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We consider the problem of maximizing an expected utility function of n assets, such as the mean-variance
or power-utility function. Associated with a change in an asset’s holdings from its current or target value

is a transaction cost. This cost must be accounted for in practical problems. A straightforward way of doing
so results in a 3n-dimensional optimization problem with 3n additional constraints. This higher dimensional
problem is computationally expensive to solve. We present a method for solving the 3n-dimensional problem by
solving a sequence of n-dimensional optimization problems, which accounts for the transaction costs implicitly
rather than explicitly. The method is based on deriving the optimality conditions for the higher-dimensional
problem solely in terms of lower-dimensional quantities. The new method is compared to the barrier method
implemented in Cplex in a series of numerical experiments. With small but positive transaction costs, the barrier
method and the new method solve problems in roughly the same amount of execution time. As the size of the
transaction cost increases, the new method outperforms the barrier method by a larger and larger factor.
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1. Introduction
In a financial setting, holdings of assets may be
bought or sold according to some criterion, typically
the investor’s utility function. Two well-known such
utility functions are the mean-variance utility func-
tion (Bodie et al. 1999, Luenberger 1998, Markowitz
1959) and the power-utility function (Grauer and
Hakansson 1993). In response to changed data, the
utility function implies a change should be made in
an investor’s holdings. In practical situations, there is
a cost associated with buying or selling an asset. This
is called the transaction cost.
Intuitively, if a transaction cost for a particular asset

is very large, it may not be advantageous to change
the holdings of that asset, and the holdings of that
asset remain at their initial values. Alternatively, if the
transaction cost is quite small, it may be advantageous
to make the trade and incur the transaction cost.
A solution for a portfolio optimization problem

with linear transaction costs is given in Best and
Hlouskova (2003). Their model problem assumes a
diagonal covariance matrix, the budget constraint
and upper bounds on all assets’ holdings. See also
Schattman (2000) for an overview of transaction costs
in a variety of settings.
In this paper we present an algorithm to maximize

an expected utility function of n asset holdings while

accounting for transaction costs. As we shall show,
transaction costs can be accounted for by solving an
optimization problem with 2n additional variables
and 3n additional linear constraints. However, the
method we present will require the solution of a num-
ber of n-dimensional problems without the additional
linear constraints and thus with corresponding sav-
ings in computer time and storage. The key idea is
to treat the transaction costs implicitly rather than
explicitly.
Throughout this paper prime �′� denotes transpo-

sition. All vectors are column vectors unless primed.
The notation zi or �z�i will be used to denote the
ith component of the vector z.
Consider the following problem

minimize: f �x�

subject to: Ax≤ b
 d ≤ x≤ e

(1.1)

where A is an m× n matrix, b is an m-vector, x is an
n-vector of asset holdings, d and e are n-vectors of
lower and upper bounds on x, respectively, and −f �x�
is an expected utility function.1 The constraints Ax≤ b

1 We prefer a minimization model. Minimizing f �x� gives the same
solution as maximizing −f �x�.
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represent general linear constraints on the asset hold-
ings, and the constraints d ≤ x ≤ e impose explicit
bounds on the asset holdings. Let

S ≡ �x ∈�n �Ax≤ b
 d ≤ x≤ e� (1.2)

denote the feasible region for (1.1), where �n is the
set of all real n-vectors. We assume that a target
n-vector �x is given. �x could represent the current hold-
ings of assets so that purchase transaction costs are
measured by the amount increased from �x and sales
transaction costs are measured by a decrease from �x.
Alternatively, �x could represent an index fund being
followed, such as the Standard & Poor’s 500.
In optimizing the expected utility function with no

transaction costs, there is the possibility of making a
large change in the holdings with only a small change
in the utility function. The actual transaction cost for
such a large move would be quite significant with
very little gain in utility. The inclusion of transaction
costs in the model precludes this possibility.
Let x+ and x− denote n-vectors of amounts pur-

chased and sold, respectively. These quantities are
related to the actual holdings x according to

x= �x+ x+ − x−
 x+ ≥ 0
 x− ≥ 0� (1.3)

For i = 1
 � � � 
n we assume the purchase cost for x+
i

is given by pi�x
+
i � and the sales cost for x−

i is given
by qi�x

−
i �. Thus, the transaction costs are assumed to

be separable. In addition, we shall assume that each
pi�x

+
i � and qi�x

−
i � is a convex and increasing

2 function
of its argument for all x+

i ≥ 0 and x−
i ≥ 0, respectively.

The total cost of the transactions is thus

p�x+�+ q�x−�


where p�x+�=∑n
i=1 pi�x

+
i � and q�x−�=∑n

i=1 qi�x
−
i �.

For the case of a mean-variance utility function
we have

f �x�=−t�′x+ 1
2x

′Cx


where � is an n-vector of expected returns, C is an
n×n covariance matrix and t is a fixed scalar param-
eter.3 The expected return of the portfolio is �′x and
its variance is x′Cx. One way to incorporate transac-
tion costs into this model is to reduce the portfolio
expected return by the transaction cost. This approach

2 One of the authors is a consultant to several North American
financial institutions for algorithms to solve portfolio optimization
problems. In his experience, increasing piecewise linear transaction
costs (which are convex) are quite popular in practice.
3 As t is varied from 0 to +�, the plot of the corresponding opti-
mal portfolio means and variances gives the well-known efficient
frontier.

was taken in Best and Kale (2000). The problem to be
solved is then

minimize: −t�′x+ 1
2x

′Cx+ tp�x+�+ tq�x−�

subject to: x− x+ + x− = �x
 Ax≤ b


d ≤ x≤ e


x+ ≥ 0
 x− ≥ 0� (1.4)

For the case of the power-utility function (Grauer
and Hakansson 1993) for a single period,

f �x�=−∑
s

�s

1
�
�1+ r ′sx�

�
 (1.5)

where rs is the vector of returns for state s, �s is the
probability that state s occurs, and � is a parameter
such that � < 1. As � tends to zero, the power-utility
function tends to the logarithmic utility function.
The Taylor’s series for (1.5) taken about the origin is

f �x�=− 1
�

∑
s

�s −
∑
s

�sr
′
sx+O�
x
2��

The linear part of this is the negative of the expected
return of the portfolio. Similar to the mean-variance
case we can incorporate transaction costs into this
model by reducing the expected return with the trans-
action costs. The problem to be solved is

minimize: −∑
s

�s

1
�
�1+r ′sx�

�+p�x+�+q�x−�

subject to: x−x++x−= �x
 Ax≤b


d≤x≤e


x+≥0
 x−≥0� (1.6)

We assume that the general constraints Ax ≤ b in-
corporate constraints 1 + r ′sx ≥ �s , �s > 0, with �s
sufficiently small. This implies that the expected
power-utility function is well defined (see Grauer and
Hakansson 1993).
More generally, let −f �x� be any concave twice-

differentiable expected utility function such that
−�f �0�′x is a nonnegative multiple  of the expected
return of the portfolio. Then the corresponding ver-
sion of (1.4) or (1.6) will have the same constraints
and the objective function

f �x�+  p�x+�+  q�x−�
 (1.7)

where the transaction costs have the interpretation of
decreasing the expected return of the portfolio. Note
that both the mean-variance and power-utility func-
tions satisfy this property.
A basic difficulty of incorporating transaction costs

is that it triples the number of problem variables
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and requires the addition of 3n linear constraints.
This gives an optimization problem that is con-
siderably more time consuming to solve. In §2,
we will derive relationships between the n- and
3n-dimensional problems expressed solely in terms of
n-dimensional quantities. In §3, we will use the ana-
lytical results of §2 to derive an algorithm for the solu-
tion of the 3n-dimensional problem solely in terms
of n-dimensional quantities and discuss its efficiency
compared to any algorithm applied directly to the
3n-dimensional problem. Section 4 presents computa-
tional results, and §5 gives conclusions.

