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Abstract

To mitigate the threat that terrorists smuggle weapons of mass destruction (WMD) into the US

through maritime containers, the US Bureau of Customs and Border Protection (CBP) inspects con-

tainers upon entry to domestic ports. Inspection-driven congestion is costly, and CBP provides incen-

tives to firms to improve security upstream in the supply chain, thereby reducing the inspection burden

at US ports. We perform an economic analysis of this incentive program, called Customs-Trade Part-

nership Against Terrorism (C-TPAT), modeling in a game-theoretic framework the strategic interaction

between CBP, trading firms and terrorists. Our equilibrium results show that a properly run program

can efficiently shift some of CBP’s security burden to private industry. These results also suggest that

there exists the possibility for CBP to use strategic delay as an incentive for firms to join. Analysis of

comparative statics show that, with increasing capacity, membership in C-TPAT systematically declines.

1 Introduction

The volume and value of containerized goods entering the US through ports is enormous, and it continues

to grow.1 In 2004, $423 billion in goods entered the US in 15.8 M containers (GAO 2007-a). Almost half

of the $2 trillion in international goods transported through the US in 2000 was shipped in containers, and

the international tonnage of trade through the US is expected to double by 2020 (Greenberg et al. 2006).

Given the large numbers and value of containers entering US ports each year, concern about their use by

terrorists is high. Only one of millions of containers need be compromised to cost the US billions of dollars

in lost trade and endanger thousands of lives. For instance, Abt (2003) estimates that the detonation of a
1A container is a sealed, reusable metal box (generally 20’ or 40’ long) in which goods are shipped by vessel, rail, or truck.
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nuclear device in a port may lead to losses in the range of $55 - 220 billion. Abt et al. (2003) estimate the

economic losses from a similar bio-terrorist attack to be in the range of $15 - 40 billion. Using a simulated

war game, Gerencser et al. (2003) estimate the economic losses stemming from a coordinated “dirty bomb”

attack on US ports to be $58 billion.2 The reported loss figures do not include the value of lives lost.

The Bureau of Customs and Border Protection (CBP) is responsible for ensuring the security of US ports

against these types of attacks. To promote port security, CBP uses risk management techniques to screen

containerized cargo for potential anomalies. Its Automated Targeting System (ATS) assigns a risk score to

each container entering US waters and, based on these scores, a fraction of incoming containers is marked

for rigorous inspection (GAO 2004). Containers may be subject to inspection at the port of origin, outside

the US, as well as at the port of entry into the US. The focus of this paper is on the latter.

CBP is charged with securing ports with least possible hindrance to commerce, and there are inherent

economic tradeoffs between the frequency and rigor with which containers can be inspected and the speed

with which they can be turned around. The more containers inspected, and the more time spent inspecting

each container, the smaller the probability of a hazard, such as a nuclear bomb or biological weapon, going

undetected. But as the number of containers subject to detailed inspection increases, the resulting congestion

can also be detrimental to trade. In the short run, unanticipated container delays can cause costly supply-

chain disruptions. For example, Spencer (2004) estimates the cost of delay per day to approach 0.5% of

the value of a container. Even in the long run, when inspection-induced delays can be anticipated, the extra

pipeline inventory required to accommodate delays can be costly. For example, given an annual flow of

$423 billion in goods, a day of pipeline inventory is worth $1.16 billion. At a cost of capital of 15%, that

day of pipeline inventory would, in turn require $174 M per year to finance.

Customs-Trade Partnership Against Terrorism (C-TPAT) is a federal initiative intended to induce private

companies to help address this trade-off. Companies that join C-TPAT agree to take specific steps that

improve the security of the containers they ship to US ports (GAO 2004). By improving the risk profile of
2A dirty bomb, also called a “radiological dispersal device” (RDD), combines a conventional explosive, such as dynamite,

with radioactive material. When the conventional explosive detonates, it disperses the radioactive material, and the dispersion
contaminates the surrounding area.
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these containers, CBP aims to reduce the number of containers it needs to inspect and, at the same time,

reduce the overall level of terrorism-related risks associated with containers entering the US. Thus, members

of C-TPAT bear out-of-pocket security expenses that allow CBP to reduce costs and risks associated with

container hazards and inspections.

C-TPAT membership is voluntary, and a central economic incentive for joining the program is the re-

duction in inspection burden to which members are entitled (C-TPAT Strategic Plan 2004). Another (more

speculative) benefit is the prospect that, in the event of a disaster, C-TPAT members would be “at the head

of the line” once the target port were to resume operations.

For many companies, the program’s benefits appear to outweigh its costs. More than 7,000 companies

have joined C-TPAT since its inception in November, 2001 (Basham 2007). A survey of 1,240 C-TPAT

members, conducted by University of Virginia on behalf of CBP, found that the respondents spent, on

average, about $54, 000 per year in compliance costs as compared to about $25, 000 in security-related

expenditure during the last full year before joining C-TPAT (Diop et al. 2007). The survey also found that

39% of the firms experienced a reduction in inspection frequency, while 53% reported no change. CBP is

encouraged by these results because it has quadrupled inspection levels since September 11, 2001.

At the same time, both trade magazines and federal-government reviews of C-TPAT cite widespread

dissatisfaction with the program (Keane 2005, GAO 2005). These reviews consistently cite two sets of

concerns: 1) the benefits to participating members have not been clearly outlined; and 2) effective validation

of security profiles, and regular audit of members to ensure compliance, is lacking.

Even more alarming is the apparent lack of rigor with which security inspections themselves can be

conducted. Laxity in inspections have resulted in a breach in border security more than once. For example,

on two occasions journalists from ABC News have managed to ship nuclear material in cargo containers into

the US (Kurtz 2003). Similarly, the GAO reports that its investigators have twice used forged documents to

import radioactive material through inland borders (GAO 2006-a).

The goal of this paper is to provide a modeling framework to understand the economic trade-offs embed-

ded in container-inspection decisions and to use this framework to analyze policy initiatives such as C-TPAT.
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For a private company there exists a trade-off between the cost of compliance with C-TPAT and the benefit

of reduced congestion costs associated with the inspection of its containers. The US government faces a

trade-off, between the security benefit derived from increased inspection of incoming containers and the ad-

verse impact of the resulting congestion. The government must also consider the financial burden stemming

from the need for additional security infrastructure. Given the actions of CBP and of trading firms, terrorists

trade off the costs and benefits of infiltrating a container.

We model the interaction among CBP, trading firms, and terrorists as a multi-player sequential game,

using the Principal-Agent framework. CBP (the principal) acts first, followed by the trading firms (agents)

and subsequently the terrorists. CBP first sets the levels of inspection frequency and intensity (rigor), as well

as parameters for the audit of members. Trading firms then decide whether or not to join C-TPAT, based on

their idiosyncratic costs of complying with the security guidelines laid out in the program. Finally, terrorists

choose which set of containers to target for infiltration.

Elementary considerations within our modeling approach imply that members’ potential for Moral Haz-

ard (shirking) requires CBP to audit them for compliance. Further analysis demonstrates that an equilibrium

outcome exists and has the following properties:

• There is a threshold cost of compliance which separates firms that join and do not join C-TPAT.

• The optimal audit policy can be determined independently of the optimal inspection policy. CBP

imposes the highest permissible penalty on a non-compliant member firm.

• The intensity of container inspections drives the surplus of non-member firms to zero.

• The expected cost to member firms, due to security measures under C-TPAT, varies with their firm-

specific compliance-costs, and non-members end up with a higher expected cost than members.

• For any given (fixed) level of inspection capacity, implementation of C-TPAT results in a reduction in

the costs incurred by both CBP and trading firms, relative to a Base-Case scenario, without C-TPAT.

Analysis of the game’s equilibrium outcome also suggests that there may exist outcomes in which CBP
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deliberately inspects some containers more frequently than is required for security purposes. This over-

inspection increases congestion levels and is a means of inducing of strategic delay. The delay benefits CBP

by providing a stronger incentive for trading firms to join C-TPAT.

Comparative statics with respect to inspection capacity show the following.

• As expected, an increase in inspection capacity results in lower expected cost for CBP.

• Surprisingly, increased capacity results in lower C-TPAT membership levels, in equilibrium.

The remainder of this paper is organized as follows. Section 2 presents a literature review. Section 3

describes a Base-Case scenario, without C-TPAT, against which the outcomes of the C-TPAT program can

be compared. Section 4 models the principal-agent interactions between CBP and the trading firms and

develops our equilibrium results. The role of inspection capacity is analyzed in §5. Finally, we present a

brief discussion of the general scope of our work in §6.

2 Literature Review

Government documents are a comprehensive source for background information on port-security mea-

sures, such as C-TPAT, as well as inspection considerations related to border security. Details on C-

TPAT can be found in the C-TPAT Strategic Plan (2004). More documents are available on CBP’s web

site. A comprehensive treatment of inspection issues at the various ports of entry into the US can be

found in Wasem et al. (2004). Government Accountability Office (GAO) reports on maritime security

(GAO 2004, GAO 2005, GAO 2006-a, GAO 2006-b) highlight implementation challenges.

Issues relating to port security and container inspections lie in the overlap between public policy and

operations management, and researchers from both sides have contributed to the growing literature in the

field. Some examples of policy work on this issue are Greenberg et al. (2006), Martonosi et al. (2006), and

Boske (2006). Examples of the OM approach can be found in Wein et al. (2007) and Wein et al. (2006). Our

work is closest in spirit to the latter.

