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Abstract

Code reuse is a form of knowledge reuse in software development, which is

fundamental to innovation in many fields. Yet, to date, there has been no systematic

investigation of code reuse in open source software projects. This study uses quantitative

and qualitative data gathered from a sample of six open source software projects to explore

two sets of research questions derived from the literature on software reuse in firms and

open source software development. We find that code reuse is extensive across the sample

and that open source software developers, much like developers in firms, apply tools that

lower their search costs for knowledge and code, assess the quality of software components,

and they have incentives to reuse code. Open source software developers reuse code because

they want to integrate functionality quickly, because they want to write preferred code,

because they operate under limited resources in terms of time and skills, and because they

can mitigate development costs through code reuse.
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1. Introduction

The particular context of open source software development1, its organization in

worldwide informal and virtual communities as it is Internet-based, the mostly public and

archived communication between developers, and the availability of the code base have

contributed to the general interest of researchers from many fields. The extraordinary

success of some of the resulting software products (such as GNU/Linux, Apache, Bind DNS

server, OpenOffice, Mailman) has drawn attention from the public and both software-

creating and software-using organizations to this way of developing software. Yet, not all

open source projects produce software targeted directly at the end-user. Some software is

designed to be reused and to provide functionality to other software projects. For example,

Lame, a music encoder, cannot be used directly but has to be built into, and used by, another

program to create mp3 files. This leads to the question: do open source software developers

tend to build software from scratch or do they rather reuse readily available knowledge and

software code from other projects? On the one hand, free and open source software licenses,

such as the GNU General Public License (GPL), grant permission to reuse software

components within the limits of the license and one should expect open source software

developers to build on each other's work. On the other hand, the many barriers to code reuse

discovered in firms (Lynex and Layzell, 1998) raise doubts about the actual reuse behavior

of developers in the absence of corporate reuse programs. Motivated by these two

contradictory premises, this paper derives two sets of research questions from the literature

on code reuse in firms and on open source software development and explore them using

qualitative and quantitative data from 6 projects that vary in project agenda, age, size, and

other factors.

Based on the premise that software development and code reuse in particular,

hinges on technical as well as non-technical issues (Kim and Stohr, 1998), our analytical

1For better readability the term open source will be used throughout this article, but the study also refers to
Libre and Free software which shares the same technical definition, but is driven by philosophical/moral
considerations on freedom rather than technical arguments: see http://www.gnu.org/philosophy/free-sw.html.
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starting point is the behavior of individual developers. The general interest of this paper is to

explore the practices of knowledge, and, in particular, code reuse in open source software

development; what is being reused, when is it reused, by whom, and for what reasons.

The paper is organized as follows. Section 2 briefly discusses relevant theory and

research on knowledge and code reuse in innovation and software development and

identifies the research gap in the area of open source software development. We formulate

research questions from the literature that relate to code reuse in open source software

development. Section 3 gives an overview of the research method and the sample of projects

studied. Section 4 presents the findings in the form of an inventory of code reuse across the

project sample, and we complement these with findings regarding other types of knowledge

reuse. This section also explores the research questions developed in Section 2. Finally,

Section 5 concludes the paper and discusses implications of the study for management

practice and proposes future research topics founded on this work.

2. Research gap: Open source software, knowledge, and code reuse

Open source software development is an example of "private-collective" innovation

(von Hippel and von Krogh, 2003): software developers derive private benefits from writing

software and sharing their code and collectively contribute to the development of software.

Such private benefits include enjoyment, fun, learning, reputation, and community

membership (Lakhani and Wolf, 2005; Hertel, et al. 2003). An assertion in the private-

collective view of open source software innovation is that benefits gained from contributing

to the public good must outweigh the privately incurred cost of contributing to the software

development (von Krogh and von Hippel, 2006).

The literature on technological innovation argues that knowledge reuse is an

important mitigating factor for the cost of innovation (Langlois, 1999). Returns on

investment in the creation of new knowledge hinges on the extent to which this knowledge

can be applied across the development of new processes and products. Therefore, one of the
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central problems in the management of innovation is if and how firms reuse previously

created knowledge across the various stages of an innovation process (see Argote, 1999;

Majchrzak, Cooper, and Neece, 2004; Zander and Kogut, 1995).

The practice of knowledge reuse has been particularly relevant for innovation in the

software industry and it is here that many of the most significant advances in the research on

knowledge reuse have been made (Cusumano, 1991; Markus, 2001). While software code is

notably explicit knowledge that is both readable by humans and enables a computer to

perform specific functions, knowledge reuse may cover more than code reuse (Knight and

Dunn, 1998: p. 295). As Barnes and Bollinger (1991, p.14) suggest: "The defining

characteristic of good reuse is not the reuse of software per se, but the reuse of human

problem-solving." Several types of knowledge can be reused across the different stages of

software development (Frakes and Isoda, 1994): problem description, artifacts, project

proposals, feasibility reports, enterprise models, data dictionaries, prototypes, decision

tables, pseudo-code, source code, databases, the tacit knowledge of developers, networks of

developers, and so on (for an overview, see Cybulski et al, 1998; Prieto-Diaz, 1993;

Ravichandran, 1999). The documentation of software design patterns facilitates the reuse of

problem solving in software engineering, particularly when using object-oriented languages

(Gamma et al., 1995; Schmidt, et al 1996). The reuse of software is enabled through modular

software architectures and the development of generic software components. However, the

design of generic components requires substantial investment for a firm that can only pay off

in the long run if and when the firm saves development costs through component reuse in

software projects (Banker and Kauffman, 1991). In the software industry, firms that reuse

code on more than one project can amortize development costs faster and reduce

development time in new projects (Barnes et al., 1987; Banker and Kaufmann, 1991).

Reusing code and components from software libraries also enhances the quality of new

software products by allowing for fully tested and debugged software (Knight and Dunn,

1998).
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In spite of the reported benefits, several studies on software development firms have

found that code reuse in software development is problematic and that the success of

corporate reuse programs hinges on organizational factors more than on technical factors

(Apte et al., 1990; Isoda, 1995; Kim and Stohr, 1998; Rothenberger et al., 2003). This

literature also provides insights regarding the possibilities of code reuse in open source

software: in software development firms, corporate reuse programs need to commit an initial

investment to reuse (Isoda, 1995) in order to generate long-term savings including life-cycle

benefits such as maintenance (Banker et al., 1993; Basili, 1990). Program success depends

on standards and tools provided to developers (Lim, 1994; Kim and Stohr, 1998), on the

certification of software (Knight and Dunn, 1998), as well as on the incentives for

developers to reuse (Poulin, 1995).

