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Abstract

The Newsvendor model captures the trade-o¤ faced by a decision maker
that needs to place a �rm bet prior to the occurence of a random event. Pre-
vious research in Operations Management has mostly focused on deriving
the decision that minimizes the expected mismatch costs. In contrast, we
present two methods that estimate the unobservable cost parameters char-
acterizing the mismatch cost function. We present a structural estimation
framework that accounts for heterogeneity in the uncertainty faced by the
newsvendor as well as in the cost parameters. We develop statistical meth-
ods that give consistent estimates of the model primitives, and derive their
asymptotic distribution, which is useful to do hypothesis testing. We apply
our econometric model to a hospital that balances the costs of reserving too
much vs. too little operating room capacity to cardiac surgery cases. Our
results reveal that the hospital places more emphasis on the tangible costs of
having idle capacity than on the costs of schedule overrun and long working
hours for the sta¤. We also extend our structural models to incorporate
external information on forecasting biases and mismatch costs reported by
the medical literature. Our analysis suggests that over-con�dence and in-
centive con�icts are important drivers of the frequency of schedule overruns
observed in our sample.
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1. Introduction

Many business decisions require that a decision maker takes a �rm decision before the

occurrence of a random event. Once the uncertainty is resolved, the decision maker ob-

serves that her decision was too �large� or too �small� and incurs costs re�ecting the

mismatch between her decision and the ex-post optimal decision. The Newsvendor model

captures this trade-o¤. In Operations Management, the most frequently analyzed appli-

cation of this type of decision deals with placing an inventory order in the presence of

demand uncertainty.

While previous research related to the Newsvendor model has taken the mismatch cost

parameters as given and has minimized the expected cost to obtain a cost minimizing

decision, we take a di¤erent approach. Following the tradition of structural estimation

models in Econometrics, we assume that the decision maker acts rationally and chooses

the optimal decision for a cost function that is unobservable for us as researchers. Based

on the observed decision making and a set of covariates, we use Maximum Likelihood

estimation to obtain the cost parameters describing the latent cost function. For example,

we can use this method to estimate how much value a retailer assigns to a stock-out.

In the Econometrics community, similar approaches have been taken by Rust (1987)

and Berry et al. (1995). Rust (1987) combines a Markov decision process describing a

maintenance problem with the empirically observed behavior of the person in charge of

managing the maintenance to impute costs of regular cost maintenance and perceived

costs of unexpected failures. Berry et al. (1995) use data from the automotive industry

to estimate model markups based on a oligopoly model of price competition in a di¤eren-

tiated product market. We contribute to this stream of literature by providing estimable

structural models of newsvendor type-decisions, which can be used in a broad variety of

managerial applications.

In addition to deriving the estimation procedures for Newsvendor-like cost models as

well as establishing their econometric properties, we apply our theory to a healthcare

application. In the setting we studied, the hospital had to reserve a certain amount of
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operating room (OR) time to speci�c cardiac procedures. Since the actual procedure time

in the OR is random and will - in the best of all cases - vary around the expected procedure

time, some procedures will exceed the forecasted durations while others will be completed

ahead of schedule. If the hospital reserves too much time to a case, the OR is likely to

incur excessive idle time. If, however, the hospital reserves too little time to a case, the

hospital is likely to face schedule over-runs and decreased service quality. (See Strum et al.

(1999) for an application of the Newsvendor model in OR management).

Our econometric models and its healthcare application enable us to make the following

contributions. First, we extend the long line of Newsvendor research by developing a

theory that allows for an estimate of the underlying cost function. We present two model

speci�cations, both of which are su¢ ciently general to capture cost and demand hetero-

geneity and hence have the potential to be applied to various Operations Management

decisions. Second, for each model, we derive a two-step estimation procedure and estab-

lish its key econometric properties, including the asymptotic distribution of the estimators

and the associated standard errors required for hypothesis testing. Third, we apply our

econometric framework to a healthcare setting. We analyze how a hospital balances the

costs of reserving too much vs. too little OR capacity to individual cardiac surgery cases

and demonstrate that our model has signi�cant predictive power for this decision.

2. The Newsvendor Model and Structural Estimation

The newsvendor is a simple and intuitive model and is arguably one of the stepping

stones for decision making in Operations Management. The model is de�ned as follows.

Given a random variable D with distribution F (�), a decision maker (hereon the newsven-

dor) needs to make a decision Q; before the realization of the random variable D is known.

The objective of the newsvendor is to minimize the expected mismatch cost between D

and Q: This mismatch cost is assumed to be linear in the amount of the mismatch but

typically is not symmetric. If the newsvendor�s decision Q exceeds D; the incurred cost

is equal to Co (Q�D)+, where (x)+ = max fx; 0g. If D exceeds Q, the incurred cost is

equal to Cu (D �Q)+. The model parameters Co and Cu are referred to as the overage and

underage cost, respectively, and are assumed to be strictly positive. The optimal decision
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Q� solves:

min
Q
E
�
Co (Q�D)+ + Cu (D �Q)+

	
(1)

We assume that the problem is unconstrained and therefore Q can take any value in the

real domain. Since the objective function de�ned in (1) is convex inQ, the optimal solution

can be characterized by the �rst order condition. If the random variable D is continuous,

the optimal solution to (1) satis�es:

F (Q�) =
Cu

Cu + Co
=

1

1 + 
(2)

where  = Co=Cu is the ratio between overage and underage costs (see e.g. Porteus

(2002)).

In this paper, we extend the long tradition of Newsvendor research by developing an

econometric framework to impute the cost parameters of a newsvendor based on observed

decisions. In our decision problem, a traditional Operations Research model takes the

distribution function F and the cost parameters Co and Cu as model input and then

characterizes the optimal reservation decision Q� (see Figure 1, left). Unlike the Opera-

tions Researcher, who is interested in providing a normative theory of how rational agents

�should�behave, the Econometrician is interested in a descriptive theory how real-world

decision makers actually do behave. There are two econometric approaches towards de-

veloping such a theory. In a method known as reduced form estimation, researchers collect

data on a dependent variable of interest and use regression analysis (or other statistical

methods) to explain its variation through a set of explanatory variables. In our decision

problem, such models might take the amount of underage, (D � Q)+, as a dependent

variable and attempt to explain it through a set of explanatory variables. The outcome

of this estimation would be a set of parameters characterizing the marginal impact of an

explanatory variable on the amount of overage (see Figure 1, middle). This approach has

been the dominant in empirical research in Operations Management (e.g. Lieberman and

Demeester (1999), Brush and Karnani (1996)), in empirical work in healthcare operations

management (e.g. Milne et al. (1989), Chorba (1976)) and is also widely used in the

medical community (e.g. Pell et al. (2001), Urbach et al. (2003)).

3



In contrast to reduced form estimation, structural estimation �rst builds a decision

model of the situation, similar to the ones used in Operations Research. When using

structural estimation, the Econometrician assumes that decision makers already act ra-

tionally (and thereby optimally) and then uses observed decision making behavior (in our

case the reservation decision Q) to impute the underlying parameters of the decision model

for which this behavior is rational (see Figure 1, right). Structural estimation has actively

been used in several �elds of Economics, including Labour Economics and Industrial Orga-

nization1. With the exception of the work by Cohen et al. (2003), that estimates the cost

parameters of a supplier in a semiconductor manufacturing context, structural estimation

has had very few applications in the Operations Management literature.

The application that we present relates to managing capacity in a healthcare environ-

ment. An important stream of the Operations Research literature has created a number

of tools that directly or indirectly relate to the management of healthcare capacity and

its utilization (see Green (2004) for an overview). Given that patient demand for health-

care services is inherently uncertain, the newsvendor model has found interesting ground

for its application. At the strategic level, decisions need to be made with respect to siz-

ing the care capacity. This includes choosing occupancy rates (e.g., Smith-Daniels et al.

(1988), Huang (1995), Green and Nguyen (2001)), making sta¢ ng decisions (e.g., Aiken

et al. (2002), Kwak and Lee (1997), Green and Meissner (2002)) and choosing the right

panel size for physicians (Green and Savin (2005)). At the tactical level, decisions need

to be made with respect to allocating capacity to various demand types (e.g. Green et al.

(2003)), such as the allocation of operating room time to services in a hospital (Strum et al.

(1997)). Several of these decisions resemble the Newsvendor model and will be discussed

more explicitly in Section 4.