Wein et al. (2006) develop and analyze a mathematical model of the entire multi-layered port-security

5



system. The paper takes a computational approach to evaluating CBP’s optimal inspection strategy when

faced with the risk of importation of illicit nuclear material into the US. Its aim is to prescribe the level

of investment (in radiation detection equipment and personnel) required to meet a safety target, given a

predefined flow of containers to be inspected.

In contrast, ours is an analytical treatment of the strategic interaction – between CBP, trading firms and

terrorists – that generates the flow of containers to be inspected. Our treatment is stylized and at a higher

level: it is not concerned with the specific details of the detection of nuclear threats, and our results apply to

a broad range of risks, including nuclear, biological, and chemical threats.

Our model has three key components: risk assessment of containers, the impact of inspections on the

economics of terrorist activity, and the effectiveness of inspections. We discuss each in turn.

CBP performs a risk assessment for terrorist threats for the entire population of incoming containers and

assigns a score, that we refer to as the ATS score, to each individual container.3 This score is a probabilistic

representation of the threat posed by a container. It is generated using manifest information as well as

targeting rules that are based on strategic intelligence and anomalies (GAO 2004, Wasem et al. 2004, Bettge

2006). Statistics has a rich literature in screening and classification methodology, including the use of

techniques such as ROC, receiver-operating curves (Fawcett 2006, Marshall and Olkin 1968). For a related

treatment in OM see Shumsky and Pinker (2003). Ours is also an example of a classification problem in

which the ATS score is the screening variable used to segment the container population into a “high risk”

and a “low risk” category.

The decision regarding whether or not to inspect the container at the US domestic port is a function of its

ATS score. The effectiveness of a container inspection can be measured through the residual probability of

risk post inspection. We use a speed-accuracy-tradeoff (SAT) function to associate the expected inspection

time with CBP’s capacity/technology choice and the residual risk. Literature on SAT functions includes

McClelland (1979), Ghylin et al. (2006) and Hopp et al. (2007).

Finally, we mention three related but distinct streams of literature. First is research on airline and pas-
3ATS stands for Automated Targeting System – the software used by CBP to help in risk assessment.
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senger security, in which passengers are the analogues of shipping containers. An example from this stream

is Martonosi and Barnett (2006). Second is more traditional work on the optimization of container-terminal

operations. Steenken et al. (2004) provides a comprehensive survey of this literature. Third is the evolving

body of work on managing supply chain disruptions. A few notable contributions on this front include Klein-

dorfer and Saad (2005), Sheffi (2005), and Tomlin (2006). Lee and Whang (2005) highlights the parallels

between Quality Management and the creation of supply-chain security.

3 Port Security and Congestion

In this section we lay out the key features of port security that are relevant to our analysis. We also discuss

the form of the container inspection policy and its impact on terrorist activity and congestion at ports. The

model presented in this section is an abstraction of reality which helps us to generate insights into the trade-

offs inherent in the container-inspection problem, as well as to provide a benchmark against which we can

judge the effectiveness of C-TPAT.

3.1 The Shipping and Inspection Process

The flows of containers belonging to different firms follow a similar pattern. After leaving the shipper’s

premises, containers are brought to the port of embarkation. From there, they are sent on an ocean-going

vessel which visits a US port of debarkation. At this port of debarkation, all containers undergo some form

of “passive” screening, a non-intrusive inspection which may include neutron and gamma-ray radiation

monitoring. We refer to this stage as primary inspection.4 Based on prior information on the source and

handling of the container, as well as the results of these tests, a fraction of these containers is tagged by

CBP for more intensive, secondary inspection. Secondary inspection can include tests such as gamma and

x-ray radiography, as well as a devanning of the container for a comprehensive manual inspection. For more

details on inspection strategies see Wein et al. (2006). Finally, when a container is determined to be safe, it
4Recent initiatives suggest that, in the future, primary inspection for most US-bound containers may be completed at the port of

embarkation itself (Bakshi and Gans 2008).
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is allowed into the country.

3.2 Terrorist Considerations

We model terrorists as rational agents who have the means to infiltrate a container with WMD and select

a target only among those containers which offer the greatest chance of success. In choosing a container,

terrorists trade-off the expected benefit from an attack with the cost of planning and execution.

The cost of attack is a function of the combined abilities of the US and other foreign governments to

detect and deter the planning and execution of terrorist activities in various parts of the world and is not

limited to the context of maritime security alone. Two major costs that terrorists would incur are the cost

of procuring a weapon of mass destruction (WMD) and the cost of recruitment and training of a team that

carries out the attack. In the context of CBP’s inspection problem, we model the cost of mounting an attack,

ca, as exogenously specified.

The benefit that terrorists derive from their efforts depends on the eventual disposition of the container.

If the contraband escapes detection, then it may be used for a large-scale terrorist attack, at which point the

US suffers loss Le (e for escapes detection). If the contraband is found inside a container before it crosses

the US borders, then the US suffers losses Lf (f for found). We note that the discovery of WMD in a

maritime container can, itself, trigger economic losses.5 For ease of exposition, we assume that US’s loss is

the terrorists’ gain, and to avoid trivial results we assume that Le > Lf .

Given that we are considering only large-scale acts of terrorism, we posit that terrorists have the where-

withal to launch only one such attack in the period of interest, e.g., one year.6

3.3 Risk Scoring and Deterrence Threshold

CBP’s Automated Targeting System (ATS) uses manifest information and targeting rules, based on expert

judgment and historical shipment information, to determine the probability that a container poses a “high
5For example, there may be a port slowdown or lockdown until the source of the security breach is discovered.
6A different choice for the period of interest would not have a qualitative impact on the insights generated. Since the US security

budget is determined annually, working with a 1-year horizon seems natural.
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risk” and should be scrutinized thoroughly. ATS scores drive inspection decisions at the port of entry.

We model the ATS score as the product of two factors. First, we let b denote the (exogenously specified)

base-rate probability of a terrorist attack in the period of interest. For instance, a recent congressionally

mandated report (Graham et al. 2008) estimates a higher than 50% chance of a WMD attack launched by

terrorists, over the next 5 years. Previous estimates of the probability of such an attack include the work by

Lugar (2005). In turn, we define the risk score, x, to be the conditional probability that, given a container

conceals terrorist weapons, it would escape detection by security precautions in place up through the primary

inspection at the port of debarkation: P{no alarm | threat}. Thus, ATS score = bx.

In the analysis that follows, we do not vary the base rate, b, across containers, an assumption that pre-

sumes that terrorists have exogenously decided which containers are more or less likely to be successfully

infiltrated. Rather, we explicitly model the terrorists decision regarding which containers might be most

profitably compromised, a decision that depends on its risk score, x. In turn, the set of containers that

the terrorists target for possible infiltration emerges through the equilibrium outcome determined by our

analysis.

Given our assumptions, it is immediate that, if ca > Lf , then there exists a so-called “deterrence thresh-

old” for the risk scores. For containers with a risk score below this deterrence threshold, the probability that

a compromised container avoids detection is low enough that the cost to terrorists of trying to infiltrate the

container is greater than the expected benefit:

τ = sup{x | xLe + (1− x)Lf ≤ ca}. (DT)

Thus, these containers do not provide terrorists with a high enough chance of success to make the effort

of introducing a hazard into them worthwhile. In turn, they are considered to be without threat. (For details

on this approach see Martonosi and Barnett (2006).)

If ca < Lf , then no amount of inspection will deter terrorists from attempting to infiltrate a container,

and the best that outcome that CBP can attain is to find an infiltrated container with probability one. In the

exposition that follows, we will assume that Le > ca > Lf , so that CBP’s aim is to eliminate the terrorist

threat by reducing terrorists’ expected gains to ca. If ca were less than Lf , then CBP would analogously
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aim to reduce terrorists’ expected gains to Lf .

If primary inspection does not trigger an alarm, and a container’s risk score falls below some threshold,

bounded below by τ , then the container is not inspected further. If, however, one of these conditions does

not hold, then CBP tags the container for more intensive secondary inspection.

Figure 4 in Appendix A pictures an example of the CDF of risk scores, Gn(x), with x ∈ [0, 1]. We

denote the associated density function as gn(x). For simplicity we assume that gn(x) > 0,∀x ∈ [0, 1].

Here, the subscript “n” is used to signify firms that are not members of C-TPAT. In this section, which

analyzes a “base case” without C-TPAT, all firms are non-members, and in §4 we distinguish members from

non-members by using the subscript “m.”

3.4 Secondary Inspection Time and Residual Risk

Huizenga (2005) notes that, even though current technology is quite effective in detecting most nuclear

material, it is less effective in detecting certain configurations of shielded highly-enriched uranium. The

diversity of the nuclear threat, in conjunction with often hard-to-detect threats from chemical and biological

weapons, requires CBP to determine not only which containers to inspect, but also the rigor of the inspection

process for containers identified as risky.

The effectiveness of inspections depends on the time and care with which they are conducted. As we

noted in the introduction, Kurtz (2003) and GAO (2006-a) report instances in which lax inspections allowed

nuclear materials to be clandestinely slipped into the US. USA TODAY (2007) and Ghylin et al. (2006) note

analogous problems with the screening of passengers and baggage at airports.