Systematic reuse in software development firms requires years of investment

(Frakes and Isoda, 1994) in order to create and maintain reusable code and other knowledge

(Lim, 1994), populate repositories and libraries (Griss, 1993; Poulin, 1995), and provide

tools for developers to identify and reuse code (Isakowitz and Kauffman, 1996). The

organization's funding structure usually needs adaptation to coordinate reuse investments

across the organization (Lynex and Layzell, 1998), because developers need to work in

repositories and components that are not directly linked to a product. Pilot programs,

accompanied by code reuse performance metrics (Frakes and Terry,1996), may instigate

systematic reuse that can be monitored across the organization (Banker et al., 1993).

Management needs to appoint champions as sponsors, reuse-librarians or -coordinators

(Isakowitz and Kauffman, 1996; Joos, 1994; Kim and Stohr, 1998).

The success of a corporate reuse program depends on whether the costs to the

developer of search and integration are lower than the costs of writing the software from

scratch (Banker et al., 1993). According to the literature, this can be achieved by creating

standards and tools that facilitate the search for and integration of software components.

Elaborate classification schemes (Isakowitz and Kauffman, 1996) facilitate the use of and
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access to libraries and lower search costs for developers. Domain analyses, documentation,

and quality standards enhance the ability to reuse software components (Poulin, 1995).

Ideally, the information accompanying reusable code should incorporate a quality rating or

certification in order to enhance the developer's trust in code and components written by

someone else (Knight and Dunn, 1998; Poulin, 1995). This emphasis on quality stems from

the software developer "(feeling) that defects in a reused code could have a substantial

negative impact on whatever system he or she is building" (Knight and Dunn, 1998: 293).

Incentives play a crucial role in corporate reuse programs (Isoda, 1995; Lynex and

Layzell, 1998; Poulin, 1995; Tracz, 1995). The monetary or reputation-based incentives

offered by software development firms (Poulin, 1995) need to outweigh the dominant notion

that code reuse is "boring" or "less satisfying" than writing code (McClure, 2001; Tracz,

1995), overcome the not-invented-here syndrome, and the general resistance to change in

organizations (Lynex and Layzell, 1998).

In contrast to software development firms, open source software development

projects do not feature corporate reuse programs and usually have no financial resources to

invest in tools, standards, and incentives. This could have adverse effects on code reuse; for

instance, the lack of incentives could prevent systematic code reuse by open source software

developers who are known to code for the creative challenge and the fun of tackling

"technically sweet" problems (see Raymond, 2000: 25; Lakhani and Wolf, 2005; Hertel et

al., 2003). Thus, in the absence of corporate reuse programs, it can be reasoned that open

source software development projects would need “equivalent” mechanisms to substitute

such programs. Based on the review of the literature on code reuse in software development

firms, the following questions can be formulated regarding such mechanisms:

Research question 1 a: Do equivalents to standards and tools (found in software development firms)

support code reuse in open source software development?
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Research question 1 b: Do equivalents to quality ratings and certificates (found in software

development firms) support code reuse in open source software development?

Research question 1 c: Do equivalents to incentives (found in software developing firms) support

code reuse in open source software development?

Despite the absence of corporate reuse programs, research on open source software

development provides reasons to expect systematic code reuse among developers. Three

leading reasons are examined in this study. First, the demanding requirements for the

functionality and architecture of the code after the inception of an open source project might

make it rational for developers to reuse already existing code. Second, the desire to work on

preferred tasks should lead developers to reuse code that they prefer not to write on their

own. Third, resource constraints in terms of time and skills should lead to reuse behavior in

open source software development.

The existence of a code base seems crucial in order to mobilize open source

developers, as shown for example in a study of the Freenet project (von Krogh et al., 2003).

After a project's inception, its developers have to fulfill what we call a “credible promise,”

best defined by using a quote from Lerner and Tirole (2002: 220): "a critical mass of code to

which the programming community can react. Enough work must be done to show that the

project is doable and has merit." The credible promise enables sufficient functionality of the

software to catch the interest of potential users and developers. A side effect of reusing

components is its impact on the software architecture which is also evaluated by prospective

developers (Baldwin and Clark, 2006). The reuse of a software component takes advantage

of a design option (Baldwin and Clark, 2006; Favaro et al., 1998, MacCormack et al., 2006)

and adds to the modularity of the overall architecture. Given the advantages of modularity in

software development across the time span of the project (Baldwin and Clark, 2000; Garud

and Kumaraswamy, 1995), the reuse of components seems rational at any time, not only

during the early phase of a project.
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Developers of open source software are known to self-assign to tasks based on their

preferences and ability (Benkler, 2002; Bonaccorsi and Rossi, 2003; Yamauchi, et al., 2000)

and they seek a creative challenge and fun when writing software (Lakhani and Wolf, 2005;

Hertel et al., 2003). Yet, some essential tasks in open source software development are

considered to be mundane and boring (Shah, 2006; von Hippel and Lakhani, 2003). A

solution to achieving an operational software product could be code reuse. Developers who

face several essential tasks may choose to solve the less preferred ones by reusing code

rather than writing everything from scratch.