2. Reduction of Problem
Dimensionality

The addition of transaction costs to (1.1) resulted
in the two example Problems (1.4) and (1.6) being
3n-dimensional. Solving a 3n-dimensional problem is
computationally considerably more expensive than
solving an n-dimensional problem, and in practical
problems n can be quite large. It is the purpose of this
section to establish relationships between the n- and
3n-dimensional problems. The major result of this
section is Theorem 2.1, which establishes optimality
conditions for the 3n-dimensional problem solely in
terms of n-dimensional quantities.
Each of (1.4) and (1.6) is a special case of the fol-

lowing 3n-dimensional model problem

minimize: f �x�+ p�x+�+ q�x−�

subject to: x− x+ + x− = �x
 Ax≤ b


d ≤ x≤ e


x+ ≥ 0
 x− ≥ 0
 (2.1)

where A, b, x, d, and e are as in (1.1) and �x
x+,
x− ∈�n. We shall use (2.1) as our model problem and
in §3 develop a solution algorithm for it. Note that
 p�x+� and  q�x−� in (1.7) have been replaced by p�x+�
and q�x−� in (2.1). Multiplication by a positive scalar
will not change the assumptions required below.
Our analysis will require the following two as-

sumptions.

Assumption 2.1. d < �x < e.

Assumption 2.2. Let x, x+, and x− ∈�n.
(i) f �x� is a twice differentiable convex function;
(ii) p�x+� and q�x−� are separable functions; that is,

p�x+�=∑n
i=1 pi�x

+
i � and q�x−�=∑n

i=1 qi�x
−
i �;

(iii) pi�x
+
i � and qi�x

−
i � are convex functions of a single

variable for i= 1
 � � � 
n;
(iv) p, q are twice differentiable functions;
(v) �p�x+� ≥ 0 and �q�x−� ≥ 0; that is, pi�x

+
i � and

qi�x
−
i � are increasing functions for i= 1
 � � � 
n.

Definition 2.1. Let x ∈�n. The index sets of x are
defined as follows:

I+�x� = �i � xi > �xi�
I�x� = �i � xi = �xi�

I−�x� = �i � xi < �xi��
Definition 2.2. Let x
y ∈�n.
(i) x+ ∈�n is the positive portion of x with respect

to y if

x+
i =

{
xi − yi
 i such that xi ≥ yi


0
 i such that xi < yi�

(ii) x− ∈�n is the negative portion of x with respect
to y if

x−
i =

{
0
 i such that xi > yi


yi − xi
 i such that xi ≤ yi�

Note that if x+ and x− are the positive and negative
portions of x with respect to �x, then �x′
 �x+�′
 �x−�′�′

satisfies the constraints x+ ≥ 0, x− ≥ 0, and x − x+ +
x− = �x.
We will formulate an algorithm for the solution

of (2.1) in terms of solving a sequence of subprob-
lems. The subproblems to be solved depend on two
n-vectors d̃ and ẽ as follows:

SUB�d̃
 ẽ �# min
{
f �x�+ c̃�d̃
 ẽ
 x� �Ax≤ b
 d̃ ≤ x≤ ẽ

}
�

The vectors d̃ and ẽ are to be specified. They will al-
ways satisfy

d̃i=di
 ẽi= �xi or d̃i= �xi
 ẽi=ei
 or

d̃i= ẽi= �xi� (2.2)

In addition, c̃�d̃
 ẽ
 x� = ∑n
i=1 c̃i�d̃i
 ẽi
 xi�, where for

i= 1
 � � � 
n

c̃i�d̃i
ẽi
xi�=



pi�xi− �xi�
 if d̃i= �xi and ẽi=ei


0
 if d̃i= ẽi= �xi

qi��xi−xi�
 if d̃i=di and ẽi= �xi�

(2.3)

The subproblem SUB�d̃
 ẽ� is an n-dimensional
problem with linear constraints and a convex, twice-
differentiable, nonlinear objective function. There are
many algorithms with demonstrably rapid conver-
gence rates to solve it. See, for example, Best and Ritter
(1976).
Remark 2.1. (a) The feasible region for SUB�d̃
 ẽ� is

a compact set. From Assumption 2.2(i)(iv), the objec-
tive function for SUB�d̃
 ẽ� is continuous. These two
facts imply the existence of a solution for SUB�d̃
 ẽ�.
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(b) Note that for (2.1) the upper and lower bounds
on x and the continuity of f �x� (from Assump-
tion 2.2(i)) imply f �x� is bounded from below over the
feasible region of (2.1). Furthermore, from Assump-
tion 2.2(ii), (v), p�x+� + q�x−� is also bounded from
below over the feasible region of (2.1). Therefore, the
objective function for (2.1) is bounded from below
over the feasible region of (2.1).
Let �x′
 �x+�′
 �x−�′�′ be any feasible solution

for (2.1). Then �x′
 �x+ + %l�′
 �x− + %l�′�′
 where % is
any nonnegative scalar and l is the n-vector of ones, is
also a feasible solution for (2.1). The following lemma
shows that if (2.1) possesses an optimal solution, then
there is an optimal solution for (2.1), for which no pair
of components can be strictly positive.
Let G�x
x+
x−� ≡ f �x� + p�x+� + q�x−� denote the

objective function for (2.1).

Lemma 2.1. Let Assumption 2.2(ii)(v) be satisfied and
assume (2.1) possesses at least one optimal solution. Then
there exists an optimal solution �x′
 �x+�′
 �x−�′�′ for (2.1)
such that both x+

k and x−
k can not be strictly positive for

k= 1
 � � � 
n.

Proof. Let �y′
 �y+�′
 �y−�′�′ be any optimal solution
for (2.1). Suppose for some k with 1≤ k≤ n that

y+
k ≥ y−

k > 0� (2.4)

Let �x′
 �x+�′
 �x−�′�′ be obtained from �y′
 �y+�′
 �y−�′�′

as follows: x = y and x+
i = y+

i , x
−
i = y−

i for all i = 1

� � � 
n, i �= k, x+

k = y+
k − y−

k , x−
k = 0. Clearly, �x′


�x+�′
 �x−�′�′ is feasible for (2.1). Then from Assump-
tion 2.2(ii) it follows that

G�x
x+
x−� = G�y
y+
y−�+ �pk�y
+
k − y−

k �− pk�y
+
k ��

+ �qk�0�− qk�y
−
k ��� (2.5)

From Assumption 2.2(v)

pk�y
+
k −y−

k �−pk�y
+
k �≤0 and qk�0�−qk�y

−
k �≤0� (2.6)

There are two cases to be considered.
Case 1. pk�y

+
k −y−

k �−pk�y
+
k � < 0 or qk�0�− qk�y

−
k � < 0.

In this case it follows from (2.5) and (2.6) that
G�x
x+
x−� < G�y
y+
y−�, which contradicts the
optimality of �y′
 �y+�′
 �y−�′�′. Thus, Case 1 cannot
occur. From (2.6), the remaining possibility is Case 2.

Case 2. pk�y
+
k −y−

k �−pk�y
+
k �= 0 and qk�0�− qk�y

−
k �=

0. In this case G�x
x+
x−� = G�y
y+
y−� and the
modified solution is an alternate optimal solution.
Furthermore, the modified solution has the property
that not both x+

k and x−
k can be strictly positive.