For containers, the time required for secondary inspections can range widely. For example, the time

needed to properly interpret x-ray images may vary. More significantly, the rigor with which a container is

“devanned” can extend broadly: from a cursory look inside the back doors, to a more thorough emptying out

of a center “aisle” through which inspectors move, to the removal of all contents stored within the container,

even to the opening and inspection of the cartons or flats that have been removed.

Thus, a key decision that CBP makes is the extent or rigor of inspection of “high risk” containers. We let
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S denote the time required to perform a secondary inspection and ε denote the residual probability that there

exists a hazard that remains undetected after secondary inspection. We then use a speed-accuracy-tradeoff

(SAT) function to model expected inspection time as a function of capacity/technology choice and ε:

S = ψ(ε, κ) + φ, (1)

where κ represents the appropriately scaled inspection capacity. The random variable, φ, has mean 0 and

variance σ2, which captures the randomness introduced by container-specific characteristics, such as the

type of goods being shipped and the quality of documentation of manifest information. From (1) we have

E(S) = ψ, and E(S2) = ψ2 + σ2.

The inspection capacity is meant to represent a composite of equipment and human resources devoted to

the secondary inspection process. In this section and §4 we assume that κ is fixed. In §5 we then analyze

the impact of capacity, κ, on the equilibrium outcome.

We make three mild sets of assumptions concerning the form of ψ(ε, κ). First, time spent on inspection

is strictly decreasing in both the residual risk and capacity: ψε ≡ ∂ψ/∂ε < 0 and ψκ ≡ ∂ψ/∂κ < 0. To

appreciate the motivation for the latter, consider the scenario wherein 2 inspectors would be able to inspect

a devanned container faster than just 1 inspector acting alone, while maintaining the same residual risk, ε,

constant across the two scenarios. Second, for any finite capacity level, κ, we assume that ψ(1, κ) = 0 and

limε→0 ψ(ε, κ) =∞.

Remark 1 As an example, consider the following specific functional form for ψ:

S = − ln ε
κ

+ φ. (2)

This functional form satisfies the first two of our assumptions. It also is consistent with the classic model

for SATs presented in McClelland (1979), as well as with recent higher-level models of speed-accuracy

tradeoffs used in the OM literature (see Hopp et al. (2007)). Similar tradeoffs are observed by Ghylin et al.

(2006) for the problem of passenger-baggage screening.
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3.5 Container Inspection Policy and Congestion

We model a policy in which CBP inspects containers with risk score x, with probability p(x).7 We represent

the fraction of containers that are tagged for secondary inspection by θn and observe that

θn =
∫ 1

0
p(x)gn(x)dx. (3)

Let Λ denote the “raw” (or “base”) arrival rate of containers into a port. Given that containers are marked

for secondary inspection with probability θn, the resulting effective arrival rate for secondary inspection is

λ = Λθn.

We model the process of secondary inspections as an M/G/1 queue, with Poisson arrival rate Λθn, service

times S, as determined by (1), and expected delay in queue:

E(D) =
λE(S2)

2(1− λE(S))
=
λ(ψ2 + σ2)
2(1− λψ)

. (4)

The queuing discipline followed is first-come, first-served.

The M/G/1 queuing model is an approximation of the real world, where more than one station might

process the containers tagged for secondary inspection. This assumption allows us to include an analytically

tractable expression for expected delay within our broader economic analysis. Furthermore, in the current

context – in which a small number of servers is highly utilized – the single-server assumption is reasonable,

as is explained in Kollerstrom (1974) and also Chapter 11-10 (p. 518) in Wolff (1989).

Suppose that firm i incurs an idiosyncratic per-container delay cost, di, per unit of time and that the

average dollar value per container is ri for firm i. Then we assume that waiting cost per dollar of revenue,

w = di/ri, is a constant, for all i. To the extent that delay costs are driven by the cost of capital (and other

value-driven factors) such a constant ratio is a natural assumption. For example, see Martonosi et al. (2006).
7Another potential degree of freedom is offered by modeling risk-score-specific inspection protocols ε(x), but our limited

experience with inspection systems suggests that this scheme would be very difficult to operationalize.
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3.6 Analysis of the Base Case

The Base Case refers to the scenario without C-TPAT. Containers come into a port at arrival rate Λ and are

picked up for secondary inspection at a rate λ = Λθn. We model the interaction between CBP and terrorists

as a Stackelberg game (Laffont and Martimort 2001). CBP acts as the leader and decides its inspection

policy first: {p(x) | x ∈ [0, 1]} and εb, the Base-Case residual risk. Terrorists act next to determine which

container to target for infiltration. We assume that CBP and terrorists are risk neutral

As is typical in the backward induction process that leads to the characterization of an equilibrium out-

come in a Stackelberg game, we first determine the “best response” of terrorists. From the terrorists’ point-

of-view, it is optimal to target the container that offers them the most favorable prospects. If there is more

than one such container, then the terrorists’ equilibrium strategy will be to target any one of these containers

for infiltration, with equal likelihood. Given a container with risk score x, inspection probability p(x), and

residual risk εb, the expected benefit to the terrorists from targeting it is

x{p(x)[εbLe + (1− εb)Lf ] + (1− p(x))Le}+ (1− x)Lf . (5)

We next determine CBP’s equilibrium strategy. Given capacity, κ, CBP’s choice of residual risk, εb, then

yields an expected inspection time, ψ(εb, κ). CBP’s objective is to choose an inspection policy, {p(x) | x ∈

[0, 1]} and εb, to minimize the expected losses due to a container harboring a terrorist threat entering a port.

Therefore, its objective is

min
εb,p(x):[0,1]→[0,1]

[
OP = max

x∈[0,1]
x{p(x)[εbLe + (1− εb)Lf ] + (1− p(x))Le}+ (1− x)Lf

]
. (6)

While this objective naturally leads CBP to make εb as small as possible, for any choice of p(x), concern

for the economic viability of the trading firms that use the port prevent it from simply setting εb = 0.

Specifically, firm i is willing to participate in ocean trade as long as, on a per container basis, the ex-

pected cost incurred from inspection-induced congestion is bounded above by some fraction (∆ > 0) of the

container’s dollar value, ri: θndi(E(D) +E(S)) ≤ ∆ri. Since di/ri = w, we can rewrite the inequality as

θnw(E(D) + E(S)) ≤ ∆. (IRb)

13



The above constraint acts as an upper bound on the expected cost that a firm is willing to bear. It is the

natural analogue of the participation or “individual rationality” constraint used in economic theory.

The effective arrival rate at the secondary inspection facility is λ = Λθn. From (4) we see that (IRb)

requires that λ(ψ2+σ2)
2(1−λψ) + ψ ≤ ∆

wθn
, which implies λ ≤ 2∆

σ2wθn
must be satisfied for the mean service time to

be non-negative. A sufficient condition for this to be the case is Λ ≤ 2∆
wσ2 , and we assume that this condition

is met. Similarly (4), (IRb), and ∆ < ∞ imply that, if θn > 0, then ρ ≡ λψ < 1. Thus, any feasible

solution, with θn > 0, must have a stable inspection queue.

If CBP had enough inspection capacity, then it would inspect each container down to a residual prob-

ability, εb, that eliminates terrorist threat, or equivalently OP = ca, without creating excessive congestion

for trading firms. We rule out this possibility by assuming that CBP has limited inspection capacity. This

assumption is consistent with the conclusion in the various GAO and media reports that review maritime

security. So, for given inspection capacity (or budget), the optimization problem faced by CBP is as follows:

O∗P = min
εb,p(x):[0,1]→[0,1]

{OP | θnw(E(D) + E(S)) ≤ ∆; 0 ≤ εb ≤ 1}. (7)

Our first result characterizes basic properties of the optimal solution.

Lemma 1 Suppose Λ ≤ 2∆
wσ2 .

i. If ∃ ε < 1 such that ψ(ε, κ) <∞, then any optimal solution to (7) has 0 < εb < 1 and θn > 0.

ii. If, in addition, O∗P > ca, then the (IRb) constraint is binding in the optimal solution.

Proof All proofs are in Appendix B. 2

Part (i) shows that we can always assume that, at optimum, εb and θn are interior to the problem bound-

aries. That is, if CBP has inspection capacity then it will use it. Part (ii) shows that if CBP does not have

enough capacity to drive its expected losses – and the terrorists expected gains – down to ca, then it will

inspect as intensively as possible, consuming all of the trading firms’ surplus. To see this, note that for a

given level of container traffic, λ, determined by a certain choice of p(x), the LHS of (IRb) is monotonically

decreasing in εb. Since the objective function in (6) is strictly increasing in εb, for a fixed λ; it would be
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optimal for CBP to set εb to be as low as possible, i.e., drive the expected cost incurred by a trading firm up

to its upper bound.

The fact that (IRb) is binding in equilibrium allows us to precisely characterize the optimal form of p(x):

Proposition 1 Let A∗b
∆= {x|x offers the maximum expected benefit to terrorists} and x∗lb

∆= inf A∗b . Sup-

pose O∗P > ca and that Λ ≤ 2∆
wσ2 . Then the optimal form of p(x) is given by the following:

i. p(x) =

{ 0, x ∈ [0, x∗lb]
1−x∗lb

x
1−ε∗b

, x ∈ [x∗lb, 1]

ii. O∗P = x∗lbLe + (1− x∗lb)Lf ;

iii. ε∗b ≤ x∗lb.