Any open source software developer can consider the vast amount of available open

source software when building their own code base. Open source licenses convey the basic

rights to the developer to retrieve the code, inspect and modify it, and to freely redistribute

modified or unmodified versions of the software to others. Such a license inherently

encourages a developer to reuse code, although a license might require that derivative works

are released under an open source license as well2. The cost of contributing to open source

software development can be substantial. For example, those who want to join a community

of developers must demonstrate considerable skill at solving technical problems. VonKrogh,

Spaeth, and Lakhani (2003) found that newcomers to a project reused software they had

written for other projects in order to make their first contributions. Contributions to the

public good incur private costs to developers (von Hippel and von Krogh, 2003). Hence, one

should expect that developers find it opportune to mitigate their development costs through

code reuse from other projects. Empirical studies of Apache and Linux developers have

demonstrated that a strong incentive for developing open source software is to solve a

technical problem by writing software code and getting feedback from other users (von

Hippel, 2001; Hertel et al. 2003). If software that solves the problem is already available

under an open source license, there is no reason why a developer should write their own

2The exact definition of what poses a derivative work is disputed. There are, for example, many ways in which
programs can interact. What kind of interaction implies a derivative work, versus a mere aggregation of
individual programs, is a controversial issue among the various factions of producers and consumers of open
source software.
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code. This economic logic should apply beyond the initial release of the software. Hence, the

following questions can be formulated:

Research question 2 a: Does the open source software developers' aim to publish workable software

as early as possible (credible promise) supports code reuse in open source software development?

Research question 2 b: Does the open source software developers' self-assignment to tasks according

to their preferences and ability supports code reuse in open source software development?

Research question 2 c: Do Open source software developers' resource constraints (in terms of limited

time and skills) supports code reuse in open source software development?

In sum, knowledge and code reuse are fundamental to the economics of innovation

and central to software development. The characteristics of open source software

development could provide both favorable and inauspicious conditions for code reuse but, to

date, there is no empirical research available on the topic.

3. Research Method and Sample

This section describes the sample selection process and the research method that

guided this study. The literature review on code reuse and open source software led to the

formulation of precise research questions for code reuse. The available literature indicated

reasons why code reuse might occur in open source software development without providing

empirical evidence. Thus, we proceeded to explore the questions using a multiple case study

design drawing upon several different data sources (Yin, 1989). An open invitation to a

short, anonymous, web-based survey was posted on a developer mailing list in order to

decide whether the topic was of any interest and relevance to the field. The resulting 30

replies indicated that knowledge and code reuse are important issues and an integral part of

open source software development practice. Next, interviews were conducted and emails,

public documents, and code were gathered from an initial sample of 15 projects. The sample

included a wide variety of software products such as office software, games, a hardware

driver, and an instant messenger client. The projects needed to fulfill three conditions to be
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included in the sample: 1) the project was under active development, allowing us to track its

development activity and interview key developers, 2) the source code modifications of the

project needed to be available online, and 3) the project had to have been in existence for at

least a year which enabled us to track code reuse over time.

For a more in-depth analysis, the initial sample was reduced to a “core sample” of 6

projects exhibiting variance on the sampling criteria: size (lines of code (LOC), number of

developers), objective, date of inception, target audience for software product, license, and

programming language. By keeping the high variety of project characteristics, a sampling

bias was avoided (e.g., Stake, 1995). Moreover, in order for projects to be included in the

core sample, their core developers needed to be available for interviews. The resulting core

sample is presented in Table 1.

The data sources from the core sample included interviews, source code, code

modification comments, mailing lists, and various web pages related to the projects.

Between December 2003 and June 2004, interviews were conducted with 21 core

developers3 of sample projects, 12 of which belonged to the core sample4. The interviews

were semi-structured, conducted by telephone, and lasted on average 50 minutes. The

developers were contacted by email first. Two thirds of the interviews requested were carried

out. The interviewees of the core sample consisted of members of the inner circle of the

current development team. Wewere able to interview the developers of 74% of all instances

of initial software component code imports into the core sample projects (referred to as

“architectural reuse,” see Section 4). In order to protect their privacy, the names of the

respondents are replaced by capital letters throughout this text. Developer interviews were

used to increase familiarity with the project, clarify open issues, and to examine the

motivation for knowledge and code reuse.

3A “core-developer” has CVS access, contributes the bulk of the code, and assumes administrative tasks. See
also von Krogh, Spaeth, and Lakhani (2003) and Shah (2006).
4For 4 of the six projects, 2 developers were interviewed. For GNUnet only the founder (who wrote the bulk of
the project's code) was interviewed and for xfce4, 3 developers were interviewed.
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Table 1: Core sample overview

The developer mailing lists of all core sample projects were analyzed two weeks

prior to and after the first reuse of a component. We coded all reuse-related comments and

measured the length of discussions (by anyone on the lists) spurred by the reuse incidents.

The source code of the core sample was initially available on project websites and

managed using the Concurrent VersionsSystem (CVS) source code management tool (for a

description, see von Krogh et al. 2003). The CVS source code repositories of the core

sample were retrieved and stored in a local database in order to enable the analysis of source

code changes and the associated comments in the CVS5. The source code was examined in

four ways: accredited lines of code reuse, identification of reused components, identification

5 All projects were recorded from their inception until mid-2004. An exception was Xfce4 which is a rewrite of
Xfce3. Here, the inception date was adjusted to the time when development actually picked up and the
developers migrated to working on Xfce4. This meant relocating 268 out of 62,000 CVS incidents to the new
inception date.

Project Objective Inception Developers *

Xfce4 2,435,172 2001 17 End-user BSD, GPL C

TikiWiki 842,025 2002 89 LGPL

Abiword 1,368,264 1998 63 End-user GPL

GNUnet 259,586 2001 16 GPL C

Irate 109,201 2003 21 End-user GPL Java

OpenSSL 1,014,816 1999 12 Developer C

* Number of active or core developers as stated by the project * * Details on licenses see e.g. http:/ / opensource.org/ licenses

Lines of
code

Target
Audiences

Licenses
**

Programming
Languages

Xfce is a lightweight desktop environment for unix-like
operating systems. It aims to be fast and lightweight, while still
being visually appealing and easy to use. Xfce 4 is a complete
rewrite of the previous version. It's based on the GTK+ toolkit
version 2.

Tiki CMS/Groupware (aka TikiWiki) is a powerful open-source
Content Management System (CMS) and Groupware that can
be used to create all sorts of Web Applications, Sites, Portals,
Intranets and Extranets. TikiWiki also works great as a web-
based collaboration tool. It is designed to be international,
clean, and extensible.

End-user /
developer

Javasc ript,
PHP

AbiWord is a free word processing program similar to
Microsoft® Word. It is suitable for typing papers, letters,
reports, memos, and so forth.