3. Econometric Framework

The �rst order condition (2), which de�nes the optimal decision Q�, is essential to

our imputed cost framework. This equation, commonly referred to as the critical frac-

tile solution, provides a direct relationship between the overage/underage cost ratio and

1See Reiss and Wolak (2006) for a review of structural estimation in Industrial Organization.
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the probability of overestimating D at the optimum. Suppose we observe a sequence

(Di; Qi)i=1::n of realizations of the random variable D and the observed decision Q made

prior to each realization. We can then de�ne the fraction of cases in which overage costs

were incurred as �I = 1
n

Pn
i=1 1fDi � Qig; where 1 f�g denotes the indicator function. �I

provides a crude estimate of the probability of overage of the newsvendor. Asuming that

the newsvendor is behaving rationally and that the overage/underage ratio is constant

among all observations i = 1::n, we can replace �I for F (Q�) in (2) to obtain:

1

1 + 
= �I (3)

which gives  = 1
�I
� 1; or equivalently, Co =

�
1
�I
� 1
�
Cu:

While the analysis outlined by equation (3) is useful as a preliminary data analysis, it

su¤ers from three important problems. First, it does not allow for any statistical tests,

which raises the question of whether the cost of overage is larger than the cost of underage

(or vice-versa) with statistical signi�cance. Second, this approach ignores the underlying

heterogeneity of random component D and the ability of the newsvendor partially antici-

pate this heterogeneity. For example, there might be seasonal variation in demand, which

changes the distribution D across observations. Since the newsvendor can anticipate this

seasonal demand changes before choosing the quantity Q, she will adjust his quantity ac-

cordingly. Third, the cost ratio,  = Co=Cu , could vary across observations. In a retail

example, the cost of a lost sale (which is related to the underage cost Cu) might vary with

the time of the year or with the margin of the product. Moreover, some factors may a¤ect

both the distribution of the random variable and the cost ratio  at the same time (e.g.

price changes a¤ect the demand distribution and the cost of underage faced by a retailer).

Thus, a more elaborate model is needed. Below, we develop an estimation framework

for the newsvendor problem which incorporates heterogeneity in both, the random com-

ponent, Di, and the overage/underage cost ratio, . Figure 2 illustrates this framework,

which is su¢ ciently general to estimate di¤erent applications of newsvendor problems.

The upper right part of Figure 2 accounts for heterogeneity in the random component

Di. Speci�cally, we assume that the Di�s are given by independent random variables from
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a common family of distributions fF (�; �) : � 2 �g, where � is a vector parameter from the

parameter space � which characterizes each member of the class. The distribution of the

duration of procedure i, denoted Di, is given by F (�; �i) : We let this distribution depend

on a vector of covariates Xi, which can include di¤erent kinds of variables depending on

the context. Following common econometric practice (e.g. Bickel and Doksum (2001)),

we assume the functional form:

�i = h (Xi; �) (4)

where � is a vector of parameters to be estimated. Throughout the paper, we will denote

covariates (e.g. Xi) as row vectors and parameters (e.g. �) as column vectors. Thus,

the distribution of the random component for observation i, F (�; �i); is characterized by

the functional form of the distribution, the function h(�; �), the vector � and the vector of

covariates Xi:

In addition to the ex-ante heterogeneity of the random component, the newsvendor

might face di¤erent trade-o¤s between overage and underage costs across observations;

i.e. the relative cost parameter, , might di¤er on a case to case basis. This is captured

in the upper left part of Figure 2. Similar to (4) we let the cost trade-o¤, i; vary across

cases:

i = g (Zi; �) (5)

where Zi is a vector of covariates, g(�) is a link function and � is a vector of parameters to

be estimated. Note that the set of explanatory variables for the relative cost parameter

underlying equation (5), Z, may have a non-empty intersection with the set of explanatory

variables for the random component, X, as outlined in equation (4). However, the two

sets are not necessarily identical.

Using equations (4), (5) and (2), we can express the optimal decision Q�i as:

F (Q�i ;h (Xi; �)) =
1

1 + g (Zi; �)
(6)

Equation (6) speci�es the optimally reserved time, Q�i ; for each observation i = 1::n in the

data and thereby introduces the Newsvendor solution into our estimation framework (see
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Figure 2, lower part).

As the number of observations is much higher than the number of parameters that we

wish to estimate, it is unlikely to �nd parameters � and � for which the observed decisions

Qi and the predicted optimal reservation time Q�i will exactly match. Thus, as in any

econometric estimation, the model needs to account for some unexplained variation of Qi.

In the remainder of this section, we propose two models that account for this unexplained

variation in di¤erent ways.

In the �rst model (Model N1), we assume that there are some unobservable (to the

researcher) factors that are taken into account by the decision maker when determining the

overage/underage ratio. Let �i be an i.i.d. unobservable factor that a¤ects the cost ratio

for observation i, and assume that E(�iZi) = 0 . Given that i is strictly positive and based

on equation (5), we assume the following log-linear speci�cation for the overage/underage

cost ratio:

log (i) = Zi�+ �i (7)

If we knew i; we could use linear regression to estimate �. Of course, the problem is

that we do not know the true i: What we do know is that a rational decision maker will

behave according to the critical ratio, which can be rewritten to:

i =
1

F (Qi; �i)
� 1 (8)

We propose the following two-step procedure to estimate �: Step 1: Using data from the

realizations ofDi, estimate � throughMaximum Likelihood. Use the estimate �̂ to compute

�tted values �̂i = h (Xi; �̂) : Step 2: Compute the �tted cost ratios ̂i =
1

F(Qi;�̂i)
� 1, and

then estimate � in the linear model ln (̂i) = Zi� + �i through Ordinary Least Squares

(OLS). We refer to this procedure as TS-OLS. We show in the Appendix the consistency

and asymptotic distribution of the estimator provided by TS-OLS.

The intuition behind TS-OLS is simple. In the �rst step, it estimates the distribution of

Di as seen by the newsvendor. Then, it computes the cost ratio ̂i that is consistent with

the decision Qi that was made by the newsvendor. Finally, it uses a regression to describe

the variability of the cost ratios through the factors in Zi: The asymptotic variance of the
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estimator provided by the second step OLS regression is adjusted for the estimation error

incurred in the �rst step.

Model N1 is not the only way to describe the unexplained variation in the observed

decision. In Model N2, we assume that the decision maker behaves approximately rational

with some random deviation from the optimal decision. Given that F (Qj�i) is monotone

in Q, we can invert equation (6) to get:

Q� (Wi; �; �) = F
�1
�

1

1 + exp (�0Zi)
;h (Xi; �)

�
(9)

where Wi = [Xi; Zi]: We assume that E (QijWi) = Q� (Wi; �; �) : De�ne the error term

�i = Qi �Q� (Wi; �; �) : The model can be written as Qi = Q� (Wi; �; �) + �i, where �i is

an i.i.d. random variable.

We proceed in a similar way as in the �rst model and estimate � through a two-step

non-linear least squares method (TS-NLLS).2 This method can be summarized as follows:

Step 1: Using data from the realizations of Di, estimate � through Maximum Likelihood.

Step 2: Use Non-linear Least Squares to estimate the equation Qi = Q� (Wi; �; �̂) + �i.

We show in the appendix the consistency and asymptotic distribution of the estimator

provided by TS-NLLS.

Model N1 and Model N2 di¤er in several aspects. The main di¤erence is that they

rely on di¤erent assumptions to account for the unexplained variability of Qi: Model N1

assumes that the newsvendor behaves optimally but has private information regarding the

cost ratio. Model N2 assumes that the Z vector describes all the factors that a¤ect the cost

ratio, but that the decision maker acts with a �trembling hand�around the optimal deci-

sion, i.e. the newsvendor acts optimally in expectation but the actual decision is adjusted

by a zero-mean random variable. Which one of these assumptions is more appropriate

2The parameters � and � in equation (9) could be estimated directly through standard Non-linear Least

Squares methods. We found that this approach may fail under some speci�cations due to identi�cation

problems. For example, suppose the Di�s are i.i.d. and that the cost ratio is constant, i.e. Xi and Zi

contain only a constant. This implies that Q� (Wi; �; �) is constant: the optimal decision is one and the

same for all the observations. But there are multiple pairs (�; �) that yield this decision, which makes the

model un-identi�able.
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depends on the context of the application. Both methods converge as unobserved factors

that a¤ect costs and trembling hand behavior are reduced to zero. The two models also

di¤er in the complexity of the estimation method. Both two-step methods, TS-OLS and

TS-NNLS are identical on the �rst step. On the second step, TS-OLS has a closed form

solution, while TS-NNLS requires the inversion of the distribution, which might have to

be done numerically.

4. Application to Operating Room Time Reservation

Operating Room (OR) management is a broad and complex problem which involves

di¤erent levels of decision making. It includes strategic decisions such as deciding how

much OR capacity to put in place, as well as operational decision such as the scheduling

of cases. Given the high complexity of the OR management problem, it is reasonable to

decompose the problem into multiple hierarchical decisions. Figure 3 illustrates a time-line

with �ve important decisions related to OR management. Two of these decisions ((b) and

(c)) involve trade-o¤s of reserving too much versus too little OR time, and therefore can

be modeled as a Newsvendor problem.

On a yearly basis, the hospital management determines the OR capacity needed based

on future case workload. Dexter et al. (2005a) provide a methodology for making this type

of decisions using mixed integer programming. The second stage in Figure 3 determines

how much OR time to allocate to a speci�c block (de�ned as a set of interchangeable

operating suites and personnel). Since the workloads of any given day is uncertain, the

optimally allocated time has to balance the costs of allocating too much time, which

typically translates to idle time for the sta¤, with the costs of allocating too little time,

which typically translates to overtime charges. Strum et al. (1997) develop a newsvendor

model to �nd the optimal time to allocate to each block based on historical workloads.

