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This paper analyzes sequential auctioning of single units of an indivisible good to a fluctuating population
composed of overlapping generations of unit-demand bidders. Two phenomena emergent in such a market

are investigated: forward-looking bidding strategies, and closed-loop selling strategies that involve learning
from past prices. The buyers shade their bids down, i.e., bid less than they would in a single isolated auction,
whenever they expect the seller to sell another unit of the good in the near future. Unlike in exogenous sequences
of auctions, the optimal bidding strategy thus depends on the seller’s selling strategy. The converse dependence
also occurs: the seller can learn about current demand from past realized prices, and sell only in periods with
high-enough demand. Such learning depends on the extent of bid-shading because the seller needs to invert the
bidding strategy to learn. In equilibrium, buyer bid-shading persists even when the seller does not sell in every
period, but it is self-regulating in that it eventually vanishes when the existence of the market is threatened
by low seller profits. In this sense, auction markets have a “self-preservation instinct.” General properties of
learning about current demand from past auction prices are also investigated and characterized.
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1. Introduction
Suppose that a long-lived seller has a supply stream
of an indivisible good, and she can auction each
unit of the good to a population of bidders that
fluctuates over time. For example, she may be an
individual able to obtain a unique theatre ticket or
a discounted digital camera every week, and resell
them on eBay. Alternatively, she may be a state gov-
ernment that can specify a few highway-construction
contracts every month, and “sell” them to the con-
struction firm that submits the lowest bid. Suppose
further that each bidder participates in the market
more than one period, but only wants one unit of
the good (the units are perfect substitutes or the bid-
ders are capacity constrained), so the bidders who
lose in today’s auction remain active in future peri-
ods while the winner exits the market. The longer
bidder life spans create an incentive for bidders to
shade their current bids down in hopes of coming
back later when competition has subsided: winning
one unit immediately involves an opportunity cost
of foregoing future auctions that may involve lower
prices. The longer bidder life spans also make current
prices informative about future demand: the seller can
learn about demand from the final price of today’s

auction, and increase future profits by not procuring
the good when the demand happens to be low.
The seller’s selling decisions and the bidders’ bid-

shading are mutually related: the seller needs to take
bid-shading into account because it reduces her prof-
its relative to the profits available should each auction
be held in isolation instead. Conversely, the bidders’
strategy depends on the seller’s strategy because the
existence of future auctions depends on the future
selling decisions of the seller. Intuitively, because bid-
shading reduces seller profits, it reduces her incentive
to sell, which should in turn reduce the incentives for
bid-shading in the first place. In this article, I assess
the equilibrium outcomes within a model of a monop-
olistic sequential auction market with overlapping
generations of bidders (OLG) that captures the rela-
tionships between selling, learning, and bid-shading.
Specifically, I ask: How can a seller learn from past
prices to assess the current state of demand when
the bidders are strategically bid-shading? What is the
equilibrium bid-shading strategy when the seller is
strategic and takes it into account? Can the seller
somehow reduce the extent of bid-shading to increase
her profits? Should policymakers or auctioneers try
to somehow eliminate bid-shading in thin markets
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whose existence may be threatened by the lower
bids? The main result is that bid-shading can be
self-regulating, and gradually diminish as the over-
all gains from trade approach zero. The auction mar-
ket thus has a “self-preservation instinct” in that the
phenomenon of bid-shading does not reduce the abil-
ity of the market to exist when overall gains from
trade are low. However, bid-shading does persist
when gains from trade are high, and it can coex-
ist with nontrivial selling patterns that arise when
the seller avoids selling in low-demand periods. The
self-preservation instinct is an important finding for
policymakers and auctioneers, who may consider bid-
shading to always reduce seller participation, and
hence attempt to stop it through mechanism design
(as in Juda and Parkes 2006).
Bid-shading is not only a normative theoretical con-

struct, it was detected in the above-mentioned real-
world auction markets (Jofre-Bonet and Pesendorfer
2003, Zeithammer 2006). Previous theoretical work on
sequential auctions focused either on bid-shading in
an exogenous sequence of auctions (see, for exam-
ple, Milgrom and Weber 2000, Jeitschko 1999), or on
strategic auctioning to short-lived buyers, who never
want to shade their bids (see, for example, Vulcano
et al. 2002). This paper provides the first model of
a sequential auction with both endogenous strate-
gic selling and forward-looking longer-lived buyers
who can shade their bids. The model’s contribution
is the analysis of the best response of the seller to
strategic bid-shading, and the exposition of a mar-
ket equilibrium, in which bidders do not always
shade. The most related model of bidding is Jeitschko
(1999), who finds that relatively to exogenous and
certain future supply, exogenous but uncertain future
supply leads to a proportional bid increase. In con-
trast, high-valuation bidders shade more than low-
valuation bidders here. The most related model of
optimal sequential auctioning by Vulcano, van Ryzin,
and Maglaras (2002) (VRM), who study a monopo-
list selling to unit-demand strategic buyers who each
only lives for one period. While VRM’s bidders do
not shade their bids by assumption, strategic sequen-
tial auctioning has an effect on their bidding strategy
because they are forward-looking: there is an incen-
tive to overbid and make the seller sell more units in
the current period than would be optimal for her.
Motivated by McAfee and Vincent (1997), this

