive columns have to be removed 
(Step 7). This reduces the computation time required for each master problem and generally 
increases the number of master problems to be solved. In our Implementation, columns are 
removed, if they are inactive for 5 subsequent iterations. 

• As shown in §3 the dual prices r)h determined by the convex combination (24) may be 
feasible for the füll dual master problem. In this case, Zp(r)h) must improve the best lower 
bound LB at least by 7(Z% — LB). This gives the chance for further (small) improvements if 7 
is increased in small steps until a new column prices out. In our Implementation we used a value 
7 = 0.2 for smaller test problems and 7 = 0.05 for larger problems. In Step 10, the parameter 
7 is incremented in steps of 0.05. 

• Weighted decomposition and interior point methods may give dual feasible propositions. 
This can slow down convergence at the very end of the procedura if no additional Information 
is generated and the lower bound is already close to the Optimum. The use of some additional 
subgradient steps in Step 9 has helped to overcome this Situation. The number AH of interme­
diate subgradient steps was set to 10. This way, the required computation time could be halfed 
for some of the larger test problems, although the number of calls to the oracle is increased. 

• The computation times were out of the scope if Standard Dantzig-Wolfe decomposition 
was employed instead of weighted decomposition in the above procedure. 

• We also experimented with the stabilization method proposed by du Merle et al. (1999), 
using the same subgradient procedure in order to obtain a good guess for optimal multipliers. 
The computation times were, however, significantly larger than those obtained by means of the 
procedure described above. 

• In addition to the simple heuristic of Step 3, we employed the following simple rounding 
heuristic at the very end of the Overall procedure: Let (y, x) denote an optimal Solution of the 
last primal master problem. Sort y in decreasing order and open plants j in this order as long 
as total capacity is insufficient or yj exceeds a given threshold value, e. g. 0.75. 

8 



4.2 Relaxation of Capacity Constraints 

If the capacity constraints (C) are dualized with nonnegative multipliers Uj, the Lagrangean 
subproblem is 

Zc{v) = min {]T £(cy + ujdjxij + Y,(fj ~ = (D ), (N), (I), (B), (T)} . (25) 
iei jeJ jeJ 

In this case, the artificial constraints (U) are redundant. Let {(•>/, x l) : t e T} denote the 
vertices of the convex hull of all feasible solutions to problem (25). Since Zc(u) > 0, the dual 
and primal master problem, restricted to a subset T C T of columns, is given by 

Zc ' max UQ 

s.t. uQ + Y(ajyt - Y,dixlj)Uj<Ct, V tef ß6) 
jeJ iei 

uo,u>0 

and 

Zc = min Y Ctat 
tef 

s.t. y>t>i, 
tef (27) 

S(siyti ~ diXh)at>°> VjeJ 
tef «e/ 

at > 0 V t ef, 

where 

iei jeJ jeJ 

Regarding Zc, the Situation is contrary to that* found for Z^. Now the subproblem is a difficult, 
strongly NP-hard problem, while the (restricted) master problem is generally small. This allows 
to use decomposition methods which investigate more effort in the computation of good propo-
sitions from the localization set in order to reduce the required number of calls to the oracle. 
Therefore, we employed in this case the analytic center cutting plane method. The procedure 
to compute Zc can be summarized as follows: 

Procedure for Computing ZQ 
Step 0: Apply the subgradient phase of the algorithm for Computing Z% in order to obtain a 
feasible Solution (xB, yB) with objective value UB and to possibly reduce the problem by means 
of the simple reduction test (22). Let rj denote optimal dual prices corresponding to the demand 
constraints (D) of the transportation problem with plant set O = {j e J : yf = 1}. Set h = 0, 
LB = 0, T = 0, and Uh = oo. For each j e J solve the linear program 

SjU® + ̂  ujfj = min SjUj + ̂  0Jij 
iei fei 

s.t. diUj + uJij >fji~ Cij , 

Uj, Wjj ^ 0, 

Vi ei 
Viel 

(28) 
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in order to obtain initial Multipliers u°. 
Step 1: Solve subproblem (25) with u = uh and let (xh, yh) denote the corresponding Solution. 
Set T := Tö{h} and LB := max{LB, Zc(uh)}. If (min{i/Ä, UB}—LB)/LB < e, then terminate. 
Otherwise go to Step 2. 
Step 2: Solve the transportation problem with plant set O = {j G J '• V j = 1}. If this gives a 
Solution improving UB, update UB, störe the Solution in (xB, yB) and try to fix further variables 
yj using the bounds pj defined by (22). 
Step 3: Set h := h + 1. Determine the analytic center (uft, uh) of the current localization set 

L = |(UQ, uh)> 0 : u0 + ̂ 2(sjyj - ̂ dixl^uj <CtVte T,u0 > Zßj 
jeJ iei 

and the corresponding primal feasible Solution ah with objective function value Uh. If (Uh — 
LB)/LB < e, terminate. Otherwise, return to Step 1. 

The following remarks further explain the above procedure: 
• In Step 0, Van Roy's (1986) method for sharpening Benders' cuts is used to determine 

initial multipliers uü. A Solution (rj, u , ÜJ) which is feasible for the dual of the CFLP for fixed y 
defines a Bender's cut 

Z > - £(SJU3 + E, 
iei jeJ iei 

where the dual variables u correspond to the variable upper bounds (B). The above Benders' 
cut can be sharpened by means of solving the linear programs (28). The primal of (28) is a 
continuous knapsack problem which can be solved by sorting. Of course, a good starting Solution 
u° may also be obtained in some other way. 