This decision can be revised annually to quarterly. This decision also sets the context in

which subsequently case level time reservations are performed.

At a lower level in the hierarchy, each service needs to decide how much OR time

to reserve for any given case. This decision is done for each patient individually and is
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typically performed during pre-operative planning (see Figure 3 (c)). Reserving too much

OR time to cases will very likely increase idle capacity. Reserving too little OR time will

lead to more frequent schedule overruns and overtime hours for the hospital sta¤3. When

deciding how much OR time to reserve to a case, the decision maker can use information

of similar cases that were conducted in the past. This way, forecasts for the case durations

can be constructed (Strum et al. (2000a) provide goodness of �t tests for various duration

distributions). Given a forecast of the case duration, the decision maker decides how much

OR time to reserve for a speci�c case. It is important to make the distinction between the

�forecasted time�for the case duration and the �reserved time�for the case. The former is

a purely statistical concept, while the latter takes into account the overage and underage

costs. The decision of how much OR time to reserve for a speci�c case can be modeled as

a newsvendor problem, where the random component (Di) is the actual duration of cases

and the decision variable (Qi) is the amount of OR time to be reserved. (Weiss (1990) and

Charnetski (1984) follow similar approaches to model OR time reservation of individual

cases). We apply our structural estimation methods to this speci�c decision.

At some point after the OR time has been reserved to a case, the case needs to be

scheduled to a speci�c day and time (see Figure 3 (d)). This operational decision will

depend on the convenience for the surgeon and patient as well as on the urgency of the

case, among other variables. Scheduling the case is a decision that is separate from the

previously discussed time reservation decision. Dexter and Traub (2002) provide heuristics

for these type of decisions. Even closer to the day of the surgery (Figure 3(e)), OR time

is released, i.e. scheduled cases are cancelled or moved leaving idle OR time which can

be used to schedule other cases, cases can be moved and emergencies are scheduled (see

Dexter et al. (2003)).

3Predictable work hours are a key driver of employee satisfaction in the healthcare industry. For

example, Shader et al. (2001) link schedule stability with work satisfaction of nurses as well as with work

stress and employee turnover. Mueller and McCloskey (1990) identi�ed eight dimensions of nursing job

satisfaction, of which reliable scheduling is one. Similarly, Stachota et al. (2003) cited hours and schedules

as one of the primary reasons for nurses terminating their employment and Thompson and Brown (2002)

identi�ed schedule con�icts as a major driver of nursing turnover.
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The decision of how much time to reserve to a given case provides an excellent context

to apply our structural estimation methods of the newsvendor model. First, there exists

signi�cant evidence in the medical and health care literature that the newsvendor model

is used in practice to reserve OR time in order to balance under and over-utilization

costs4. Furthermore, these models have been incorporated into decision support tools to

assist OR management in hospitals and to optimize the sta¢ ng of these facilities (see

http://www.mda-ltd.com and Dexter et al. (2001)). Second, the estimation of surgical

procedure duration has been extensively analyzed in the medical literature (e.g. Strum

et al. (2000a) and Strum et al. (2000b)). These statistical models can be incorporated in

the �rst stage of our two step procedure described in Section 3 to �t the distribution of case

durations in our dataset. Finally, the actual case duration, which is the random component

of our model, is fully observed. This feature may not be present in those applications of

the newsvendor model where demand is censored by the endogenous stocking quantity.

Model Speci�cation

We apply our structural estimation method to the decision of how much OR time to

reserve to a speci�c cardiac surgery case. The model input will be the observed reserva-

tion decision, Q and various case characteristics. In addition, we also observe the actual

durations of each of the surgery cases (D). Our objective is to estimate the cost ratio .

The �rst stage of our two step procedure requires �tting the distribution of the duration

for each case. Our unit of analysis, indexed by i, is an individual cardiac surgery case (e.g.

a triple-bypass surgery for Mr. B conducted by surgeon W). The medical literature related

to OR management suggests that the lognormal distribution provides a good statistical

�t for the duration of surgery procedures (Strum et al. (2000a)). The parameters of this

distribution are determined by several case characteristics (Strum et al. (2000b)), and

can be anticipated by the decision maker. Let Xi denote the factors that describe the

duration of case i. Recall that a random variable Y has log-normal distribution with

parameters (�; �2) if ln (Y ) is normally distributed with parameters (�; �2): Following the

notation de�ned in Section 3, we assume that the distribution of the duration of case i is

4We thank two anonymous referees for suggesting references from the medical �eld.
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characterized by the parameter vector �i = (�i; �
2
i ). Given historical data of case durations,

denoted Di, and the characteristics of each case, denoted Xi, the actual duration of a case

can be written as:

log (Di) = Xi� + "i (10)

where the "i�s are assumed to be i.i.d. normally distributed with mean zero and standard

deviation �:5 Therefore, we have � = (�; �2) and h (Xi; �; �
2) = (Xi�; �

2) : Estimating

(�; �2)via Maximum Likelihood is equivalent to estimating � through OLS and � based

on the standard deviation of the regression residuals.

In �tting the log-normal distribution to cardiovascular procedures, we faced one sta-

tistical problem. Cardiovascular procedures are much longer than general surgery cases,

and therefore are not well �tted by the log-normal distribution. May et al. (2000) suggest

adding a third parameter, a location or �shift� parameter that we denote by �, which

�xes the lower bound of the support of Di: This means that if Di is the case duration,

then ~Di � Di� � follows a log-normal distribution. We follow this approach and estimate

the shift parameter as �̂ = (dmaxdmin � d2med) = (dmin + dmax � 2dmed), where dmin; dmax and

dmed are the minimum, the maximum and the median case duration observed in our car-

diac surgery dataset, respectively. For our sample, this estimate was 134.75 minutes. Note

that for this particular application, the maximum likelihood estimates have closed form

solutions and therefore numerical optimization routines are not required.

Now, we turn to the second step of the method. Using the log-normality of case dura-

tion, we have:

F
�
Qi; �̂i

�
= Pr (Di � Qi) = �

 
ln(Qi � �̂)�Xi�̂

�̂

!
(11)

where � (�) denotes the standard normal distribution. Replacing F (Qi; �i) in equation (8)

with the �tted value (11), we obtain an estimate ̂i of the cost ratio. Model N1 estimates

5To our knowledge, all the previous work that have analyzed the distribution of case durations assume

homoskedasticity of the error term, which for the log-normal case implies a constant coe¢ cient of variation

across cases.
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� via OLS as described in Section 3.6 Standard errors of the estimator for this speci�c

application are described in the Appendix.

In order to estimate Model N2, we need to �nd Q� (W;�; �) : Combining equations (9)

and (11) gives:

Q�
�
Wi; �; �̂; �̂

2
�
� �̂ = exp

�
�̂Xi + �̂ � ��1

�
1

1 + exp (Zi�)

��
(12)

De�ning ~Qi = Qi � � and ~Q�
�
Wi; �; �̂; �̂

2
�
= Q�

�
Wi; �; �̂; �̂

2
�
� �̂, the second step is

equivalent to estimating the vector � in ~Qi = ~Q�
�
Wi; �; �̂; �̂

2
�
+ �i via Non Linear Least

Squares. Again, standard errors for the estimates in this application are given in the

Appendix.

Data and Variable De�nition

Our empirical analysis is based on 258 cardiac surgery cases. Details of the data collec-

tion procedure and scope of the sample are de�ned in the Appendix. Our dataset includes

the date, the time of entry into the OR (TimeIn) and the time of departure from the OR,

the amount of OR time reserved when the case was booked (Qi) as well as the actual OR

time (Di), patient characteristics and procedure characteristics. The actual and reserved

time are measured in minutes, while TimeIn is measured in hours elapsed starting at 7

AM. Patient characteristics include a sex dummy (SEX=1 if male) and AGE (in years,

normalized to have mean equal to one). Procedure characteristics include the type of the

main procedure conducted (see Table 1, bottom), a dummy to indicate if the procedure

was an emergency (EMERG), a dummy to indicate if more than one procedure was con-

ducted during the operation (MPROC ), and information about anesthesia classi�cation

(ASA). The conventional anesthesia risk assessment score has six levels: (I) No systemic

disease; (II) Systemic disease, controlled; (III)Systemic disease, symptomatic or uncon-

trolled; (IV) Incapacitated; (V) In extremis, moribund; and (VI) Brain death pronounced

- organ donor. For cardiovascular procedures, most of the cases fall into categories III or

6Note that our structural model implies that Qi has to be greater than � for every i, since it can never

be optimal to reserve less than the minimum possible case duration. In our dataset, all of the observed

reservation times were above the estimate of the location parameter �:
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IV (in our dataset, no cases were classi�ed I or VI, only one case was classi�ed II, and only

two were classi�ed V). Therefore, we de�ned ASA as a dummy variable that is equal to

one when the anesthesia classi�cation was equal to or above IV. We classi�ed procedures

into 5 categories which are de�ned, following Strum et al. (2000b), based on the CPT

classi�cation. Note that each case is classi�ed based on the actual procedures that were

conducted. Even though we do not have pre-operation data on the procedures that were

planned to be conducted, we learned that there is not much variation between the planned

and the actual procedures that are conducted during a surgery. All cases that included

a coronary artery bypass procedure were included in the CABG category, regardless of

additional procedures performed. For these cases, we also coded a measure capturing the

number of arteries bypassed (NBYP). Aortic valve replacements that included repair of

the ascending aorta were classi�ed as AVR. Cases of repair of the ascending aorta with-

out AVR were included in OTHER procedures. Each case was conducted by one of four

surgeons, speci�ed by three dummy variables (S1 through S3 ). Table 1 includes some

descriptive statistics for these variables. All dummy variables are coded as binary {0,1}.