model does not consider reserve prices above cost,
implicitly assuming they are not credible because the
seller cannot commit to never reselling an unsold
object. Nevertheless, the seller faces a problem anal-
ogous to the problem of a durable-good monopo-
list because bid-shading in early sequential auctions
arises in expectation of a future option to buy for
less. Therefore, in agreement with the Coase Conjec-

ture (Coase 1972), the sequential-auction monopolist
is unable to extract monopoly profits. As in Conlisk,
Gerstner, and Sobel (1984) (CGS), the monopolist here
faces recurrent entry of long-lived buyers. Unlike in
CGS, the present OLG buyers do not accumulate
indefinitely and eventually leave, a critical assump-
tion that makes them change their bidding behavior
as they age. However, the buyers do accumulate to
some extent, and the phenomenon of “pulsing,” i.e.,
selling every other period, is caused by analogous
buyer-accumulation dynamics that cause CGS’s cycli-
cal pricing.

2. Basic Model
A monopolist seller lives for infinitely many periods
in discrete time, and she can produce one unit of an
indivisible good per period, at constant marginal cost
c > 0 which is common knowledge. She decides in
the beginning of every period whether to produce
the good and immediately sell it by a second-price
sealed-bid auction without a reserve. Bidders are risk
neutral, live for two periods so they are first new and
then old, and occur in overlapping generations in that
a new generation of bidders enters the market every
period. Each generation is of a valuation type t ∈
�L= Low�H =High�, 0<L<H , and Pr
H�= p, where
t is the utility of the product to a single bidder of that
generation. There are two bidders in each generation,1

and each of them has a unit demand, so the winner
of each auction drops out of the market. Therefore,
in each period, the seller faces two new bidders and
one or two old bidders. Suppose that H > c so that
some trading occurs, and let L< c to capture unprof-
itable bidders. Without loss of generality, set the scale
of utility by c= 1 (the c label is used below whenever
it makes exposition clearer). The seller and all buyers
hold beliefs (p0� p1� p2� about the number of old High
bidders, where pi = Pr
i old High bidders�. Both the
seller and all buyers hold the same beliefs and update
them in the beginning of each period based on past
prices,2 starting with a (correct) belief 
1−p�0� p� that
there are two randomly drawn old bidders. Every-
one discounts future utility exponentially at a fac-
tor of � per period. In the auction, ties are resolved
first in favor of old bidders, then randomly within a
generation of bidders.3 The model has only four free

1 Two bidders per generation is the maximum nontrivial number
given their perfect correlation. The assumption about the number
of bidders per generation will be relaxed in §3 that discusses gen-
eralizations of the model.
2 Price is a statistic always available to both the seller and the bid-
ders, while other past bids may not be available.
3 Resolving in favor of old bidders is a regularity assumption
needed to reduce the number of ties inherent in the discrete model
of demand used here. It will be relaxed in §3 that discusses gener-
alizations of the model.
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parameters: H > 1 > L, 0 < p < 1, and 0 < � < 1,
and for every set of parameters, there is a unique
Markov-Perfect Bayesian Nash equilibrium of the
game between all the bidders and the seller. The bid-
ding strategy as a best response to a selling strategy,
and the selling strategy as a best response to a bid-
ding strategy are discussed next, in turn.

2.1. Bidding Strategy as a Best Response to a
Selling Strategy

All old bidders have a dominant strategy to bid their
valuation because they are effectively in a single-
period second-price auction. New Low bidders also bid
their valuation because they face at least one old bid-
der bidding at least L, so bidding less than L would
have no chance of winning. New High bidders, on the
other hand, shade their bids down from their valua-
tion iff they expect to make a positive surplus tomor-
row conditional on losing today (this conditioning is
critical):

Proposition 1. Suppose that the seller strategy is to
sell in period t + 1 whenever pricet ≥ Mt . Then, new
High bidders shade their bids down in period t, and bid

H − a� <H iff both of the following conditions hold:

(1) There is a chance there are no old High bidders in
the current period: p0� t > 0.

(2) The seller will sell again in 
t + 1� after observing
pricet =H − a� Mt ≤H − a, where a= �
1− p�
H − L�/

1 − ��p� and � is the probability that new bidders
also shade their bids down by a in period 
t + 1�. Thus,

H − a� > L. Otherwise, new High bidders bid their valu-
ation H.

The proof of Proposition 1 is in the appendix.
The new High bidders shade their bids when the

surplus associated with losing is positive (i.e., not
zero as in an isolated auction). The first condition
in Proposition 1 ensures that there is a chance for
one of the new High bidders to win the current auc-
tion when bidding less than H . The second con-
dition ensures that the surviving loser will face a
seller who will sell again. The bid-decrement a arises
from an equilibrium condition that effectively forces
the new High bidders to be indifferent between win-
ning and losing their first auction. Proposition 1 is
not novel in finding shading, it merely highlights
the role of the seller in the game (through Mt), and
shows how the phenomenon of bid-shading manifests
itself under the present distributional assumptions.
The infinite-horizon overlapping-generations model
involves a feedback link not present in the standard
finite-horizon single-generation setup used in the lit-
erature: when � = 1, the new-bidder strategy influ-
ences (softens) the future competition because the
future new bidders also shade.