• As in the case of Zp, the tolerance value e in Step 1 and Step 3 is set to l/(215 — 1). 
• In Step 3, the analytic center were computed by means of the C++-library ACCPM of 

Gondzio et al. (1996). To ensure existence of the analytic center, bounds on the multipliers Uj 
have to be added. For this purpose 0 <uj< maxj fj/sj was chosen. The Iibrary ACCPM may 
change this bounds if necessary. Furthermore, ACCPM uses warm start procedures in order to 
recompute the analytic center. To this end, dual feasibility is first recovered and then the point 
recentered using damped primal Newton steps (Goffin and Vial 1999). 

• As in the case of Zp, the same rounding heuristic is applied at the very end of the Overall 
procedure in order to possibly further improve the upper bound UB. 

• Again we experimented with the stabilization method proposed by du Merle et al. (1999). 
In order to possibly further improve the initial multipliers, we first applied some steps of Van 
Roy's (1986) cross decomposition algorithm until the dual convergence test was not passed for 
the first time. Furthermore, we also added columns from primal feasible solutions. This is 
done by representing a Solution x of the transportation problem as convex combination of some 
vertices of {x > 0 : xij = 1 V i € /} (Van Roy 1986). For some of the test problems this 
method gave better results than ACCPM, while for other test problems convergence was much 
slower. Since we did not succeed in finding an updating strategy of the parameters (unit penalty 
cost 7T~, 7r + and box size S~, 5+) which produced uniformly good results for all test problems, 
we finally favored ACCPM. 

4.3 Lower Bound Based on Partitioning the Plant Set 

If constraint (T) is ignored instead of constraints (U) and the demand constraints are dualized 
with multipliers A,, the Lagrangean subproblem is 

^(A) = EA' + min{E(EE(^-A^i + E^) : (C), (N), (I), (B), (U)}. (29) 
*€/ Q€Q *€/ j£jq 
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The subproblem (29) decomposes into the \Q\ subproblems 

zq — 52 52 _ 52 
26/ jeJq j£jq 

s.t. 52 ®«J — 1' Viel 
jeJ, (30) 

52 dixij < SjVj , VjeJq 
iei 

0 < Xij < yj , yj G {0,1}, V i G I , V j G Jq. 

The subproblem (30) is an "Anti-CFLP" which can be converted to a CFLP by introducing 
an artificial plant with index 09, fixed cost foq — 0, supply costs Qo, = 0 Vi G I and capacity 
s0q = d(I). In this sense, the above relaxation decomposes the CFLP into a set of smaller 
CFLPs which have to be solved repeatedly. Let {(xl, yl) : t G T q} denote the set of all vertices 
of the convex hull of the feasible solutions to problem (30). Since zq < 0 Vq G Q , the dual and 
primal master problem, restricted to subsets Tq C Tq of columns, may then be written as 

= max Z zi + 52 
qeQ iei 

s.t. Zg + 52(52 4;)^ - ̂  ' VqeQ,VteTq (31) 
i€/ j£jq 

Ai > 0, z,<0, V i € I, V q e Q 

and 

Zip = min 52 52 CQtaqt 
i£Q te% 

s.t. 52 - 1' V q 6 Q 
(ef; (32) 

EE(E4)^^1' yieI 

i^Qtetq 

aqt >0, VqeQ, Vtefq, 

respectively, where 

Cqt = 52 52 Clixh + 53 " 
j€Jq 

In the case of \Q\ = |J|, that is |J9| = 1 Vq G Q, and Tq = Tq Vq G Q, we have = 
Zj) = ZpU = ZIU = Z1, which is the (strong) LP-bound. Assume that (x, y) solves the LP 
relaxation and that Aj, i G I, are corresponding optimal dual variables associated with the 
demand constraints (D). Let {(x^ yl) : t G 7^} be the set of all optimal solutions to the 
subproblem 

Äo = mm{E52(%-^)=ü + 52/i% = (C ), (N) (I), (B) }. (33) 
iei jeJ jeJ 

Then 

Z1 = Zpu = Ä0 + 52Ä» and (x, y) = 52 ät{x\ yl) 
iei 
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for some a > 0 with J2teTjat = 1- A necessary condition for the bound Z^ with 1 < \Q\ < |J| 

to be stronger than the LP-bound Z1 is then, that 

Z 4 > i 
jeJq 

holds for at least one q € Q,t eTj and i G I . The plant set J should, therefore, be partitioned 
in such a way that the above condition has a good chance to be met. One possible way to achieve 
this is the following: Let Ä d enote near optimal dual prices associated with constraints (D) in 
the linear relaxation of the CFLP. Such an approximation of A is u sually quickly obtained using 
subgradient optimization. Furthermore, let (x, y) be an optimal Solution of the subproblem (33) 
if A is replaced with A. Perform the steps below in order to decompose the set J into subsets: 

1. Set g = 0 and define: fj = Z = {i G / : n > 1}, Hi = {j G J : Xij = 0}, and 

Ii = {k G / : ^ 1}' 
2. As long as I ^ 0 per form the following steps: (a) Select customer i G I with largest value 

of \Ii\. If \Ii\ = 0, select customer i G / with largest value of f,. (b) Set q := q + 1, Jq = J \ Hi, 
h •= h ~ %kj VA ; G I, and I := {k G I : fk > 1}. 