Based on the work by Strum et al. (2000b) and conversations with the hospital man-

agement at our research site, we de�ned covariates for actual duration (X) and cost ratio

parameter (Z) as follows. InX, we included procedure information (dummies for each type

of procedure, NBYP, MPROC, ASA and EMERG), patient information (AGE and SEX )

and dummies for surgeons. Even though we would expect post-operative measures to have

signi�cant explanatory power for actual duration, we did not include them as covariates in

X since this information is not available to the hospital management when reserving the

OR. The NBYP, ASA and EMERG measures are good proxies for case severity, providing

valuable information to predict actual procedure duration. Surgeon dummies are included

to account for di¤erent levels of experience of the surgeons, which can a¤ect actual du-

ration. Previous research in the medical literature (Strum et al. (2003)) has shown that

predicting duration of multiple procedure cases can be di¢ cult, mainly due to the lack

of su¢ cient historical data for each procedure combination. Given the small size of our

dataset, we opt to include a single dummy to indicate multiple procedures. This simple
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approach could be improved if more data on multiple procedure cases were available. In

Z, we included the same procedure characteristics (dummies for each type plus MPROC,

ASA and EMERG), dummies for surgeons (S1,S2 and S3 ) and TimeIn. We include proce-

dure characteristics mainly because procedures may use di¤erent resources of the hospital,

which would a¤ect the overage and underage costs. Surgeon dummies are included to

control for potential di¤erences in overtime costs for the surgeons. The TimeIn covariate

allows the cost ratio to vary during the day.

The service we analyzed was allocated one OR per day from 7:30 AM to 7 PM (11.5

hours). Hence, cardiac surgeons never conducted multiple surgeries in parallel by moving

back and forth across ORs. Also, in our setting, a surgeon only very rarely conducted

two consecutive surgeries on one day. This speci�c setting is somewhat unusual for a large

hospital. But it provides a perfect empirical setting to apply our estimation framework as it

supports the assumption of independence in the time allocation across any two cases. This

unique setting clearly limits the generalizability of our cost estimates to other hospitals.

In other words, while our estimation method applies to other settings (including other

applications of the Newsvendor model), our cost estimates do not.

5. Results

Our estimation results are summarized in Table 2. First, consider the variables in�u-

encing actual times (variables in X; left part of Table 2)7. As we can see, the variation in

case durations can partly be explained by patient characteristics such as SEX as well as

by variables describing case severity (ASA and NBYP). Cases with multiple procedures

(MPROC ) tend to take longer. In other words, case durations are not identically distrib-

uted. The coe¢ cient of determination (R2) of the regression is equal to 0:39, which re�ects

that a signi�cant fraction of the variation in Di can be predicted through the factors in Xi.

The point estimate of �2 is approximately 0.08, which re�ects that there still is uncertainty

in predicting actual duration after controlling for patient and procedure characteristics.

Second, consider the estimation of the cost ratio equation (variable Z, right part of

7Note that since the �rst step of the estimation method is the same for the two models, the coe¢ cients

for X in models N1 and N2 are identical..
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Table 2). As we can see in Table 2, for cases with more than one procedure (MPROC ),

increased emphasis was placed on the costs of OR idle time. The same holds for the

number of bypass arteries (NBYP) in cardiac bypass surgeries and the anesthesia risk

factor (ASA). This re�ects that complicated cases may use key hospital resources which

have high utilization rates, increasing the overage cost for these procedures.

We also observe that emergency cases tend to have a lower cost ratio. Since emergency

cases use dedicated resources which are not shared with regular scheduled operations (for

example, at nights or during weekends), idle capacity has a lower impact on costs, lowering

the cost ratio parameter. Moreover, as nearly all emergencies are performed within 24

hours of reserving the OR time, the decision maker can use last minute information such

as cancellations of other procedures to schedule emergencies in �time windows�that would

not otherwise be utilized, further decreasing overage costs.

After looking at the drivers of the cost parameter , we now estimate the numeric value

of . Towards this task, we compute the predicted values, i = Zi�̂; for the observations

in our sample. The resulting histogram is shown in Figure 4. The median for estimates

of  for Model N1 (Model N2) is 1.79 (1.56). This is evidence that the hospital indeed

emphasizes the costs of OR idle time.

We used the estimate of the cost ratio  and its associated standard errors to test if i

would be larger than one with statistical signi�cance8. For Model N1 (Model N2) we could

reject the hypothesis of a cost ratio less than one, Ho : i � 1, at the 95% con�dence level

for 44% (46%) of the cases, in favor of the alternative hypothesis H1 : i > 1 . Only 23%

(21%) of the cases showed a cost ratio signi�cantly less than one for Model N1 (Model

N2).

Finally, Figure 4 also shows a substantial heterogeneity in . The centered R2 of the

second step regression in Model N1 is equal to 0.40, which re�ects that a substantial part

of this cost heterogeneity can be explained by the factors in Z. An F-test rejects the null

of all Z coe¢ cients being equal to zero (p-value less than 10�4).

8Asymptotic standard errors for the cost ratio parameter were obtained via the delta method.
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We conducted out of sample goodness of �t tests using Model N1 and N2. The results

are described in the Appendix.

While our structural model exhibits good �t to the data, the magnitude and hetero-

geneity of our cost estimates seem to be at odds with some of the models developed in

the OR management literature. Strum et al. (1999) suggest that the relevant costs in

allocating OR time are sta¢ ng costs, which lead to a cost ratio  less than one because

over-time hours are more expensive than regular hours. In contrast, our results suggest

an average cost ratio above one. In the next section, we develop two alternative models

which extend the structural models developed in Section 3. These models provide results

which are better aligned with those reported in the OR management literature.

6. A Newsvendor Model with Forecasting Bias

The structural models developed in Section 3 consistently estimate the overage/underage

cost ratio under the assumption that the newsvendor decision Q is based on an unbiased

estimate of the distribution of the random component D. However, Dexter et al. (2005b)

report systematic biases in OR time forecasts provided by surgical services. There are

two main reasons why we believe that the magnitude and variation of the cost estimates

of Models N1 and N2 may be driven by systematic forecasting biases. First, we observe

that more complicated cases are overrun more often, which is consistent with previous de-

scriptive results related to �over-con�dence�developed in other managerial settings (see

Kahneman and Tversky (2000)). Consider the two sub-samples of cases with multiple

procedures and single procedures, which correspond to 20% and 80% of the total cases,

respectively. The average time required to complete multiple (single) procedure cases is

around 430 minutes (350 minutes). Comparing the schedule overruns across these two

types of cases, we �nd that multiple procedure cases go over the schedule 75% of the time

while low complexity cases go over the scheduled time about 60% of the time. Hence,

multiple procedure cases are 1.25 times more likely to go over the scheduled time, which

suggests that the decision maker over-estimates his ability to perform complex procedures

on time and might be able to improve her forecasting capability.
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Second, forecasting biases may also arise due to incentive con�icts between the agents

participating in the reservation process. As noted by Dexter et al. (2005b), systematic

biases can be caused by surgeons �underestimating their case durations to get their cases

to ��t�into their allocated OR time�. In our data, we �nd that emergencies are overrun

54% of the time versus 64% for non-emergency cases. For emergency cases, surgeons can

use patient urgency as their �lever�to get the case on schedule soon, reducing the incentive

to misreport their estimated duration for the case. This suggests that incentive con�icts

may be a cause for the frequent schedule overruns in our sample.