C, C++,
Objective C

GNUnet is a framework for secure peer-to-peer networking
that does not use any centralized or otherwise trusted
services. A first service implemented on top of the networking
layer allows anonymous censorship-resistant file-sharing.
GNUnet uses a simple, excess-based economic model to
allocate resources. Peers in GNUnet monitor each others
behavior with respect to resource usage; peers that contribute
to the network are rewarded with better service.

End-user /
developer

iRATE radio is a collaborative filtering system for music. You
rate the tracks it downloads and the server uses your ratings
and other people's to guess what you'll like. The tracks are
downloaded from websites which allow free and legal
downloads of their music.

The OpenSSL Project is a collaborative effort to develop a
robust, commercial-grade, full-featured, and Open Source
toolkit implementing the Secure Sockets Layer (SSL v2/v3)
and Transport Layer Security (TLS v1) protocols as well as a
full-strength general purpose cryptography library.

Apache-
style
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of functions within the components and their reuse across the core sample, and an authorship

analysis.

First, a rough analysis was performed, including how many lines of software code

were directly 'copied and pasted' from other projects. In order to find these, the originating

project and/or authors needed to be accredited in the CVS comment and, therefore, they were

referred to as “accredited lines of code-” reuse. Developers commented and accredited these

lines, such as the following comment made by developer G: "added configuration file

parsing without OpenSSL using code from xawtv."Based on this analysis6, 38,245 accredited

lines of code were identified across the core sample, - a relatively low value compared to

more than 6 million lines of code in the core sample projects. The developers commented

that copying lines of code only occurred infrequently and in small quantities, but that giving

credit was mandatory. However, there might still be an unknown quantity of imported lines

of code which was not explicitly accredited.

The identification of reuse of software components was done in an automated

manner by filtering the source code for programming statements used to include

components7. In the next step, the functions within each reused component were identified

and a more fine-grained analysis identified the reuse of functions offered by the components

identified across the core sample. The tool “Doxygen8” was used to extract the software

architecture, specifically the application programming interface (API) of the identified

components. This XML file-based information was used to search all code modifications of

the six sample projects for function calls added to each project's software, using functionality
6In order to allow for the identification of accredited lines of code (ALOC), we applied a Bayesian filter. This is
based on an algorithm which estimates the probability of a code modification to be a knowledge reuse incident,
using conditional probabilities, by rating the occurrence of specific words based on training data. In this study,
the filter was trained by manually analyzing the source code modifications of two projects. Wewere, thus, able
to calculate the probability that a source code modification comment related to imported lines of code from
another project. Resulting hits and probable hits were examined manually in order to settle whether or not they
represented ALOC reuse. As a reviewer correctly pointed out, this method provides the lower bounds for
ALOC reuse as the filter might miss actual ALOCs. For the Bayesian filter reference go to:
http://www.paulgraham.com/spam.html
7The search included source/header files through statements such as '#include' for C/C++, 'package'/'import' for
Java, and 'require'/'require_once'/'include'/'include_once' for php-based projects. System files, such as files
belonging to the standard C library or the Linux kernel, were filtered out.
8 Doxygen is described as “a documentation system for C++, C, Java, Objective-C, IDL (Corba and Microsoft
flavors) and to some extent PHP,C#, and D.” It is publicly available at http://doxygen.org.
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provided by the included components. This result covered high-level calls using the public

API of the components.

Using the first occurrence of each included file or reused function, the analysis

identified 2,975 unique reuse incidents. Of these incidents, 200 imported a component (or

part of a component) and 2,775 incidents made use of the functions offered by the reused

components. A total of 55 reused components were identified in this way, leading to a

component reuse inventory (as shown in Table 2). The identified list of software components

was sent back to the project lead developers (listed on the projects' web pages) in order to

check its validity. Out of 6 projects, 4 replies were received validating the results. One

respondent confirmed in the interview that the project only reuses one optional component.

In one case, the lead developer was too busy to validate the findings.

Finally, the timing of component reuse incidents and statistics on the developers

who performed the reuse were collected for all component and function reuses in the

component reuse inventory. In the next section, we turn to the findings.

4. Findings

The aim of this section is to shed light on the research questions developed in

Section 2. While we mainly report on code reuse, we also sustain the notion that knowledge

reuse in software development covers reuse of problem-solving as well as code (Barnes and

Bollinger, 1991, Section 2) and, thus, include other forms of knowledge reuse where

appropriate. First, an inventory of the projects studied shows that developers predominantly

reuse software components. Second, the research questions are explored and contrasted with

the analysis of component reuse and the interview data in order to answer why reuse

happens.
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4.1 Knowledge and code reuse

There were three broad forms of knowledge and code reuse in the core sample:

algorithms and methods, single lines of code, and components. First, an algorithm is a finite

set of well-defined instructions for accomplishing some task or solving some problem which,

given an initial state, will result in a corresponding recognizable end-state (adapted from

wikipedia.org, 2004). Methods contain several alternative algorithms and other scripts for

solving a problem, rules for choosing between them, and they can be expanded to cover a

large problem area. The reuse of algorithms and methods includes the examination of source

code or other information, but also the interpretation and adaptation of cues about technical

problems and their solutions, abstraction, and implementation in a local context. Nearly all

of the developers interviewed mentioned the reuse of algorithms and methods in their open

source software development. The analysis across the core sample revealed that knowledge

reuse in the form of methods and algorithms is frequent but rarely credited. Interviews

revealed that developers spend non-negligible amounts of time studying scientific

publications (such as engineering journals) and standard specifications, or learning from the

source code (and its documentation) of related projects. The reuse of algorithms and methods

not accompanied by software code reuse is impossible to document completely, because it is

part of the individual's learning and usually not made explicit.

Second, copying specific lines of code from external projects is a systematic and

direct form of code reuse in open source software development. The analysis of imported

“accredited lines of code” amounted to 38,245 across the core sample. For reasons described

in Section 3, this form of reuse was relatively rare, hard to quantify, and not further pursued

in the current study.