3. If q = 1, set Ji = J\ J\. Otherwise assign each plant j with yj = 0 to the subset Jq which 
minimizes min;^ ~ °il\-

The above procedure first decomposes the set of plants which are open in the Solution (x, y). 
In the first iteration, a constraint YljeJ XiJ — 1 violated by x is selected and J\ determined as 
Jl = {j G J : Xij > 0}. The next subset Jg may then only be constructed from plants j G H i 
with yj = 1. Furthermore, the set of constraints ^2jej2 x^ < 1 possibly violated by x is reduced 
to the set Ii- This motivates the choice of the customer i in the above procedure. Obviously, 
the plant set may be decomposed in many other plausible ways. 

The relaxation (29) does not make use of the aggregate capacity constraint (T). There­
fore, the relaxation should usually not be preferable in the case of tight capacity constraints. 
Furthermore, the approach makes only sense in the case of large problems with a large set of 
potential plant sites. For such problems it may be better to solve several smaller CFLPs than 
for e. g. several large APLPs in order to derive strong lower and upper bounds. Since in any 
case, solving the hard subproblems (30) causes the main effort, we selected again ACCPM to 
solve the master problem, although the size of the restricted master problems and the effort 
required for Computing analytic centers can be substantial in this case. The overall procedure 
to compute Zj) then consists in the application of the steps below: 

Procedure for Computing 
Step 0: Apply the subgradient phase of the algorithm for Computing Zp in order to obtain a 
feasible Solution (xB, yB) with objective value UB and to possibly reduce the problem by means 
of the simple reduction test (22). Furthermore, let Zp denote the computed lower bound and 
let fj de note the corresponding multipliers. 

Step 1: Apply the same subgradient procedure without consideration of the aggregate capacity 
constraint (T). To this end, use Zp as target value in the step length formula. Let Ä de note the 
computed multipliers. Furthermore, let (x, y) be the Solution of subproblem (33) corresponding 
to A. 
Step 2: Apply the above procedure for decomposing the plant set J. Set h = 0, LB = 0, 
Zp = Uh = oo, Tq = 0 V q G Q, and A° = Ä. 

Step 3: Solve the subproblems (30) for each q G Q in order to obtain Zp(A). Let (xhq ,yhi) 
denote the corresponding solutions. Set Tq := Tq U {h} V q G Q . Set LB = max{LB, Zp(\h)}. 
If (min{C//l, UB} - LB)/LB < e, then terminate. 
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Step 4: If YlqeQ^jeJq sjyljQ — then solve the transportation problem with plant set 

O — U9eg{j G Jq : y^q — 1}- If this gives a Solution improving UB, update UB, störe the 
Solution in (xB, yB) and try to fix further variables % using the bounds pj defined by (22). 

Step 5: Set h := h + 1. Determine the analytic center (zh, Xh) of the current localization set 

L = | (z, A) : zq+52 52 ^ v q £ Q 52 zi 52 ̂  
i£/ j£Jq Q&Q iG/ 

and the corresponding primal feasible Solution ah with objective function value Uh. If (Uh — 
LB)/LB < e, terminate. Otherwise, return to Step 3. 

In addition to the already mentioned simple rounding heuristic, we used two further heuristics 
at the very end of the overall procedure in order to possibly further improve the upper bound 
UB. Let ä denote the Solution of the last primal master problem (32) and set yj = Y^teTq 

for each q £ Q and j £ Jq. The first heuristic consists in solving the knapsack problem (9) using 
the multipliers fj c omputed in Step 0, where in addition some of the variables yj are fixed to 
zero or one if < 0.1 or yj > 0.9. The second heuristic simply applies some interchange moves 
to the best Solution found so far, where, however, a plant j with yj <0.1 must not be opened 
and a plant j with yj > 0.9 must not be closed. 

5 Computational Results 

The proposed procedures for Computing the bounds Zp, Zc and ZQ were coded in Sun Pascal 
and run on a Sun Ultra (300 MHz) to solve several test problems, which were generated according 
to the proposal of Cornuejols et al. (1991). Test problems for the CFLP generated this way are 
usually harder to solve than other problems of the same size. The test problems are divided into 
three different sets of problems which differ according to their tightness (ratio r = ^2jsj/d{I) 
of total capacity and total demand). We used capacity tightness indices r of 3, 5 and 10, 
respectively. In each problem set, there are 5 problem types of each of the following sizes: 
100 x 100, 200 x 100, 200 x 200, 500 x 100, and 500 x 200 where the first number is the number 
of customers and the second is the number of potential plant locations. Five problem instances 
have been generated for each given size and tightness index r. In order to solve the various 
subproblems arising in the computations of the bounds, the following procedures and codes 
were used: 

• The knapsack problems (9) were solved by means of the COMBO algorithm of Martello 
et al. (1999). 

• A branch-and-bound algorithm coded in Pascal and proposed in Klose (1998) was used to 
solve the APLP (25). 