We now extend our econometric framework to account for forecasting biases in the

newsvendor�s forecast of D. Continue to assume the same distribution for case duration

(log normal with parameters �i = �Xi and �). Instead of assuming a perfectly rational

decision maker, we assume that the reservation time is based on a biased estimate of the

mean distribution. Let Db
i be the perceived duration of case i, so that logD

b
i is normal

with mean �bi = bi+�i and standard deviation �: For this biased forecast, the reservation

decision ~Qi is the solution to �
�
ln( ~Qi)�(bi+�i)

�̂

�
= 1

1+i
. Rearranging we obtain:

ln
�
~Qi

�
� �i = bi + ���1

�
1

1 + i

�
(13)

The bias term bi may vary across cases. For example, surgeons may have less incentive

to under-estimate emergency procedures relative to non-emergency procedures. We can

model the bias as:

bi = B + '
0Wi + !i (14)

where Wi is a vector of observable characteristics (without an intercept), B is a constant

and !i denote unobservable factors that a¤ect the bias. We assume that !i and "i are

independent. We also transform W by subtracting its mean so that B represents the

average forecast bias. Under these behavioral assumptions and a cost ratio of the form

i = exp (�
0Zi), the actual reservation decision becomes:

ln
�
~Qi

�
� �i = B + '0Wi + ��

�1
�

1

1 + exp (�0Zi)

�
+ !i (15)

Model (15) can have poor identi�cation of the parameters (B;'; �). To see this, suppose

that Zi contains only a constant, so that the cost ratio is constant. De�ne the critical
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value t () = ��1 (1=(1 + )) : Note that even if we know �; we cannot identify t () and

B separately. In other words, we cannot identify whether the observed reservation times

are due to an under-estimation of procedure duration (low B) or due to a high cost ratio

 (low t) 9.

In order to obtain a more informative model, we impose restrictions on the parameters

of (15) based on external information. One alternative is to restrict the model to have a

constant cost ratio, leading to the following model:

ln
�
~Qi

�
� �i = c+ '0Wi + !i (16)

were c = t ()� + B: In a study of OR block allocation conducted at two university

hospitals, Abouleish et al. (2003) suggest that underage costs are 75% higher than overage

costs, so we set  = 1=1:75 = 4=7. We refer to (16) as Model B1. In this model, the

variance of the adjusted reserved time ln
�
~Qi

�
� �i is explained by heterogeneity in the

forecasting bias across cases. Given an estimate of c and a value for , we can calculate

the implicit average bias B and the coe¢ cient vector ':

Another alternative is to �x the forecasting bias. Letting ' = 0 and �xing the average

bias at B = Bo, model (15) becomes:

ln
�
~Qi

�
� �i = Bo + ���1

�
1

1 + exp (�0Zi)

�
+ !i (17)

We refer to (17) as Model B2. Following Dexter and Ledolter (2005), we de�ne the

proportionality bias as � = E
�
Db
i

�
=E (Di). Based on the results reported by Strum et al.

(1999) and Dexter et al. (2005b), we �x the value of Bo so that � = 0:8, i.e. the newsvendor

forecast is 20% below the true forecast. Model B2 provides a new estimate of �, which we

use to compute a bias-adjusted average cost ratio.

We estimated Model B1 and B2 using a two-step method similar to TS-NLLS. The

properties of the estimators and the calculation of the standard errors are detailed in
9However, if case duration is heteroskedastic so that V ar ("i) = �2i is not constant across cases, then

it is possible to identify t and B separately, and so  can be identi�ed. In our results, post-regression

statistical tests do not provide signi�cant evidence of heteroskedasticity. This can be due to the relatively

homogenous cases in our sample.
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the Appendix. The estimate for the ' coe¢ cients of Model B1 are reported in Table

3. The estimate for the intercept c implies a proportionality bias equal to � = 85%

(approximately) 10. We also have added the estimates of the corresponding X coe¢ cients

in Table 3 for comparison. The results show that longer procedures tend to exhibit a

signi�cantly larger bias. Furthermore, the magnitude of the estimates suggest that, while

the decision maker seems to be adjusting its forecast for longer procedures, this adjustment

is insu¢ cient. To explore this issue further, we looked at the average reserved and actual

times of cases with low and high ASA risk factor for each of the four surgeons in our

sample, which are illustrated in Figure 5. The �gure shows how the adjustment made

in the reservation time, while in the right direction, is insu¢ cient to account for all the

heterogeneity among surgeons. Similar results were found by Cachon and Schweitzer

(2000), who study newsvendor decisions made in a controlled experiment. They �nd that

subjects make an insu¢ cient adjustment in their newsvendor decisions and tend to be

biased towards the mean. In contrast to the substantial forecasting bias found for an

average case, the positive sign and magnitude of the ' coe¢ cient for EMERG suggests

that emergency cases exhibit almost no forecasting bias11. This suggests that surgeons are

intentionally underestimating the duration of non-emergency cases to get them sooner in

schedule.

The estimates of Model B212 imply an average bias-adjusted cost ratio of approximately

0.5. This adjusted cost measure is in line with the overage/underage cost ratio reported

by Strum et al. (1999).

7. Discussion and Conclusion

As in any single-site research study, one should be cautious to generalize our estima-

10This can be calculated by noting that � = exp (B + 'Wi) � E (exp (!i)) : Assuming !i is normally

distributed with mean zero, we obtain E (exp (!i)) � exp (ŝ=2) where ŝ is the standard deviation of the

residuals !i in equation (16).
11Recall that the W variables are de-meaned, so the average bias for emergency cases is B+'EMERG ��
1� EMERGi

�
� �0:02

12The coe¢ cient estimates of Model B2 are not reported but can be obtained from the authors upon

request.
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tion results to other hospitals; the methods that we developed are generalizable to other

settings, but the reported estimation results are speci�c to our study. Speci�cally, the

trade-o¤s present in our application depend on how much OR time was allocated to car-

diac services at the aggregate level (see Figure 3 (a)). The estimated costs are valid to the

cardiac service we analyze under the �xed allocated time of one OR, 11.5 hours per day.

We believe that our results are of substantial interest, both from an academic and a

managerial perspective. From an academic perspective, the main contribution of this pa-

per is to provide a general structural model to impute the overage and underage costs in

newsvendor-type decisions. Our models are su¢ ciently general to allow for arbitrary para-

metric distributions of the random variable, and can accommodate observed heterogeneity

in this distribution. The model also allows for observed and unobserved heterogeneity in

the overage/underage cost ratio and therefore can be used to compute di¤erent costs es-

timates for each observation in the sample. We develop methods that give consistent

estimates of the parameters of each of the two models, and derive the asymptotic distri-

bution of the estimators which can be used to compute standard errors of the estimates.

Therefore, our methodology can be used to conduct hypothesis testing and is useful for

empirical research.

We applied our structural estimation methods to the decision of how much OR time

to reserve to a speci�c surgical case, using real data from cardiac surgery. From the

perspective of healthcare management, our analysis reveals that the hospital underlying

this study is apparently placing much greater emphasis on OR idle time compared to

delays and running over the scheduled time. Speci�cally, we showed that the costs of

OR idle time were perceived, in average, as approximately 60% higher than the cost of

schedule overrun. It should be emphasized that using such cost parameters is not right or

wrong per se: it simply re�ects how the hospital balances partly con�icting objectives. It

is the role of the hospital administration to evaluate the alignment of these cost estimates

with the overall strategic objectives of the hospital.

The structural models we developed are relevant in practice and can be used in di¤erent

ways. Consider Models N1 and N2, which assume a fully rational decision maker with no
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forecasting biases. We found the cost ratio to be approximately 1.6 in this case. This

is a helpful piece of information for the hospital management to diagnose if the current

system is in line with the expectations and objectives of the hospital. As an example,

consider a hospital manager who views the costs of over-time as 75% higher than idle time

costs. Further, assume that using Model N1 or N2 she �nds that the hospital appears to

value over-time costs 50% less than the costs of idle capacity, as we �nd in our research.

This provides statistically signi�cant evidence that there exists a mismatch between the

management objectives and the actual behavior of the system. Our analysis is useful to

identify potential biases introduced by surgeons while controlling for the procedure mix

performed by each surgeon. A more detailed analysis of the reservation process is in order.

This is where Model B1 can be used. Model B1 helps hospital management to diagnose

whether there exists a bias in the forecasting process, and if so, to identify the variables

that lead to larger biases. This forecasting bias may arise because of insu¢ cient forecasting

capability or due to incentive con�icts. For example, our hospital manager might �nd that

the hospital systematically under-estimates the duration of complex cases, as we did in

our research. The system would bene�t from an enhanced forecasting system, potentially

based on an implementation of the methods developed by Dexter and Ledolter (2005).

Finally, model B2 provides a re�ned estimate for the costs of too much versus too little

capacity reservation. Unlike Models N1 and N2, Model B2 corrects for the forecasting bias

and hence leads to more realistic estimates of the underlying cost parameters. Based on

the adjustment for the forecasting bias, we �nd the average cost ratio to be 0.5, which is

in line with the earlier study by Strum et al. (1999).

One advantage of using structural estimation is that it provides a better understanding

of the mechanism by which the di¤erent factors a¤ect decisions. In the context of the

newsvendor, we can disentangle whether a speci�c factor a¤ects the observed decision

Qi through the distribution of the random variable Di or through the overage/underage

cost ratio i: This can be helpful for a prescriptive analysis of the system. For example,

often it might be easier to adjust factors that a¤ect the cost ratio than changing factors

that a¤ect Di: In addition, disentangling these e¤ects can provide a more robust tool to do
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prospective analysis when major changes in the system are introduced. For example, we

could use our model to measure the economic impact of subsidies of overage and underage

costs. In a decentralized supply chain, the imputed parameters could be used to design

contracts to coordinate the supply chain and increase e¢ ciency. Most of the contracts

suggested in the literature that coordinate newsvendor decisions depend on the overage and

underage costs (see Cachon (2003)). However, these costs are usually private information

of each of the agents negotiating the contract, who might not want to reveal them during

the bargaining process. Our structural model can be used to impute these costs parameters

from historical data, which can facilitate the speci�cation of such contracts. All of these

contributions easily carry over to the broad range of existing Newsvendor applications.

