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Abstract

In an innovation contest, a rm (the seeker) facing an innovation related problem

(e.g. a technical R&D problem) posts this problem to a population of independent

agents (the solvers) and then provides an award to the agent that generated the

best solution. In this paper, we analyze the interaction between a seeker and a set

of solvers. Prior research in Economics suggests that having many solvers work on

an innovation problem will lead to a lower equilibrium e ort for each solver, which

is undesirable from the perspective of the seeker. In contrast, we establish that the

seeker can benet from a larger solver population as he obtains a more diverse set of

solutions, which mitigates and sometimes outweighs the e ect of the solvers�’ under-

investment in e ort. We demonstrate that the ine ciency of the innovation contest

resulting from the solvers�’ under-investment can further be reduced by changing

the award structure from a xed price award to a performance contingent award.

Finally, we compare the quality of the solutions and seeker prots with the case of an

internal innovation process. This allows us to predict which types of products and

which cost structures will be the most likely to benet from the contest approach to

innovation.
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1 Introduction

Innovation is at the heart of every R&D process. While the detailed mechanics of R&D

di er widely by industry, reecting di erent cost structures, di erent success rates, and

di erent market rewards, the innovation process is remarkably similar across industries.

Drug candidates in a pharmaceutical development process, TV shows in an entertainment

company, and proposals in a venture capital rm all ow through a conceptually similar

innovation process. This process starts with the creation of many innovation opportunities

that are then evaluated in a ltering step that selects the most promising opportunity from

among the candidates.

Typically, the creation of opportunities as well as the selection from among the op-

portunities, happens inside an innovating rm. Inputs from various functions create new

opportunities that are then selected based on input from R&D, Marketing, and general

management. However, there exist a rapidly growing number of innovation processes that

rely on the outside world to create opportunities and then select the best from among

these alternatives for further development. This approach is often referred to as Open

Innovation (Chesbrough 2003, van Hippel 2005, Terwiesch and Ulrich 2006).

Open Innovation initiatives often rely on the altruism of its community members, their

desire to compete for status within the community (Loch et al. 2000), or their self interest

reecting their role as a user of the innovation (van Hippel 2005). A remarkable exception

to such non-nancial motives is the innovation contest. In an innovation contest, also

known as an innovation tournament, many individuals or teams submit plans or prototypes

to an innovating rm. Examples of innovation contests are QVC�’s product road show (an

opportunity for inventors to showcase their ideas and potentially get them included in

QVC�’s assortment), the DARPA Grand Challenge for autonomous robotic vehicles (an

open competition in which inventors can enter to win a substantial amount of money if

their innovation out-performs others concerning speed, range, or ability to conquer di cult

terrain), and the recently launched TV casting show �“The Million Dollar Idea�” (see Ulrich

2006).

Despite attracting a signicant media attention, the importance of these innovation

contests has been rather small relative to the �“traditional�” innovation process. However,
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this is currently changing. With a growing trend towards outsourcing and o -shoring

innovation related activities (see Anderson et al. 2006, Eppinger and Chitkara 2006),

innovation contests and their applications have expanded from creating �“crazy�” concepts

to solid R&D problem solving in the recent years.

Consider the case of Innocentive, a company that acts as an intermediary and executes

hundreds of innovation contests every year for its clients. At Innocentive, scientists can

register and express what type of scientic problems they are interested in (most of them

are in the areas of molecular biology and chemistry). Innocentive acts as an intermediary

between these scientists (also known as �“solvers�”) and those �— typically large rms�’s R&D

organizations �— that encounter technical or scientic problems as part of their R&D process

(also known as �“seekers�”). Innocentive works with seekers to formulate a statement de-

scribing the problem and the rules of the innovation tournament1. Such a statement is

made accessible to a pool of 95,000 solvers from around the world. Depending on their

availability and interest, a sub-set of those will start working on the problem and an even

smaller subset will actually submit a solution. Innocentive will provide these solutions to

the seeker, who can decide if the solution is useful to him. If it is, the seeker can acquire

the intellectual property from the solver; typical rewards are between $10k and $50k.

Just like in the case of innovation contests executed by DARPA or QVC, the seeking

rm obtains several benets from this form of innovation: (a) it induces competition

among solvers; (b) the seeker only pays for successful innovations, but not for the failures;

the associated risks of failures are shifted to the solver; (c) the seeker gains access to a

broad pool of solvers so problems are solved by those who have the most relevant expertise

(d) there exists an opportunity of wage rate arbitrage or, more generally, cost savings; (e)

an increase in the capacity of idea generation and testing.

These potential benets have led companies with a long R&D tradition, such as Ely

Lilly or DuPont to use Innocentive�’s innovation tournaments for a growing portion of their

R&D work. Innocentive�’s business model of innovation has been praised in the business

1To use an innovation contest as studied in this paper, the seeker has to be able to provide a clear

description of the problem. If the problem is highly complex with ill-dened interfaces, it is not suitable

for an innovation contest as the resulting coordination costs would be too high (e.g., Ulrich and Ellison

1999, Novak and Eppinger 2001, Mihm et al. 2003).

3



press (New York Times �— March 26, 2006; Business Week �— January 9, 2006; Harvard

Business Review �— March 2006) and has received several innovation awards (including

the �“Business Process Award�” from the Economist�’s Innovation Summit and the �“Infosys

Transformation Award�” from The Wharton School).

Despite this growing popularity, little remains known about when such innovation con-

tests should be used and how innovation contests should be executed. In absence of

appropriately designed contracts (rules of the tournament), any form of a decentralized

system will lead to in-e ciencies reecting information and incentive problems. Our re-

search questions aim to address these problems:

- What type of innovation problems are most suited to be solved by innovation

contests and what problems are better solved internally?

- For a given type of innovation problem, what is the optimal design of the inno-

vation contest? Specically, what is the optimal award and how many solvers should the

seeker attempt to reach?

Providing answers to these questions is the contribution of this paper. We combine

prior research from the eld of contests and tournaments (e.g. Moldovanu and Sela 2001)

with models of product development and search (e.g. Dahan and Mendelson 2001, Ter-

wiesch and Loch 2004). We provide the following novel results. First, we derive the

optimal innovation contest award mechanism (Theorem 1a) and show how the quality of

the submissions and the prots for the seeker depend on the number of potential solvers

(Theorem 1b). Having many solvers work on an innovation problem will lead to a lower

equilibrium e ort for each solver, which is undesirable from the perspective of the seeker.