• The subproblem (29), which itself is a CFLP, was solved by means of a branch-and-bound 
algorithm called CAPLOC and proposed and coded in FORTRAN by Ryu and Guignard (1992). 

• As already mentioned, analytic centers were computed with the help of the C+-1—library 
of Gondzio et al. (1996). 

• The transportation problems and the linear master problems were solved by means of 
the procedures CPXnetopt() and CPXprimoptf) contained in CPLEX's (1997) callable library 
(version 5.0). 

For the purposes of comparison, optimal solutions were computed by means of two different 
exact Solution procedures. The first exact Solution procedure is the CAPLOC algorithm of 
Ryu and Guignard (1992). CAPLOC is a depth-first search branch-and-bound procedure which 
is based on Z% and subgradient optimization. Before branching at the top node, however, 
CAPLOC tries to fix as many y variables as possible by means of extensive Lagrangean probing. 
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Table 1 Results obtained by means of CAPLOC 
Size UB% Nodes Iter #TPs T Tot 

r = Ejsi/d(l) = 3 
100x100 0.00 116 546 26 1.7 
200x100 0.00 510 3255 401 33.1 
200x100 0.00 1098 5410 241 61.4 
500x100 0.00 14526 72327 20778 4972.2 
500x200 0.00 27768 94686 15192 7680.3 

max 0.00 51316 259059 75075 18173.7 
mean 0.00 8803 35245 7328 2549.7 

II JC
 Q- II Ol
 

100x100 0.00 188 1138 66 3.2 
200x100 0.00 1226 7181 1593 87.6 
200x200 0.00 639 3368 445 51.8 
500x100 0.00 34718 131362 66407 11448.1 
500x200 0.04 92860 303274 113136 32849.0 

max 0.18 127377 380128 173687 45003.7 
mean 0.01 25926 89265 36329 8887.9 

II /d(l) = 10 
100x100 0.00 113 410 18 1.3 
200x100 0.00 1180 5161 1639 74.4 
200x200 0.00 331 1596 115 17.6 
500x100 0.00 13913 47185 25698 4104.5 
500x200 0.08 85571 259254 109259 28911.2 

max 0.41 124113 380786 220294 45001.6 
mean 0.02 20221 62721 27346 6621.8 

Total 
max 0.41 127377 380786 220294 45003.7 
mean 0.01 18317 62410 23668 6019.8 

Table 1 shows the results (averages over the five instances of each problem type) obtained in 
this way. The computation time was limited to 12.5 hours per instance. In Table 1, Nodes is the 
number of nodes checked, Iter is the total number of subgradient steps performed, #TPs is the 
number of transportation problems solved, Tj0t is the total CPU time in seconds, and UB% is 
the percentage deviation of the computed Solution from optimality in the case that the procedure 
was aborted after 12.5 hours of computation time. Although the computation times for problems 
with a tightness of r = 10 were slightly better than those for problems with a tightness of r = 5, 
the computational effort tends to increase with decreasing capacity tightness. The quality of 
the lower and upper bound computed by the subgradient procedure usually deteriorates with 
increasing values of r, and the preprocessing procedure does not succeed in fixing a large number 
of y variables. Two of the largest problems with ratio r = 5 and one of the largest problems 
with ratio r = 10 could not be solved to optimality by means of CAPLOC, at least not within 
a computation time of 12.5 hours. 

The second exact Solution approach first applies an LP-based heuristic originally proposed in 
Klose (1999) for a two-stage facility location problem and adopted here to the case of the CFLP. 
Starting with the weak LP-relaxation, the method iteratively refines the relaxation by means 
of adding different polyhedral cuts. After recalculating the LP Solution, some heuristics are 
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Table 2 Results LP/cutting plane approach 
Size SLP% LP% UB0% UB% Gap% Nodes TSLP TLP TH Tlbt 

Cj Sj/d(l) = 3 

100x100 0.33 0.11 0.33 0.00 0.00 129 0.6 2.3 0.8 15.2 
200x100 0.34 0.27 0.16 0.00 0.00 431 3.0 5.9 1.2 141.1 
200x200 0.12 0.08 0.69 0.00 0.00 1633 5.8 13.9 2.6 968.8 
500x100 0.44 0.41 0.70 0.00 0.00 3764 27.7 63.4 13.5 10277.2 
500x200 0.18 0.17 0.32 0.09 0.10 7787 28.0 38.7 6.7 24164.9 

max 0.70 0.61 2.01 0.44 0.48 13765 31.1 128.5 33.3 45031.8 
mean 0.28 0.21 0.44 0.02 0.02 2749 13.0 24.8 5.0 7113.4 

r = ] :jSj/d(l) = 5 

100x100 0.65 0.43 0.34 0.00 0.00 367 0.8 3.9 0.8 51.7 
200x100 0.56 0.46 0.56 0.00 0.00 941 7.0 23.0 4.2 706.7 
200x200 0.18 0.17 0.38 0.00 0.00 2212 8.1 12.4 1.6 2337.5 
500x100 0.55 0.48 0.64 0.00 0.00 1902 99.3 162.8 13.9 7494.2 
500x200 0.42 0.40 0.85 0.67 0.81 6159 108.3 163.0 10.9 45139.9 