We found the application domain of hospital capacity planning to be particularly well

suited for structural estimation methods, as hospital operations have been researched both

from a analytical and an empirical perspective. We believe that future research could

apply our estimation methods to other hospital decisions, such as inventory decisions

at blood banks, service level decisions of trauma surgeons, or resource allocations for

elective and emergency procedures. Given the broad range of Newsvendor applications

in Operations Management, however, the potential usage of our econometric framework

extends to Supply Chain Management, capacity planning, and project management.
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Figure 4: Histogram of cost ratio γi=Ziα for Model N1 and Model N2.

Figure 3. OR Management decision time-line. 
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Figure 5 – Average actual case duration (D) and reserved time (Q) by surgeon, for single 
procedure cases with low (top) and high (bottom) ASA risk factor. Numbers above bars 
indicates the number of observations on each group.
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Table 1: Summary Statistics

742.00215.0084.35366.69D

467.00210.0042.13338.19Q

15.580.133.032.76Time in   

1.420.320.211.00Age       

6.000.001.591.74NBYP 

MaxMin St.Dev.MeanVariable

0.15S3        

0.23S2        

0.47S1        

0.45ASA       

0.11EMERG     

0.67SEXdum

0.20MPROC

MeanVariable

0.09MVR       Mitral valve replacement

0.06MV        Mitral valve repair

0.62CABG      Coronary artery bypass graft(s)

0.17AVR       Aortic valve replacement

MeanAbbreviationProcedure

Table 2: Estimation results for Model N1 and N2. Left (right) of the table shows 
the estimates for the first (second) step. Standard errors are shown in 
parenthesis. ***,**,* denote significance at the 1%, 5% and 10% confidence level.

Coefficient Models N1 and N2 Coefficient Model N1 Model N2
X covariates Z covariates
intercept       5.1757 ( 0.1169)*** intercept        0.0065 ( 0.5475)        -  0.4157 ( 0.4473)   
AVR          -  0.0796 ( 0.0854)   TimeIn       -  0.0083 ( 0.0256)        -  0.0028 ( 0.0230)   
CABG         -  0.1295 ( 0.1041)   AVR              0.0642 ( 0.5082)          0.5458 ( 0.4196)   
MV              0.0237 ( 0.1034)   CABG          -  1.0991 ( 0.5784)*       -  0.7279 ( 0.4977)   
MVR          -  0.0471 ( 0.0925)   MV               0.2734 ( 0.4969)          0.6697 ( 0.4033)*  
NBYP       0.1019 ( 0.0229)*** MVR           -  0.2039 ( 0.5853)          0.0834 ( 0.4476)   
MPROC       0.3862 ( 0.0468)*** NBYP        0.6633 ( 0.0963)***        0.6532 ( 0.1052)***
SEX       0.0920 ( 0.0382)** MPROC        1.7790 ( 0.1940)***        1.6981 ( 0.2306)***
Age             0.0527 ( 0.0929)   S1            -  0.6768 ( 0.2303)***      -  0.6488 ( 0.2263)***
EMERG           0.0947 ( 0.0598)   S2            -  0.1081 ( 0.2679)        -  0.1031 ( 0.2561)   
ASA             0.0973 ( 0.0379)** S3            -  0.0054 ( 0.2805)          0.0166 ( 0.2608)   
S1           -  0.1824 ( 0.0563)*** EMERG         -  0.7071 ( 0.2799)**      -  0.7002 ( 0.2411)***
S2           -  0.0859 ( 0.0588)   ASA              0.3876 ( 0.1605)**        0.2958 ( 0.1610)*  
S3           -  0.0765 ( 0.0644)   
Sigma^2         0.0784 ( 0.0001)***



Table 3 – Estimates for Model B1 (with cost ratio equal to 4/7). The two right columns 
are the coefficient estimates of the actual duration estimation, shown for comparison.
Standard errors are shown in parenthesis. ***,**,* denote significance at the 1%, 5% and 
10% confidence level.

Coef.
c       -0.0906 (0.0116)***
MPROC -0.2799 (0.0286)*** 0.3862 (0.0468)***
ASA     -0.0632 (0.0250)** 0.0973 (0.0379)**
NBYP -0.1065 (0.0152)*** 0.1019 (0.0229)***
CABG    0.1751 (0.0522)*** -0.1295 (0.1041)
S1      0.1098 (0.0354)*** -0.1824 (0.0563)***
S2      0.0238 (0.0411) -0.0859 (0.0588)
S3      0.0022 (0.0431) -0.0765 (0.0644)
EMERG   0.1126 (0.0429)*** 0.0947 (0.0598)
TimeIn  0.0018 (0.0040)
R-sq 0.4099

Model B1 X Coefficients

•Average cost ratio = 0.5.
•Factors affecting cost 
ratio.

Q, D, X, 
Z,B

Cost heterogeneity80% of true 
forecast(**)

Varies among 
cases.

B2

•Average forecasting 
bias = 15%.
•Variation of bias among 
cases.

Q, D, X, 
W,γ

Bias heterogeneity Varies 
among cases

Constant and 
equal to 4/7(*).

B1

•Average cost ratio=1.6
•Factors affecting cost 
ratio. 

Q, D, X, ZDeviations from 
optimal reservation 
(additive)

NoneVaries among 
cases.

N2

•Average cost ratio=1.7
•Factors affecting cost 
ratio.

Q, D, X, ZCost heterogeneityNoneVaries among 
cases.

N1

UnobservablesForecast 
Bias

Cost Ratio OutputInput
Assumptions

Model

(*) As reported by Abouleish et al. 2003 [4]
(**) As reported by Dexter et al. 2005 [1]

Table 4 – Comparison of Structural Models



APPENDIX

Notation

Throughout this appendix, we use Dxg =
h
@g
@x1
::: @g
@xn

i
to denote the gradient of the real

valued function g with respect to x in row vector format and Jx[G] to denote the Jacobian

of the vector valued function G with respect to x. F (t;h (Xi; �)) and f (t;h (Xi; �)) denote

the distribution and the density function of Di, respectively. We use X 0 to denote the

transpose of the vector/matrix X:

Asymptotic Distribution of the TS OLS estimator:

Proposition 1 Assume: (i) E (Zi�i) = 0; (ii) E (Z 0iZi) is �nite and of full rank; (iii) the

MLE �̂ is a consistent estimator of �; and (iv) F (D;h (Xi; �)) is continuous in �. Then,

the TS-OLS Method provides a consistent estimator of � and is asympotically normal.

A consistent estimator of the asymptotic variance of the estimator is given by:

dAvar (�̂) = Â�1o D̂oÂ
�1
o =n

where:

Âo = n�1
nX
i=1

Z 0iZi

D̂o = n�1
nX
i=1

ĝiĝ
0
i

ĝi = si (�̂; �̂) + Ĝo � r̂i

si (�; �) = Z 0i (ln (i (�))� Zi�)

Ĝo = n�1
nX
i=1

�(1 + ̂i)
2

̂i
Z 0i �D�F (Qi;h (Xi; �))

r̂i = I (�̂)�1 �D�li (�̂)
0

and where I (�̂), li (�̂)and D�li (�̂) are the the information matrix, the log-likelihood and

the score of the �rst step maximum likelihood evaluated at the estimate �̂, respectively.

Proof of Proposition 1

De�ne yi = ln (i) and ŷi = ln (̂i) : Because F (Qi;h (Xi; �)) is continuos in �; ln
�

1
F (Qi;h(Xi;�))

� 1
�

is continuos in �: Therefore, the consistency of � implies that plim ŷi = yi. De�ne

1



� i = ŷi � yi and ŷ; y; � and � as the stack vectors of ŷi; yi; � i and �i respectively. The

estimator �̂ is given by:

�̂ = (Z 0Z)
�1
Z 0ŷ

= (Z 0Z)
�1
Z 0 (y + �)

= (Z 0Z)
�1
Z 0 (Z�+ � + �)

= �+ n � (Z 0Z)�1
�
n�1Z 0� + n�1Z 0�

�
The law of large numbers implies that plim n�1Z 0� = E (Zi�i) = 0 and plim n �

(Z 0Z)�1 = [E (ZiZ
0
i)]
�1 < 1 (by assumption), which together with plim� = 0 implies

that the second term on the right hand side of the equality converges in probability to

zero. Therefore, plim �̂ = �, which proves consistency. We can also write:

p
n (�̂� �) = n � (Z 0Z)�1

�
n�1=2Z 0� + n�1=2Z 0�

�
By the central limit theorem (CLT), n�1=2Z 0� is asymptotically normal with meanE (Zi�i) =