While prior economics research has argued that it is optimal to restrict the number of

participants to reduce this e ect, we derive an additional benet of having a large pool of

solvers: the seeker can benet from a larger solver population because he obtains a more

diverse set of solutions, which mitigates and sometimes outweighs the e ect of under-

investment from each solver (Theorem 1c). Second, the ine ciency of the innovation

contest resulting from the solvers�’ under-investment can further be reduced by changing

the award structure of the innovation contest. While prior research has advocated the use

of xed price rewards, we show that a performance contingent award can lead to better
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solutions, higher seeker-prots and system e ciency (Theorem 2). Third, we compare

innovation contests hosted by the seeker and by an intermediary with the case of an in-

ternal innovation process (Theorems 3a and 3b). This allows us to predict which types

of products and which cost structures will be the most likely to benet from the contest

approach to innovation. We also show that the seeker primarily benets from open in-

novation by obtaining higher performance and not only by obtaining lower costs. These

results, we believe, are of interests to rms executing innovation contests as well as those

participating or considering to participate as either seeker or solver. Moreover, in light

of the ongoing discussions concerning the o -shoring of R&D work, we believe that our

results should also be of interest to a much broader audience.

The remainder of this article is organized as follows. We rst review the relevant

literature (Section 2)2, followed by the development of our modeling framework (Section

3). Sections 4 to 6 establish our main results (Theorems 1-3), and Section 7 concludes the

paper.

2 Relevant Literature

Our model presented in Section 3 combines research on product development processes

with research on the economics of contests and tournaments. Over the last 15 years, a

number of product development process models were created (e.g. Ulrich and Krishnan

2001, Loch and Kavadias 2007). While the detailed mathematics of the various models

di er, they collectively suggest (a) that product development should be modeled as a

stochastic process and (b) that there exist di erent types of product development problems.

The stochastic aspect of the product development process has been modeled as a search

process in an array of binary variables (Loch et al. 2001), sequential draws from a dis-

tribution (Terwiesch and Loch 2004, based on work by Weitzman 1979), parallel draws

from a distribution (Dahan and Mendelson 2001, based on an application of extreme value

models), or a series of Bernoulli trials (e.g. Ha and Porteus 1995). Our model applies the

previous work by Dahan and Mendelson in that we view the innovations undertaken by one

2An extended literature review is provided in the electronic companion.
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solver as a set of parallel experiments. The performance outcome of this experimentation

is the highest realization of the parallel draws (i.e. the n-th order statistics or the extreme

value model). This corresponds to a single period model, where a solver only makes the

decision on how much to experiment once.

One of the major accomplishments of the prior product development literature has

been to demonstrate that the type of product development problem matters greatly and

should inuence the process of searching for an optimal solution. Problem types di er

along multiple dimensions, including (a) the amount of uncertainty in the overall pay-o

function and hence the solver�’s ability to predict the outcome of an experiment and (b) the

ability of the solver to learn from one experiment to another. Loch et al. (2006) discuss

di erent problem types and their implications for managing the associated risks.

The second stream of research that we draw from relates to the design of contests

and tournaments (e.g., Glazer and Hassin 1988, Lazear and Rosen 1981). This research

has a long tradition in Economics and has recently seen a number of applications in

Operations Management (e.g., Deng and Elmaghraby 2005) and Marketing, especially in

the salesforce domain (e.g., Kalra and Shi 2001, Chen and Xiao 2005). There exists,

however, two crucial di erences between a salesforce contest and an innovation contest.

First, the seeker in an innovation contest is interested in maximizing the value of the

highest performance outcome. The seeker in a salesforce contest, in contrast, is interested

in maximizing the sum across all outcomes. Put di erently, an R&D department prefers

100 bad ideas and 1 outstanding idea over 101 good ideas while a marketing department

prefers 101 salespersons with good revenues over 100 salesperson with bad revenues and

1 salesperson with outstanding revenue. Second, participation decisions for solvers are

fully voluntary in an innovation contest, whereas salespersons are forced to participate in

a salesforce contest.

There exists a small set of papers in the economics literature that have applied contests

and tournaments to R&D settings. Taylor (1995) and Fullerton and McAfee (1999) study

the optimal design of research tournaments with a sequential stochastic model. These

papers focus on the competition among symmetric solvers: the seeker benets from buyer

power as the solvers are competing against each other. They nd that the contest su ers
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from under-investment in e ort by the solvers. To mitigate this e ect, these models

suggest limiting the pool of solvers, potentially all the way down to two (Fullerton and

McAfee 1999). A two-solver contest is su cient to induce competition while leaving a 50%

probability of winning to two symmetric rms.

3 Model Development

We consider an innovation problem in which the performance of the solution can be mea-

sured in a one dimensional space. The assumption of a one-dimensional performance

measure is common in product development. This one dimensional space could reect a

technical specication (e.g. the purity of a material obtained in a chemical reaction) or a

consumer�’s utility measure (e.g. the expressed purchase intent). Similar one-dimensional

settings are considered by Dahan and Mendelson (2001) and Terwiesch and Loch (2004).

The performance obtained from a solver is driven by three variables. First, each solver

i is endowed with an expertise, i, which is a measure of his experience and knowledge

for a particular problem. For example, everything else equal, the solution to a chemical

engineering contest is more likely to be found by a chemist than by a biologist. This

endowed knowledge is available to the solver at no cost. Second, each solver can enhance

the performance of his solution(s) by investing improvement e ort, ei. Such improvement

e ort corresponds, for example, to conducting a thorough patent search and literature

review, or to implementing rigorous quality control systems with high standards. E ort

ei leads to a deterministic improvement r (ei) of the performance of the solution, where

r (ei) is an increasing and concave function in ei which measures the performance return

on the improvement e ort. Let c1ei be the costs associated with the improvement e ort

of solver i.

Third, problem solving in innovation is often stochastic, which we capture by adding

a noise variable, , to the performance. Given this uncertain performance, the solver will

most likely engage in a search process by conducting a set of trials and experiments (see

e.g. Loch et al. 2001, Dahan and Mendelson 2001). Let mi be the number of experiments

conducted by solver i. The results of an experiment are captured by the multiple realiza-
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tions of the random variable, . Following the work by Dahan and Mendelson (2001), we

consider the specic case in which the random noise is an i.i.d. Gumbel random variable

with mean zero and scale parameter . Note that a higher increases the variance of a

draw. The associated costs are c2mi.

Given an expertise, i, an improvement e ort, ei, and an experimentation e ort, mi,

the performance of the solution is assumed to be of the following additive form3:

vi ( i, ei,mi, i) = max
j
{vij = i + r (ei) + ij, j = 1, 2, ...,mi} , (1)

Note that our performance function shown in (1) is rather general, as it includes a baseline

performance, a deterministic reward for e ort, and a stochastic reward for e ort.

The above general performance function nicely blends two important features of an

innovation project: heterogeneity in solver expertise (i.e., di erent solvers have di erent

is) and a stochastic relationship between e orts and performance. Unfortunately, the

analytical tractability of such a general performance function is quite limited. For this

reason, we decompose the general performance function (1) into three interesting and

tractable special cases based on which of the three terms dominate.