If there are multiple solutions that satisfy the conditions in Lemma 1 and Proposition 1, then the solutions

with the smallest value of x∗lb are the relevant candidate optimal solutions. This is because we know from

Proposition 1 that O∗P = x∗lbLe + (1 − x∗lb)Lf , which is strictly increasing in x∗lb. Indeed, if the candidate

optimal solutions are such that εb varies continuously in x∗lb, then, with limited inspection capacity, the

optimal solution is unique, with ε∗b = x∗lb and p(1) = 1.8 As it stands, we find that the optimal p(x) takes

the form depicted in Figure 1, below.
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Figure 1: Optimal Form of the Inspection Probability, p(x), for the Base Case.

The intuition behind the choice of the optimal form of p(x) is that CBP tries to equalize its risk exposure

across containers, such that the expected benefit offered to terrorists is the same for every container. If the
8For sufficient conditions under which εb varies continuously in x∗lb, see Appendix C.
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terrorists were not indifferent among the containers, then CBP could lower its expected cost by reducing the

value of p(x) for containers that offer lower than maximum expected benefit (and hence would be ignored

by terrorists in equilibrium) until either the expected benefit increases to the maximal value, or p(x) = 0.

The results of this Base Case serve as a benchmark with which to compare and contrast the results of the

security scenario with C-TPAT, as described in Section 4.

4 C-TPAT

4.1 Background on C-TPAT

CBP asks C-TPAT members to ensure the integrity of their supply chain security practices and to communi-

cate and verify the security practices of their supply chain partners (GAO 2005). CBP specifies standards,

such as infrastructure requirements and procedures to be followed while preparing a container for shipping.

For example, a C-TPAT member may be required to secure its premises with patrols and video surveillance,

undertake an extensive exercise in risk assessment and take remedial measures based on the results, use elec-

tronic tamper-proof seals on its containers, verify the background of all employees and contractors working

for it, and adhere to other guidelines in the program.

C-TPAT and Security-Related Effort

Whether or not a firm joins C-TPAT, it may perform some due diligence of its own accord, to prevent

pilferage, ensure visibility of the container during its journey to its destination, or facilitate reconciliation of

contents upon delivery. To ensure compliance with C-TPAT guidelines, a firm may need to exert additional

effort. We normalize the effort exerted by non-member firms to be 0 and define γi ∈ [0,∞) to be the extra

cost per container that firm i incurs to comply with C-TPAT guidelines.

Risk Profile of Members

As in §3, the CDFs Gm(x) and Gn(x) describe the distribution of risk scores in the container populations

of C-TPAT members and non-members, respectively. The distribution Gn(x) is the same as that in the Base

Case. We assume that the CDFs are differentiable, with corresponding density functions gm(x) and gn(x).
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Once again, we assume that gn(x), gm(x) > 0, ∀x ∈ [0, 1].

Given C-TPAT’s aim of motivating companies to reduce container risk, we expect the distribution of Gm

and Gn to differ, and we assume that Gm(x) > Gn(x), for all x ∈ [0, 1). This relationship is referred to as

a strict First Order Stochastic Dominance (FOSD) ordering (Shaked and Shanthikumar 1994).

Fraction of Containers Inspected

Whether or not a firm joins C-TPAT, the flow of its containers follows a similar pattern. θm represents

the fraction of a C-TPAT member’s (m for members) containers that undergo more intensive secondary

inspection. Likewise θn represents the fraction of a non-member’s (n for non-members) containers that

are tagged for secondary inspection. The values of θm and θn are functions of p(x) - the probability of

tagging a container with risk score x, for secondary inspection - and the density functions gm(x) and gn(x)

respectively. While the value of θn is as described in (3), the value of θm is similarly defined:

θm =
∫ 1

0
p(x)gm(x)dx. (8)

Observe that, for non-decreasing p(x), the strict FOSD ordering implies that θm < θn. We will verify in

§4.2 that this is indeed the case for the optimal choice of p(x). Thus, by joining C-TPAT, a firm improves its

risk profile, and the improvement leads to a reduction in the fraction of its containers that undergo secondary

inspection. The savings associated with this reduction are an important incentive to join.

Audit of Members

To prevent C-TPAT members from shirking (i.e., not exerting the extra security effort required of members),

CBP may conduct an audit of member firms. The audit determines whether or not the guidelines laid out

in C-TPAT are being diligently followed. Use of damaged electronic container seals, use of contract labor

without background checks, and absence of video surveillance at facilities are examples of the types of

lapses that might be encountered during an audit. We assume that, once an audit has been undertaken, it can

be determined with certainty whether or not a firm has shirked.

CBP audits member firms with an annual relative frequency, q, and it then imposes a penalty if a deviation

is discovered. The audit frequency can also be thought of as the fraction of C-TPAT members that are

audited in any given time period. We denote the per-container cost of auditing a member firm i as ci(q),
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with c′i(q) ≥ 0. For example, a firm with an annual volume of container traffic, Vi, incurs an expected

cost of audit of qci(q)Vi, which translates to a per-container expected cost of qci(q). Similarly, we let Pi

represent the per-container allocation of the penalty assessed should firm i be found to be shirking. (The

total penalty is assessed on the firms’s container traffic, from the start of the period until the time shirking is

discovered, since this is the set of containers that benefited from a lower inspection frequency.) This allows

us to account for all costs on a per-container basis. A shirking firm is also relegated to non-member status

for the remainder of the period.9

We model audit costs as being borne by trading firms. Specifically, the SAFE Port Act (2006) mandates

a pilot for a third-party audit program. Under this scheme, CBP-authorized third-party auditors conduct

audits, and C-TPAT participants pay for the audits. The third parties need to be audited by CBP in turn.

Since only a small fraction of the staff resources are required to audit the auditors, relative to auditing the

member firms directly, we make the simplifying assumption that the cost associated with the auditing of

third-party auditors is fixed, i.e., it is independent of the membership level in C-TPAT. Hence, we do not

explicitly include it in our model.

Such a third-party scheme is attractive to CBP for two reasons. First, with an increasing number of firms

signing up for C-TPAT, CBP is falling short of staff required to effectively validate membership and later

audit firms (GAO 2005).10 Second, CBP auditors do not have access to certain trade lanes in the international

supply chain, for political and sovereignty reasons. CBP launched its pilot program for third-party audits in

June 2007 (Basham 2007).11

4.2 A Principal-Agent model of C-TPAT

We model the interaction between CBP, trading firms, and terrorists as a multi-player sequential game. The

terrorists act last and their equilibrium strategy is to target one of the containers that offers maximum ex-
9An equivalent penalty scheme would be to penalize all of the deviating firm’s container traffic in the period of interest, but then

allow the firm to sign-up as a member again, immediately after failing the audit.
10In CBP’s parlance “revalidation” of C-TPAT membership is equivalent to an audit, as described in this paper.
11Similar third-party audit mechanisms have been used successfully in other contexts, such as the promotion of industrial safety

and the enforcement of environmental regulations (Kunreuther et al. 2002).
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pected benefit, as explained in the Base-Case analysis in §3.6. Incorporating the best response of terrorists in

this manner, the interaction between CBP and the trading firms can thereafter be thought of as a Stackelberg

game in which CBP (the principal) acts as the leader and the trading firms (agents) are followers. Both CBP

and the trading firms are assumed to be risk neutral.

CBP first decides on the secondary inspection parameters θm, θn and ε, and the audit parameters q and

Pi. It then offers the contract {q, Pi, ε, θm} to members and {ε, θn} to non-members who use the port

facilities. Firms decide whether or not to join C-TPAT, based on their respective costs of compliance and

the expected congestion costs due to secondary inspection. Once firms have decided whether or not to join

C-TPAT, members are expected to comply with the security-related guidelines prescribed in the agreement.

A pictorial representation of the sequence of events is presented in the Figure 2 below.

AGENTS / SHIPPERS

Firms Choose 
Contracts
from {m,n}

PRINCIPAL / CBP

CBP Sets Contract
Parameters
q, Pi, θm, θn, ε

CBP Offers
Contracts
{m, n}

Members Incur Costs
γi, qci(q), θmdi(E[D]+ ψ)

Non‐members Incur Costs
θndi(E[D]+ ψ)

CBP Incurs Costs

Figure 2: Dynamics of the Principal-Agent Stackelberg Game.

Agent’s Problem

The decision of whether or not to join C-TPAT is largely governed by the agents’ cost of compliance with

the program. Firms with cost of compliance γi are faced with two choices: either sign up for C-TPAT at an

expected per-container expense of γi + qci(q) and experience an expected system waiting time of E(D) +

E(S) with probability θm, or remain a non-member and experience an expected wait of E(D) +E(S) with

probability, θn. The condition that must be satisfied for a firm to sign up for C-TPAT is therefore

γi + qci(q) + θmdi(E(D) + E(S)) ≤ θndi(E(D) + E(S)). (9)

The above condition necessarily requires that θn ≥ θm. Observe that the expected delay, E(D), is the same
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on both sides of the inequality. Implicitly, we are assuming that each firm is an infinitesimal player, whose

individual decisions do not impact the overall congestion levels in the system. This assumption is similar in

spirit to the treatment in a Wardrop Equilibrium (Altman et al. 2006).

Recalling that the dollar value of revenue associated with a container is ri for firm i, we now define

α(q) ≡ (γi + qci(q))/ri, as member i’s cost of compliance per dollar of revenue, or simply the compliance

cost. For γi ∈ [0,∞) we see that α(q) ∈ [ qci(q)ri
,∞). For fixed q, we can also define the cumulative

distribution function (CDF) F (α) to be the fraction of the total volume of containers shipped to the US

which come from firms with a compliance cost no more than α. We assume that for any fixed q, F (α) is

differentiable everywhere, and dF (α) = f(α)dα represents the relative likelihood that a container comes

from a firm with compliance cost α. Implicit here, again, is the assumption that each firm contributes an

infinitesimal amount to the cumulative volume of container trade.