0 and variance E
�
�2iZ

0
iZi
�
: Since yi is a continuous function of �, we can use �rst order

Taylor approximation to get:

n�1=2
X
i

Z 0i (yi � ŷi) = �
"
n�1

X
i

Z 0i
(1 + i)

i
D�F (Qi;h (Xi; �))

#
�
p
n (�̂ � �) + o (1)

Standard results from maximum likelihood imply:

p
n (�̂ � �) = I0 (�)n�1=2

X
i

D�li (�)
0 + o (1)

whereD�li (�) is the gradient of the log-likelihood of observation i and Io (�) = E
�
D�li (�)

t�
is the information matrix for the MLE of step 1. De�ning Ao = E (Z 0iZi) ; si (�; �) = Zi�i ,

Go = E
n
Z 0i

(1+i)
i
D�F (Qi;h (Xi; �))

o
, ri = I0 (�)�D�li (�)

t and gi = si (�; �)+Go�ri we get

that
p
n (�̂� �) converges in distribution to A�1o

�
n�1=2

P
i gi
�
: By the CLT, n�1=2

P
i gi

is asymptotically normal, which implies the asymptotic normality of
p
n (�̂� �) : The

asymptotic variance is given by:

Avar
�p
n (�̂� �)

�
= A�1o DoA

�1
o

2



where Do = E (g
0
igi) ; and so Avar (�̂) = A

�1
o DoA

�1
o =n. Given that Âo and D̂o are consis-

tent estimates of Ao and Do; plim dAvar (�̂) = Avar (�̂).
Asymptotic Distribution of the TS NLLS estimator.

Proposition 2 Assume: (i) E (Z 0iZi) is �nite and of full rank; (ii) Q
� (Wi; �; �) is con-

tinuous in � and �; and (iii) the MLE of � obtained in the �rst step is consistent. Then,

the TS NLLS method provides a consistent estimator of � and is asymptotically normal.

A consistent estimator of the asymptotic variance of the estimator is given by:

dAvar (�̂) = Â�1o D̂oÂ
�1
o =n

where:

Âo = n�1
nX
i=1

D�Q
�0 �D�Q

�

D�Q
�
i = � 1

f (Q�i ;h (Xi; �̂))
CRi (1� CRi)Zi

CRi =
1

1 + ̂i

si (�; �) = D�Q
�0
i � �i (�; �)

�i (�; �) = Q�i �Qi

Q�i = Q� (Wi; �̂; �̂)

J� [D�Q
�0
i ] =

CRi (1� CRi)
[f (Q�i ;h (Xi; �̂))]

2 � Z
0
i �
"
[D�f (t;h (Xi; �̂))]t=Q�i

+

�
@f (t;h (Xi; �̂))

@t

�
t=Q�i

D�Q
� (Wi; �̂; �̂)

#

Ĝo = n�1
nX
i=1

J� [D�Q
�0
i ] � �i (�̂; �̂) +D�Q

� (Wi; �̂; �̂)
0 �D�Q

� (Wi; �̂; �̂)

and D̂o, ĝi and r̂i are de�ned as in Proposition 1.

Proof of Proposition 2

The estimator is a special case of two stage linear least squares (NLLS) (see Wooldridge

(2002), pg. 353). The assumptions in the proposition provide the general conditions

for which this class of estimators are consistent. Since F (�; �i) is monotone increasing,

F�1
�

1
1+i

;h (Xi; �o)
�
is one to one in i and so assumption (i) implies that

P
i[Q

� (Wi; �; �o)�

Qi]
2 is uniquely minimized at �o; where (�o; �o) denote the true parameters. Therefore,

3



given �o; the model is identi�ed for �: Assumption (ii) and (iii) are standard to provide

the consistency of the two step M-estimator.

The asymptotic variance of the two-stage NLLS is given by:

Avar
�p
n (�̂� �)

�
= A�1o DoA

�1
o

where

Do = E (g0igi)

gi = si (�; �) +Go � ri

si (�; �) = D�Q
� (Wi; �; �̂) (Q

� (Wi; �; �̂)�Qi)

Go = E fJ�si (�; �)g

Because �̂ is identical to the �rst step estimate for Model N1, ri has the same form as in

Proposition 1. The Jacobian of si (�; �) is given by:

J�si (�; �) = J� [D�Q
�0
i ] � �i (�̂; �̂) +D�Q

� (Wi; �̂; �̂)
0 �D�Q

� (Wi; �̂; �̂)

To compute the gradient with respect to � of Q� (Wi; �; �) = F
�1
�

1
1+exp(�0Zi)

;h (Xi; �)
�

we use implicit di¤erentiation:

D�Q
�
i = �

1

f (Q�i ;h (Xi; �))
CRi (1� CRi)Zi:

Taking derivatives with respect to � gives the expression for the Jacobian J� [D�Q
�0
i ] :

Replacing the gradient and the Jacobian on the general equations for the asymptotic

variance of the two-stage NLLS gives the asymptotic variance of the TS-NLLS speci�ed

in Proposition 2.

Standard Errors for the OR Reservation Application

To calculate the Asymptotic variance of the estimators, we need to specify Ĝo; r̂i and

si (�; �) for each model. Since the �rst step method used to compute �̂ is the same for both

models, we start by specifying r̂i: The MLE of model (??) gives the following expressions
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for the information matrix I (�; �2) and the score function D(�;�2)li (�; �
2):

I (�) =

0@ 1
�2
X 0X 0

0 n
2�4

1A
D�li =

1

�2
Xi (ln (D)�Xi�)

@li
@�2

=
�n
2�2

+
1

2�4
(ln (D)�Xi�)

0 (ln (D)�Xi�)

These de�nes ri and its sample counterpart r̂i for both methods.

For model 1, using equation (12) we have:

D�Fi = �Xi

�
�

 
ln ~Qi �Xi�

�

!

@Fi
@�2

= �

�
ln ~Qi �Xi�

�
2�3

�

 
ln ~Qi �Xi�

�

!

which can be replaced in the expression for Ĝo:

For model 2, note that

~Q�
�
Wi; �; �̂; �̂

2
�
= exp

�
�̂Xi + �̂ � ��1

�
1

1 + exp (Zi�)

��
D�

~Q�i = ~Q�
�
Wi; �; �̂; �̂

2
�
� �̂ � 1

� (��1 (CRi))
� (�CRi) (1� CRi)Zi

D�Q
�
i = Xi

~Q�
�
Wi; �; �̂; �̂

2
�

D�2Q
�
i =

1

2�
��1 (CRi) ~Q

�
�
Wi; �; �̂; �̂

2
�

f
�
t;�; �2

�
=

1

�
p
2�

1

t
exp

(
�(ln t� �)

2

2�2

)
@f (t;�; �2)

@t
= �f

�
t;�; �2

� 1
t

�
1 +

ln t� �
�2

�
�
f
�
t;Xi�; �

2
��
t=Q�i

=
1

�Q�i
�
�
��1 (CRi)

�
�
D(�;�2)f (t;Xi�; �)

�
t=Q�i

= f (Q�i ;Xi�; �)
��1 (CRi)

�

�
Xi;

��1 (CRi)

2�
� 1

2���1 (CRi)

�

The score function is calculated by replacing the expression for D�
~Q�i on si (�; �) =

D�
~Q�i (Q

�
i �Qi) : Replacing the expressions above in the equation for Ĝo and simplifying
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terms gives the following expression:

Ĝo = n
�1
X
i

�CRi (1� CRi)
� (��1 (CRi))

�QiQ
�
i � Z 0i �

24 Xi

1
2�̂
��1 (CRi) +

�i(�;�)
2�2Qi

350 :
Estimation Methods for Models B1 and B2

We estimated Models B1 and B2 by running a two-stage non-linear least square regres-

sion of equations (17) and (18). As in TS-OLS and TS-NLLS, the �rst stage estimates

(�; �) using data on actual duration (D) : In the second stage, we replace the �tted values

�̂ = �Xi and �̂ in the corresponding model and use standard non-linear least squares. Be-

cause the models are special cases of two step M-estimators, the estimators are consistent

(the proof follows the same lines as Proposition 1 and 2).