This modification can be performed on all other
components, which satisfy (2.4). Furthermore, an
analogous modification can be used for the case y−

k ≥
y+
k > 0. Repeated use of these modifications will pro-
duce an optimal solution having the property in the
statement of the lemma. This completes the proof of
the lemma. �

Definition 2.3. If �x′
 �x+�′
 �x−�′�′ is a feasible
solution for (2.1) and satisfies the property that not
both of x+

i , x
−
i are strictly positive for i = 1
 � � � 
n

then we call �x′
 �x+�′
 �x−�′�′ a proper feasible solu-
tion. Additionally, if �x′
 �x+�′
 �x−�′�′ is a proper fea-
sible solution, which is optimal for (2.1), then we call
�x′
 �x+�′
 �x−�′�′ a proper optimal solution.
In light of Lemma 2.1, we restrict our search for an

optimal solution for (2.1) to a proper optimal solution.

Lemma 2.2. Let �x′
 �x+�′
 �x−�′�′ have the following
properties: (i) x+

i x
−
i = 0, for i = 1
 � � � 
n; (ii) x − x+ +

x− = �x; (iii) x+ ≥ 0, x− ≥ 0. Then x+ and x− are positive
and negative portions of x with respect to �x, respectively.
Proof. Let �x′
 �x+�′
 �x−�′�′ have Properties (i)–(iii)

stated in Lemma 2.2. Let k ∈ I+�x�. Then according to
Definition 2.1, xk > �xk. From Properties (ii) and (iii) it
follows that x+

k > 0. This last and Property (i) imply

x−
k = 0
 for k ∈ I+�x�� (2.7)

It follows from (2.7) and Property (ii) that

x+
k = xk − �xk
 for k ∈ I+�x�� (2.8)

Analogously, it can be shown that

x+
k = 0 and x−

k = �xk − xk
 for k ∈ I−�x�� (2.9)

Let k ∈ I�x�; that is, according to Definition 2.1, xk = �xk.
This and Property (ii) imply that x+

k = x−
k . From this

last and Property (i) it follows that

x+
k = x−

k = 0
 for k ∈ I�x�� (2.10)

Finally, it follows from Definition 2.2 and (2.7)–(2.10)
that x+ and x− are the positive and negative portions
of x with respect to �x, respectively. �

Corollary 2.1. If �x′
 �x+�′
 �x−�′�′ is a proper feasible
solution for (2.1), then x+ and x− are the positive and
negative portions of x with respect to �x, respectively.
Proof. This follows directly from Definition 2.3

and Lemma 2.2. �

Lemma 2.3. If x∗ is an optimal solution for SUB�d̃
 ẽ�,
then x∗ is optimal solution for SUB�d̂
 ê�, where

d̂i =


d̃i
 i ∈ �1
 � � � 
n�− �I�x∗�− J �


�xi
 i ∈ I�x∗�− J 

(2.11)

êi =


ẽi
 i ∈ �1
 � � � 
n�− �I�x∗�− J �


�xi
 i ∈ I�x∗�− J 

(2.12)

and
J = �i � d̃i = ẽi = �xi�� (2.13)
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Proof. Let x∗ be an optimal solution for SUB�d̃
 ẽ�
and �S and �S be sets of feasible solutions of SUB�d̃
 ẽ�
and SUB�d̂
 ê�, respectively; that is,

�S = �x �Ax≤ b
 d̃ ≤ x≤ ẽ�


�S = �x �Ax≤ b
 d̂ ≤ x≤ ê��
(2.14)

Let �F �x� be the objective function of SUB�d̃
 ẽ� and
�F �x� be the objective function of SUB�d̂
 ê�. Then
according to (2.3), (2.11), and (2.12),

�F �x�= �F �x�+∑
i∈J̃1

pi�xi − �xi�+
∑
i∈J̃2

qi��xi − xi�
 (2.15)

where J̃1= �i � i ∈ I�x∗�− J 
 d̃i=�xi
 ẽi = ei� and J̃2=�i � i∈
I�x∗�− J 
 d̃i = di
 ẽi = �xi�.
From the definitions of d̂ and ê (see (2.11)–(2.13))

and because x∗ is an optimal solution for SUB�d̃
 ẽ�,
then

�S ⊂ �S�
This last and the fact that x∗ is an optimal solution

for SUB�d̃
 ẽ� imply that

�F �x∗�≤ �F �x�
 for all x ∈ �S� (2.16)

From this and (2.15), it follows that for all x ∈ �S
�F �x∗�+∑

i∈J̃1
pi�x

∗
i − �xi�+

∑
i∈J̃2

qi��xi − x∗
i �

≤ �F �x�+∑
i∈J̃1

pi�xi − �xi�+
∑
i∈J̃2

qi��xi − xi��

Thus, Definition 2.1 and (2.11)–(2.14) imply for
all x ∈ �S
�F �x∗�+∑

i∈J̃1
pi�0�+

∑
i∈J̃2

qi�0�≤ �F �x�+∑
i∈J̃1

pi�0�+
∑
i∈J̃2

qi�0��

Thus,
�F �x∗�≤ �F �x� for all x ∈ �S


which implies that x∗ is an optimal solution for
SUB�d̂
 ê�. This completes the proof of the lemma. �

Assumption 2.2(i), (iii), and (iv), together with the
linearity of the constraints, imply that the Karush-
Kuhn-Tucker (KKT) conditions for (2.1) are both nec-
essary and sufficient for optimality (see Mangasarian
1969). The KKT conditions for (2.1) are

−�f �x�=z+A′u+u1−u2


u≥0
u1≥0
u2≥0

−�p�x+�=−z−v
 v≥0

−�q�x−�=z−w
 w≥0


�x+�′v=0
 �x−�′w=0
 u′�Ax−b�=0

u′
1�e−x�=0
 u′

2�x−d�=0

x−x++x−= �x
 Ax≤b


d≤x≤e
 x+≥0
 x−≥0
 (2.17)

where u, u1, u2, z, v, and w are the vectors of
multipliers for the constraints Ax≤b, x≤e, x≥d, x−
x++x−= �x, x+≥0, and x−≥0, respectively.
The multipliers u, v, and w play a special role in

our analysis. The next result shows that they always
have a certain form.

Lemma 2.4. Let Assumptions 2.1 and 2.2(i)–(iv) be
satisfied. If ��x∗�′
�x∗+�′
�x∗−�′�′ is a proper optimal solu-
tion for (2.1), then the multipliers for the constraints
x−x++x−= �x, x+≥0, and x−≥0 are z, v, and w, respec-
tively, where

zi=




dpi�x
∗
i − �xi�

dx+
i


 i∈ I+�x∗�


−��f �x∗��i−�A′u�i
 i∈ I�x∗�


−dqi��xi−x∗
i �

dx−
i


 i∈ I−�x∗�


vi=




0
 i∈ I+�x∗�


��f �x∗��i+�A′u�i+
dpi�0�
dx+

i


 i∈ I�x∗�


dpi�0�
dx+

i

+ dqi��xi−x∗
i �

dx−
i


 i∈ I−�x∗�


wi=




dpi�x
∗
i − �xi�

dx+
i

+ dqi�0�
dx−

i


 i∈ I+�x∗�


−���f �x∗��i+�A′u�i�+
dqi�0�
dx−

i


 i∈ I�x∗�


0
 i∈ I−�x∗�


(2.18)

with u being the m-vector of multipliers for the con-
straints Ax≤b.