2.2. Learning from Prices: The Evolution
of Beliefs About the Number of
Old High Bidders

Everyone starts with the correct “uncertain” belief

1 − p�0� p�, and by construction returns to that
belief whenever the seller does not sell in a period.
When she does sell, learning from prices depends
on whether or not the bidders are shading. The bid-
shading possibility is discussed first. When new High
bidders shade their bids, the bidding strategies of
Proposition 1 lead to the prices shown in Table 1.
Given a price today and current beliefs 
p0� p1� p2�,

the Bayes rule updates beliefs about the new High bid-
ders surviving until tomorrow (tomorrow’s old High
bidders) as follows:
Price=H : there must have been two old High bid-

ders today, and both new bidders thus survive until
tomorrow. No additional information is available
about their type: 
p0� p1� p2�→ 
1− p�0� p�.

Price=H − a: the new bidders were High, and there
was zero or one old High bidder. If zero, only
one new 
High� bidder survives, otherwise both new

High� bidders survive: 
p0� p1� p2� → 
0� p0/
p0 + p1��
p1/
p0+ p1��.
Price= L: the new bidders were Low, and there was

at most one old High bidder. Either way, there will be
no old High bidders tomorrow: 
p0� p1� p2�→ 
1�0�0�.
The key property of learning that allows for a

closed-form solution of the model is the fact that
when the new bidders are shading at least in the
belief-state Q ≡ 
1 − p�0� p�, the beliefs can only be
in four profit-relevant states �Q ≡ 
1 − p�0� p�, 2 ≡

0�0�1�, 1 ≡ 
0�1�0�, 0 ≡ 
1�0�0�� along the equi-
librium path: starting with any of the four states,
the above rules of learning applied to any possible
price L, H−a, or H lead again to one of the four states
(see Figure 1). Note that new bidders do not shade in
State 1 (Proposition 1).
Without bid-shading in Q, the seller’s ability to

learn is degraded because only two price levels
can now occur. The learning process now visits in-
finitely many payoff-relevant states because along
the “prices= 
H�H�H� � � ��” branch of the game, the
probability of yet another price = H is p + 
1− p�p2,

Table 1 Prices in the Auction Market with Bid-Shading

New bidder type (probability)

Number of old High bidders (belief ) Low �1− p� High �p�

0 �p0� L H − a

1 �p1� L H − a

2 �p2� H H
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Figure 1 Belief-State Transitions in the Basic Model
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where p2 evolves nonrecurrently according to


p0� p1� p2�
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1− p�p2
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)
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2.3. Selling Strategy as a Best Response to
Bidding Strategy

The seller maximizes net present value of profits,
taking into account her future learning. Her Marko-
vian strategy amounts to selling as a function of
the belief-vector (state): (p0� p1� p2� → �sell�not sell�.
When new bidders are not bid-shading in state Q,
a simple steady-state analysis of the model is not
available because the beliefs visit infinitely many
states as shown in the previous section. On the
other hand, when the new bidders are shading in
state Q, the game visits only the four belief-states
�Q�0�1�2�, so the optimal steady-state profit function
�� �Q�0�1�2�→R is characterized by a set of Bellman
equations:

�0 = max
{
��Q�p
H−a�+
1−p�L−c

+��p�1+
1−p��0�
}
�

�1 = max
{
��Q�pH+
1−p�L−c+��p�2+
1−p��0�

}
�

�2 = max���Q�H−c+��Q�=H−c+��Q�

�Q = max{��Q�pH+p
1−p�
H−a�+
1−p�2L−c

+��p�Q+p
1−p��1+
1−p�2�0�
}
�

where a = �
1− p�
H − L� because new High bidders
shade their bids in Q and 0, but not in 1, so �= 0.
2.4. Equilibrium in the Game Between the Seller

and the Bidders
It is intuitively clear and formally implied by the
Bellman equations that the seller sells iff the past
price is at least some levelM . Therefore, Proposition 1
applies to the buyers’ best response, and the over-
all equilibrium of the game between the seller and
the buyers depends on the parameters of the game.

The key determinant of the qualitative nature of the
equilibrium is the relative expected gain from trade � =

E
t� − L�/
c − L� = p
H − L�/
c − L�. To character-
ize the equilibrium, it is useful to introduce notation
for the short-run expected profits �R0�R1�RQ� of the
seller in the �0�1�Q� states with bidders bid-shading
in 0 and Q:

R0 = p
H − a�+ 
1− p�L− c� R1 = pH + 
1− p�L− c�

and

RQ = pH + p
1− p�
H − a�+ 
1− p�2L− c�

It is also useful to define four levels of � (“contours”
in parameter space) that will mark seller indiffer-
ence between selling and not selling in four different
situations:

C0 = 1/
1− 2�
1− p���

C1 = 1+ �2p
1− p�/
1+ �2
1− p�
2− p���

C12 = 1− 
�p
H − c��/
c−L�� and

CQ=1+�p
1−p�
1+�p�/
2−p+�
1−p�

2+��p−1��

Given ���Rk�Ck�, the equilibrium is characterized as
follows:

Proposition 2 (Equilibrium Characterization).
The Markov-Perfect Bayesian Nash equilibrium of the auc-
tion market depends on the model parameters as follows:
• When the relative gains from trade are so large that

� ≥ C0, the seller sells in every period and the bidders
shade their bids down in Q and 0. The seller makes

�all
Q = RQ − �p
1− p�2
H −L�

1− �
�

• When the relative gains from trade are medium such
that max�C1�CQ� ≤ � < C0, the seller does not sell in
state 0 (after price L), sells in �2�1�Q�, and the bidders
shade their bids in Q. The seller makes

�not0
Q = RQ + �p
1− p��R1+ �p
H − c��


1− ���1+ �
1+ �p�
1− p��
�

• When the relative gains from trade are so small that
1/
2− p�≤ � <min
CQ�C12� or CQ < � < C1, the seller
does not sell after prices L or (H − a), and bidders there-
fore do not shade their bids down. The seller either uses
the pulsing strategy of selling every other period, or also
sells in other informational states associated with the new
learning environment without bid-shading.
• When the relative gains from trade are even smaller

such that � < 1/
2− p�, or when the threat of bid-shading
prevents selling in Q because CQ > � > C12, the seller
never sells.
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Figure 2 Equilibrium Characterization
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The proof of Proposition 2 is in the appendix.
It can be shown that C0 > max�C1�C12�CQ�, C1 <

CQ ⇔ C1 < C12, min�C12�CQ� > 1/
2 − p�, and hence
the areas of the parameter space delineated in the
proposition are exhaustive and mutually exclusive.
Figure 2 illustrates Proposition 2, fixing � = 0�9 and
L = 0 to allow two-dimensional plotting of the con-
tours. Changing these parameters would move the
curves around the space, but it would preserve their
relative positions. Intuition for Proposition 2 is dis-
cussed next.

2.4.1. High Gains from Trade. As long as the
seller always sells (which happens as long as selling
in state 0 is better than waiting a period, i.e., when
� ≥C0), the bidders obviously shade their bids in Q
and 0. The profit function �all

Q says that the net present
value of profits obtained from always selling is some-
what less than collecting RQ in every period, by a
factor related to the magnitude of bid-shading a.

2.4.2. Medium Gains from Trade. From Proposi-
tion 1, the bidders continue shading in Q as long as
the seller sells in state 1, even when the seller with-
holds supply in state 0. The numerator of profit func-
tion �not0

Q is RQ plus the expected value of continuing

through the right flow diagram in Figure 1, and the
denominator adjusts the frequency of this single “Q
to Q lap” payoff. There are three jointly necessary and
sufficient conditions for this pattern of selling to be
optimal: First, profitability must be low enough such
that selling in 0 is no longer preferred to waiting for
the demand side to “refill” with bidders 
� <C0�. Sec-
ond, profitability must be high enough such that sell-
ing in 1 is preferred to waiting one period 
� > C1�.
Third, profitability must be also high enough for sell-
ing in Q to generate positive profits in the first place

� >CQ� when state 1 is more lucrative than state Q.

2.4.3. Low Gains from Trade. When profitability
is such that C1 > � > CQ, a phenomenon central to
the thesis of this paper occurs: the seller sells in Q
but not in 1. The bidders understand the seller’s strat-
egy, and hence refrain from bid-shading (M > H − a
in Proposition 1). Note that the seller withholds sup-
ply in state 1 because she prefers the profit in Q
delayed by one period to the profit in 1 now, not
because she wants to “punish” bid-shading behavior.
Therefore, bid-shading ceases not because the seller
can actually detect it perfectly (by observing a price
strictly between L and H ), but because selling with
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only one old High bidder is simply not profit maxi-
mizing. Section 3.4 will illustrate this intuition further
on a model with a continuous distribution of valua-
tions, where the seller cannot detect bid-shading. It is
not immediately clear what happens in a world with-
out bid-shading because the seller’s ability to learn
from prices decreases, and the number of payoff-
relevant states becomes infinite as explained in §2.2.
It is clear that as the profitability of the auction
market decreases further, the seller eventually exits
completely. The least enthusiastic seller who still par-
ticipates in the auction market uses a pulsing strategy,
always waiting one period for the demand side to
refill with two old bidders, with no bidders shading.
Pulsing is profitable as long as � ≥ 1/
2− p�.

2.4.4. Unprofitable Market. The market can be
unprofitable for two reasons: First, it can be that � <
1/
2 − p�, and even the maximum (four) number of
bidders bidding their valuations does not result in an
expected revenue exceeding c, and so even the puls-
ing strategy is unprofitable. Second, the market can
be unprofitable when �not0

Q < 0 
⇔� < CQ�, but also
� > C12, guaranteeing that the seller would sell in 1
and 2 only. Then, the seller is unable to eliminate bid-
shading, and pulsing profits become unattainable.

3. Alternative Model Specifications
Let N bidders enter the auction market every period
and live for two periods; let each bidder have unit
demand and a unit valuation drawn from some dis-
tribution F . The basic model assumes that N = 2, F is
Bernoulli(p), and the valuations of bidders are per-
fectly correlated within each generation. This section
discusses how the conclusions change when the sup-
port of F exceeds c and all bidders are thus prof-
itable, when bidders have simpler beliefs than the
seller, when they are not perfectly correlated within
each generation, when F is a continuous distribution,
and when there are multiple competing sellers.