Expertise based projects ( ij = 0) have no stochastic inuence of the random

noise and thus experimentation is not necessary. Performance is driven by expertise and

improvement e ort. Thus,

vi ( i, ei) = i + r (ei) .

Such projects are low-risk projects with little novelty in them, such as converting a CAD

drawing into another format or designing a process recipe for a commonly used chemical

reaction. This type of concave, deterministic performance function is used in some of the

work on software development contracting (e.g. Whang 1992). Solvers are heterogenous

in their expertise. We assume that both the seeker and the solvers have identical beliefs

that i is distributed across solvers with CDF F ( ) and pdf f ( ). It could be possible

that an expert or a solver with higher expertise has better information on the distribution

3Of course, more complex functional forms could be considered. A purely multiplicative form could be

converted into an additive form by taking logarithms and then appropriately rescaling the cost functions. A

mixture of additive and multiplicative terms (e.g. an interaction term between expertise and deterministic

e ort) could also be analyzed, but certainly would require numerical solutions.
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Expertise based
project

Ideation
project

Trial and error
project

Project type Characteristics of the project Action taken by solver Variables determining performance

Engineering tasks with no uncertainty in
performance function (well behaved
solution landscape)

Example: modify an existing process
design to fit a new production site

Innovative problems with no clear
specifications, leading to uncertainty in the
performance function

Example: Design next generation binder

Solutions to research problems with
well defined goals, yet highly rugged
solution landscapes, creating
uncertainty in how to improve a
solution

Example: A pill that reduces grey hair

Invest effort to
enhance the existing
expertise relevant to
the project

Invest effort to create
the best possible
presentation

Experiment by trying
out many solutions
and then picking the
one with the highest
performance

Endowed expertise (ßi)
Effort (e)

Effort (e)
Subjective taste of seeker (market uncertainty)

Number of experiments (m)
Outcome of each trial (technical uncertainty)

Figure 1: Summary of the characteristics, mathematical representations, and examples of

expertise based projects, ideation projects, and trial and error projects.

of competitors�’ expertise level. We leave that case for future research. We will use

a Gumbel distribution with scale parameter as a special case for F to illustrate some

results in the paper. Thus, the expertise-based project is essentially an auction model

with vi ( i, ei) as a solver i�’s bid. Although the performance is certain for a solver, a

seeker still faces uncertainty with respect to the performance of the best solution obtained

from a pool of external solvers because of the heterogeneity in endowed solver expertise.

Ideation projects ( i = , mi = 1) are broad and non-detailed innovation problems

for which the seeker looks for novel ideas. For example, recent Innocentive challenges

included �“A product concept for a child-proof container of medication�” or �“The design

of the next generation binder�”. Other examples of such projects include design contests

for the aesthetics of a new building or the logo for an event such as the FIFA world cup.

In these projects, the seeker�’s taste, which is uncertain for the solver, plays an important

role in determining what constitutes a good solution. Hence, in an ideation project,

the performance of a solution has a signicant noise term which reects heterogeneity

of solvers�’ solutions in matching the seeker�’s taste. All solvers are identical in terms of

endowed expertise, i.e., i = j = for all i and j, that is, all solvers are equally capable

for such a broad problem ex ante. As before, solvers can spend e ort to increase the quality

of their solution (e.g. by building a sophisticated prototype of their idea as opposed to
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simply submitting a sketch on paper). Because the noise term will emerge after the seeker

reviews all submitted solutions, there is no point for solvers to invest in experimentation.

In this case, the performance of a solution is:

vi (ei, i) = + r (ei) + i.

Trial and error projects ( i = , e = 0) are innovation problems with an extremely

rugged solution landscape. The solver cannot anticipate the performance of a solution

before actually conducting the experiment. Yet, unlike for ideation problems, the solver

can observe the performance of a trial before submitting a solution. Thus, the uncertainty

the solver faces is entirely technical in its nature. Given the ruggedness of the solution

landscape, every experiment conducted has the same expected performance, i.e., i = j =

for all i and j. Performance is driven by the experimentation e ort and there exists

no learning from one round of experimentation to the other. The solver exerts e ort by

experimenting (which increases the performance of the best solution stochastically) and

there exists no way of obtaining a deterministic return to e ort. This case is equivalent

to the model presented by Dahan and Mendelson (2001):

vi (mi, i) = max
j
{vij = + ij, j = 1, 2, ...,mi} .

Figure 1 summarizes the characteristics, mathematical representations, and examples of

these three project types. Figure 2 separates the uncertainty faced by the solver into a

technical uncertainty dimension and a market uncertainty dimension.

Given the project type, the seeker faces two decisions. First, the seeker needs to decide

if the problem should be solved internally or whether it should be posted to a broader

community in the form of an innovation contest. If the problem is solved internally, the

seeker needs to decide upon the two types of e ort dened above.

If the problem is posted to a broader community, the general sequence of events is as

follows. The seeker needs to determine an award allocation mechanism. This mechanism

is announced (together with the problem) to all solvers. Each solver i has a privately

known expertise of i for the problem. Solvers are risk-neutral and face three types of

costs: the costs of improvement e ort (c1ei), the costs of experimentation (c2mi), and a x

cost of participation cf if the solver elects to work on the problem. Given solver i�’s e orts
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Technical uncertainty
(�“will it work?�”)

Market uncertainty
(�“will the seeker like it?�”)

Expertise
based
project

Ideation
project

Trial and error
project

Low

Low

High

High

Figure 2: The exposures of di erent project types to technical uncertainty and market

uncertainty

(ei,mi) the performance of her best solution, vi, is determined according to equation (1)

and the solution is submitted to the seeker.

Based on the performance vector of submitted solutions from n solvers, v = (v1, v2,..., vn),

the seeker awards the solvers according to the announced mechanism. We assume the

seeker�’s payo to be a weighted combination of the performance of the best solution and

the expected average performance of all solutions:

V = max
i=1..n

{vi}+ (1 )

P
i=1..n vi
n

,

where 0 1. This formulation includes the special case in which the seeker is only

concerned about the value of the best solution ( = 1). However, it also lets us explore

the case in which the seeker cares about the overall quality of the submitted solutions.

For example, the solver might benet from combinations of the submitted solutions and

therefore favor a high average solution quality. In the extreme case, the solver might only

care about the average submitted solution quality ( = 0). This captures the case of the

traditional sales-force contest (see e.g. Chen and Xiao 2005) or a contest in which the

seeker obtains a (potentially negative) pay-o for every submitted solution as is the case

in television contests such as American Idol.4

4There exist other functional forms that could capture the seeker�’s interest in more than the optimal

solution. Specically, it seems plausible that the seeker might be interest in the bestm submitted solutions.

These cases lead to qualitatively similar results, yet are analytically intractable.