Proof. According to Assumption 2.2(i)–(iv), (2.1) is
a convex programming problem and thus the KKT
conditions for (2.1), namely (2.17), are sufficient for
optimality. Thus, there exist u, u1, u2, z, v, and w,
which are the vectors of multipliers for the constraints
Ax≤b, x≤e, x≥d, x−x++x−= �x, x+≥0, and x−≥0,
respectively, such that (2.17) is satisfied for x=x∗,
x+=x∗+, and x−=x∗−. According to Assumption 2.1,
�u1�i= �u2�i=0 for i∈ I�x∗�. Corollary 2.1 implies that
x∗+ and x∗− are positive and negative portions of
x∗ with respect to �x, respectively. From this last,
Assumption 2.2(ii), and (2.17), it follows that v, w,
and z defined by (2.18) are the multipliers for the con-
straints x+≥0, x−≥0, and x−x++x−= �x, respectively.
This completes the proof of the lemma. �

The following key result relates an optimal solution
for SUB�d̃
ẽ� with an optimal solution for (2.1).
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Theorem 2.1. (a) Let Assumptions 2.1 and 2.2 be sat-
isfied. Let x∗ be an optimal solution for SUB�d̃
ẽ�, let u be
the m-vector of multipliers for the constraints Ax≤b, and
let x∗+ and x∗− be the positive and negative portions of x∗

with respect to �x, respectively. Then ��x∗�′
�x∗+�′
�x∗−�′�′

satisfies all the KKT conditions for (2.1) with the possible
exception of nonnegativity of some multipliers for the con-
straints x+

i ≥0 or x−
i ≥0 for i∈ I�x∗�. For all i∈ I�x∗� these

multipliers are

vi≡ ��f �x∗��i+�A′u�i+
dpi�0�
dx+

i


 (2.19)

wi≡−���f �x∗��i+�A′u�i�+
dqi�0�
dx−

i

� (2.20)

If vi≥0 and wi≥0 for all i∈ I�x∗�, then ��x∗�′
 �x∗+�′

�x∗−�′�′ is a proper optimal solution for (2.1).
(b) Let Assumption 2.2(ii), (v) be satisfied. Then if x∗

is an optimal solution for SUB�d̃
ẽ�, then ��x∗�′
 �x∗+�′

�x∗−�′�′ is a proper optimal solution for (2.1) where the con-
straints d≤x≤e are replaced by the constraints d̃≤x≤ ẽ
of SUB�d̃
ẽ� and where x∗+ and x∗− are the positive and
negative portions of x∗ with respect to �x, respectively.

Proof. (a) Let x∗ be an optimal solution of
SUB�d̃
ẽ�. Then according to Lemma 2.3, x∗ is also
optimal for SUB�d̂
ê�, where d̂ and ê are given by
(2.11) and (2.12), respectively. (2.2) and (2.3) imply that
the KKT conditions for SUB�d̂
ê� can be written as
follows:

−��f �x��i−
dpi�xi− �xi�

dx+
i

= �A′u�i+� �u1�i−� �u2�i


d̂i= �xi
 êi=ei


−��f �x��i = �A′u�i+� �u1�i−� �u2�i

d̂i= êi= �xi


−��f �x��i+
dqi��xi−xi�

dx−
i

= �A′u�i+� �u1�i−� �u2�i

d̂i=di
 êi= �xi

Ax≤b
 d̂≤x≤ ê


u≥0
 �u1≥0
 �u2≥0

u′�Ax−b�=0
 �u′

1�ê−x�=0

�u′
2�x− d̂�=0
 (2.21)

where u is the m-vector of multipliers for the con-
straints Ax≤b and �u1≥0, and �u2≥0 are the n-vectors
of multipliers for the constraints x≤ ê and x≥ d̂,
respectively.
From (2.2), (2.11), (2.12), and Definition 2.1 we

obtain

i∈ I−�x∗� if and only if d̂i=di
êi= �xi

i∈ I+�x∗� if and only if d̂i= �xi
êi=ei


i∈ I�x∗� if and only if d̂i= êi= �xi�
(2.22)

For i∈ I�x∗� define

yi≡ � �u1�i−� �u2�i� (2.23)

Definition 2.1, (2.22), the complementarity part of the
KKT conditions (2.21), namely �u′

1�ê−x�=0, and �u′
2�x−

d̂�=0 imply the following:
� �u1�i=0 for i∈ I−�x∗�
 and

� �u2�i=0 for i∈ I+�x∗�� (2.24)

Finally, let u1 and u2 be defined as follows:

�u1�i ≡


� �u1�i
 i ∈ I+�x∗�


0
 i ∈ I�x∗�∪ I−�x∗�

(2.25)

�u2�i ≡


� �u2�i
 i ∈ I−�x∗�


0
 i ∈ I+�x∗�∪ I�x∗��
(2.26)

Then it follows from (2.22)–(2.26) that the KKT condi-
tions for SUB�d̂
 ê�, namely (2.21), can be written as

−��f �x��i−
dpi�xi− �xi�

dx+
i

= �A′u�i+�u1�i
 i∈ I+�x∗�


−��f �x��i = �A′u�i+yi
 i∈ I�x∗�


−��f �x��i+
dqi��xi−xi�

dx−
i

= �A′u�i−�u2�i
 i∈ I−�x∗�


Ax≤b
 d̂≤x≤ ê


u≥0
 u1≥0
 u2≥0

u′�Ax−b�=0
 u′

1�ê−x�=0

u′
2�x− d̂�=0� (2.27)

Because, according toAssumption 2.2(i)–(iv), SUB�d̂
 ê�
is a convex programming problem with linear con-
straints, the KKT conditions (2.27) are both necessary
and sufficient for optimality (see Mangasarian 1969).
Thus, if x∗ is an optimal solution for SUB�d̂
 ê�, then
there exist u, �u1, and �u2 and thus also yi, i ∈ I�x∗�, u1
and u2, defined by (2.23), (2.25), and (2.26), such that
the KKT conditions (2.27) are satisfied for x= x∗.
Let x= x∗, u, u1, and u2 be as defined in (2.27) and

let x+ = x∗+ and x− = x∗− be the positive and negative
portions of x∗ with respect to �x, respectively. Addi-
tionally, let v, w, and z be defined by (2.18); that is,
according to Corollary 2.1 and Lemma 2.4, v, w, and z
are multipliers for the constraints x+ ≥ 0, x− ≥ 0, and
x− x+ + x− = �x in (2.1). Assumption 2.2(v) and (2.18)
imply that

vi≥0 and wi≥0
 for all i∈ I+�x∗�∪I−�x∗�� (2.28)

Then from (2.25)–(2.28) it follows that all the KKT con-
ditions for (2.1), namely (2.17), are satisfied, with the
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possible exception of nonnegativity of some multipli-
ers for the constraints x+

i ≥ 0 or x−
i ≥ 0 for i ∈ I�x∗�. If

in addition vi ≥ 0 and wi ≥ 0 for all i ∈ I�x∗�, then all
the KKT conditions for (2.1) are satisfied. As (2.1) is
a convex programming problem, the KKT conditions
(2.17) are sufficient for optimality. This implies that
��x∗�′
 �x∗+�′
 �x∗−�′�′ is an optimal solution for (2.1).
Furthermore, by construction ��x∗�′
 �x∗+�′
 �x∗−�′�′ is a
proper optimal solution for (2.1). This completes the
proof of part (a) of the theorem.
(b) Let D be the set of proper feasible solutions

of (2.1). Thus according to Corollary 2.1, the set D is
defined as

D ≡ {
�x′
 �x+�′
 �x−�′�′ �Ax≤ b
 d̃ ≤ x≤ ẽ
 x+ and x−

are positive and negative portions of x with
respect to �x}� (2.29)

Additionally, let �F �x� be the objective function of
SUB�d̃
 ẽ�. Then (2.3) implies that