Third, all the core sample projects reused software components. A software

component is a software technology for encapsulating software functionality, often in the

form of objects, adhering to some interface description and providing an API, so that the

component may exist autonomously from other components on a computer. Technically, this
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autonomy allows the developer to treat the component as a "black box." The components

were either integrated into the code of the project or linked to it. Linking a component to the

software could happen either at the time of compilation (static linking) or at run-time

(dynamic linking). Reuse (or acquisition) of components can be "black-box" or "white-box"

(Ravichandran and Rothenberger, 2003), depending on whether changes were made to the

reused code. With very few exceptions, the reuse in this sample amounted to black-box reuse

since the components were reused without modifications. Across the core sample, 55

components were reused, representing a total of 16.9 million component LOC, while the

total LOC of the core sample was 6.0 million (not including the reused LOC). A complete

list of reused components can be found in Table 2. Each identified component reuse incident

is listed together with a minimal description and its date of reuse. All the components reused

in the core sample are maintained as external projects which means that they are available

through a dedicated project website, provide code releases or open development, or all of the

above.

A closer analysis of the components revealed two distinct types of code reuse:

architectural reuse and functional reuse. In order to make use of components that are not

developed inside the project's community of developers, a developer has to first search for

and integrate a suitable component. The decision to reuse a component introduces an

architectural change to the software because it changes its overall structure (Baldwin and

Clark, 2000; Ulrich, 1995). According to the developers (B, H, M, L), the decision to reuse a

component is based on the functions this component offers. In order to make the code reuse

decision, the developers studied not only the software code but also the documentation

accompanying the code, web pages with frequently asked questions (FAQs), overview

documents and similar web-based resources before deciding to reuse a component. The first

step of reuse is then the inclusion of the component in the software. The core sample

contained 200 instances of architectural reusewhich import a component or part of a
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component. In Table 2, they are attributed to each of the 55 reused components in the fourth

column.

The second type of component reuse was termed functional and based on previous

architectural reuse. Each component offers a number of functions that may or may not be

used by the originating program. Through architectural reuse of a component, the developer

makes functionality available to the program. The actual use of some of these functions

executes the options inherent in the component. Functional reuse incidents became visible

through fine-grained analysis of the code base of the sample that revealed each available

function. Only the first call of a new function was recorded in order to determine whether it

was using functionality provided by components. The core sample contained 2,775

functional reuse incidents. The functional reuse incidents correspond to a reused component

and are listed in the fifth column of Table 2.
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Table 2: Component reuse inventory in the core sample

1999-02-16 1 26

1998-07-28 24 542

2001-09-13 5 26

1999-02-16 1 10

2000-07-27 3 20

2003-07-13 1 11

1998-12-28 2 18

1998-08-28 9 180

2000-02-01 1 2

1998-08-31 1 14

2000-10-11 5

1999-03-11 2 11

2002-05-12 5 8

2001-09-28 3 5

2001-04-26 1 7

2002-04-30 2 4

2000-12-16 6 34

2002-05-05 15 126

2001-09-05 10 28

2003-01-15 8 219

2002-01-06 1 3

2002-05-05 1 5

2002-05-14 1 8

2003-03-01 1 15

2002-03-09 1 160

2003-10-28 4

2001-08-30 1 2

2003-03-30 1 1

2003-03-26 1 54

2003-03-26 3 58

2003-05-26 1 9

2003-07-24 3 11

2003-08-06 2 3

2003-03-30 3 3

2000-11-30 1 5

2003-04-09 1

2002-10-08 15

2002-10-08 1 38

2003-05-15 1 6

2003-04-23 2 2

2003-04-24 1 1

2002-11-25 1 1

2002-10-08 1 1

2003-07-15 3 5

2003-04-02 1 1

2002-10-08 2 18

2003-11-25 1 1

2003-11-15 1 1

xf
ce
4

2001-02-14 37 863

2002-12-15 1 1

libxml2 2003-02-04 4 21

2003-04-26 4 43

2002-05-03 6 63

2002-10-18 10 40

2002-05-03 1 17

SUM: 200 2775

Component Component Description Reuse date Reuses

architectural functional

A
b
iw
or
d

libpng Display 'png' graphics

glib-gtk-gdk Graphical toolkit

fribidi Display fonts (bidirectional)

zlib Compression utility

Libxml Xml file parsing

enchant Spell checking library wrapper

ispell Spell checker

Libwv/libmswordview ViewMSWord files

libiconv
Conversionsfont conversion to/from
unicode

expat Xml parser

libglade Graphical toolkit construction
Indirect through

gtk
libpopt Parsing command line options

libfreetype Display fonts

libwmf Display 'wmf' graphics

libjpeg Display 'jpg' graphics

libcurl Download files

libgal Gnome accessibility functions

pango Display internationalized text

G
N
U
n
et

openssl Encryption

libgcrypt Alternative encryption lib

libpopt Parsing command line options

gdbm Data base

tdb Alternative data base

mysql Alternative data base

gtk/gdk/glib Graphical toolkit

libglade Graphical toolkit construction
Indirect through

gtk

zlib Compression utility

sleepycat db Alternative data base

ir
at
e

javalayer Mp3 player

xerces Xml parser

nanoxml Xml parser

swt libraries Graphical toolkit

httpClient Download files

libmadplayer Mp3 player

O
p
en
S
S
L

zlib Compression utility

T
ik
iW
ik
i

Pear::DB Mysql wrapper for php language N/A(mysql)

mysql Data base Via Pear::DB

Smarty Php template engine

hawhaw Provide 'wap' version

htmlarea Interactive html editor

JGraphPad Java applet paint program

overlib Display browser tooltips

jscalendar Display calender in web browser

adodb Data base abstraction layer

GraphViz Generating graph layouts

php-pdf Convert files into pdf files

phplayers Php menu system

wollabot Generic IRCchat bot

gtk/gdk/glib Graphical toolkit

libiconv Font conversion to/from unicode

Xml file parsing

alsa Linux sound library

oroborus Window manager

libwnck Window Navigator Construction Kit

pango Display internationalized text
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4.2 Substituting the corporate reuse program

The component reuse inventory demonstrates that open source software developers

routinely and widely reuse software components across the sample. The following analysis

explores questions 1a through 1c in order to explore how the context of open source software

provides equivalent mechanisms that corporate reuse programs feature, namely lower search

costs, establishment of quality standards, and the provision of incentives.