11



Following the common settings in the contest literature, all parameters including , n,

the performance function, the return function on e ort, the distribution of solver expertise,

and costs are common knowledge to both the seeker and solvers5, except a solver�’s expertise

in an expertise-based project which is known to that solver only. In addition, solvers�’

e orts are not observable and veriable to the seeker. The seeker attempts to maximize

the expected payo , V , net of the costs of the award and the cost of internal development

e ort (note that one of the two is zero). Each solver attempts to maximize the expected

net prot consisting of the expected award minus the costs of e ort.

4 Open Innovation with Fixed Price Contest

In a xed price contest, the seeker announces a pre-specied award with a xed amount, A,

which will be granted to solvers according to a pre-announced award allocation structure.

The xed price contest is the most commonly adopted mechanism in open innovation

systems and is the standard contest used by Innocentive. Theorem 1a shows that instead

of splitting a pre-determined total award amount into two smaller awards, it is optimal to

allocate the entire award to the best solution. All proofs are provided in the Appendix.

Theorem 1a For a given amount of award A, assume that the seeker can allocate it to

at most two solvers with A1 A2 0 and A1 + A2 = A. For ideation projects and trial

and error projects, it is optimal for the seeker to grant the entire award to the solver with

the best solution (i.e., A1 = A and A2 = 0), while it may or may not be optimal for the

seeker to do so for expertise-based projects.

The above theorem establishes the optimality of the winner-takes-all award structure

for an open innovation contest with risk neutral seeker and solvers. For ideation projects

5These assumptions are common in the literature on auctions and contests (e.g. Snir and Hitt (2003)

use very similar assumptions). As all assumptions, they are a simplication of the real world, made out of

analytical convenience rather than based on empirical observations. For example, in reality, the exact n

will not be known to all parties. The seeker could obtain an estimate of n from Innocentive. The solvers,

however, will have some prior distribution concerning n, which leads to a rational expectation about n.

As long as solvers have symmetric priors, we get to the same results that we have now (though the model

would be more complex).
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and trial and error projects, because solvers are symmetric in endowed expertise, they

react to award structures symmetrically. When the solvers are risk neutral, the marginal

incentive generated by one more dollar of award for the 1st prize is higher than the marginal

incentives generated by one more dollar of award for one of the lower prizes. As a result,

concentrating the award on the rst prize will generate the strongest incentives for solvers

to exert e orts. For expertise-based projects, because solvers have di erent endowed

expertise, they react di erently to reward structures. A winner-takes-all award structure

o ers stronger incentive to solvers with high endowed expertise to exert e ort as they

are more likely to win the single award, while a multiple-prize award structure is more

attractive to solvers with low endowed expertise since they have not much chance to win

the rst prize. Therefore, whether a winner-takes-all award is optimal depends on the

distribution of the solver expertise. In the proof of the theorem, we derive a mild, necessary

and su cient condition for the winner-takes-all contest to be optimal for expertise-based

projects. We will focus on the analysis of the winner-takes-all contest in this paper.

In a winner-takes-all contest, observing the seeker�’s award A, the n solvers simultane-

ously make participation and e ort decisions to ensure that the expected prot they could

earn from entering the contest is at least cf (i.e., a solver�’s reservation prot is zero).

Each participating solver submits his (best) solution to the seeker for review. The solver

who produced the best solution among all n solvers will win the award A, while all other

solvers will not be awarded anything.

Consider a solver i with endowed expertise i. Observing the seeker�’s award A and

his own expertise i, solver i needs to decide how much improvement e ort, ei, to exert

(leading to cost c1ei) and the number of experiments, mi, to conduct (leading to cost

c2mi). Following the existing literature on contests, we focus on a symmetric equilibrium

throughout the paper. Thus, in determining the e ort level, solver i solves:

max
ei 0,mi 1

i (ei,mi|n, e,m) = i (APr{solver i wins} c1ei c2mi cf)

= i (APr {vi ( i, ei,mi, i) > max {vj ( j, e,m, j) , j 6= i and j = 1}}

c1ei c2mi cf) .

where i = 0 if solver i decides not to participate and i = 1 otherwise. Let S (A) =

{ (A) , e (A) ,m (A)} be the solvers�’ equilibrium strategy for a given award A. We can
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then write the seeker�’s problem as

max
A 0

(A|n,S (A)) = max { k (A) vk ( k, e (A) ,m (A) , k) , k = 1, 2, ..., n}

+(1 )

X
k k (A) vk ( k, e (A) ,m (A) , k)

n
A,

For the resulting equilibrium with given number of solvers n, Theorem 1b establishes

for each of the three project types the solver entry pattern, the amount of prize the

seeker awards, the amount of e ort that each solver exerts, and the expected prot the

seeker earns. For the solver entry pattern, Theorem 1b derives the expected number of

participating solvers in a free-entry xed price contest, ne for expertise-based projects,

and the maximum number of solvers a free-entry xed price contest can accommodate,

ni and nt for ideation projects and trial and error projects, respectively6.

The exposition of our results is much simpler with a specic functional form for the

e ort function r(e)7: r (e) = ln e. Recall that for trial and error projects, there exists

by denition no improvement e orts and hence no deterministic improvements (r(e) = 0).

However, for a trial and error project, given a solver�’s experimentation e ort m, the

expected performance of his best solution is lnm (see Appendix for the detailed deriva-

tion), which is analogous to a logarithmic return function r (m) = lnm. Therefore, for

expertise-based projects and ideation projects, can be viewed as the return on e ort co-

e cient, and can be viewed as the return on e ort coe cient for trial and error projects.

For ideation projects, from the solvers�’ perspective, also measures the stochastic e ect

(variance) of the seeker�’s evaluation.

Throughout the paper we use superscripts {e, i, t} for the expertise-based project, the

ideation project, and the trial and error project respectively.

6In a free-entry contest, the seeker does not impose any restrictions on solvers�’ entry to the contest.

It is completely up to a solver�’s own choice on whether to enter the contest or not. ne , ni , and nt are

the expected or maximum number of solvers that a free-entry contest can accommodate for each type of

project such that every participating solver can earn a non-negative expected prot. It is possible that

ne , ni , and nt are small due to factors such as high xed cost for solvers. It is also worth noting that

a free-entry contest is not necessarily cost-free to solvers. For example, solvers may incur the xed cost

cf to enter a free-entry contest in our model.

7Our key results are proven in the general case in the Appendix
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Theorem 1b In a xed price open innovation contest with n solvers, the unique equi-

librium is dened as follows: (i) For expertise-based projects, only solvers with endowed

expertise that is higher than f = F
1
³
(cf/A

e )
1

n 1

´
will participate, where Ae is the op-

timal award. The improvement e ort of a participating solver with expertise
h
f ,

i

is

e ( ) =
Ae F ( )n 1 cf

c1
, (2)

and the expected number of participating solvers in a free-entry xed price open innovation

contest is

ne = n
³
1 (cf/A

e )
1

n 1

´
.