�F �x�= f �x�+∑
i∈J1

pi�xi − �xi�+
∑
i∈J2

qi��xi − xi�
 (2.30)

where J1 = �i � d̃i = �xi
 ẽi = ei� and J2 = �i � d̃i = di

ẽi = �xi�.
We refer to (P) as (2.1) with the constraints d ≤

x ≤ e being replaced by the constraints d̃ ≤ x ≤ ẽ of
SUB�d̃
 ẽ�. Assumption 2.2(ii) and (v) and Lemma 2.1,
which is also valid for (P), imply that for the proper
optimality of (P) it is sufficient to show that there
exists �y′
 �y+�′
 �y−�′�′ ∈D such that

f �y�+ p�y+�+ q�y−�≤ f �x�+ p�x+�+ q�x−�

for all �x′
 �x+�′
 �x−�′�′ ∈D� (2.31)

The definition of D, SUB�d̃
 ẽ�, (2.2), (2.3), and (2.30)
imply that for all �x′
 �x+�′
 �x−�′�′ ∈D

f �x�+ p�x+�+ q�x−�

= f �x�+ ∑
i∈I+�x�

pi�xi − �xi�+
∑

i∈I�x�∪I−�x�
pi�0�

+ ∑
i∈I−�x�

qi��xi − xi�+
∑

i∈I+�x�∪I�x�
qi�0�

= f �x�+∑
i∈J1

pi�xi − �xi�+
∑

i∈J∪J2
pi�0�

+∑
i∈J2

qi��xi − xi�+
∑

i∈J1∪J
qi�0�

= �F �x�+ ∑
i∈J∪J2

pi�0�+
∑

i∈J1∪J
qi�0�
 (2.32)

where J = �i � d̃i = ẽi = �xi�. If x∗ is the optimal solution
for SUB�d̃
 ẽ�, then (2.32) and the fact that the feasible
region of SUB�d̃
 ẽ� coincides with the x portion of D
imply the validity of (2.31) for y = x∗, y+ = x∗+, and
y− = x∗−, where x∗+ and x∗− are positive and nega-
tive portions of x∗ with respect to �x, respectively. This
completes the proof of part (b) of the theorem. �

3. A Solution Algorithm
In this section, we formulate a solution method
for (2.1) solely in terms of n-dimensional quanti-
ties. This method treats the variables x+ and x−, the
constraint x − x+ + x− = �x, as well as the constraints
x+ ≥ 0, x− ≥ 0 implicitly rather than explicitly. At each
iteration j , each xi is restricted according to one of
the possibilities: (i) di ≤ xi ≤ �xi, (ii) xi = �xi, or (iii) �xi ≤
xi ≤ ei. The objective function for SUB�d̃
 ẽ� is created
from the objective function of (1.1) by the addition
of transaction costs terms according to (i)–(iii) as fol-
lows: In the case of (i) this term is qi��xi − xi�, which
is the transaction cost for selling the amount �xi−xi of
asset i. In the case of (ii) this term is zero. In the case
of (iii) this term is pi�xi − �xi�, which is the transaction
cost for buying the amount xi − �xi of asset i.
At the jth iteration, SUB�d̃
 ẽ� is solved to produce

optimal solution xj+1 and multipliers uj+1 for the con-
straints Ax≤ b, then for each i ∈ I�xj+1� the multipliers
v
j+1
i and w

j+1
i can be calculated from Theorem 2.1(a).

If these are all nonnegative, then from Theorem 2.1(a),
��xj+1�′
 �x+�′
 �x−�′�′ is optimal for (2.1), where x+

and x− are the positive and negative portions of xj+1

with respect to �x, respectively.
Otherwise, suppose v

j+1
k1

is the smallest of these
multipliers. For the next iteration, the upper bound
on xk1 is changed to ek1 and the lower bound on it
is changed to �xk1 . If w

j+1
k2

is the smallest such mul-
tiplier, then for the next iteration, the lower bound
on xk2 is changed to dk2 and the upper is changed
to �xk2 . From Lemma A.1 (see appendix), the objective
function value for (2.1) for the next iteration will be
strictly less than the present one.
Next we give a detailed formulation of the algo-

rithm.

Algorithm
Model Problem: Problem (2.1) under
Assumptions 2.1, 2.2, and S �= �, where S is
given by (1.2).

Begin
Initialization:
Start with any x0 ∈ S. Construct the initial bounds
d̃0, ẽ0 as follows:
do for i= 1
 � � � 
n
if x0i > �xi set d̃0i = �xi
 ẽ0i = ei
elseif x0i < �xi set d̃0i = di
 ẽ

0
i = �xi

else set d̃0i = ẽ0i = �xi
endif
enddo
Set j = 0 and go to Step 1.

Step 1: Solution of Subproblem
Solve SUB�d̃j 
 ẽj � to obtain optimal solution xj+1

and the multiplier vector uj+1 for the constraints
Ax≤ b. Go to Step 2.



Best and Hlouskova: Algorithm for Portfolio Optimization with Transaction Costs
Management Science 51(11), pp. 1676–1688, © 2005 INFORMS 1683

Step 2: Update and Optimality Test
For i ∈ I�xj+1� compute

v
j+1
i = ��f �xj+1�+A′uj+1�i +

dpi�0�
dx+

i




w
j+1
i =−��f �xj+1�+A′uj+1�i +

dqi�0�
dx−

i

.

Further, compute k1 and k2 such that

v
j+1
k1

=min
{
v
j+1
i � i ∈ I�xj+1�

}
,

w
j+1
k2

=min
{
w

j+1
i � i ∈ I�xj+1�

}
.

if vj+1
k1

≥ 0 and w
j+1
k2

≥ 0, then STOP with a proper
optimal solution ��xj+1�′
 �xj+1
+�′
 �xj+1
−�′�′ for
(2.1), where xj+1
+ and xj+1
− are positive and
negative portions of xj+1 with respect to �x,
respectively.
elseif vj+1

k1
≤w

j+1
k2

then set

d̃
j+1
i =

{
d̃
j
i 
 i ∈ �1
 � � � 
n�− I�xj+1�


�xi
 i ∈ I�xj+1�


ẽ
j+1
i =



ẽ
j
i 
 i ∈ �1
 � � � 
n�− I�xj+1�


�xi
 i ∈ I�xj+1�− �k1�


ek1
 i= k1


replace j with j + 1 and go to Step 1.
else set

d̃
j+1
i =



d̃
j
i 
 i ∈ �1
 � � � 
n�− I�xj+1�


�xi
 i ∈ I�xj+1�− �k2�


dk2
 i= k2


ẽ
j+1
i =

{
ẽ
j
i 
 i ∈ �1
 � � � 
n�− I�xj+1�


�xi
 i ∈ I�xj+1�

replace j with j + 1 and go to Step 1.
endif
End

Remark 3.1. (a) In light of Remark 2.1, the algo-
rithm needs no provision for the possibility that (2.1)
is unbounded from below.
(b) Consecutive subproblems differ in that one or

more pairs of bounds have been replaced by others
and corresponding changes have been made in the
convex separable part of the objective function. Fur-
thermore, the optimal solution for SUB�d̃j 
 ẽj � is feasi-
ble for SUB�d̃j+1
 ẽj+1� and may be used as a starting
point for it. Thus, if S �= �, then the feasible region of
any subproblem solved by the algorithm is nonempty.
The algorithm is demonstrated in the following two

examples, which also show the values of the objective
function for (2.1) at each iteration.
Example 3.1. f �x�=−6x1+x21−2x2+x22, �x= �1
1�′,

p�x+� = 10x+
1 + x+

2 , q�x−� = x−
1 , A and b are null,

d= �0
0�′, e= �2
2�′.