For a givenE(D), let αt denote a threshold compliance cost (t for threshold), below which (9) is satisfied

and above which it is not. In turn, for a given αt, the fraction of C-TPAT certified containers is F (αt), which

yields the effective arrival rate at the secondary-inspection queue:

λ = Λ[F (αt)θm + (1− F (αt))θn]. (10)

Substituting this value of λ into (4) yields the corresponding expression for expected delay, E(D).

As described above, the definitions of αt and E(D) are circular, since each depends on the other. Never-

theless, we can show that, for given q, θm, θn and ε, these two equilibrium quantities are well defined.

Proposition 2 For given q, θm, θn and ε, the threshold compliance cost exists, is unique, and is given by

αt = (θn − θm)w(E(D) + E(S)). (11)

The Principal’s Problem

As before, the principal tries to minimize the expected cost of a disaster:

O∗P = min
ε,Pi,q∈[0,1],p(x):[0,1]→[0,1]

[
max
x∈[0,1]

x{p(x)[εLe + (1− ε)Lf ] + (1− p(x))Le}+ (1− x)Lf

]
. (12)

The solution to the principal’s problem should be such that it provides the appropriate incentives for the
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agents to participate without shirking.

Participation Constraint for Agents

The participation constraint for non-members remains the same as described in condition (IRb) in the Base

Case. Satisfying (IRb) is also sufficient to ensure participation of member firms, as is apparent from (9),

provided θn ≥ θm.

Incentive-Compatibility Constraint for Agents

A firm that has signed up for membership in C-TPAT may find it beneficial to shirk by not putting in

the effort required for compliance with C-TPAT guidelines while, at the same time, continuing to enjoy

reduced congestion costs afforded to members only. An incentive compatibility constraint ensures that such

a situation does not arise. The principal uses audit as a means to achieve incentive compatibility: a member

firm i which fails an audit is penalized an amount Pi, which is bounded above by some Bi <∞.

The upper bound, Bi, is set to the benefit accruing to the participating firm from joining C-TPAT. This

captures the idea that the penalty cannot be larger than the non-compliant agent’s benefit from its false

announcement. (See page 123 in Laffont and Martimort (2001).) We consider a more general upper bound,

a constant multiple β (≥ 1) of the benefit from non-compliance, minus the cost of the audit itself.12 A

member firm that fails an audit, no matter when it is conducted, forgoes the benefit accrued due to member

status and is relegated to non-member status for the rest of the period. Thus, for α(q) ∈ [0, αt], where

α(q) = (γi + qci(q))/ri, condition (9), along with incentive compatibility considerations, implies that for

each member firm i:

γi+ qci(q)+θmdi(E(D)+E(S)) ≤ (1− q)[θmdi(E(D)+E(S))]+ q[θndi(E(D)+E(S))+ ci(q)+Pi],

(13)
where:

0 ≤ Pi ≤ Bi = β(θn − θm)di(E(D) + E(S))− ci(q). (14)

We assume that β is large enough so that Bi ≥ 0. Dividing (13) by ri, we observe that, without audit, q ≡ 0

and (13) can be satisfied only for α = 0. Thus, without some form of audit (or analogous mechanism), CBP
12Once a firm is audited, it has to incur the audit cost irrespective of whether or not it failed the audit. This expected cost is

already accounted for in the compliance cost.
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cannot prevent shirking among member firms.

In fact, CBP has an incentive to make the audit penalty, Pi, as large as possible.

Proposition 3 In equilibrium, P ∗i = Bi.

Thus, at optimum Pi will achieve its upper bound Bi. In the economics literature, this is known as the

principle of maximal punishment. (See pages 121-126 in Laffont and Martimort (2001).) Indeed, a finite

upper bound Bi is required to make the audit mechanism reasonable, lest CBP impose an infinite penalty

with probability zero.

Using (11), (13) and (14) to simplify the incentive-compatibility (IC) constraint, we obtain:

γi + qci(q)
ri

≡ α(q) ≤ q(1 + β)αt(q) ∀α(q) ≤ αt(q). (IC)

In turn, we have:

Proposition 4 In the Stackelberg game between CBP and trading firms, the optimal fraction of members to

be audited is:

q∗ =
1

1 + β
if αt(q∗) > 0; q∗ = 0 if αt(q∗) = 0.

Proposition 4 implies that the value of q∗ is independent of the choice of p(x) and ε. Thus, CBP can fix

q∗ and then optimize over p(x) and ε alone. Also, given q∗, we have α ≡ (γi + q∗ci(q∗))/ri, and the

compliance-cost distribution function F (α) is well defined.

Proposition 4 also provides insight into the effectiveness of audit practises. For example, suppose β = 1,

so that the penalty for shirking equals the expected benefit from joining the program. This implies that

q∗ = 0.5, in which case a 50% chance of audit is optimal.

Thus, the optimization problem faced by the principal is

O∗P = min
ε,p(x):[0,1]→[0,1]

[
max
x∈[0,1]

x{p(x)[εLe + (1− ε)Lf ] + (1− p(x))Le}+ (1− x)Lf

]
,

s.t.

θnw(E(D) + E(S)) ≤ ∆, (IR)

θn ≥ θm, (IC′)
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0 ≤ ε ≤ 1, (FEAS)

and we obtain an initial characterization of the equilibrium behavior induced by C-TPAT that parallels that

of the base case.

Lemma 2 Suppose Λ ≤ 2∆
wσ2 .

i. If ∃ ε < 1 such that ψ(ε, κ) < 1, then any equilibrium solution has 0 < ε < 1 and θn > 0.

ii. If, in addition, O∗P > ca then the (IR) constraint is binding in equilibrium.

The intuition for this result is similar to that for the result in Lemma 1, and with it we can more completely

characterize the optimal form of p(x). To do so, we first define the following quantity:

ζ =
f(αt)αt + F (αt)

f(αt)αt(1− αt
∆ ) + F (αt)− 1−

(
∆λ(1−λψ)
θ2
nwΛE(D)

) . (15)

Proposition 5 Suppose Λ ≤ 2∆
wσ2 . Let A∗ ∆= {x|x offers the maximum expected benefit to terrorists}, and

let x∗l
∆= inf A∗. If O∗P > ca then we have the following.

i. ∀x ∈ A∗, p(x) is strictly increasing in x, and:

x{p(x)[εLe + (1− ε)Lf ] + (1− p(x))Le}+ (1− x)Lf = k, a constant. (16)

ii. If ζ ≤ 0, then:

a) ∀x ∈ [0, x∗l ], we have p(x) = 0;

b) ∀x ∈ [x∗l , 1), we have x ∈ A∗;

c) ∀x ∈ (x∗l , 1), we have p(x) ∈ (0, 1), and the relationship in (16) is satisfied.

iii. If ζ > 0, then ∀x ∈ [0, 1):

a) If gn(x)/gm(x) < ζ, then p(x) behaves as in (ii);

b) If gn(x)/gm(x) ≥ ζ, then p(x) = 1.

23



iv. θn > θm.

The left panel of Figure 3 provides an illustration of the general form of the optimal p(x).
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Figure 3: Optimal Form of Inspection Probability, p(x)

Once again, the intuition behind the nature of the optimal form of p(x) is similar to that for the result in

Proposition 1: CBP tries to equalize its risk exposure across all containers in order to minimize its expected

cost. However, in this case it is possible that CBP makes strategic use of its inspection capacity to influence

the membership level in C-TPAT. When gn(x)/gm(x) > ζ an increase in p(x) drives up congestion costs

enough for non-members, relative to members, leading to a higher αt and additional participation. When

the condition is satisfied, p(x) = 1, even though these containers offer less than maximum expected benefit

to terrorists. The additional membership benefits CBP enough to offset the additional burden of inspecting

containers that are not the terrorists’ preferred targets. This is an instance of the use of strategic delay by

CBP (Afeche 2006).

Corollary 1 Suppose F (x) > 0, ∀x > 0. If O∗P > ca, then implementation of C-TPAT results in strictly

lower costs for CBP and weakly lower costs for the trading firms, relative to the base case.

This result confirms the economic intuition behind C-TPAT. The main purpose of the program is to transfer

the burden of securing the containerized supply chain, in a cost-effective manner, from the congestion-

causing step of secondary inspections at US ports to security investments by importers further upstream in

the supply chain. If implemented judiciously, it ought to be a win-win solution for CBP and the trading

community.
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Even though we have made progress towards characterizing the optimal solution for the case with strict

FOSD ordering between the distribution Gn(x) and Gm(x), we can obtain sharper results if we assume

the stronger condition of strict monotone likelihood ratio (MLR) ordering, i.e., gn(x)/gm(x) is strictly

increasing in x (Shaked and Shanthikumar 1994).13 The MLR property implies that compliance with C-

TPAT systematically reduces the distribution of risk across a given company’s containers. Assuming that

there isn’t enough inspection capacity to eliminate terrorist threat completely, the nature of the optimal

solution is formalized as follows:

Corollary 2 Suppose Λ ≤ 2∆
wσ2 and that gn(x) and gm(x) obey a strict MLR ordering. If O∗P > ca, at the

optimal solution to the principal’s problem, the results in Proposition 5 hold, and:

i. If ζ > 0, then there is at most a single value, x∗u, such that 0 ≤ x∗l < x∗u ≤ 1, and ∀x ∈

(x∗u, 1], gn(x)/gm(x) > ζ.

ii. O∗p = x∗lLe + (1− x∗l )Lf .

iii. ε∗ ≤ x∗l .