If cf = 0, the award is A
e = and the expected prot for the seeker is

e =
Z

nF ( )n 1 f ( ) d + (1 )
Z

f ( ) d +

Ã

ln
c1

(n 1) ( + (1 )n) + n

n

!

;

(3)

(ii) For ideation projects, the improvement e ort of the solver is

e =
2 (n 1)

c1n2
, (4)

the award is Ai = , the expected prot for the seeker is

i = +

Ã

ln
2 (n 1)

c1n2
1

!

+ lnn, (5)

and the maximum number of participating solvers in a free-entry xed price open innova-

tion contest is

ni
( )

cf
;

(iii) For trial and error projects, the experimentation e ort of the solver is

m =
(n 1)

n2c2
,

the award is At = , the expected prot for the seeker is

t = +

Ã

ln
(n 1)

nc2
1

!

(1 ) lnn, (6)
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and the maximum number of participating solvers in a free-entry xed price open innova-

tion contest is

nt =

s

cf
.

For all types of projects, the equilibrium solver e ort is increasing in the award amount

A and decreasing in e ort cost parameters c1 or c2. As e ort cost parameter c1 or c2

increase, the seeker�’s expected prot can decrease to zero. In this case, the problem

solving for the project does not suit the contest model. Figure 3 illustrates how the

equilibrium probability of winning for one solver, e ort, and the seeker�’s expected prot

change with respect to the size of the solver population, n. An interesting observation is

that from the equilibrium solver strategies ((d), (e), and (f) in Figure 3), we can see that

there exists a negative externality among solvers in all three projects: for a given award

A, the more solvers participate in the open innovation contest, the less e ort each solver

exerts in equilibrium.

For an expertise-base project, the equilibrium e ort e dened in (2) is decreasing in

n since F ( ) 1. The negative externality e ect in an expertise-based project is severe

since the equilibrium e ort e ( , A) is a decreasing power function of n (see (d) in Figure

3). For an ideation project, since the return function r is concave and n2/ (n 1) is

increasing in n, the equilibrium e ort e dened in (4) is also decreasing in n, yet at a

slower rate. For a trial and error project, the equilibrium number of parallel experiments

m conducted by each rm is decreasing in n at an even slower rate.

The intuition behind this negative externality reecting an under-investment in solver

e ort is that the more solvers participate in the contest, the lower the probability of

winning for a particular solver (see (a), (b), (c) in Figure 3). With lower winning prob-

abilities, the solvers�’ expected prots decrease, leading to weaker incentives for them to

exert higher e orts. This under-investment in e ort leads to an ine ciency in an open

innovation system.

A similar argument can be made for the equilibrium e ort (4) for an ideation project

with respect to parameter , which from the solvers�’ perspective measures the stochastic

e ect of the seeker�’s taste. The equilibrium e ort (4) is decreasing in : with increasing

variance, the e ect of e ort on the probability of winning is decreasing: the winner is
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chosen by luck, not by his exerted e ort e.

The negative externality among solvers also has an interesting impact on the solver

entry pattern. Consistent with intuition, the number of participating solvers is decreasing

in the xed cost cf irrespective of project type. For a higher xed cost cf , a solver

needs to earn a higher expected prot to break even. Since the equilibrium expected

prot a solver can earn is decreasing in the number of contestants, n, higher xed costs

lead to fewer participating solvers. For expertise-based projects, the xed cost excludes

solvers with low endowed expertise from entering a contest. The expected number of

solvers participating (because solver expertise is a random variable) ne is decreasing in

the xed cost cf . For ideation projects and trial and error projects, the number of solvers

participating in a free-entry xed price open innovation is no more than a threshold ni

and nt , respectively. Both thresholds are also decreasing in the xed cost cf .
8

To mitigate under-investment in e ort caused by the negative externality among solvers,

existing literature on R&D tournaments (Taylor 1995, Fullerton and McAfee 1999, Che

and Gale 2003) suggests that a free-entry R&D tournament is in general not optimal, and

it is necessary to restrict the size of a R&D tournament, potentially all the way down to

two (Fullerton and McAfee 1999, Che and Gale 2003). Theorem 1c shows that this result

cannot be straightforwardly transferred to innovation contests as described in this paper.

Theorem 1c Consider a xed price open innovation contest with n solvers. (i) If

the seeker�’s weight on the performance of the best solution, , is high enough, free-entry

open innovation contest can be optimal for all three types of projects. When the seeker�’s

objective is to maximize the performance of the best solution ( = 1), free-entry open

innovation contest is always optimal for ideation projects and trial and error projects. It

is also optimal for expertise-based projects with Gumbel distributed solver expertise with

scale parameter if /2. (ii) If the seeker�’s weight on the performance of the best

8When cf = 0, we have n
e = n which implies that for any given number of solvers n, all solvers would

participate in a xed price open innovation contest for an expertise-based project. When cf = 0, we have

ni = and nt = which also imply that for a ideation project and a trial-and-error project, a xed

price open innovation contest can accommodate any given number of solvers. Therefore, when we study

the case where the number of solvers is a decision variable for the seeker with cf = 0 in Section 7 (n
e
S ,

niS and n
t
S ), this decision will not be bounded above.
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Figure 3: Equilibrium probability of winning for a particular solver, e ort (e or m ), the

seeker�’s optimal expected prot as a function of the number of solvers n. ( has a zero

mean Gumbel distribution with = 2 for expertise-based projects, = 1 for ideation and

trial and error projects, = 1, cf = 0.1, = 2, = 1, c1 = 0.1, and c2 = 0.1. Figures

illustrate only the curvatures not the scales)

solution, , is su ciently low, a free-entry open innovation contest may not be optimal.

When the seeker�’s objective is to maximize the average performance of all solutions ( = 0),

free-entry open innovation contest is not optimal for any of the three types of projects.

Theorem 1c indicates that whether free-entry open innovation is optimal for the seeker

critically hinges on the seeker�’s objective. If the seeker primarily cares more about the

performance of the best solution, free-entry open innovation is optimal. In this case, the

seeker obtains a unique benet of having more participants for ideation and expertise-

based projects: higher solver diversity. This is consistent with an empirical study on

166 scientic problems posted on Innocentive�’s website by Lakhani et al. (2007) who nd

that problem solving success is related to the ability to attract specialized solvers with

diverse scientic interests. When free-entry open innovation is optimal, Theorem 1b and

Theorem 1c also imply that the seeker might be better o by subsidizing part of the xed

cost for solvers to encourage entry.