The perceived costs to a developer of searching and integrating a new component

must stay below the effort of writing software from scratch (Banker et al., 1993). Tools and

standards facilitate the search and integration of existing components (Ravichandran, 1999),

and reuse in open source software development should only be expected if equivalents to

corporate tools and standards exist. Internal search repositories, a solution proposed by

Banker et al. (1993), could not be found in the core sample. However, a few large

repositories of open source software projects (Sourceforge.net, Savanna, Berlios, etc.) as

well as dedicated index and search tools (e.g., Freshmeat, koders.com) offer free

infrastructure for projects of various domains and target both end-users as well as

developers. Distributions, such as Debian GNU/Linux, publish extensive information that

helps developers identify components and dependencies of components which they

contemplate using9. We found that 85% of all reused components in the core sample were

listed in the Debian package repository.

However, even more important than repositories and search engines were means of

local search in a known space (March, 1991). Several developers (D, K, F, H) underscored

the importance of their respective software community for finding relevant knowledge and

code. One developer (F) suggested that of all sources, his project's developers and mailing

list participants were the most direct and efficient source of information about reusable

knowledge and code. Developer (H) suggested:

9Dependencies are underlying components that a software requires in order to work. For the Debian package
list, that includes dependency information, go to: http://www.debian.org/distrib/packages
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“I'll post on the mailing list, - the developer list. I just ask everybody: does

anyone know about this? Can anyone recommend a good library? Chances are

somebody uses one. Might not even be writing code, but they might know

something about it.”

Next, standards provided a means of lowering search and integration costs. In the

core sample, standards involved stable and documented interfaces to the component

functionality, as well as its accessibility in the project programming language, and influenced

the developers' decision to reuse. By using a well defined and designed set of variables and

commands (API), the developers could access the component's functionality, thus reducing

the effort to understand the component (Developers A, G, H, D). With a good interface

available, the developers did not have to fully understand the inner technical workings of the

component in order to be able to use it and they could integrate the component into the

software more easily. Accessibility of the component to the project's programming language

also proved to be important. For example, the developers of iRATE radio considered

replacing a component with another external library (libmadplayer) in order to take

advantage of its advanced functionality. However, a lack of compatibility between the two

programming languages Java and C made this difficult:

“But if we switch to libmad[player], we'll have to maintain the Java interface

from libmad to iRATE. [...] They don't have a Java interface right now. Basically

it's to use libmad, it's written in C, and [it is] sort of difficult to interface C with

Java code. Whereas [for] Madplay, - it's just a program [front end for

libmadplayer] and Java doesn't really care what program it is as long as it can

run from command line. But [with] libmad, we'll actually have to call internal

routines, - it's much more difficult to keep it up to date.” (Developer I)

The risk of unforeseen changes within reused components was mediated by what

developers considered "a wide consensus" among open source software projects to guarantee

API stability within major releases. As developer D states, the effort of integrating a

component increases when the interfaces change too often:
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”If [the component] changes constantly and it's incompatible with your project,

it causes overhead. You don't want to have 50 million conditionals for every

software that exists. In this case you might choose to copy over their code or

email the software's maintainers and say; “listen, we're trying to use your code

but you keep changing it on us, is there any way you can keep this stable?”

Frequently, they will be happy to comply because they'll have extra users of their

code that help find bugs. There are several options, it's good to know the policy

but it's not necessary for the initial use of their code.”

The interviews revealed that open source software development offers equivalents

to search tools and standards which facilitate the developers' search for and integration of

components, positively replying to question 1a.

Knight and Dunn (1998) point out that developers in firms are unlikely to reuse a

component unless they can trust its quality, since an external component can potentially

harm the overall system. Therefore, they propose certifying components for reuse. In the

core sample, the “popularity” of a component served as a substitute to certification and

generally signaled the quality of the software (developers H, G, F). The developers reasoned

that bug fixes in the software are more frequent in widely used components leading to better

quality:

“There's a higher probability that more people have looked at the code, figured

out if it works, how it works, and probably fixed more bugs if there are any. It's

the whole peer review thing: the more people have looked at the code and still

use it, the more it's trustable.” (Developer F)

A straightforward indication of the popularity of a component is its inclusion in a

major software distribution such as Debian which is peer reviewed, actively maintained, and

reaches a wide user base. (As mentioned above, 85% of the reused components in the

inventory were included in the Debian distribution). This answers question 1b: by evaluating

the popularity of components, open source software developers indeed use a proxy to

certification and quality standards in order to support code reuse.
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A software development firm needs to create incentives for developers to reuse code

because they generally perceive reuse to be less rewarding than writing new code. Von

Hippel and von Krogh (2003) argue that, in the private-collective model of innovation,

developers expend resources privately to contribute to a public good. If the developers

perceive their resources as limited, reuse could help to mitigate development costs. In this

case, the net savings in development costs through reuse should act as individual incentives.

Support was found for this conjecture: developers in the core sample explicitly reused code

in order to reduce their costs of creating the software. They spent available resources in

consideration of both available time and skills (developers K, D, H, A):

“The primary driver of that [reuse] decision is making the project the best it

could be. The fact is that we're mortal and we don't have an infinite amount of

time to rewrite everything. So even if the other project's code isn't perfect but

good enough, you're simply going to use it because if you've got a thousand bugs

to fix you don't want to spend the next year rewriting all the software you could

just use from someone else.” (Developer D)

The interviews confirmed the existence of resource constraints in open source

software development. The economic rationale of saving development costs, where possible,

was consistent among developers' replies. The need to advance the code base and approach

the objectives of the overall project was weighed against the time and skills available and

influenced the decision to reuse code, as shown in this example:

“There were cases where it was better to have a third-party program. OK, for

example jgraphpad, which is a java applet, to have graphics. Wewouldn't

necessarily have the expertise on the team to do that, or the time or the interest,

but that was a perfect match between what they were doing and what we were

doing.” (Developer K)

An additional incentive to reuse was the option to outsource the maintenance work

through reuse. For 53 out of 55 reused components, at least one new release became

available after the first date of reuse. Hence, the reusing projects could benefit from "free"
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maintenance by other projects. Developers (B, K, H) considered external maintenance as an

incentive to reuse components because it lowered the long-term costs of producing a

component inside the community by the effort to maintain it, particularly regarding internal

bugs and errors. The developers in our sample systematically reused components because,

first, they saved effort by not having to write the component, and second, by not having to

maintain it in the future. These findings relate to question 1c; developers' limited time and

skills create incentives to seek savings in development costs through code reuse. The pattern

that an economic logic influences reuse behavior also positively replies to question 2c.