The optimal form of p(x) is depicted in the right panel of Figure 3.

Since O∗P = k = x∗lLe + (1 − x∗l )Lf , the principal’s objective function is strictly increasing in x∗l . If

there are multiple solutions that satisfy the conditions in Corollary 2, then we can restrict attention to the

candidate solutions with the smallest value of x∗l . Indeed, if ε∗ varies continuously in x∗l , then, assuming

O∗P > ca, the optimal solution is unique, with ε∗ = x∗l , p(1) = 1 and (x = 1) ∈ A∗.14

5 Comparative Statics with Capacity

Installed inspection capacity is a crucial determinant of overall security in the containerized supply chain.

It can be thought of in terms of the number of customs inspectors available for container inspections at

ports, along with the technology infrastructure in place, such as x-ray and gamma-ray scanners. Both more
13Strict MLR ordering implies strict FOSD, but not the other way around.
14For details, refer to Appendix C.
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inspectors and better technology can allow for quicker and more precise inspections and thereby enable

lower inspection times for a given ε. While greater capacity can provide for greater security, it is expensive,

and a key decision CBP must make is how much to invest.

In this section we characterize the impact of changes in capacity, κ, on the equilibrium outcome. Using

a mix of analytical and numerical approaches, we analyze the sensitivity of our optimal solution to the

installed inspection capacity. We use the results of Proposition 5 and Corollary 2 as our starting point. Our

first analytic result states:

Proposition 6 Suppose Λ ≤ 2∆
wσ2 and that gn(x) and gm(x) obey a strict MLR ordering. If O∗P > ca, then

greater inspection capacity results in lower cost for CBP, and a lower x∗l . Furthermore, if for any xl and xu

that are candidates for the optimal solution in Corollary 2, the corresponding ε varies continuously with xl,

then greater capacity results in:

i. Higher θn and θm;

ii. Lower C-TPAT membership, F (αt);

iii. Higher effective arrival rate of containers to inspection facility, λ.

Appendix C characterizes sufficient conditions under which the optimal ε is continuous in xl. In this case,

ε∗ = x∗l and x∗u = 1.

Thus, for this special case, we find a somewhat surprising outcome: an increase in inspection capacity

results in lower C-TPAT membership. The intuition for this result is that greater capacity provides CBP with

the ability to inspect a higher volume of containers at the secondary inspection facility, thereby reducing

the need for upstream security measures, as encompassed in C-TPAT. We have yet to study the impact of

increasing capacity in the more general case, when the assumption in Proposition 6 may not hold. We do so

through numerical experiments.

Numerical Study

We assign the following values to the model primitives. Gn(x) is Beta(2,4) and Gm(x) is Beta(2,7), giving
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rise to strict MLR ordering, and mean risk scores of 0.33 and 0.22 respectively. F (α) is Gamma(9,1/63,000)

resulting in a mean compliance cost of 1/7,000. All 3 distributions are bell shaped.

A heuristic rationale for the choice of the mean of the Gamma distribution is as follows. The mean annual

cost of C-TPAT compliance for an importer is around $70,000 (Diop et al. 2007), and we estimate the mean

annual container traffic for an importer to be about 7,000. (Lee and Whang (2005) use the example of a

high-tech manufacturer with a tradelane of 4,300 containers a year.) Then assuming negligible contribution

from audit costs (q = 0.5 and typical ci(q) ≈ $1), we estimate γi ≈ 70,000/7,000 = $10. If the average

container value, ri, is about $70,000, then a typical α ≈10/70,000 = 1/7,000.

The waiting cost per dollar per hour, w, can be estimated using a 20% cost of capital as: 1.21/(365∗24)-1 =

2.08×10−5. To estimate the upper bound on per container cost, ∆, we assume that the maximum acceptable

mean system wait time is 6 hours, the maximum θn=1, which leaves us with ∆=6×w = 1.25×10−4. We let

the raw arrival rate of containers, Λ, be 100 per hour, which translates to 876,000 containers per annum.

Among the other parameters that we estimate: standard deviation of inspection time, σ = 0.03 hours;

losses from a WMD that escapes detection, Le = $520 billion; losses from finding a WMD during inspection,

Lf=$36.7 billion. We use Abt (2003) as the basis for the loss estimates. Le is the worst case projection that

includes value of lives lost, while Lf is the indirect loss component (2/3 of total) of the best-case estimate

presented therein. It is worth noting that the values of Le and Lf do not influence the computation of the

optimal policy for fixed capacity.

We use the functional form for SAT described in 2. In the numerical study that follows, we conduct a

sensitivity analysis with respect to capacity, κ, and find that the results of Proposition 6 hold. In Figure 5,

shown in Appendix A, we plot O∗P versus capacity and find that it is strictly convex.

This gives us some insight into how the optimal capacity can be determined. Given a linear cost of

capacity, h, CBP would choose capacity to optimize the following objective: minκ[bO∗P + hκ]. If O∗P is

strictly convex in κ, then the overall objective is strictly convex as well, and the first-order-condition will

specify the optimal capacity κ.
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Example E(D) λ ψ O∗P
Number κ θn θm αt F (αt) (hours) (per hour) (hours) ε∗ x∗l x∗u ($ billions)

1 1 0.027 0.002 1.17×10−4 0.320 220.11 1.92 0.521 0.594 0.594 1 324.0
2 2 0.044 0.004 1.13×10−4 0.285 136.13 3.26 0.306 0.542 0.542 1 299.0
3 5 0.081 0.012 1.06×10−4 0.229 73.73 6.54 0.153 0.466 0.466 1 262.0
4 10 0.127 0.027 9.83×10−5 0.173 47.08 10.99 0.091 0.403 0.403 1 231.0
5 20 0.197 0.058 8.79×10−5 0.109 30.38 18.20 0.055 0.334 0.334 1 198.0
6 40 0.303 0.124 7.38×10−5 0.048 19.75 29.47 0.034 0.258 0.258 1 161.0
7 60 0.388 0.191 6.34×10−5 0.021 15.42 38.43 0.026 0.211 0.211 1 138.0
8 80 0.461 0.258 5.50×10−5 0.009 12.99 45.93 0.022 0.176 0.176 1 122.0
9 100 0.525 0.323 4.79×10−5 0.004 11.42 52.37 0.019 0.149 0.149 1 109.0
10 500 0.975 0.957 2.30×10−6 0.000 6.14 97.55 0.010 0.006 0.006 1 39.7

Table 1: Sensitivity Analysis with Respect to Inspection Capacity

6 Discussion and Future Research

We have used a stylized model of port-security operations to obtain insights into the strategic considerations

of CBP, trading firms that participate in C-TPAT, and terrorists. Our analysis points out that, for any given

level of capacity, the program results in an improvement in the costs incurred by CBP and trading firms.

Therefore, we can conclude that, even though security mandates might seem to be the easiest way to bolster

homeland security, a creative use of economic mechanisms – ones that provide the right incentives for private

sector (and individual) participation in security initiatives – can yield important benefits.

At the same time, it is important to remember that C-TPAT’s effectiveness is critically dependent on the

improvement in the risk profile induced by the supply-chain practices included in the program, as well as

the efficacy of ATS. These aspects are treated as exogenous to our model. Prospective changes on both of

these fronts may lead to new operational challenges and to new opportunities for analysis.

From the trading firms’ point of view, the benefits of joining C-TPAT must offset the additional invest-

ment required to comply with the security guidelines. In this paper we focus our attention on the benefit

related to reduced inspection frequency. An additional level of benefits pertains to a proposed tiered mem-

bership of C-TPAT. The highest performing members of C-TPAT would be eligible to have access to an

inspection-free shipping process. This concept of expedited processing has been referred to as the “green

lane” concept (C-TPAT Strategic Plan 2004). However, implementation of this scheme is contingent on

R&D advances and successful roll-out of “smart” containers. Challenges remain, and it is yet to be ascer-

tained whether green lanes will ever become a reality (Downey 2006). Also on the horizon is the benefit
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associated with “restart priority” in the event of port closure due to a disaster. An economic analysis of both

of these benefits present further opportunities for future work.

Our analysis generates useful high-level insights by characterizing the nature of the equilibrium outcome.

However, the contrasting of our findings with reality presents a challenge in terms of accurately estimating

the model parameters: the distributions Gn, Gm and F ; the cost of capacity h; etc. Nevertheless, the

numerical study in §5 illustrates how our model might be used to determine an optimal inspection policy. The

current inspection frequency for non-members is about 5-6% (Marine Link 2004, McClure 2007), and our

numerical results highlight the possibility that the optimal θn could be much larger, although not necessarily

close to 100%. While the current membership level of C-TPAT is about 30% in terms of container traffic

(GAO 2008), it is hard to draw a meaningful comparison with our model results, owing to the estimation

problems described above.