Initialization: We choose x0 = �2
1�′ as the start-
ing point for the subproblem. Then d̃0 = �1
1�′, ẽ0 =
�2
1�′, and thus c̃0�x�= 10�x1−1�. In addition, G�x0

x0
+
x0
−�= 1, where x0
+ = �1
0�′, x0
− = �0
0�′.
Step 1: SUB�d̃0
 ẽ0� is precisely the problem:

min
{
4x1+ x21 − 2x2+ x22 − 10 � 1≤ x1 ≤ 2
 x2 = 1

}



which has optimal solution x1 = �1
1�′.
Step 2: I�x1�= �1
2�, v1 = �6
1�′, w1 = �5
0�′. Since
v1 ≥ 0 and w1 ≥ 0, ��x1�′
 �x1
+�′
 �x1
−�′�′ is optimal
for (2.1) with the given data, where x1
+ = �0
0�′ and
x1
− = �0
0�′. Furthermore, G�x1
x1
+
x1
−�=−6.
Example 3.2. We obtain a second example from

Example 3.1 by leaving f �x�, �x, q�x−�, x0, A, b, d, and e
unchanged but taking p�x+�= 3x+

1 + x+
2 .

Initialization: Then d̃0 = �1
1�′, ẽ0 = �2
2�′ and thus
c̃0�x�= 3�x1− 1�. In addition, G�x0
x0
+
x0
−�=−6,
where x0
+ = �1
0�′, x0
− = �0
0�′.
Step 1: SUB�d̃0
 ẽ0� is precisely the problem:

min
{−3x1+ x21 − 2x2+ x22 − 3 � 1≤ x1 ≤ 2
 x2 = 1

}



which has optimal solution x1 = � 32
1�
′.

Step 2: I�x1�= �2�, v12 = 1, w1
2 = 0. Since v12 ≥ 0 and

w1
2 ≥ 0, ��x1�′
 �x1
+�′
 �x1
−�′�′ is optimal for (2.1)

with the given data, where x1
+ = � 12
0�
′, x1
− =

�0
0�′. Furthermore, G�x1
x1
+
x1
−�=−25/4.
Definition 3.1. A point X = �x′
 �x+�′
 �x−�′�′ is

degenerate for (2.1) if it is feasible for (2.1) and the
gradients of those constraints active at X are linearly
dependent.
The finite termination property of the algorithm is

established in the following theorem.

Theorem 3.1. Let Assumptions 2.1 and 2.2 be satis-
fied and let S �= �, where S is given by (1.2). Begin-
ning with any x0 ∈ S, let the algorithm be applied
to (2.1) and let x1
x2
 � � � 
 xj
 � � � be the points so
obtained. Let xj
+ and xj
− be the positive and neg-
ative portions of xj with respect to �x, respectively.
Assume each ��xj�′
 �xj
+�′
 �xj
−�′�′ is nondegenerate.
Then G�xj+1
xj+1
+
xj+1
−� < G�xj
 xj
+
xj
−� for j =
1
2
 � � � 
 where G�x
x+
x−� is the objective function
of (2.1). In addition, the algorithm will solve (2.1) in
a finite number of steps; that is, there is a k, such
that ��xk�′
 �xk
+�′
 �xk
−�′�′ is a proper optimal solution
for (2.1).

Proof. At the end of iteration j − 1, Theorem 2.1
asserts that ��xj�′
 �xj
+�′
 �xj
−�′�′ satisfies all of the
KKT conditions for (2.1), with the possible exception
of the nonnegativity of the dual variables for the con-
straint �x+�i ≥ 0 or �x−�i ≥ 0, i ∈ I�xj �. Furthermore,
from Theorem 2.1, these multipliers are v

j
i and w

j
i for

all i ∈ I�xj � as determined in Step 2 of the algorithm.
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Thus, if vj

k1
≥ 0 and w

j

k2
≥ 0 where k1, k2 are defined

as in Step 2 of the algorithm, then according to The-
orem 2.1(a) all of the KKT conditions for (2.1) are
satisfied and ��xj�′
 �xj
+�′
 �xj
−�′�′ is a proper optimal
solution for (2.1).
If vj

k1
≤w

j

k2
and v

j

k1
< 0, then according to Step 2 of

the algorithm the constraints for the jth subproblem
are obtained from those of the subproblem j − 1 by
replacing the constraint xk1 = �xk1 with �xk1 ≤ xk1 ≤ ek1 as
well as imposing xi = �xi for all i ∈ I�xj �− �k1�. From
Lemma A.1 it follows that

G�xj+1
xj+1
+
xj+1
−� <G�xj
 xj
+
xj
−�� (3.1)

The case for w
j

k2
< v

j

k1
and w

j

k2
< 0 is similar and

also leads to (3.1). Therefore, (3.1) is satisfied for all
iterations.
In each subproblem, each variable xi, i = 1
 � � � 
n,

is restricted according to di ≤ xi ≤ �xi or xi = �xi or �xi ≤
xi ≤ ei. Thus, there is a finitely number of subproblems
and according to (3.1) and Theorem 2.1(b), none can
be repeated. Thus, the algorithm terminates in a finite
number of steps and by Theorem 2.1, it will terminate
with an optimal solution for (2.1).
Note that according to Assumption 2.2(i), (ii), (iv),

Remark 3.1, and as S �= �, SUB�d̃j 
 ẽj � solved in Step 1
of the algorithm possesses a solution. This concludes
the proof of the theorem. �

Remark 3.2. Theorem 3.1 asserts that the algorithm
solves (2.1) in a finitely number of steps. If the utility
function is quadratic, then the subproblems required
by the algorithm are quadratic programming prob-
lems and can be solved in finitely many steps so
that the entire solution procedure is finite. If the util-
ity function is a more general nonlinear function,
then solution procedures for the subproblems pro-
duce sequences of points that converge to an optimal
solution.
Remark 3.3. A consequence of Theorem 3.1 is that

under Assumptions 2.1 and 2.2 an optimal solution
for (2.1) does indeed exist.
The computational efficiency of the algorithm is

based on the following observations. Consecutive
subproblems differ in that a single asset4 has been
allowed to move from its target and some assets that
have reached their target are required to stay there
and the c̃�d̃
 ẽ
 x� part of the objective function corre-
sponding to these assets has been modified. The opti-
mal solution for the previous subproblem, together
with its associated data structure, can be used as
starting data for the current subproblem (see also
Remark 3.1(b)). Thus, one would expect consecutive
subproblems to be solved very quickly.

4 Technically speaking, we should use “asset holdings” rather than
“asset.” However, for the sake of brevity, we will use the term asset
to mean asset holdings.