For expertise-based projects, the e ect of higher solver diversity is captured by the

term
R

nF ( )n 1 f ( ) d in the seeker�’s expected prot (3). This expression can be
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thought of as the expected value of the highest expertise among the n solvers. The more

solvers, the higher the best solver�’s expertise is likely to be. For a Gumbel distributed

noise variable with mean o and scale parameter , the expected highest expertise among

n solvers is o + lnn. Hence, for an expertise-based project with logarithmic return

functions, can be viewed as the coe cient of return on having more solvers while

is the coe cient of return on higher e ort. The condition /2 in the Theorem 1c

basically says that when the return on diversity is strong enough relative to the return on

e ort, the diversity benet overcomes the undesirable e ect of under-investment in solver

e ort that is associated with having a larger solver pool (see (g) in Figure 3).

For an ideation project, this benet of higher solver diversity is reected by the term

lnn in the seeker�’s expected prot (5). Not knowing the seeker�’s taste, solvers build

one single prototype. Having more participants consequently increases the total amount

of experimentation and as a result the best solution provides a better t to the seeker�’s

taste. For ideation projects, Theorem 1b indicates that the diversity benet of having

more solvers outweighs the negative externality e ect of solvers�’ under-investment in e ort

such that free-entry open innovation is optimal (see (h) in Figure 3).

Free-entry open innovation is always optimal for trial and error projects. This is due to

a unique feature of the trial and error project: parallel experiments are perfectly cumulative

across solvers. From the seeker�’s point of view, solver A conducting 4 parallel experiments

and solver B conducting 6 parallel experiments is equivalent to one solver conducting 10

parallel experiments. This perfect cumulation of e ort across solvers is reected by the

term lnnm in the seeker�’s expected prot (6). Thus, although each solver�’s equilibrium

number of experiments is decreasing in n, the total number of experiments across all

solvers, nm , is actually increasing in n. As a result, the seeker�’s optimal expected prot

increases as n becomes larger (see (i) in Figure 3).

The next observation further illustrates the benet of a free-entry open innovation to

the seeker. Normally, the sponsor of a contest could increase its payo by charging

contestants a collectable entry-fee (e.g., Taylor 1995). In contrast, the next corollary

shows that in the innovation contest we study, and a seeker who solely focuses on the

performance of the best solution, for ideation projects and trial and error projects, it is in
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the seeker�’s best interest to charge zero entry-fee.

Corollary Consider the case that the seeker can charge an entry-fee from a participating

solver. If the seeker�’s objective is to maximize the performance of the best solution ( = 1),

for ideation projects and trial and error projects, the optimal entry-fee is zero.

From a solver�’s perspective, the e ect of an entry-fee is the same as the e ect of xed-

costs. However, from the seeker�’s perspective, unlike the xed-cost, the seeker collects

entry-fees paid by participating solvers. One might expect that the seeker could do better

by charging such an entry-fee. The above result indicates that for ideation projects and

trial and error projects with = 1, the benet of higher diversity of a large solver pool is

so strong that the seeker should charge no entry-fee and thus promote a maximum level

of participation from the solvers. For expertise-based projects, corresponding analytical

results cannot be obtained. However, straightforward numerical examples demonstrate

that the same conclusion holds9.

5 Enhancing the E ciency of Open Innovation

The results of Section 4 show that for innovation contests as dened in this paper, contrary

to the classic Economics result for contests, free-entry (large n) can be optimal. We now

investigate the applicability of another standard result to our specic setting: the opti-

mality of xed price awards. Specically, we study the impact of choosing an alternative

award mechanism, a performance contingent award, on the seeker�’s prots. One way to

implement a performance contingent award is through a royalty contract. For example,

the o ce product retailer Staples has recently conducted large scale innovation contests

and rewarded successful solvers by allocating them a percentage of the associated prots

instead of granting them a x reward (see WSJ 2006). For ease of exposition, we consider

the case that the seeker�’s goal is to maximize the performance of the best solution ( = 1)

and the solver�’s xed cost of participation is zero (cf = 0).

9However, it is worth noting that our results only establish the optimality of free entry for xed price

contests. There could exist more complicated mechanisms (with or without entry-fee) such as the one we

will discuss in the next section that can do better than the free-entry open innovation contest with xed

price award.
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In a contest with a performance contingent award, the winner is awarded a proportion

, of the performance of his solution (where 0 < < 1). After observing the seeker�’s

proposed award share , the n solvers simultaneously choose the level of e ort to exert.

Each participating solver will then submit his solution.

Consider a solver i with endowed expertise i. Given the seeker�’s award share

and his own expertise i, solver i needs to decide how much improvement e ort, ei, and

experimentation e ortmi to exert. Suppose all other solvers exert e orts e andm. Then,

the general problem for solver i in a contest with performance contingent award can be

written as

max
ei 0,mi 1

i (ei,mi) = (max {vj ( j, e,m, j) , j})

×Pr {vi ( i, ei,mi, i) > max {vj ( j, e,m, j) , j 6= i}} c1ei c2mi.

Let e ( ) and m ( ) be the solver�’s equilibrium strategy for a given award share .

Given the solvers�’ equilibrium strategy, the seeker�’s problem is to choose the award

share to maximize the expected payo which is just 1 percent of the expected

performance of the best solution generated from the open innovation contest. Therefore,

the seeker�’s problem is

max
0< <1

p (Ap, ) = (1 )max {vk ( k, e ( ) ,m ( ) , k) , k = 1, 2, ..., n} .

The following Theorem shows that with the logarithmic return function r (e) = ln e,

a contest with performance contingent award is more protable to the seeker than xed

price awards.

Theorem 2 For ideation projects and trial and error projects, the seeker makes a

higher expected prot in an open innovation contest with a performance contingent award

than in an open innovation contest with a xed price award. For expertise-based projects,

the seeker may or may not benet from an open innovation contest with a performance

contingent award.

For both, ideation and trial and error projects, a contest with performance contingent

award enhances the e ciency of open innovation (Figure 4). In such a contest, the amount

of award a solver potentially can win depends on the realized performance of the solver�’s
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Figure 4: The seeker�’s expected prots with performance contingent award and xed

price award as functions of the number of solvers n for ideation projects and trial and

error projects. ( = 2, = 1, c1 = 0.1, c2 = 0.1, and = 1)

solution, which is stochastically increasing in his e ort. From a solver�’s point of view, a

performance contingent award presents two incentives to increase e ort: exerting higher

e ort not only increases the probability of winning, but also the amount of award that is

received in the case of winning. The second incentive is missing in a xed price contest.

Thus, a performance contingent award creates a stronger incentive compared to a xed

price award. Figure 4 also indicates that the benets of a performance contingent award

diminish as the number of solvers becomes larger. With a larger number of solvers, both

the negative externality e ect and the diversity benet are so strong that all other factors

become negligible. This observation suggests that for ideation projects and trial and

error projects, using a simple xed price award would not sacrice much prot for the

seeker in large contests. However, for small contests with a limited number of solvers,

it is advisable to use performance contingent awards to enhance the protability of open

innovation contests.