max 1.05 0.70 1.40 1.15 1.35 10438 130.0 203.8 19.6 45163.6 
mean 0.47 0.39 0.55 0.13 0.16 2316 44.7 73.0 6.3 11146.0 

r = I •Sj/dO); = 10 
100x100 1.02 0.62 0.14 0.00 0.00 88 1.5 5.5 0.5 17.6 
200x100 0.53 0.41 0.55 0.00 0.00 179 30.7 65.0 4.5 320.6 
200x200 0.54 0.40 0.76 0.00 0.00 1057 12.0 34.6 2.2 1011.9 
500x100 0.25 0.22 0.15 0.00 0.00 122 330.0 486.6 18.1 1614.0 
500x200 0.47 0.43 0.85 0.52 0.64 1384 607.4 935.1 27.7 36136.0 

max 1.45 1.14 2.16 1.58 1.86 1998 657.8 1138.2 50.6 46135.9 
mean 0.56 0.42 0.49 0.10 0.13 566 196.3 305.4 10.6 7820.0 

Total 
max 1.45 1.14 2.16 1.58 1.86 13765 657.8 1138.2 50.6 46135.9 

mean 0.44 0.34 0.49 0.09 0.10 1877 84.7 134.4 7.3 8693.1 

applied in order to compute a feasible Solution from the current LP Solution. If no additional 
inequalities are found, the problem together with the added cuts and the computed feasible 
Solution is passed to CPLEX's subroutine CPXmipoptimizeQ in order to close the remaining 
gap between the lower and upper bound. Table 2 summarizes the results obtained with this 
procedure. In Table 2, SLP% and LP% denote the percentage gap between the Optimum value 
Z of the CFLP and the strong LP-bound Z1 and the computed LP-bound, respectively; UB0% 
and UB% are the percentage deviations of the Solution computed by the LP-based heuristic and 
the best feasible Solution found from optimality; Gap% is the remaining gap between the global 
lower bound and the best feasible Solution found in the case that the computation time exceeded 
the maximum allowed time of 12.5 hours; Nodes is the number of nodes checked by CPLEX's 
mipoptimize()\ T$LP, TLP, and TH are the times required to compute the strong LP bound, the 
LP-bound, and heuristic solutions; Tj0t is the total computation time in seconds. A comparison 
between Table 1 and Table 2 shows that CAPLOC outperforms the LP approach in the case of 
tight capacity constraints or problems of smaller to medium size. On the other hand, the LP 
approach was much faster for several larger problems (size 500x100) with tightness of 5 and 10. 
Solving the largest problems by means of the above procedure, however, can be time-consuming. 
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Especially in the case of "loose" capacity constraints, the linear program is usually quite large. 
Furthermore, the enumeration tree can be of considerable size and the progress in the lower 
bound very small. In total, 10 problems of size 500 x 200 (2 problems in the case of r = 3, 
5 problems in the case r = 5, and 3 problems in the case of r — 10) could not be solved this way 
within a computation time of 12.5 hours. 

Since an alternative to an exact computation of the bounds by means of column generation is 
the use of subgradient optimization, as in the case of CAPLOC, we also included results obtained 
with a Lagrangean heuristic based on Zp and subgradient optimization. Table 3 shows the re­
sults obtained with this method, which simply consists in the subgradient phase of the described 
procedure for Computing ZIn this table, UB% and LB% denote the percentage deviation of 
the computed upper and lower bound from optimality, Iter is the number of subgradient steps 
performed, TH the time spend on Computing feasible solutions, and Tj0t the total computation 
time in seconds. As Table 3 shows, the Lagrangean heuristic is very fast. However, the lower 
and upper bounds computed by this method are only of medium quality and can be worse in the 
case of relatively "loose" capacity constraints. As the results obtained with CAPLOC illustrate, 
this bound quality may be far insufficient for the purposes of Computing optimal solutions for 
larger problem instances within a branch-and-bound procedure. 

Computational results for the described procedure for Computing Zp are summarized in 
Table 4. In this table, lt|_R a nd Itw denotes the number of subproblems and master problems 
solved, respectively; COIA is the number of columns in the last master problem, and Coljot is the 
total number of columns generated; TLR, TH, and TM d enote the computation times required for 
solving the subproblems, the transportation problems and the master problems, respectively; 
Tjot is the total computation time in seconds. Compared to the subgradient procedure (Table 3), 
the column generation approach contributed to a significant improve in the lower bound (0.28% 
on average compared to 0.33% on average) and a considerable improve in the upper bound 
(0.24% compared to 0.98%). Partly, the improve in the upper bound is simply due to the 
larger number of transportation problems solved; on the other hand, Lagrangean heuristics 
usually produce better feasible solutions the better the Lagrangean multipliers are. Compared 
to the lower bound produced by the linear programming approach (column LP% in Table 2), 
the bound Zp is on average better than this LP-bound. Furthermore, the proposed column 
generation method for Computing Zp consumes less computation time than the computation of 
a bound based on the linear relaxation and additional cutting planes (compare columns Tjot 
in Table 4 and TLP in Table 2). For larger problems with a capacity tightness of 5 and 10 the 
column generation procedure even consumed less computation time than the computation of the 
strong LP-bound Z1 by means of a simplex algorithm (compare columns Tj0t in Table 4 and 
TSLP in Table 2). This indicates that this bounding procedure can be useful in the framework of 
a branch-and-bound procedure for solving larger problem instances; it provides strong bounds in 
relatively short computation times and, in contrast to subgradient optimization, also a fractional 
primal Solution on which branching decisions can be based. 