4.3 Fulfilling the credible promise

The credible promise, or the release of workable software that is complete enough

to work on, helps attract users and potential developers to a project (as described in von

Krogh et al., 2003). Accordingly, this section explores questions 2a through 2c. One way to

quickly establish a working code base is to integrate existing components and building on

existing functionality. The findings shed light on question 2a: developers reused components

as early as of day one of the project's inception. Figure 1 shows that 666 of 2,975 reuse

incidents (22%) already occurred during the first 10% of the observation period for the core

sample projects. The credible promise is fulfilled in the core sample: the first public software

release happened on average already 44.5 days after a project's inception10.

10The day of inception is the first day on which code is added to the repository. It is possible that part of the
source code existed earlier outside of the repository.
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Figure 1: Reuse incidents over the total observation period

The patterns of architectural reuse resemble those of functional reuse; new

components (or parts of components) were added to the code base throughout the

observation period. Hence, developers make use of the (modular) design options by adding

components. This observation is consistent with a claim made in the literature that

developers exercise design options in software architecture (Baldwin and Clark, 2006).

As mentioned above, developers chose areas they like to work on through self-

assignment of tasks. But since an open source software project also requires the execution of

mundane and difficult work for developers, question 2b asks if code reuse could help to

evade the writing of “mundane” code and focus on more rewarding programming tasks

specific to the project and that fit the developers’ skills.
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Figure 2: Reuse incidents during the developers' “life span”11

The developers' individual reuse behavior shows increased reuse early on in the

developers' coding activity for the project (Figure 2). The total median in this sample

(architectural and functional reuse combined) was 0.28 (avg: 0.37, sd: 0.32). Thus, on

average, developers performed reuse after having contributed a third of their total number of

lines of code12. This implies that most developers remained active after a reuse incident and

continued to write code for the project. The interviewees confirmed the developers'

preference for reusing early during their active period on the project. They (J, H, K, A, E)

perceived reuse as an opportunity to get rid of mundane, time-consuming, or difficult coding

tasks, that helped them to work on their preferred tasks. Developer E sums it up:

11The developers' “life span,” that is their total coding activity over time, was divided into quartiles. The reuse
incidents were allocated to the individual activity quartiles in order to visualize the reuse incidents over the
developers' “life spans.” The histogram shows when reuse incidents happened for every quartile. “0” on the
activity axis indicates a reuse incident as the first activity (in LOC), “1” a reuse incident as the last observed
LOC written by the developer.
12The data also showed that long-term and more active developers performed more code reuse, not in relative,
but in absolute terms. The reason may be that these developers have acquired a better familiarity with the code
base. We are grateful to the Associate Editor for pointing this out. Dividing developers into two groups
(contributing for more/less than 50% of the observation period preceding the reuse incident), additional
analysis showed no significant differences between the groups in code reuse frequency over a developer's life
span in a project.
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“Code reuse is just helping us to get the job done, so I can work on something

that is more interesting.”

These findings answer question 2b: software reuse helped developers to get

mundane or difficult tasks done and allowed them to focus on “interesting” (preferred) areas

of work.

Finally, as elaborated in subsection 4.2, resource constraints were explicitly and

frequently mentioned as reasons for code reuse by developers. The developers benefited

from “free” maintenance and improvements made to project-external components and chose

the least costly path to ensure that workable code could be released and progress was being

made. This behavior relates to the finding that developers spend their scarce resources

economically. Component reuse helped to advance the project, thus answering question 2c

positively.

5. Conclusion and implications

In the “private-collective” innovation model, the benefits must outweigh the cost of

contributing to the public good (von Hippel and von Krogh, 2003). Knowledge reuse can be

a strategy to mitigate the costs of innovation (Langlois, 1999) and commercial software

engineering practices emphasize the reduction of developments through code reuse (e.g.,

Barnes, et al. 1987; Barnes and Bollinger, 1991; Banker and Kaufmann, 1991). This study

departs from two contradicting issues, namely that open source software licenses are

designed to enable and encourage sharing and building on others' work, yet reuse is hard to

achieve in commercial settings. It shows that developers in open source software projects

actively reuse available code and other knowledge that solve their technical problems, and it

presents empirical evidence on the extent of code reuse, and the development practices of

developers in open source software projects where resources are scarce, highlighting the

importance of reusable software components. In the sample of six open source projects, this

research identified 55 reused components comprising 2,975 reuse incidents. The findings are

presented against the back drop of the literature on code reuse in software development
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firms, offering insights with regard to the context of open source software. The data from the

core sample showed that developers used tools and relied on standards when reusing

components. They used "popularity" as a proxy for quality ratings and acted under resource

constraints (time and skills) when selecting reusable components. While core developers

participated in the reuse activities, they offered no explicit encouragement for code reuse

across their project. As predicted by the existing literature on open source software

development, building an initial credible promise required code reuse early on during the

project, with developers continuing to reuse code as resource constraints persisted and

suitable open source components were available. The developers continued to reuse and stay

active after their initial, extensive reuse behavior. This finding is consistent with Shah (2006)

who showed that the type of tasks tackled by long-term developers changes over time. In

summary, the developers reused for three reasons: they wanted to integrate functionality

quickly (first public release after 44.5 days on average), they preferred to write certain parts

of the code over others, and they could mitigate their development costs through code reuse.

Implications for research

Most component reuse in open source software development crosses project

boundaries, thereby enlarging the project resources by effectively outsourcing part of the

development. In particular, these additional resources might help young projects to gain the

necessary momentum to reach a critical mass. This represents an alternative strategy to

community growth and resource mobilization (e.g., Bonaccorsi and Rossi, 2003). Future

research should examine this form of growth in more detail.