Consider the following situation: (2.1) is to be
solved for a sequence of time periods, where the data
defining the expected utility function change only
a small amount between consecutive time periods.
Suppose x∗ is the x portion of the optimal solution
for (2.1) for the previous time period and for the next
time period we take �x = x∗ in (2.1). It could happen
that because of the transaction costs, the optimal solu-
tion of the revised problem (together with its positive
and negative portions) is in fact optimal for (2.1) with
the revised data.5 In this case the algorithm would
determine this in the first iteration and immediately
terminate. If ��x∗�′
 �x+�′
 �x−�′�′, where x+ and x− are
the positive and negative portions of x with respect
to �x, respectively, is not optimal for the revised prob-
lem, one would expect it to be close to the opti-
mal solution of (2.1). The optimal solution would be
obtained by moving just a few assets off of their tar-
get values in just a few iterations of our algorithm,
when using this point as a starting point in the next
iteration. The fact that our algorithm deals only with
n-dimensional quantities would give it considerable
advantage over a general-purpose method for (2.1).
Assume that we use the same general-purpose

algorithm to solve (2.1) as we use to solve SUB�d̃
 ẽ�.
Our algorithm and a general-purpose algorithm for
the solution for (2.1) differ in two ways. First,
a general-purpose algorithm sees a problem with
3n variables and an additional 3n linear constraints,
whereas our algorithm is dealing with n-dimensional
quantities and equality constraints. The fact that some
assets in the subproblem are fixed at their target
values makes SUB�d̃
 ẽ� easier to solve. Second, the
general-purpose algorithm deals simultaneously with
all the constraints of (2.1), including x+ ≥ 0 and
x− ≥ 0, until all the multipliers for the inequality con-
straints are nonnegative. By contrast, our algorithm
fixes some assets at their target values and optimizes
over the remaining constraints using SUB�d̃
 ẽ�. Only
after this is done are the multipliers for the active
components x+ ≥ 0 and x− ≥ 0 examined and dealt
with. Thus, the two methods differ only in the order
in which the constraints are dealt with. Consequently,
it is reasonable to make the assumption that the total
number of iterations required to solve all the sub-
problems is comparable to the number of iterations
to solve (2.1) directly. This implies that our algorithm
will offer computational advantage because it deals
only with n-dimensional quantities.

5 This would be the case if the multipliers vi and wi , i = 1
 � � � 
n,
from Theorem 2.1 were all nonnegative.
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4. Computational Results
To test the new algorithm, we programmed it to solve
the following problem with linear transaction costs:

minimize: −t��′x− p′x+ − q′x−�+ 1
2x

′Cx

subject to: x− x+ + x− = �x
 x1+ · · ·+ xn = 1


d ≤ x≤ e


x+ ≥ 0
 x− ≥ 0� (4.1)

We compared the results with those obtained by solv-
ing the same problem with the barrier method imple-
mented in ILOG Cplex, which is a commercial version
of an interior point method (IPM).
We use random numbers to generate data for (4.1)

so that the generated problems are similar to port-
folio optimization problems. We construct an �n
n�
matrix Q, whose elements are random numbers in
the range �−1
1� and then form C = Q′Q/1
000
(which is positive semidefinite and positive definite,
provided Q has full rank). C could then be inter-
preted as a covariance matrix.6 The vector of expected
returns, �, is composed of random numbers in the
range �0
1�3�. The components of the target vector �x
were constructed from random numbers in the inter-
val ��
1/n − ��, where � is a tolerance (typically
�= 10−10).
The risk-aversion parameter t was set to unity

�t = 1�. For the transaction costs, we use vectors p
and q, all of whose components are set equal to a
common value, P and Q, respectively. By solving sev-
eral problems with differing values of P =Q, we were
able to assess how the size of P affected the efficiency
of our new method.
In the portfolio optimization context, the target

portfolio may represent the optimal holdings for the
previous time period, and large transaction costs may
force the optimal holdings of many assets for the
present period to the associated component of the
target portfolio. In this case, the target portfolio is
a good starting point for the new method presented
here. However, in practical problems, �x may not be
feasible for the present problem. In this case, we can
set �x0�i = �xi for most assets i and choose the remain-
ing to satisfy feasibility. To emulate this situation, the
initial feasible point x0 for our new method is con-
structed according to �x0�i = �xi, i = 3
 � � � 
n, �x0�2 is a
random number in the interval ��
 �x2− ��, and �x0�1 =
1− ��x0�2+· · ·+ �x0�n�. Note that the last n−2 compo-
nents of x0 are identical with those of �x. For the lower
and upper bounds, we use d = 0 and ei = �x0�1 + �,
i = 1
 � � � 
n, respectively. By construction, �x satisfies

6 The size of the random numbers used to generate C is not rele-
vant, as it can be accounted for in the risk aversion factor t.

Assumption 2.1. The general linear constraints are
taken to be only the budget constraint x1+· · ·+xn = 1.
For the following number of assets n = 500
700


1
000
1
500
2
000, the random data are constructed
and the identical problem is solved by both Cplex
and our new method. For both methods, we solve the
problem 10 times (using different random numbers),
and the figures reported in Table 4.1 are average exe-
cution times.
Our method requires an algorithm to solve the

quadratic programming (QP) subproblems. An appro-
priate method is an upper bounded variation of the
van de Panne and Whinston/Dantzig symmetric form
of the simplex method for QP (van de Panne and
Whinston 1969, Dantzig 1963). The model problem
for this method requires linear equality constraints as
well as upper and lower bounds on all variables and
is thus well suited for solving our subproblems. The
method requires that the Hessian matrix of the objec-
tive function be positive semidefinite.
Our algorithm is implemented in Fortran 77 and

both the barrier method implemented in Cplex 9.0
and our method were run on a SunFire V240 using
SunOS 5.8. The execution times are summarized in
Table 4.1, where the label “New” refers to the algo-
rithm formulated in this paper and the label “Cplex”
refers to using the barrier method in Cplex to solve
the 3n-dimensional problem (4.1) directly.
In Table 4.1, for each number of assets n, several

values of P are specified, namely P = 0�1
 � � � 
0�7.
For each such P , the execution times (in seconds) for
Cplex and our new method are given. Also given
are the ratio (“Cplex/New”) of the Cplex to the
new method execution times, the number of assets
at the target (“On target”), and the average per-
centage of assets held on their targets at the opti-
mal solution (“Assets at target (%)”). Note that the
execution times presented in Table 4.1 have been
rounded for clearer presentation and that the ratios
“Cplex/New” have been calculated with more pre-
cise execution times. Table 4.1 shows that for P = 0�1
the ratio of Cplex to the new method execution
time varies from 0.92 to 1.22. Cplex was faster
than the new method for n= 1
500 and 2,000. For
the case when P > 0�1 the execution time of the
new method was always smaller than the execu-
tion time of Cplex. The ranges of Cplex to the new
method execution time ratios are: 1.09–1.43, 1.37–1.78,
1.78–2.52, 2.75–4.18, 8.38–12.06, and 47.68–78.78 for
P = 0�2
 � � � 
0�7, respectively, depending on the num-
ber of assets, n. Thus, it can be seen that with increas-
ing transaction costs, the ratios of Cplex to the new
method execution time increase as well; that is, the
new method is becoming faster than Cplex when
transaction costs are increased. This is because with
bigger transaction costs, fewer assets move from their
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Table 4.1 Execution Times for New Method vs. Cplex

P = Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n= 500
Cplex (time, secs) 11�21 11�53 11�61 11�85 11�55 10�91 9�63
New (time, secs) 11�14 9�05 7�41 5�40 3�35 1�01 0�19
Cplex/New 1�01 1�27 1�57 2�20 3�45 10�81 51�01
On target 78 163 228 305 381 465 494

n= 700
Cplex (time, secs) 39�85 40�24 39�90 39�65 39�64 38�42 35�04
New (time, secs) 35�92 30�04 23�69 17�44 10�43 3�42 0�46
Cplex/New 1�11 1�34 1�68 2�27 3�80 11�22 75�73
On target 110 215 323 425 538 647 693

n= 1�000
Cplex (time, secs) 131�71 130�15 129�79 131�42 134�09 126�85 116�02
New (time, secs) 108�39 91�04 72�87 52�08 32�10 10�52 1�47
Cplex/New 1�22 1�43 1�78 2�52 4�18 12�06 78�78
On target 157 305 453 18 766 924 989

n= 1�500
Cplex (time, secs) 457�71 466�78 467�74 479�07 485�46 470�81 446�30
New (time, secs) 486�07 394�59 311�26 227�54 142�06 47�59 6�68
Cplex/New 0�94 1�18 1�50 2�11 3�42 9�89 66�83
On target 230 465 697 927 1�158 1�390 1�484

n= 2�000
Cplex (time, secs) 1�086 1�131 1�143 1�121 1�083 1�000 1�032
New (time, secs) 1�185 1�039 835�27 628�59 394�17 119�41 21�65
Cplex/New 0�92 1�09 1�37 1�78 2�75 8�38 47�68
On target 303 616 927 1�224 1�532 1�850 1�978