Table 5 shows the results obtained with the column generation procedure for Computing Zc. 
As can be seen from Table 5, the approach for Computing Zc produces very strong lower and 
upper bounds. The lower bound deviates only by 0.18% on average from the Optimum value 
Z. The percentage deviation of the upper bound from optimality amounts to only 0.01 % on 
average. Thus, in almost all cases an optimal Solution was obtained in this way. Even in the 
case of tight capacity constraints, the quality of the bounds is very good. The computational 
effort required for Computing Zc, however, is substantial. The APLP (25) is usually far easier 
to solve than the CFLP, nevertheless the APLP remains a difficult, strongly NP-hard problem. 
The effort required for Computing Zc is, therefore, relatively large, although the analytic center 
cutting plane method showed a good convergence behaviour in this case and succeeded in keeping 
the required number of calls to the oracle satisfactorily small. For the smaller problems (less 
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Table 3 Results subgradient procedure 
Size LB% UB% Iter TH T-rot 

r = ] Cj sj/d(0 — 3 
100x100 0.07 0.00 105 0.3 1.0 
200x100 0.24 0.02 105 1.0 2.1 
200x200 0.08 0.00 105 1.3 3.5 
500x100 0.43 0.45 103 8.4 10.9 
500x200 0.17 0.02 106 12.7 17.7 

max 0.68 1.02 110 17.5 23.2 
mean 0.20 0.10 105 4.7 7.0 

r = l P-Sj/dO) = 5 
100x100 0.22 0.13 105 0.2 0.9 
200x100 0.48 0.37 104 1.4 2.6 
200x200 0.12 0.06 105 1.6 4.1 
500x100 0.63 2.05 101 8.2 10.4 
500x200 0.42 0.44 103 10.4 15.5 

max 0.81 3.55 105 13.4 19.7 
mean 0.37 0.61 104 4.3 6.7 

r = I :jSj/d(l) = 10 
100x100 0.30 0.00 105 0.1 0.7 
200x100 0.57 1.76 101 1.2 2.1 
200x200 0.24 0.01 106 0.7 3.0 
500x100 0.45 6.07 101 8.4 10.5 
500x200 0.58 3.34 100 9.8 14.3 

max 0.83 8.31 110 10.3 14.8 
mean 0.43 2.23 103 4.0 6.1 

Total 
max 0.83 8.31 110 17.5 23.2 

mean 0.33 0.98 104 4.4 6.6 

than size 500 x 100), the approach is of course senseless. For such problems the computation of 
an optimal Solution using CAPLOC has taken less time than the computation of Zc- However, 
the difficulties encountered when solving the largest problem instances by means of CAPLOC 
(see Table 1) clearly show, that a (stable) column generation method for Computing Zc has to 
be taken into account as an alternative to a (stable) column generation method based on Z^ 
for solving such types of problems in a branch-and-bound framework. 

Table 6 shows the results obtained for the procedure based on partitioning the plant set J. 
In addition to the columns of Table 5, |Q| denotes the (average) number of generated plant 

subsets, and CoITot is the total number of generated columns, that is J2qeQ %• Tlie results 
shown in Table 6 contradict what could be expected: On average, the best lower and also 
upper bounds have been obtained for the test problems with smallest capacity tightness index r, 
although the bound ZQ does not make use of the aggregate capacity constraint (T) and should, 
therefore, be better in the case of loose capacity constraints. This unexpected behavior of the 
procedure was also observed in an experiment with three Single very large test problems of size 
1000 x 500 (see Table 7). A possible explanation is that the heuristic for decomposing the plant 
set generates more subsets for problems with tight capacities, since in this case more plants are 
open in optimal solutions to the Lagrangean subproblem (33). At first sight, a small number of 
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Table 4 Results procedure for Computing ZQ 
Size LB% UB% lt|_R ItM ColA Coljot TLR TH TM T-Tot 

r = I :jSj/d(l) = 3 

100x100 0.05 0.00 183 11 239 518 0.8 0.3 0.4 1.7 
200x100 0.23 0.00 232 25 418 807 1.6 1.2 1.0 4.0 
200x200 0.05 0.00 220 18 370 896 2.8 1.7 1.5 6.3 
500x100 0.40 0.27 575 56 1115 2618 12.2 11.5 28.6 52.8 
500x200 0.16 0.02 300 24 984 2139 8.9 17.0 9.9 36.7 

max 0.65 0.70 636 62 1210 2749 13.0 23.6 33.6 58.9 
mean 0.18 0.06 302 27 625 1396 5.3 6.3 8.3 20.3 

r=X :jSj/d(l) = 5 

100x100 0.19 0.06 206 12 285 523 0.9 0.2 0.4 1.6 
200x100 0.44 0.26 395 53 404 925 3.3 1.8 3.0 8.4 
200x200 0.12 0.06 217 18 410 821 3.0 1.8 1.1 6.5 
500x100 0.55 0.88 915 100 1062 3091 19.7 18.6 99.3 138.4 
500x200 0.40 0.37 631 68 1087 2772 25.7 21.2 39.6 87.6 