3.1. No Unprofitable Bidders
One way to interpret the L< c assumption is that the
seller’s ability to produce the good—the number of
units per unit of time—can exceed the new demand
that arrives to the market, hence making the seller’s
participation decision nontrivial. Then, bid-shading
diminishes as the gains from trade decrease because
the seller finds it less and less profitable to sell in
every period—the chance of a loss from a price L< c
looms larger and larger, so the seller prefers to wait
for the demand-side competition to increase through
accumulation of generations. When min�support
F ��=
L > c, the seller cannot lose money by selling, so her
implicit “threat” of not selling again tomorrow is not
credible. In particular, the �all and �not0 formulas of

Proposition 2 still hold, and it is straightforward to
show that L> c implies �not0

Q > 0 and �not0
1 >��not0

Q , so
the seller will never be able to eliminate bid-shading.
However, she may not necessarily sell in every period
because �all

0 >��all
Q is not guaranteed: the incentive to

increase demand-side competition through waiting in
low-demand periods still remains, but this reduction
in selling is not sufficient to reduce the extent of bid-
shading. Therefore, the possibility of an ex post loss
is a necessary condition for most of the results in this
paper.

3.2. Simpler Beliefs About Remaining
Old Bidders

The assumption that bidders can learn as much as
the seller from past prices can be replaced with the
assumption that new bidders are unaware of the
seller’s state or the past prices, and always believe
that the old bidders are of type Low with the “prior”
probability p. The resulting model, solved and dis-
cussed in detail in the online supplement (provided
in the e-companion),4 is simpler than the basic model
because new High bidders either shade in every state
or do not shade at all. Proposition 1 still applies, and
the bid-shading decrement a obviously involves �=
1. The flow diagram in Figure 1 still describes the
transition of the seller’s beliefs, with state 1 altered to
produce price H−a instead of H , thus making the tie-
breaking assumption explained in Footnote 3 unnec-
essary. Finally, the overall equilibrium is qualitatively
the same as in Proposition 2, with the simplification
that there is no CQ >� >C12 “wedge” due to the fact
that state 1 is now always less lucrative than Q.

3.3. Mutually Independent Bidders
When the within-generation perfect-correlation
assumption is relaxed and the two bidders within
each generation are assumed independent of each
other, the model remains tractable and analogous to
the basic model. The key reason is that the seller can
still only be in a finite number of states, and she still
effectively uses a cutoff selling strategy. The buyers,
on the other hand, have more scope for obtaining
surplus. As the profitability of the market shrinks, the
seller will eventually make bid-shading unprofitable
for the buyers, either by using a pulsing strategy
or by only selling after the highest possible price is
observed. This version of the model is developed
in the online supplement. It is an important case
because it demonstrates that the new High bidders
shade their bids because there is a chance of surplus
in the next period, not because they know each
other’s valuations exactly.

4 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.
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3.4. Continuous Distribution of Valuations
Bernoulli’s discreetness leads to a distribution of
prices with finite support, making the seller’s learning
task simple, and even allowing the seller to detect bid-
shading when it occurs (by observing a price between
L and H ). It is thus important to explain how equi-
librium bid-shading is attenuated as expected gains
from trade become smaller even when F is continu-
ous, and the seller is thus unable to detect and “pun-
ish” bid-shading. It is also important to generalize the
properties of seller learning from the prices shown in
Figure 1.
Assume that each generation consists of N bidders

with valuations drawn i.i.d. from any continuous dis-
tribution on the �0�1� interval. This specification of
demand is similar to Milgrom and Weber (2000), with
two additional complications: Milgrom and Weber set
� = 1, and they do not consider entry in the sec-
ond period—two features necessary for any infinite-
horizon model. On the supply side, assume that the
seller can use a first-price sealed-bid auction to sell
one unit of the good in each period, an auction format
which involves increasing pure bidding strategies of
both the old and the new bidders.5

The participants’ beliefs about old bidders in pe-
riod t are a distribution function Wt of the max-
imum valuation among the old bidders: Wt
x� =
Pr
max
vold in t�≤ x�. Given the pure increasing bid-
ding strategies and the first-price auction format,
price pt is the upper bound on everyone’s bids at
time t, implying �vt+1 = b−11 
pt � Wt�—the maximum
possible valuation of new bidders in t (old bidders
in t + 1) given pt . Given �vt+1, Wt+1 depends on
the (unobserved) age of the winner in t who bid
pt : Wt+1
x� = T 
Wt � �vt+1�
x� = )tH1
x � x < �vt+1� +

1 − )t�H2
x � �vt+1�, where )t = Pr
old wont � pt�Wt�,
H1 is the truncated distribution of the highest val-
uation within a generation of bidders, and H2 is
the conditional distribution of the second-highest val-
uation within a generation given the first-highest
valuation: H1
x � x < �v� = 
F 
x�/F 
�v��N �H2
x � �v�
= 
F 
x�/F 
�v��N−1. Because H1 and H2 are common
knowledge, the set of all possible beliefs Wt can be
parametrized by points 
)� �v� ∈ �0�1�2, with the tran-
sition T depending on the exact shape of the bidding
strategies. The transformation T plays the role of the
basic model’s learning process illustrated in Figure 1,
and shares many qualitative properties with it: When
the seller does not sell in period t, the belief transi-
tions to a belief-state Q analogous to the Q state in the