Model B1 can be rewritten as:

yi (�) = �W 0
i'+ !i

where yi (�) = logQi � X 0
i� and the vector �Wi includes the the covariates Wi and the

intercept c: Using the same previous notation, the asymptotic variance of the estimator of

' for Model B1 is given by:

Avar ('̂) = A�1o DoA
�1
o � n�1

where

Ao = n�1 � �W 0 �W

Do = n�1
X

gig
0
i

gi = s
�
'; �̂

�
+Gori

Go = E
h
J�si

�
'; �̂

�i
s ('; �) = �Wi

�
y (�)� �W 0

i'
�

The Jacobian is given by: J�si ('; �) = �W 0
i (�Xi), which gives:

Go = �n�1 �W 0X

6



For Model B2, we write equation (18) as:

yi (�)�B = �t (�;Zi) + ei

where t (�;Zi) = ��1 ([1 + exp (Z 0i�)]
�1) : We estimate � by replacing the equation above

with the �tted values �̂ and �̂:De�nemi (�; �) = �t (�;Zi) andm (�; �) = [m1 (�; �) :::mn (�; �)]
0:

Using the same notation as above for the asymptotic variance, we calculate each of the

terms as follows:

Ao = n�1 �D�m (�; �̂)
0D�m (�; �̂)

si (�; �; �) = D�mi (�; �) (yi (�)�B �mi (�; �))

= D�t (�;Zi) � � (yi (�)�B �mi (�; �))

J(�;�)si = D�t (�;Zi)
0 �
�

��Xi

êi �mi (�; �)

�
Go = n�1

X
i

J(�;�)si

The gradient D�t (�;Zi) is calculated as:

D�t (�;Zi) = Zi �
�
� 1

� (��1 (CRi))
CRi (1� CRi)

�
Details on data collection

Our analysis is based on a data set that was collected in a large US teaching hospi-

tal. After obtaining approval from our Committee on Human Research, we conducted a

retrospective study using data from patients who underwent cardiac surgery. The study

period was January 1, 2003 to December 31, 2003. Throughout the study period, the

cardiac service was allocated one OR from 7:30 AM to 7:00 PM on each day.1 Patients

were included in the sample if they were over 18 years of age and if they underwent one or

more of the following procedures: coronary artery bypass surgery, cardiac valve surgery,

excision of a cardiac mass, or repair of the ascending aorta. Other cardiac surgery pro-

cedures were included if cardiopulmonary bypass support was required. Emergency cases

were included, however we excluded cases of repair of complex congenital heart disease

1In the afternoon of of each day, the remaining time on the following day not reserved for cardiac

surgery is opened up to book surgeries of other services.
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and all heart or lung transplants.. Congenital heart disease is conducted by a completely

di¤erent group of surgeons, and in the context we study, can be considered as a di¤erent

service. Transplants, all of which are classi�ed as emergencies, are a small fraction of

the total cardiac surgeries conducted by the service we analyze (about 5%). We excluded

these cases because the variability on their actual duration is much larger than for the

rest of cardiac procedures, mainly due to waiting times for organ donations. Therefore,

the OR reservation process used to book these cases can be quite di¤erent. Finally, we

only considered those cases that were conducted by surgeons who conducted two or more

procedures in our study period.

We also excluded extremely severe cases in which the patient died during the same

hospitalization in which they had the surgery. We repeated our analysis over a larger

sample which included these 15 cases and found that the coe¢ cient estimates did not

change substantially. However, cases in which the patient died, sometimes on the day of the

surgery, were persistent outliers in all the speci�cations analyzed and reduced the goodness

of �t signi�cantly. Estimating the distribution of actual duration for these extremely severe

cases seems to be particularly di¢ cult and therefore we decided to exclude them from the

sample.

The data were collected frommultiple internal sources including OR scheduling, hospital

billing, heart-lung bypass records, and anesthesia records. This accomplished our objective

to obtain high quality data via triangulation, i.e. by verifying data through multiple,

distinct sources, and provided the additional bene�t of compensating for imperfections

in record keeping practices of individual units within the hospital. Like most hospitals,

the hospital at which this study was undertaken did not incorporate planning-related

information such as the forecasted procedure time in the same systems as patient-related

clinical information.

Out of sample goodness-of-�t test

To do the out of sample test, we randomly picked �ve points and excluded them from

the estimation. Using the rest of the sample we estimated the parameters of the model

8



and used these to predict the excluded points. We repeated this process 100 times, giving

us 500 out-of-sample predictions. We focused on predicting the adjusted reserved time,

de�ned as the di¤erence between log ~Qiand the conditional median time (E[log ~DijXi]).

Based on equations (11) and (13), our structural model implies:

log ~Qi � E
h
log ~DijXi

i
= log ~Qi � �Xi

= �̂ � ��1
�

1

1 + exp (Zi�)

�
where ~Di = Di � � is the random part of actual case duration. We chose the adjusted

reserved time as the predicted variable in order to compare our structural model to a

model in which the decision maker follows a simple rule of reserving a �xed percentage

of the median time. According to this simple rule, log ~Qi � E
h
log ~DijXi

i
should be a

constant. Figure 1 shows a scatter of plot of the actual versus the �tted values of the

adjusted reserved time, for Model N1 and Model N2. Regressing the actual values against

the �tted values plus an intercept gives a centered R2 of 0.37 for both models. Thus, our

structural newsvendor model was able to explain around 40% of the variation in adjusted

reserved time, which suggests that the newsvendor model has signi�cant predictive power

of the actual behavior observed in the data.

Figure 1: Out of sample goodness of �t tests for Model N1 and Model N2 to predict

adjusted reserved time.

Validation and limitations of the empirical results
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Our cost ratio estimates are based on a selected group of surgeries. Cardiac surgeries

are signi�cantly longer than general cases (average duration of cardiac cases is about 6

hours). The underage and overage costs inherent to this type of surgeries are likely to be

di¤erent from general cases, and so our cost estimates might not apply to a more general

selection of cases.

In order to ensure the robustness of our �ndings, we validated the econometric assump-

tions underlying our work. First, by applying a Newsvendor model instead of a scheduling

model, we implicitly assume that each reservation decision is made in isolation, and given

i, the cases are independent of each other. This assumption re�ects the fact that the

time reservation to the procedure is usually made well in advance and before observing

any procedure durations during that day. The lack of statistical signi�cance in the TimeIn

variable on the cost ratio provides some evidence in support for this assumption. We also

analyzed whether conducting other cardiac cases in the same day had any e¤ect on the

overage/underage cost ratio. For this, we considered speci�cations that included indicators

on whether the case is: followed or preceded by another cardiac surgery (POST and PREV,

respectively); followed or preceded by a surgery conducted by the same surgeon (POSTSS

and PREVSS, respectively). We found that POSTSS was positive and statistically signif-

icant, which implies that cases followed by a case conducted by the same surgeon tend to

be overrun more often (all the other indicators were not signi�cant). Only 5% of the cases

in our sample fall into the POSTSS category. The coe¢ cients on the other covariates are

similar in sign, magnitude and statistical signi�cance to those reported in Table 2. Our

main results seem to be robust to the e¤ect of other cardiac surgeries been conducted in

the same day. To provide further support, we looked at days which had more than one

scheduled cardiac case and plotted the estimated times of consecutive procedures. In ab-

sence of any systemic pattern in the scatter plot, we believe the independence assumption

is reasonable.

Second, we assume that conditional on Xi and Zi, Q�i and Di are statistically inde-

pendent, i.e. doctors don�t �rush� to �nish on-time2. Given the highly di¢ cult nature

2Observe that this assumption is sometimes violated in the traditional Newsvendor application to
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of cardiac surgery and the associated risks of death for the patient and liability for the

surgeon, we believe this is a reasonable assumption. To explore this assumption formally,

we looked for an abnormal concentration of the actual duration just before the end of the

reserved time: if doctors rush to �nish on time, we should see over-proportionally many

observations just around the reservation time. However, we found this distribution as well

as the distribution for the overrun time, Di �Qi, to be smooth and well-behaved.

We also checked for any weekday e¤ects, using two approaches: (i) comparing the A/F

ratios for each weekday; and (ii) introducing weekday dummies in the covariates. The

average A/F ratios are not signi�cantly di¤erent between days, and none of the weekday

dummies introduced in either X and Z were signi�cant.

Note that the endogeneity of the TimeIn variable may be introducing a bias in our

estimation. Since the scheduling of the case is endogenous, this variable could be corre-

lated with unobservable factors (from the researchers perspective) that a¤ect procedure

duration (this will happen, for example, if more complicated cases are scheduled early in

the morning). If this is the case, then TimeIn should predict some of the variation in ac-

tual case duration. When adding this covariate to X, its coe¢ cient was negative and not

signi�cant (t-value equal to 1.33). This suggests that this bias is unlikely to be important.

To validate the assumptions about the shifted log-normal distribution of case durations,

we analyzed the residuals generated on the �rst step of our estimation method. A Jarque-

Bera test cannot reject the null hypothesis of normally distributed residuals (p-value .16).

Similar results were found using the Shapiro-Wilks test of normality (p-value of 0.11). We

also analyzed quantile-quantile plots of the residuals and found further support for the

log-normality of case duration.

We evaluated the robustness of our results to the type of econometric model used by

comparing the estimates of Model N1 and N2. Assuming the estimation of � is independent

across the two models, none of the coe¢ cients shown in Table 2 are di¤erent with statistical

signi�cance (95% con�dence level). Overall, we found that the estimation of � and the

retailing: demand is frequently correlated with the number of items on the retailer�s shelf, i.e. there is an

endogenous e¤ect of stocks and product variety in demand.
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cost ratios are robust across the two speci�cations.

In Section 6 we develop two alternative models which account for forecasting bias in

the newsvendor decision. To validate the �t of these models, we compared models B1

and B2 using Cox�s test for non-nested models (Pesaran and Deaton (1978)). None of the

models could be rejected against each other (lowest p-value equal to 0.3), which suggests

that both models provide reasonably good �t to the data.
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