The software reuse literature (Tracz, 1995) estimates that the cost of building

reusable components adds up to 200% of additional development costs. Future research

should uncover who carries these costs in open source software development and why. As

this study has shown, repositories such as Sourceforge offer vast amounts of reusable

software and most components were released by projects dedicated to that specific



27

component development. Casual evidence from the core sample suggests two possible

explanations: the developers' mobility across software projects (proprietary and open source)

benefits from reusing parts of their own work in parallel or subsequent projects. Second,

reputation rewards from peers for “clean”, that is modular and well structured, code justify

the private, additional efforts to build reusable components. Both arguments deserve further

in-depth examination.

Certain projects reuse more code than others, but the antecedents of reuse in open

source software development are largely unknown. Future research should identify

individual and organizational characteristics that impact on reuse. Open source licenses

enable the “outsourcing” of functionality to other projects. The resulting shared use of code

across projects may be related to the total level of reuse and the cost of innovation. Future

research needs to identify the factors that drive such outsourcing behavior.

As table 2 shows, certain components are reused more frequently than others.

Future research should analyze the characteristics of reused components in order to predict

the frequency of component reuse. This study should inform the design for reuse. The results

from the present study pertaining to the search and maintenance costs, and the trust in

components should inform hypotheses about component characteristics that lead to high

reuse frequencies. Future advancement of the research on the above research issues should

be built on a categorization of components in terms of functionality and, possibly, quality in

order to theorize about reuse success.

Finally, we found that long-term and more active developers performed more code

reuse in absolute, but not in relative terms (see footnote 12). The controls showed that the

relative pattern of reuse activity over the total time of coding activity remained unchanged

across developers who had coded for the project for more or less than 50% of the

observation period preceding the reuse incident. Future research needs to investigate if the
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cause of this is individual developer learning, familiarity with the code base, stronger

specialization in the functionality of the software, or other reasons.

At least two limitations apply to this research. First, the study focused on code

reuse, specifically component reuse. Data on single accredited lines of code was based on

interviews and on an automatic analysis. By definition, the reuse of these lines of code

requires developers to credit those who wrote these lines in the code modification comment

made in their own projects. Considering the sheer amount of existing open source projects,

non-credited lines of code reuse is close to impossible to identify. Therefore, the correctness

of the accredited lines of code-analysis cannot be guaranteed. Yet, the developers stated that

giving credit for reused code is a social norm when sharing code across projects (see also

Fauchart and von Hippel, 2006). Future research into code reuse might need to capture

accredited lines of code reuse through survey data in addition to components.

Second, the initial sampling only included projects in active development. Since

active development enables the observation of code reuse practice in real time, the analysis

could combine interview material with current examples and easy-to-verify component

origins (e.g., whether the component was under active development in another project).

Defunct projects were excluded. In order to understand the full performance implications of

code reuse, future research should compare code reuse in successful and failed projects.

Implications for management practice

Open source software projects offer a vast repository of readily usable software for

almost all purposes. Within the limits of the licenses and the mechanisms that communities

apply to protect their work (O'Mahony, 2003), this software can be used, reused, and built

upon freely (see also Henkel, 2006). This corresponds to the advantages of black-box reuse

in component markets (Ravichendran and Rothenberger, 2003) with the difference that the

open source components are available for free. Commercial software developers may

observe and learn from open source software developers' work. The available repository of
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knowledge and code could lower the probability of reinventing the wheel for firms and

communities by offering methods and algorithms from open source solutions for reuse.

Thus, managers of software firms should encourage and support the learning process for

developers who spend time looking at available open source software.

Managers who allocate developer resources to open source software projects will

possibly see new practices of innovation develop in their firms. Developers exposed to open

source software development might bring practices into the firm that favor knowledge reuse

over the reinvention of the wheel and introduce elements of an open source software

development culture that could change the firm's internal culture.

An organization-wide, corporate reuse program is not a prerequisite for code reuse.

This is an important lesson for management practice. Information about the popularity of

software may substitute a costly certification process and enhance the developer's trust in the

code. This study also showed that strong incentives for code reuse exist if the software

developers act as "software entrepreneurs". Software developers who are compensated for

task achievement, rather than time spent, have incentives to cut development costs and to

reuse existing functionality. This could imply that if a software firm creates an

entrepreneurial organization for its software developers, it may complement the importance

of other reward-based incentives.

The equivalent to incentives in corporate reuse programs in the context of open

source software development could help managers structure more effective non-monetary

incentives. Recognition and extrinsic awards were found to promote code reuse in firms

(Poulin, 1995; Isoda, 1995). In open source software, the continuous maintenance of reused

components by others created the perception of free maintenance for the reusing developers.

Avoiding to write a component from scratch combined with the free (external) maintenance

provides incentive for reuse. Possibly, managers allowing developers to self-assign tasks
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may achieve the necessary level of component maintenance to encourage reuse and can

further facilitate reuse by separating the maintenance and reuse of existing components.

When inspecting the component reuse inventory, established and well-known low-

level components can be identified, such as encryption software (OpenSSL), compression

software (zlib), databases (MySQL), or graphical toolkits (GTK). These have all proven

useful to a large audience of users and developers. The reuse behavior of open source

software developers also informs the potential commercial suppliers of software components

about the structure of this “emerging market”. Similarly, experience from corporate

component reuse shows that domain-independent reuse (often low-level components) is

easier than domain-specific reuse due to lower adaptation costs (Poulin, 1995; Ravichandran

and Rothenberger, 2003).

Interviews revealed that open source software developers work under severe time

and skill constraints. The self-inflicted pressure to release a working product leads to

efficiency thinking and economic behavior with regards to the utilization of scarce resources.

The insights from innovation process research in open source software continue more than

ever to be useful to researchers studying innovation in firms (particularly software firms),

since similar economics of innovation apply in both contexts. The limitations of researching

into the alleged "hobbyist culture" of open source software (Carbon et al., 2001; Moody,

2001) does not apply when studying the social and technical processes of innovation in open

source software development. As shown, there are important lessons for researchers and

managers considering innovation in both contexts. Work on open source software

development and its commercial counterpart will mutually benefit from an exchange of

results and jointly they can contribute to an extended theory and insights into private-

collective innovation.
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