A performance contingent award, however, may not work for expertise-based projects.

Recall that unlike ideation projects and trial and error projects, in an expertise-based

project, solvers are di erentiated in endowed expertise and the design process is not inu-

enced by random noise. A solver with relatively low endowed expertise still has a chance

to win, but predicts that the award he potentially could win is limited because it is propor-

tional to his low endowed expertise plus his equilibrium e ort. As a result, solvers with
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relatively low endowed expertise become more conservative in exerting e ort compared to

a xed price contest. Of course, solvers with relatively high endowed expertise become

more aggressive compared to a xed price contest. Therefore, the power of a contest with

performance contingent award for an expertise-based project depends on the distribution

of solvers�’ endowed expertise F ( ).

6 Internal R&D vs. Open Innovation Systems

In this section, we contrast the protability of internal R&D with two di erent types of

innovation contests. One is an innovation contest that is administrated by the seeker (as

done by QVC or Staples), and another one is an innovation contest that is administrated

by an independent intermediary (as done by Innocentive). To make the comparisons

tractable, we consider the case that the seeker�’s goal is to maximize the performance of

the best solution ( = 1) and the solver�’s xed cost of participation is zero (cf = 0).

We rst examine the seeker�’s optimal internal R&D strategy for each type of project.

Let cs1 and cs2 be the seeker�’s costs of improvement e ort and experimentation e ort,

respectively. For an expertise-based project, let s be the seeker�’s endowed expertise on

the project. If the seeker chooses to conduct the project internally, her problem can be

written as

max
e 0,m 1

I (e,m) = v ( s, e,m, ) cs1e cs2m,

where the performance function v ( s, e,m, ) is dened in (1).

When administrating an open innovation contest, the seeker needs to develop a pool of

participating solvers through advertising, invitations, and other means. There is a cost

associated with such solver pool development activities. We assume to develop a solver

network with n solvers, the seeker incurs a cost of csn which is linear in the size of the

solver pool n. The seeker�’s problem for a self-administrated open innovation system is

max
n 2

S (n) = (n) csn,

where (n) is the seeker�’s optimal expected prot in a xed price open innovation

contest with n solvers which is dened in Theorem 1b. Solving the above problem for
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a logarithmic return function r (e) = ln e and Gumbel distributed solver expertise with

scale parameter for expertise-based projects, the optimal size of the solver pool the

seeker would develop for expertise-based, ideation, and trial and error projects are

neS =
+ 2 4cs

2cs
, (7)

niS cs
, (8)

and

ntS =

s

cs
, (9)

respectively. Note that the seeker�’s marginal value of obtaining an additional solution is

decreasing in our model. For the seeker, each solution he receives corresponds to a draw

of some distribution. Because of the properties of the extreme value distribution, the extra

gain from this draw decreases.

If the seeker decides to use an open innovation contest with no solvers that is adminis-

trated by an independent intermediary, the seeker needs to pay a xed fee, p, to use the

intermediary�’s service. For example, Innocentive charges a xed fee to allow a seeker to

run a xed number of contests on its website. In this case, the seeker�’s optimal expected

prots for the three types of projects are O = (no) p, where (no) is dened in

Theorem 1b for each type of project.

As discussed above, both innovation contest approaches (self-administrated and inter-

mediary administered) su er from a loss of e ciency caused by the under-investment in

solver e ort. However, relative to internal R&D, there exists a second form of ine ciency,

which is the classical �“double marginalization�” e ect in decentralized systems. With in-

ternal R&D, the seeker�’s investment in R&D costs directly generates performance. In

contrast, in an innovation contest, the seeker and the solvers form a decentralized sys-

tem. The seeker�’s investment in the award size cannot directly generate performance.

Instead, it needs to induce the solvers to exert e orts which in turn generate performance.

Thus, the attractiveness of open innovation relative to internal R&D depends on whether

or not it can o er su cient benets to overcome the two e ciency losses. Theorem 3a

characterizes the seeker�’s optimal R&D mechanism.
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Figure 5: Conditions for each innovation mechanism to be optimal for each project type

Theorem 3a Let r (e) = ln e be the solvers�’ e ort function and consider Gumbel

distributed solver expertise with scale parameter for expertise-based projects. Given the

seeker expertise, s, the e ort cost, cs1, the number of solvers at the intermediary, no, and

the price charged by the intermediary, p, the conditions for each innovation mechanism to

be optimal for each project type are provided in Figure 5. The denitions for e
SO,

i
SO,

t
SO, c

t
2, f

e ( ), f i ( ), ge ( ), gi ( ), and gt ( ) are provided in the Appendix.

The seeker�’s optimal choices of R&D mechanism for di erent project types are illus-

trated in Figure 6. As indicated in Theorem 3a and shown in Figure 6, if the external

solver�’s e ort cost is lower than a certain level, either self-administrated or intermediary-

administrated open innovation is a better choice than internal R&D. With low e ort

costs, external solvers would exert higher e ort in equilibrium which will create su cient

benets to o set the ine ciency of the open innovation system.

Theorem 3a and Figure 6 also reveal a counter-inuitive di erence between self-administrated

open innovation system and intermediary-administrated open innovation system. For

expertise-based projects and ideation projects, self-administrated contests are preferred to

intermediary-administrated contests when the return on e ort coe cient is small. In con-

trast, for trial and error projects self-administrated contests are preferred to intermediary-

administrated contests when the return on e ort coe cient is large. As we discussed
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Figure 6: The seeker�’s optimal R&D mechanism. ( has a zero mean Gumbel distribution

with = 2 for expertise-based projects, = 1 for ideation and trial and error projects,

= 2 for ideation projects, c1s = 0.1, c2s = 0.1, cs = 0.05, s = 1, and no = 5. is the

return on improvement e ort coe cient for expertise-based projects and ideation projects.

is the scale parameter for Gumbel distributions for all projects.)

above, with a larger solver pool, each solver exerts less e ort in equilibrium due to the

negative externality among solvers. With a high return on e ort coe cient, this nega-

tive e ect of lower e ort is amplied for expertise-based projects and ideation projects.

Therefore, it is optimal for the seeker to reduce the size of the self-administrated open

innovation system. This is reected in the optimal sizes of the solver pool for these two

types of projects specied in equations (7) and (8) which both are decreasing in the return

on e ort coe cient .

However, for trial and error projects e ort is perfectly cumulative across solvers. Al-

though each solver exerts less e ort in a larger open innovation system, the total amount of

e ort exerted by all solvers is actually higher (see detailed discussion in Section 4). With

a high return on e ort coe cient, there hence exists a stronger incentive for the seeker to

develop a larger solver pool which strengthens the attractiveness of a self-administrated

contest. This is reected in the optimal size of the solver pool specied in equation (9)

which is increasing in the return on e ort coe cient .