5 The continuous model needs to have a symmetric equilibrium
pure bidding strategy to preserve informativeness of past prices.
Such a pure strategy exists in first-price, but not in second-price
auctions: in the latter, the price-setting bidder survives until the
next period, and hence always has an incentive to deceive the seller
into selling too often in the next period. Mixed strategies result.

basic model, namely, the belief 
1�1� that the highest
of the remaining old bidders in t+ 1 is the maximum
of N valuations sampled independently from F . When
the seller does sell in period t, everyone updates their
beliefs using T with )t determined by Bayes Rule.
Very high prices transition the seller to the Q state
for the same reason that the price of H in the basic
model transitioned the seller to the Q state: because
new bidders never bid more than b̄1
W�= b1
1 �W�<
b2
1 �W�, pt > b̄1
W� indicates an old bidder winning

)t = 1� and all new bidders surviving until tomorrow.
Analogously, with prices 
H − a� and L in the basic
model, a price pt < b̄1
W� places a binding constraint
on the surviving bidders’ valuations and invites the
possibility that a new bidder is the winner. )t is then
state dependent: for example, )t = 0 when pt > b2
�vt �
Wt�, but )t > 0 when pt ≤ b2
�vt � Wt�. The )t update
when pt ≤ b2
�vt �Wt� is discussed in more detail in the
online supplement (the evolution of )t is cumbersome
to express).
The supply side of a continuous model is most parsi-

moniously captured by a seller, whose profit-maximiz-
ingbehavior leads toacontinuous “selling-probability”
function *
w�= Pr
sellt �Wt =w� nondecreasing in �v,
where w is parametrized as w = 
)� �v�. For example,
one can assume that the production cost c is a tem-
porary random shock drawn in the beginning of each
period, and a private information of the seller. Given
* that characterizes the seller’s tomorrow’s selling,
the best response of the bidders to the seller can be
characterized by the following analogue of Proposi-
tion 1 for the continuous setting:

Proposition 3. For every pair of selling-probability
functions * and , such that * involves less selling than ,
in every state: *
w� <,
w� ∀w ∈ �0�1�2, the new bidders
bid more as their best response to * than to ,: b*1 
v� >
b,1 
v� ∀v ∈ �0�1�.

The proof of Proposition 3 is in the online supple-
ment.
The intuition is straightforward: overall less sell-

ing tomorrow means a lower chance of a positive
surplus tomorrow, hence decreasing the opportunity
cost of winning today, hence making winning today
more attractive. Unlike in the discrete world of Propo-
sition 1, where bid-shading is either “on” or “off,”
the reduction of bid-shading is gradual in the contin-
uous world. In the limit as the market profitability
approaches zero, bid-shading is still eliminated com-
pletely because the seller pulses, setting *≡ 0.
Finding the best response of the seller to b*1 
v� char-

acterized in Proposition 3 and its proof is difficult
analytically in the continuous setting, but straightfor-
ward conceptually. In particular, the Bellman analy-
sis still applies: The seller maximizes the net present
value of profits �, starting by assumption in state Q.
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Therefore, the profitability of any state W is captured
by Bellman equations analogous to those of the basic
model:

�
W�= max

sell�not sell�

�E�p+ ��
T 
W � p���− c���
Q���

The exact properties of these functions under spe-
cific distributional assumptions can be numerically
approximated by simulation because the space of
beliefs can be parametrized to the unit square, but
such an analysis is beyond the scope of this paper (see
also the online supplement).

3.5. Generalizations of the Supply-Side
Assumptions

The qualitative predictions of the basic model are
robust to seller-side competition because bidding de-
scribed in Proposition 1 remains the best response to
the aggregate supply arising from the selling strategies
of competing sellers. The competition among multi-
ple sellers makes it harder but not impossible to with-
hold current supply to increase future profits. Because
the market can only support one seller profitably near
the zero-pulsing-profit contour of Proposition 2, the
sellers have an incentive to coordinate when gains
from trade are low, effectively sharing the market. One
way to model such coordination is a model in con-
tinuous time with random recurrent arrival of sell-
ers to the marketplace and observable entry. When
coordination is thus managed, bid-shading still ceases
as gains from trade decrease because the monopoly
profit analysis applies to the total market profit (near
the zero-profit contour).
Additional sellers result in additional units sold

away from the zero-profit contour because of the
tragedy of the commons: each seller collects the entire
contemporaneous profit, but only part of the contin-
uation profit. Hence, there is an increased incentive
to sell now relatively to the monopoly situation. The
two-seller model is developed in detail in the online
supplement.
Throughout this paper, the seller decides in each

period whether or not to sell in the auction market,
and a sale is always via an auction without a reserve
price. An extension of the proposed model to auctions
with reserve prices would introduce the issues of
storage, multi-unit auctions, and ratcheting (Caillaud
and Mezzetti 2004). Such an extension is unlikely to
change the qualitative conclusions of the basic model:
Because an anticipated future reserve price reduces
the expected future surplus in case of a loss today,
reserve prices should further attenuate bid-shading,
working together with the threat of not selling at all.
However, reserve prices are unlikely to have a large
quantitative impact on the seller’s profits as argued
by McAfee and Vincent (1997), who show that the

effectiveness of reserve prices is greatly diminished in
a sequential context without commitment not to resell
unsold units.