max 0.73 1.95 1109 129 1196 3314 30.5 28.9 146.7 180.2 
mean 0.34 0.33 473 50 649 1627 10.5 8.7 28.7 48.5 

r = E j Sj/d(l) = 10 
100x100 0.23 0.00 323 26 253 585 0.8 0.1 0.9 1.9 
200x100 0.46 0.34 473 55 300 953 4.0 1.8 7.1 13.0 
200x200 0.21 0.00 364 44 472 935 3.5 0.8 1.9 6.5 
500x100 0.24 0.19 1003 105 948 3188 16.5 29.8 190.3 237.5 
500x200 0.47 1.09 901 91 1123 3312 42.1 35.5 172.3 251.7 

max 0.75 1.50 1450 171 1246 3961 56.1 50.3 271.2 321.3 
mean 0.32 0.32 613 64 619 1795 13.4 13.6 74.5 102.1 

Total 
max 0.75 1.95 1450 171 1246 3961 56.1 50.3 271.2 321.3 

mean 0.28 0.24 463 47 631 1606 9.7 9.6 37.2 57.0 

plant subsets should result in a strong bound Z^. However, in the case of a larger number of not 
too small plant subsets, more constraints of type (U) have a chance to be violated by solutions 
to the Lagrangean subproblem (33). Regarding the quality of the lower and upper bounds, the 
procedure computed lower bounds which are on the average slightly worse than Z^ but better 
than the LP-bound in Table 2, while the upper bound is significantly better than in the case of 
ZQ but worse than the upper bound obtained from the procedure for Computing Zc- As the 
results in Table 6 show, the bound Zp is usually better in the case of large problems than in the 
case of small problems. If only the test problems of size 500 x 100 or larger are considered, the 
bound Zj) even improves the bound Zc (0.23 % vs. 0.27 % average deviation from an optimal 
value Z for problems of size 500 x 100, and 0.22% vs. 0.26% for problems of size 500 x 200). 
The computational effort required to compute Zn, however, is very large, even larger than the 
effort required for Computing Zc- Also the Variation in the times spent on Computing Z^ is 
substantial: For one problem of size 500 x 100 and ratio r = 3, the total computation time was 
27.8 hours, while for the other problems of this class the computation time was only 1.8 hours on 
average. For one problem of size 500 x 200 and ratio r = 10 even 66.7 hours of computation time 
were consumed compared to an average computation time of 4.5 hours for other problems of 
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Table 5 Results procedure for Computing Zc 
Size LB% UB% ItLR ItM TLR TH TM T-rot 

r = ] Cj Sj/d(!) = 3 
100x100 0.04 0.00 122 122 35.5 0.5 2.0 38.1 
200x100 0.20 0.00 131 131 73.9 1.7 3.3 78.9 
200x200 0.03 0.00 229 228 139.3 4.5 17.6 161.4 
500x100 0.33 0.03 161 161 835.6 9.4 19.9 865.1 
500x200 0.15 0.00 290 290 1273.2 34.0 66.3 1373.5 

max 0.54 0.15 326 326 1855.3 40.6 95.7 1967.3 
mean 0.15 0.01 187 186 471.5 10.0 21.8 503.4 

r = 5 Cj sj/d0) = s 
100x100 0.11 0.00 91 90 51.5 0.3 1.2 53.2 
200x100 0.28 0.00 106 106 330.6 1.2 5.0 336.8 
200x200 0.09 0.00 164 164 432.7 2.8 9.4 444.9 
500x100 0.31 0.01 122 122 2332.9 5.0 11.5 2349.5 
500x200 0.33 0.04 267 267 11487.0 22.6 51.1 11560.9 

max 0.48 0.14 314 314 25128.4 35.2 73.8 25209.3 
mean 0.22 0.01 150 150 2927.0 6.4 15.6 2949.0 

r = I )j Sj/d(l) = 10 
100x100 0.11 0.00 37 36 4.6 0.1 0.1 4.7 
200x100 0.21 0.04 91 51 114.8 0.5 0.9 116.2 
200x200 0.14 0.00 96 96 103.5 0.9 0.7 105.2 
500x100 0.17 0.00 125 125 798.5 3.1 5.3 807.0 
500x200 0.29 0.02 190 190 9853.1 10.0 30.6 9893.9 

Max 0.56 0.18 296 296 16382.0 14.0 39.5 16427.4 
mean 0.18 0.01 108 99 2174.9 2.9 7.5 2185.4 

Total 
max 0.56 0.18 326 326 25128.4 40.6 95.7 25209.3 

mean 0.18 0.01 148 145 1857.8 6.4 15.0 1879.3 

this type. Nevertheless, the bound ZQ improved the usually very strong bound Zc for a variety 
of the larger problem instances. In order to test the heuristic for decomposing the plant set, the 
bound ZQ was also computed by randomly partitioning the plant set into subsets of a random 
cardinality between 10 and 20 plants. The percentage deviation from optimality of the lower 
bound obtained this way amounted to 0.27 %, 0.47 % and 0.55 % on average for test problems 
with capacity index r = 3, r = 5 and r = 10, respectively; the upper bound deviated from an 
optimal Solution by 0.02% (r = 3), 0.19% (r = 5) and 0.19% (r = 10) on average. Compared 
to the proposed heuristic for decomposing the plant set (see Table 6), a random partitioning led, 
therefore, to a significant deterioration in the lower and upper bound. Furthermore, the random 
partitioning approach no more showed the tendency to provide stronger bounds for larger than 
for smaller problem instances. 