In addition to providing access to a network of solvers, an intermediary-administrated

contest can o er other benets beyond what is captured in our model. This includes the

fact that the identity of the seeker is kept private (in some cases, the seeker prefers the

outside world not to know that he is working on a particular problem), the benets of

26



establishing a trust-worthy third party that can broker the intellectual property rights

between the seeker and the solvers, and the development of the required technical and

organizational infrastructure.

Theorem 3b Consider a xed price intermediary-administrated open innovation con-

test with no solvers and a logarithmic return function r (e) = ln e. (i) For expertise-based

projects, if the upper bound on the support of F, , is high enough, there exists a solver

pool size, ne, such that the seeker strictly prefers open innovation to internal R&D when

no ne. Otherwise, there exists a s such that the seeker strictly prefers internal R&D to

open innovation when the solver�’s own expertise s s. (ii) For ideation projects, there

exists ni such that the seeker strictly prefers open innovation to internal R&D when no

ni. (iii) For trial and error projects, if cs2 > c2, there exists a solver pool size, nt, such

that the seeker strictly prefers open innovation to internal R&D when no nt. Otherwise,

the seeker always prefers internal R&D to open innovation.

For an expertise-based project, the benet of an intermediary-administrated open in-

novation system is that there potentially could be a �“genius�” in the solver pool with a

much higher endowed expertise than the seeker�’s own endowed expertise s . For ideation

projects, solvers are di erentiated as captured by the random noise variable in the per-

formance function. An intermediary-administrated open innovation benets the seeker by

providing a higher diversity in solutions. For trial and error projects, an intermediary-

administrated open innovation o ers no additional benets relative to internal R&D other

than potential cost savings. Hence, without a cost advantage (i.e., cs2 c2), open in-

novation is never a better choice for the seeker. This conclusion seems surprising given

that we have shown that free-entry open innovation is always optimal for a trial and error

project due to its perfect e ort cumulation. However, just because of this perfect e ort

cumulation, the seeker is able to completely replicate the benet of multiple experiments

internally.

Figure 7 summarizes the insights of the above discussions by illustrating how the seeker�’s

optimal innovation process (internal vs. open) changes with respect to relevant parameters

for each type of project. Consistent with intuition, as the seeker�’s own costs of e ort

increase, the necessary number of solvers (i.e., ne, ni, and nt) that leads the seeker to
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Figure 7: The seeker�’s optimal choice between Internal R&D and Intermediary-

administrated Open Innovation System with no solvers. ( has a zero mean Gumbel

distribution with = 2 for expertise-based projects, = 1 for ideation and trial and error

projects, = 2, = 1, c1 = 0.1, c2 = 0.1 and s = 2)

choose an intermediary-administrated open innovation over internal R&D decreases for

all project types. For both, expertise-based projects and ideation projects, the seeker

prefers open innovation to internal R&D even when there exists a cost advantage over the

external solvers (i.e., c1s < c1), whereas this can never happen for trial and error projects

(when c2s c1). Thus, we conclude that expertise-based projects and ideation projects

are more suitable for an an intermediary-administrated open innovation model than trial

and error projects.

Corollary Consider a logarithmic return function r (e) = ln e. Using a xed price

open innovation contest, for expertise-based and trial and error projects, the seeker benets

from solutions with better performances rather than from lower costs. For ideation projects,

the seeker benets from both better solutions and from lower costs.

For the logarithmic return function r (e) = ln e, the seeker�’s total R&D costs are

, + , and for expertise-based, ideation, and trial and error projects, respectively.

The optimal awards the seeker o ers in xed price open innovation contests for expertise-

based, ideation, and trial and error projects are , , and , respectively. Regardless of

whether R&D is carried out internally or externally, the seeker spends the same amount

for expertise-based projects and trial and error projects. For ideation projects, the seeker

spends less with open innovation compared to internal R&D. In an ideation project, since

each solver must submit one prototype, the seeker obtains no prototypes for free in the open
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innovation contest whereas in internal R&D, the seeker incurs costs for each prototype

built. The corollary shows that open innovation should not be viewed primarily as a

mechanism to achieve cost savings. Instead, open innovation leads to better performance.

This point should be kept in mind in the ongoing discussion about the impact of open

innovation on our economy. Even if some R&D work is shifted to other regions because

of the locations of the solvers, the local economy (and society) would still benet from

obtaining better products (which might translate also in more non-R&D jobs).

7 Discussion and Conclusion

The promise of Open Innovation is appealing: increase your capacity to innovate by tap-

ping into a network of knowledge transcending organizational boundaries. But, as we have

shown, not all innovation problems are suited equally well for this type of process. Unlike

in the case of internal innovation, solvers participating in open innovation contests have

to fear that their problem solving e ort might not be nancially rewarded. This leads

them to under-invest in e ort, and an in-e ciency in the market. The seeker (or, if ap-

plicable, the intermediate) organizing the innovation contest needs to be conscious about

this e ect and design the reward system taking into account the type of the innovation

problem (see Theorem 1a). In addition to choosing an appropriate reward, a key question

for the Open Innovation system relates to the number of potential solvers. While Econo-

mists have argued that contests should be limited to two solvers in order to minimize

the under-investment e ect while still beneting from competition, we show that for an

innovation contest the benets of diversity can outweigh or at least mitigate the negative

e ect of under-investment. This can make large, fully open contests prot maximizing to

the seeker (Theorem 1b).

To further increase the e ciency of innovation contests, mechanisms beyond the perfor-

mance contingent award can be conceived. For example, one could design a multi-round

contest, in which the rst round is played with a large pool of contestants who make rela-

tively little investment. This will identify skillful (and / or lucky) solvers who then could

be allowed to play in a limited (�“private�”) second round contest. In this second round,

the limited pool of solvers will drastically increase the probability of any participating
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solver winning the award and hence overcome some of the under-investment problem.

Furthermore, it is interesting to extend our one-dimensional innovation model into more

complex innovation models such as innovation with unforeseeable uncertainty whose R&D

processes is often characterized as �“open ended search�” for the unknown unknowns (e.g.,

Sommer and Loch 2004). For an �“open ended search�” problem, open innovation contests

could enable the seeker not only to improve performance along a known dimension, but

also to see if there exist solutions/ideas that the seeker is not even aware of. Alternative

contest mechanisms and innovation models are thus fruitful areas of future research.

Future empirical research could analyze how innovation contests are operated in practice

as well as how (and if) they are replacing internal innovation and development processes.

Based on our ndings, we certainly expect a growing popularity of this form of innovation,

with applications going well beyond the current focus on biology or chemistry. To take an

example �“close to home�”, consider the academic research process that leads to publications

in a journal such as Management Science, and imagine how an author might benet from

relying on the help of an experienced solver when searching for the proof of a di cult

theorem!
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