Assets at target (%) 16 31 46 61 77 91 99

targets at the optimal solution. This can also be seen
in the last line of Table 4.1, where only 16% of all
assets stay at their target at the optimal solution for
small transaction costs �P = 0�1�, and nearly all assets
remain at their target when transaction costs are large
(in this case, when P = 0�7).
Our new method is increasingly effective with

higher P and Q. However, we believe it will be very
effective even when P and Q are quite small, provided
the problem is modeled to more closely reflect a true
portfolio scenario. In our computational results, we
used a target vector that was mostly random and bore
no relationship with the optimal solution of the prob-
lem. However, in real-life situations, the target vector
would be the optimal solution for the previous time
period and as such should be close to the optimal
solution for the present time period, and small trans-
action costs would tend to hold most assets at their
respective targets. In this situation, our method would
find the optimal solution very quickly. This type of
situation will be investigated in our further research.7

It is straightforward to show that if the spar-
sity of (4.1) is taken into account in the imple-
mented IPM, then the complexity is maximum

7 In addition, higher transaction costs can be justified in the sensi-
tivity analysis of mean-variance portfolios.

O�n3� per iteration of the IPM.8 On the other
hand, the complexity of the New method when a
Whinston–van de Panne/Dantzig symmetric form of
the simplex method for QP is used, is O�non

2�

where no is the number of outer iterations.9 It can
be seen numerically that with increasing transaction
costs the number of outer iterations �no� decreases.
Thus, it can be seen that for larger transaction costs
the New method will be superior.
The results, as they are now, are less favorable

when compared to an interior point method imple-
mented in Mosek. As it might be known, the interior
point method implemented in Mosek is better using
the sparsity structure and thus has shorter execution
times than Cplex. In this case, for problems gener-
ated in our simulations, Mosek will perform better for
small and also medium transaction costs. For higher
transaction costs the new method will be superior.
Thereby, even though the IPM implemented in Cplex
outperforms the new method only for no transaction
costs and very small transaction costs, an efficiently
implemented IPM should do a better job. Thus, prac-
titioners might consider this alternative as well.

8 The complexity analysis of an IPM for Problem (4.1) can be
obtained from the authors on request.
9 The details of the complexity analysis for our specific problems
can be obtained from the authors on request.
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5. Conclusion
We have considered the problem of maximizing
an expected utility function of n assets. Two pos-
sible utility functions are the mean-variance and
power-utility functions. Transaction costs must be
accounted for when changing an asset’s holdings
from a target value. Transaction costs can be mod-
eled by introducing an additional 2n variables giving
a 3n-dimensional optimization problem. When n is
large, this 3n-dimensional problem may be computa-
tionally very expensive to solve. We have developed
an algorithm for its solution in terms of a sequence
of n-dimensional subproblems with corresponding
savings in computer time and storage. Our method
was developed by deriving optimality conditions for
the higher dimensional problem solely in terms of
n-dimensional quantities. The key idea was to treat
the transaction costs implicitly rather than explicitly.
We compared our new method to the barrier

method implemented in Cplex on a number of test
problems. It solved the problems approximately 1.09
to 79 times as fast as the barrier method, depending
on the magnitude of the transaction costs (0.2–0.7).
However, even when the barrier method imple-
mented in Cplex was more superior only for no trans-
action costs or low transaction costs and large number
of assets, the efficiently implemented interior point
method (i.e., in Mosek) would give a better perfor-
mance with respect to the new method.
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Appendix
Suppose we solve a convex minimization problem with
“less than or equal to” constraints (“≤”) and at least one
equality constraint. Suppose the optimal solution for this,
call it x∗, is nondegenerate and the multiplier for the equal-
ity constraint is strictly negative. Then we will show that
the objective function can be strictly reduced by relaxing
the equality to a “≤” constraint and restricting those “≤”
constraints to the equality constraints that are active at x∗.
This result is used to ensure the finite termination of the
algorithm (see Theorem 3.1).
To this end, consider the problem

min
{
f �x� � a′ix≤ bi
 i= 1
 � � � 
m− 1
 a′mx= bm

}

 (A.1)

where f �x� is any twice-differentiable convex function,
a1
 � � � 
 am are n-vectors, and b1
 � � � 
 bm are scalars. Sup-
pose x∗ is an optimal solution for (A.1). Then KKTs

for (A.1) assert that there exists an m-vector u= �u1
 � � � 
um�
′

such that

a′ix
∗ ≤bi
 a′mx

∗=bm
 i=1
���
m−1

−�f �x∗�=u1a1+···+umam
 ui≥0
 i=1
���
m−1


ui�a
′
ix

∗−bi�=0
 i=1
���
m−1� (A.2)

Without loss of generality assume that the first k−1 inequal-
ity constraints are active at x∗ and denote

R ≡ {
x � a′ix= bi
 i= 1
 � � � 
 k− 1
 a′ix≤ bi


i= k
 � � � 
m
}

 (A.3)

where k − 1 < m. The detailed result is formulated in the
following lemma.

Lemma A.1. Let R be defined by (A.3), x∗ be a nondegenerate
optimal solution for (A.1), um be the multiplier for constraint m,
um < 0, and a′ix

∗ = bi for i= 1
 � � � 
 k−1. Then there exist points
x̃ ∈R for which f �x̃� < f �x∗�.

Proof. Because x∗ is nondegenerate, a1
 � � � 
 ak−1 and am
are linearly independent. Let dk+1
 � � � 
 dn be any vectors
such that

D′ = 7a1
 � � � 
 ak−1
 am
dk+1
 � � � 
 dn8

is nonsingular. Let

D−1 = 7c1
 � � � 
 ck
 ck+1
 � � � 
 cn8


where ci, denotes the ith column of D−1 for i= 1
 � � � 
n. Let
s = ck. By definition of the inverse matrix,

a′is = 0
 i= 1
 � � � 
 k− 1 (A.4)

and

a′ms = 1� (A.5)

Consider points of the form x∗ −9s, where 9 is a nonnega-
tive scalar. From (A.4)

a′i�x
∗ −9s�= a′ix

∗ = bi
 i= 1
 � � � 
 k− 1

so the first k− 1 constraints remain active at x∗ −9s for all
9 ≥ 0. Furthermore, from (A.5),

a′m�x
∗ −9s�= bm −9 < bm
 for 9 > 0�

Thus, constraint m becomes inactive at x∗−9s for all strictly
positive 9 . Since constraints k
 � � � 
m− 1 are inactive at x∗,
this implies that

x∗ −9s ∈R for all positive sufficiently small 9� (A.6)

From (A.2) and the fact that constraints k
 � � � 
m − 1 are
inactive at x∗ we have

−�f �x∗�= u1a1+ · · ·+uk−1ak−1+umam�

From this, (A.4), (A.5) and the hypothesis that um < 0, it
follows that

�f �x∗�′s =−um > 0� (A.7)

From Taylor’s series

f �x∗ −9s�= f �x∗�−9�f �x∗�′s+ 1
29

2s′H�;�s
 (A.8)

where H denotes the Hessian of f �x� and ; is on the
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line segment joining x∗ and x∗ − 9s. It now follows from
(A.6)–(A.8) that f �x∗ − 9s� < f �x∗� for all positive suffi-
ciently small 9 . This completes the proof of the lemma. �
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