6 Conclusions 

In this paper, important Lagrangean bounds for the CFLP were computed exactly by means 
of different stabilized column generation schemes. Furthermore, a new lower bound based on 

19 



Table 6 Results procedure for Computing Zj 
Size LB% UB% IQI ItLR ItM Col-j-ot TLR TH TM Trot 

r = £j Sj/d(l) = :3 
100x100 0.32 0.00 5 62 62 305 32.0 0.3 5.4 37.7 
200x100 0.23 0.00 4 67 67 290 267.7 0.7 16.8 285.5 
200x200 0.12 0.00 9 116 115 987 353.7 2.4 44.1 400.7 
500x100 0.27 0.18 6 111 111 609 24977.0 3.8 297.6 25279.9 
500x200 0.09 0.02 9 100 100 949 2514.2 9.6 154.8 2680.3 

max 0.70 0.43 12 184 184 1472 99461.4 15.2 496.9 99963.8 
mean 0.20 0.04 7 91 91 628 5628.9 3.3 103.7 5736.8 

r = £j Sj/d(l) = : 5 
100x100 0.63 0.02 4 71 71 249 52.5 0.2 6.9 59.7 
200x100 0.41 0.24 4 65 64 230 859.5 0.5 26.0 886.2 
200x200 0.15 0.04 6 128 128 774 385.9 1.7 54.1 442.0 
500x100 0.31 0.14 5 139 138 628 6772.9 2.8 355.2 7131.7 
500x200 0.26 0.34 7 116 115 813 5657.0 7.1 217.9 5884.1 

max 1.05 1.01 9 180 180 992 19724.5 9.0 666.7 20393.4 
mean 0.35 0.16 5 104 103 539 2745.6 2.5 132.0 2880.7 

r = = E jsj/d(0 = 10 
100x100 0.98 0.00 2 83 82 183 26.2 0.1 9.1 35.4 
200x100 0.43 0.06 2 127 86 173 897.2 0.5 38.7 936.5 
200x200 0.50 0.00 3 112 112 382 235.2 0.4 70.9 306.6 
500x100 0.12 0.00 3 60 60 236 6465.3 0.9 404.0 6870.4 
500x200 0.30 0.29 4 157 157 537 59076.4 3.5 1647.1 60727.9 

max 1.45 0.57 5 200 198 735 236956.2 4.1 2425.6 239386.4 
mean 0.47 0.07 3 108 99 302 13340.1 1.1 433.9 13775.4 

Total 
max 1.45 1.01 12 200 198 1472 236956.2 15.2 2425.6 239386.4 

mean 0.34 0.09 5 101 98 490 7238.2 2.3 223.2 7464.3 

partitioning the set of potential plant sites was proposed. 
For the conventional relaxation of the demand constraints a mixture of a "weighted" Dantzig-

Wolfe decomposition method and subgradient optimization, preceded by a pure subgradient 
optimization phase, gave fairly good results. The computation of optimal solutions to the master 
problem by means of this method required less computation time than the determination of a 
bound based on the linear relaxation and additional cutting planes. For large test problems the 
column generation procedure even required less computation time than a simplex algorithm for 
Computing the strong LP-bound. A branch-and-price algorithm based on this column generation 
method should, therefore, give good results for problem instances with relatively tight capacity 
constraints. 

Very strong lower and upper bounds for the CFLP are obtainable from a Lagrangean relax­
ation of the capacity constraints. In order to solve the master problem, an interior point method 
is suitable. Due to the relatively small size of the restricted master problems, more effort can 
be spent on Computing good Lagrangean multipliers from the localization set in order to avoid 
too many calls to the difficult oracle. Although the effort required to compute the bound is 
relatively large, a branch-and-price method based on this approach has to be taken into account 
for large problem instances with relatively loose capacity constraints. 
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Table 7 Bound ZQ for 3 single problem instances of size 1000 x 500 
Gap%a lt|_R ItM Coltot TLR TH TM Txot 

r = 3 0.06 129 129 3483 21769.8 168.7 768.7 22735.1 
r = 5 0.10 167 166 2004 43286.1 66.4 1392.1 44754.3 

r = 10 0.40 234 233 1872 59007.7 49.4 2927.3 61997.1 

"Gap%= 100 • (UB - LB)/LB 

For a number of large problem instances the lower and upper bounds obtained by means of the 
partitioning approach even improved the strong bounds resulting from a Lagrangean relaxation 
of the capacity constraints. Despite the large computation times, the partitioning procedure can, 
therefore, be useful in the case of very large instances which are not tractable by algorithms based 
on one of the other bounding schemes considered. However, additional partitioning heuristics 
have to be devised in order to improve the results of the proposed heuristic for decomposing 
the plant set in the case of problem instances with relatively large plant capacities. Finally, the 
basic idea of the partitioning approach is also applicable to other problems of the assignment 
type, as e.g. uncapacitated facility location problems, p-median problems, bin packing problems, 
fixed-charge transportation problems and generalized assignment problems. 
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