Since the audit-policy parameters are determined independently of the optimal inspection policy, these

are less affected by difficulty in estimating the true value of the model primitives. Here, we find that a 50%

annual audit rate is optimal given β = 1, which assumes that the only benefit obtained from the program is

via reduced inspection. In contrast, CBP plans to revalidate (or audit) the security profile of member firms

only once every 3 years (GAO 2008). While it is possible that our ignoring of other benefits of C-TPAT,

besides reduced inspection frequency, leads us to find a higher optimal audit rate in our analysis, the GAO

has also raised concerns pertaining to the inadequacy of CBP’s revalidation strategy.

It is also worth noting that the idea of reduced inspections of trusted entities crossing US borders is

applicable to other domains besides port and cargo security. CBP has trusted traveler programs (e.g., SEN-

TRI, NEXUS) for frequent, low-risk border crossers. The program entitles trusted travelers to expedited

inspection at the ports of entry (SENTRI 2006). In an analogue to the compliance cost trading firms incur

when joining C-TPAT, these trusted travelers incur a dis-utility from subjecting themselves to an extensive

background check, a pre-requisite for enrollment in the program. Similar ideas may be applicable to interna-

tional mail as well. Although the scope of CBP’s mandate for inspections covers international mail (Wasem

et al. 2004), it has not yet become a priority issue.
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A Appendix: Figures

Gn(x) = fraction of containers for which P{false negative} ≤ x

x = P{container has a false negative}
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Figure 4: Sample CDF for risk scores.
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Figure 5: Plot of Expected Benefit to Terrorists (O∗P ) Vs. Inspection Capacity (κ)
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B Appendix: Proofs

Lemma 1

Proof Part (i). First, we show that CBP never need consider inspection plans with ε = 0. Recall that

limε→0 ψ(ε, κ) = ∞. Therefore, for ε = 0 the only feasible solution is p(x) = 0 for x ∈ [0, 1], so that

θn = 0. From (5) we see that, here, the expected benefit to terrorists is

x{0[0Le + (1− 0)Lf ] + (1− 0)Le}+ (1− x)Lf = xLe + (1− x)Lf ,

which is maximized at x = 1. In this case CBP can do as well by letting ε = 1 and p(x) = 1 for x ∈ [0, 1]

so that the expected benefit to terrorists is

x{1[1Le + (1− 1)Lf ] + (1− 1)Le}+ (1− x)Lf = xLe + (1− x)Lf ,

which again is maximized at x = 1. Thus, the latter plan performs as well as the former, and CBP need only

consider it.

Second, recall that there exists ε < 1 for which ψ(ε, κ) < ∞. We show that for this ε, we can set

p(x) = p ∈ (0, 1) for all x ∈ [0, 1], where p is feasible for the (IRb) constraint and provides a lower expected

benefit to terrorists than the schemes above. Specifically, for a given p, we have θn =
∫ 1

0 p gn(x)dx = p

and λ = Λθn = Λp, so that (IRb) becomes

p w

[
Λp
(
ψ2 + σ2

)
2 (1− Λpψ)

]
≤ ∆.

Observe that the left-hand side of the inequality is strictly decreasing in p and that, for any ψ < ∞, there

exists a p > 0 small enough to satisfy (IRb). Then using this p and ε in (5) we have

x{p[εLe + (1− ε)Lf ] + (1− p)Le}+ (1− x)Lf ,
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which is strictly increasing in x. At x = 1 we have

1{p[εLe + (1− ε)Lf ] + (1− p)Le}+ (1− 1)Lf = p[εLe + (1− ε)Lf ] + (1− p)Le},

which is strictly less than Le when p > 0. Thus any optimal solution will have ε < 1.

Finally, note than any solution with θn = 0 will have p(x) = 0 for all x ∈ [0, 1], and an

x{0[εLe + (1− ε)Lf ] + (1− 0)Le}+ (1− x)Lf = xLe + (1− x)Lf ,

with maximum to terrorists of Le at x = 1. Thus, this solution is outperformed by that with ε < 1 and

p > 0, above. Therefore, no optimal solution can have θn = 0.

Part (ii). By contradiction suppose O∗P > ca and the (IRb) were not binding:

θn w

[
Λθn

(
ψ2 + σ2

)
2 (1− Λθnψ)

]
< ∆.

We will construct another inspection scheme that out performs O∗P .

From part (i) recall that any optimal solution must have ε < 1 and θn > 0. Recalling (5), we let

t(x) = x{p(x)[εLe + (1− ε)Lf ] + (1− p(x))Le}+ (1− x)Lf ,

and let A∗ = arg max{t(x) | x ∈ [0, 1]}.

First, we note that, without loss of generality, we can assume that, if x 6∈ A∗ then p(x) = 0. Note that

t(x) is decreasing in p(x). Therefore, given some x 6∈ A∗ , we can lower p(x) until either x ∈ A∗ or

p(x) = 0, whichever comes first.

Second, let A∗0 = {x ∈ A∗ | p(x) = 0}, and let A∗>0 = A∗\A∗0. Then we claim that A∗>0 6= ∅. If the

set were empty, then we would have p(x) = 0 for all x ∈ [0, 1] and θn = 0, which contradicts the fact that

θn > 0, established in part (i).
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Third, we observe that (x = 0) 6∈ A∗. Note that t(0) = Lf , so if it were then O∗P = Lf < ca, which

contradicts the assumption that O∗P > ca.

Fourth we observe that A∗0 is either empty or a singleton. If not, then we would have x1, x2 ∈ A∗0 with

x1 < x2 and t(x1) < t(x2), which contradicts the definition of A∗ and A∗0.

If A∗0 is empty, then A∗ = A∗>0 and all x ∈ A∗ have p(x) > 0. If we decrease ε by a small amount, say

δ, which is small enough that the (IRb) constraint is still not binding, then we can reduce

t(x) = x{p(x)[(ε− δ)Le + (1− (ε− δ))Lf ] + (1− p(x))Le}+ (1− x)Lf ,

for all x ∈ A∗. In this case, we have further reduced the maximum t(x), which contradicts the assumption

that O∗P was optimal.

If A∗0 is a singleton, then the above decrease in ε leaves the point x ∈ A∗0 as the single x ∈ A∗. Because

there remains slack in the (IRb) we can increase p(x) > 0 so that, x 6∈ A∗ and we obtain the desired result.

2

Proposition 1

Proof In order to prove the results in this Proposition, we first establish the results listed in the following

steps:

1. p(x) is strictly increasing on the set A∗b .

2. If 0 < p(x) < 1, then x ∈ A∗b .

3. ∀x ∈ [0, 1), p(x) < 1.

4. (x = 1) ∈ A∗b .

5. p(x∗lb) = 0 and x∗lb ∈ A∗b .

It can be verified that the results in the above steps imply the claims in (i), (ii) and (iii). The definition

of x∗lb and step 5 imply the result in (ii). Thereafter, steps 2, 3 and 5 together imply that p(x) =
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0, ∀x ∈ [0, x∗lb]; 0 < p(x) < 1, ∀x ∈ [x∗lb, 1); and [x∗lb, 1) ⊂ A∗b . These observations coupled with

step 4 imply that p(x) = 1−x∗lb
x

1−ε∗b
, ∀x ∈ [x∗lb, 1]. Thus, we know that the result in (i) is true. The

feasibility condition p(1) ≤ 1 then gives us the result in (iii).

We now proceed with the proof:

Step 1. By definition, the expected benefit offered by all elements of A∗b is equal to some constant, which we

denote by kb. Using (5) we note that for x1, x2 ∈ A∗b such that x1 < x2, we have:

x1{p(x1)[εbLe + (1− εb)Lf ] + (1− p(x1))Le}+ (1− x1)Lf = kb

= x2{p(x2)[εbLe + (1− εb)Lf ] + (1− p(x2))Le}+ (1− x2)Lf .

Then ε < 1, x1 < x2 and Lf < Le imply

p(x1)[εbLe + (1− εb)Lf ] + (1− p(x1))Le > p(x2)[εbLe + (1− εb)Lf ] + (1− p(x2))Le,

which finally gives us the result p(x1) < p(x2). Thus, we conclude that p(x) is strictly increasing in

x on the set A∗b .

Step 2. We can prove this result by contradiction. Assume that the result is not true. Then for the optimal

solution, consider x∗ ∈ A∗b and x̂ /∈ A∗b such that 0 < p(x̂) < 1. Then we have:

x∗{p(x∗)[εbLe + (1− εb)Lf ] + (1− p(x∗))Le}+ (1− x∗)Lf

> x̂{p(x̂)[εbLe + (1− εb)Lf ] + (1− p(x̂))Le}+ (1− x̂)Lf .