4. Discussion
In sequential auction markets, long-lived buyers in-
teract with a long-lived seller within a Markov-perfect
Bayesian Nash equilibrium that has several nontriv-
ial properties. When the seller has a marginal cost
of participating, it is in her interest to learn about
the current level of demand, and sell only when
demand is high enough. When losing bidders remain
active in the future, recent past prices are informa-
tive about demand, enabling such learning. When
losing bidders remain active in the future and each
of them only demands one unit, they shade their
bids down to account for anticipated future options
to buy another unit of the good for a lower price.
However, bid-shading does not occur always because
the seller does not always sell and the bidders need
to take the seller’s strategy into account. In equilib-
rium, the resulting bidding strategy must be a best
response to the selling strategy, and vice versa. The
main insight of this paper is that strategic sellers can
regulate the extent of bid-shading when the overall
gains from trade in the market are relatively low. In
particular, the sequential auction market has a “self-
preservation instinct” in that the phenomenon of bid-
shading does not reduce its ability to exist. This is
an important finding for policymakers and auction-
eers: somehow stopping bid-shading from happening
would not result in new auction markets—it would
only increase the volume of sales in some existing
markets, namely, the more profitable ones. More gen-
erally, this paper demonstrates that any model of bid-
ding within an auction market must take the selling
strategy into account and vice versa.
There are two related seller strategies that effec-

tively reduce the buyer’s incentives to shade bids,
and hence regulate the extent of bid-shading: puls-
ing (selling every other period) and only selling when
recent prices were high enough. When these strategies
maximize seller profits, they reduce the extent of bid-
shading because they credibly reduce the expected
future bidder surplus. Pulsing can be profit maximiz-
ing because not selling in a period both reduces the
extent of bid-shading and allows the demand side of
the market to refill with more new buyers. Pulsing
eliminates bid-shading completely because it spaces
sales in the auction market enough from each other
to let each buyer experience only one auction dur-
ing their limited participation time window. Then,
buyers have nothing to gain from bid-shading, and
bid-shading therefore “switches itself off.” The online
supplement shows that pulsing is more likely to occur
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when the seller can commit in advance to the timing
of sales, but as long as profits are low enough, puls-
ing occurs even when the seller makes a selling deci-
sion in every period. The closed-loop selling strategy
with learning is not useful when gains from trade are
very high or very low because the seller always sells
or pulses, respectively. However, intermediate gains
from trade make learning useful. Interestingly, bid-
shading can coexist with a discriminating seller that
learns from prices and avoids selling in low-demand
periods. Therefore, the ability of the closed-loop sell-
ing strategy to discourage bid-shading is limited to
markets with low gains from trade. Both of these sell-
ing strategies highlight a general intuition about opti-
mal selling in sequential auction markets, namely, the
benefit of spacing sales apart from each other in time,
especially when the general profitability of the market
is low for the seller.
This paper also analyzes a phenomenon inherent

to sequential auctions—learning from past prices—
and shows that learning needs to be analyzed within
a buyer-seller equilibrium model because the seller’s
ability to learn depends on the strategy of the bid-
ders, which itself depends on the strategy of the seller,
which in turn depends on the learning. A past real-
ized price is an upper bound on the past bidders’
bids, and hence implies an upper bound on their val-
uations. A general property of learning from an upper
bound is that the lower the bound, the more infor-
mative the learning. Therefore, the seller can assess
a low state of demand more accurately than a high
state of demand. The second observation about the
seller’s learning process is that learning about new
bidders is a function of the current beliefs about the
old bidders. Therefore, the beliefs evolve over time,
and today’s belief is not a zero-order Markov process
that only depends on yesterday’s price. In particu-
lar, lower prices today imply not only lower resid-
ual demand tomorrow, but also more accurate learn-
ing going forward from tomorrow. Finally, the seller’s
learning process is sometimes particularly enabled
by the phenomenon of bidder bid-shading as bid-
shading bidders bid differently throughout their life-
times, starting low and ending higher, and the desir-
able high-valuation bidders are thus more likely to
both survive and be detected from relatively high
prices.
This work contributes to the management science

literature by exploring a market institution of large
and growing importance—the sequential auction. The
model illustrates why and how to take the other
side of the market into account when formulating
one’s own strategy, and what are the properties of the
resulting equilibrium. The proposed model abstracts
away from several complexities of real-world market-
places, so it can only provide qualitative properties

of optimal buying and selling, not concrete quantita-
tive prescriptions for managerial action. The strongest
assumption employed by the present model is that
the seller is a monopolist. While this assumption fits
specialized procurement auctions like the highway-
construction market well, more work is needed to
characterize concrete seller strategies in hypercompet-
itive markets like eBay. This paper shows that the
“self-preservation instinct” result persists even with
two competing sellers. More work is needed to cap-
ture the dynamic competition among more sellers.

5. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix. Proofs of Propositions 1 and 2 (Proof of
Proposition 3 is in the Online Supplement)

Proof of Proposition 1. Consider a new High bidder,
and suppose that all other bidders are playing the proposed
strategies. Note that the expected payoff from bidding H−a
is equal to a whether or not the bidder wins the first or the
second round: when the probability that future new bidders
also shade their bids is �, a satisfies a= ��
1− p�
H − L�+
�pa�. Consider deviations from bidding H − a depending
on whether there are old High bidders in the current period.
When there are old High bidders, no deviation to bid b′ ≤H
changes the expected surplus of zero (both new High bidders
survive and compete in the second period). When there are
no old High bidders, (1) deviating to b′ < H − a can only
reduce the payoff because the bidder now loses for sure and
gets either a or nothing in the future, depending on whether
the resulting price b′ is enough for the seller to sell again.
(2) Deviating to H −a < b′ ≤H leaves the bidder indifferent
because he loses and makes a for sure. Uniqueness follows
from the uniqueness of a. �

Proof of Proposition 2. Bid-shading persists in Q and
0 iff the seller sells in the 1 state (Proposition 1). Suppose
first that the seller sells in 1 
�1 > ��Q� and so there is
bid-shading. Then, the Bellman equations for all but �0 are
determined. This leaves two cases: the seller either does or
does not sell in the 0 state.

Case 1. Bid-shading, seller always sells 
the “all” superscript
on � is omitted for clarity for Case 1):

�0 = p
H − a�+ 
1− p�L− c+ ��p�1+ 
1− p��0��

�1 = pH + 
1− p�L− c+ ��p
H − c+ ��Q�+ 
1− p��0��
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�Q = pH + p
1− p�
H − a�+ 
1− p�2L− c

+ ��p�Q + p
1− p��1+ 
1− p�2�0��

where a = �
1 − p�
H − L� and �0 > ��Q, �1 > ��Q, and
�Q > 0.
The solution is

�Q = �1− �
1− p��RQ + �
1− p��R1− p
1− p�a�

1− �

= RQ − �p
1− p�2
H −L�

1− �
�

The binding constraint is �0 > ��Q ⇔ p
H − L��1 − 2� ·

1− p�� > c− L, which implies both �1 > ��Q and �Q > 0.
With L= 0 and c = 1, �0 > ��Q ⇔H > 1/
p�1− 2�
1− p���
and the denominator must be positive.

Case 2. Bid-shading, seller withholds supply in the 0 state

�0 = ��Q�:

�not0
1 =pH+
1−p�L−c+��p
H−c+��not0

Q �+
1−p���not0
Q ��

�not0
Q = pH + p
1− p�
H − a�+ 
1− p�2L− c

+ ��p�not0
Q + p
1− p��not0

1 + 
1− p�2�0��

�not0
1 > ��not0

Q , �not0
Q > 0, and ��not0

Q > p
H − a�+ 
1− p�L−
c+ ��p�not0

1 + 
1− p���not0
Q �.

The solution is

�not0
Q = RQ + �p
1− p��R1+ �p
H − c��


1− ���1+ �
1+ �p�
1− p��

and the last constraint is just the converse of the constraint
�0 >��Q in Case 1.

�not0
1 >��not0

Q ⇔ p
H −L�

c−L
>

1+ �2p
1− p�

1+ �2
1− p�
2− p�
=C1�

Selling in Q occurs when

�not0
Q > 0 ⇔ p
H −L�

c−L
>

1+ �p
1− p�
1+ �p�

2− p+ �
1− p�

2+ ��p− 1� =CQ�

where the denominators of Ct must be positive. With L= 0
and c= 1, �not0

1 >��not0
Q ⇔ pH >C1, �not0

Q > 0⇔ pH >CQ.
Case 3. No bid-shading, seller withholds supply in the 0 and

1 states: When �not0
Q > 0 and �not0

1 < ��not0
Q , the seller sells

in Q, and the bidders do not shade their bids (Proposi-
tion 1). No closed-form Bellman analysis is possible because
the beliefs can be in infinitely many states (§4.2). The lower
bound of the Case 3 configuration is discussed below in
Case 4(b).

Case 4(a). Bid-shading preventing sale despite gains from
trade positive: When �not0

Q < 0, the seller exits the market
whenever she would sell only in states 1 and 2 before exit-
ing the market because the bidders would continue bid-
shading in the initial state Q. Such a “one last sale” would
be profitable when

pH + 
1− p�L− c+ �p
H − c� > 0

⇔ p
H −L�

c−L
> 1− �p
H − c�

c−L
�

which holds with �not0
Q < 0 for low p.

Case 4(b). Low gains from trade prevent sale: When ��not0
Q >

0 and �not0
1 < ��not0

Q � or ��not0
Q < 0 and p
H − L�/
c − L� <

1 − 
�p
H − c��/
c − L��, the seller exits the market when
pulsing becomes unprofitable when even the pulsing strat-
egy of selling every other period is unprofitable, namely,
when


1−p�2L+�1−
1−p�2�H−c<0 ⇔ p
H−L�

c−L
<

1
2−p

� �
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