Using the result in Lemma 1 and (11) we know that any candidate optimal solution must satisfy the

following two conditions:

θnw(E(D) + E(S)) = ∆, (17)
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0 ≤ p(x) ≤ 1, ∀x. (18)

Denoting a small perturbation in the value of p(x̂) by dp(x̂), we obtain:

dθn
dp(x̂)

= gn(x̂)dx̂. (19)

We rewrite (17) as follows:

φ(θn, εb) = ∆− θnw(E(D) + E(S)) = 0. (20)

Using the Implicit Function Theorem on the above equation we obtain:

dφ

dp(x̂)
= 0 =

∂φ

∂θn

dθn
dp(x̂)

+
∂φ

∂εb

dεb
dp(x̂)

,

or equivalently:

dεb
dp(x̂)

=
− ∂φ
∂θn

dθn
dp(x̂)

∂φ
∂εb

. (21)

To evaluate the expression in (21), the following relationships are required:

∂φ

∂θn
= −w(E(D) + ψ)− θnw

∂E(D)
∂λ

∂λ

∂θn
= −w(E(D) + ψ)− θnw

ψ2 + σ2

2(1− λψ)2
Λ < 0, (22)

∂φ

∂εb
= −θnw

[
∂E(D)
∂εb

+ ψεb

]
= −θnw

[
(1− λψ)2λψ + λ2(ψ2 + σ2)

2(1− λψ)2
+ 1
]
ψεb

> 0. (23)

Using (19), along with the above two relationships in (21) along with the result of Lemma 1, we obtain

∀x ∈ [0, 1]:

dεb
dp(x)

=

(
− ∂φ
∂θn

)
gn(x)dx

∂φ
∂εb

> 0 (24)

Now choose the magnitude of dp(x̂) such that x∗ would continue to offer the highest benefit to terror-

ists if εb were left unaltered. Also, in (21), choose the sign of dp(x̂) such that dεb < 0, i.e., decrease

38



p(x̂). It is always possible to do so because 0 < p(x̂) < 1.

After choosing the appropriate dp(x̂) we find that dεb < 0, i.e., the new value of residual risk is

ε′b = εb + dεb such that ε′b < εb.15 Two cases can arise:

Case 2.1: x∗ continues to offer the greatest benefit to terrorists. Since ε′b < εb, we have managed

to improve the principal’s objective function value, while ensuring feasibility. Hence, the previous

solution could not have been optimal.

Case 2.2: x′ now offers the greatest benefit to terrorists, where x′ 6= x∗. We have:

x∗{p(x∗)[εbLe + (1− εb)Lf ] + (1− p(x∗))Le}+ (1− x∗)Lf

≥ x′{p(x′)[εbLe + (1− εb)Lf ] + (1− p(x′))Le}+ (1− x′)Lf

> x′{p(x′)[ε′bLe + (1− ε′b)Lf ] + (1− p(x′))Le}+ (1− x′)Lf .

Once again, since we have improved the objective function value, the previous solution could not have

been optimal. Thus, we have shown that at the optimal solution, any container with risk score x, such

that 0 < p(x) < 1, offers the same (maximal) expected benefit to terrorists, denoted by kb.

Step 3. In order to prove the claim in this step we observe that for x /∈ A∗ it is possible for p(x) to take on

value 1, only if dεb/dp(x) ≤ 0. Otherwise a reduction in p(x) would lead to a lowering of εb, thereby

improving the objective function value. (Note that the reduction in p(x) should be small enough such

that x continues to be outside of A∗.) Using (24) we can now conclude that ∀x ∈ [0, 1), if x /∈ A∗b ,

then p(x) < 1.

On the other hand, if x ∈ A∗b , then the only way to have p(x) = 1 is if x = supA∗b , otherwise the

monotonicity of p(x) on A∗b (result in Step 1) would be violated. Moreover, supA∗b = 1, since for

points with p(x) = 1, the expected benefit to terrorists has to be strictly increasing in x. Hence, from

15To get around the technical difficulty posed by dεb
dp(x̂)

→ 0, we can consider the set I
∆
= {x̂|0 < p(x̂) < 1, x̂ /∈ A∗b}. Then

choosing the appropriate dp(x̂) for every element of I , we define ∆εb =
∫

x̂∈I
dεb

dp(x̂)
dx̂ < 0. Then ε′b = εb + ∆εb. For simplicity

in exposition we will not repeat this technical argument at later points in the paper when such issues arise around infinitesimal
changes.
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amongst these risk scores, only the highest one could belong to A∗b . Thus, ∀x ∈ [0, 1), p(x) < 1.

Step 4. We rule out the possibility that p(1) = 0, otherwise (x = 1) will offer the theoretically maximum

possible benefit - Le, and therefore A∗b = {1}. Using the result from Step 2 this would imply that

θn = 0. We know from Lemma 1 that this would be suboptimal. At optimality, we can also rule out

the possibility that p(1) = 1 and (x = 1) /∈ A∗b . This is because we showed in (24) that dεb
dp(x) > 0 at

x = 1, hence a reduction in the value of p(1) would improve the value of the objective function, thus

violating optimality. Finally, we are left with the possibility that 0 < p(1) < 1. Then by the result in

Step 2, we can conclude that (x = 1) ∈ A∗b .

Step 5. Consider x ∈ [0, x∗lb). Using the results from Steps 2 and 3, we know that p(x) = 0. Then:

lim
x→x∗−lb

[xLe + (1− x)Lf ] ≤ x∗lb{p(x∗lb)[εbLe + (1− εb)Lf ] + (1− p(x∗lb))Le}+ (1− x∗lb)Lf . (25)

Since p(x∗lb) ≥ 0, therefore Le is necessarily greater than or equal to p(x∗lb)[εbLe + (1 − εb)Lf ] +

(1 − p(x∗lb))Le. The relationship in (25) can hold only if p(x∗lb) → 0. Hence, ∀x ∈ [0, x∗lb], we have

p(x) = 0. Now if x∗lb /∈ A∗b , then:

lim
x→x∗+lb

[x{p(x)[εbLe + (1− εb)Lf ] + (1− p(x))Le}+ (1− x)Lf ] > [x∗lbLe + (1− x∗lb)Lf ], (26)

where p(x) > 0. This leads to a contradiction. Hence, x∗lb ∈ A∗b .

2

Proposition 2

Proof At the threshold compliance cost αt, the condition in (9) is binding. Using α = (γi + qci(q))/ri and

w = di/ri in the binding version of (9), we obtain

αt = (θn − θm)w(E(D) + E(S)). (27)
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The LHS of the threshold condition is monotonically increasing (strictly) in αt. We claim that the right-

hand side (RHS) is monotonically decreasing. Recalling (28), we see that this is because ∂E(D)
∂αt

≤ 0, which

ensures that the equation has a unique solution, if it exists.

To show existence, we observe that when αt = 0, the RHS is some positive number, E(D) + ψ, where

E(D) is evaluated with λ = Λθn. Based on the described monotonicity in αt, and since αt ∈ [0,∞), a

solution to the equation must exist. Note that, in the case that compliance-costs have a finite upper bound,

B, i.e., α ∈ [0, B], if it turns out that the solution to (11) results in αt > B, then using the obtained value of

αt for all subsequent calculations would still provide F (αt) = F (B) = 1. 2

Proposition 3

Proof To see this, first note that an increase in Pi allows the inequality (13) to be satisfied for a smaller

q, and, in turn, a lower cost ci(q). Since, in equilibrium, the agent incurs the expected audit cost qci(q),

but not the penalty Pi, any given agent would want q to be as small as possible. Second, observe that

from Proposition 2 we also know that the threshold compliance cost, αt, is independent of the choice of q.

Recalling that each trading firm has α(q) ≡ (γi + qci(q))/ri, we see that a reduction in q therefore allows

for greater γi and increases participation in C-TPAT. Further, because

∂E(D)
∂αt

=
∂λ

∂αt

[
ψ2 + σ2

2(1− λψ)2

]
= −Λf(αt)(θn − θm)

[
ψ2 + σ2

2(1− λψ)2

]
≤ 0 (28)

and

∂E(D)
∂ε

=
(1− λψ)2λψ + λ2(ψ2 + σ2)

2(1− λψ)2
ψε < 0, (29)

we can see that, while maintaining p(x) and system congestion at a constant level (which ensures feasibility),

an increase in participation in C-TPAT will have to result in a smaller arrival rate and therefore a lower value

of ε. From (12) we see that lower ε will lead, in turn, to a lower value of OP . Therefore, CBP should

minimize q to lower the compliance cost of trading firms, maximize participation, and thereby minimize its

expected costs. Thus, P ∗i = Bi. 2
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Proposition 4

Proof The result follows from ensuring (IC) is satisfied for α = αt, and the assumption that c′i(q) ≥ 0.

We claim that, for any given level of system congestion, it is optimal for CBP to maximize participation in

C-TPAT. Recall from (28) that ∂E(D)
∂αt

≤ 0. This implies that for a given ε and p(x), an increase in C-TPAT

membership will result in a decrease in delay. Since we plan to keep system congestion, or E(D) + E(S),

fixed and, from (29), we have ∂E(D)
∂ε < 0, we can therefore conclude that, if we leave p(x) fixed, then there

will be a reduction in ε in response to an increase in αt. This leads to an improvement in CBP’s objective

function, while maintaining feasibility as required by the (IR) constraint.

Next we claim that for any fixed value of E(D)+E(S), CBP can maximize membership by making q as

small as possible. In particular, recall from (11) that for fixed ε, we have αt = (θn− θm)w(E(D) +E(S)),

where αt = (γt+qct(q))/rt for some i = t, although this index imay not be unique. Further, for all α ≤ αt

we obtain α = (γi + qci(q))/ri ≤ (γt + qct(q))/rt.

Now recall that c′i(q) ≥ 0. Then if we reduce q we will also reduce α, for all α ≤ αt. Hence, these

companies continue to be members. Similarly, for α > αt, a decrease in q will reduce α = (γi+ qci(q))/ri,

possibly permitting more firms’ α’s to fall below the original threshold αt.

Thus, membership is weakly decreasing in q, so the value of q will be driven down until the (IC) con-

straint is tight. At this point αt ≤ q(1 + β)αt, or q∗ = 1/(1 + β), which is independent of ε. 2

Lemma 2

Proof Part (i). The argument used for part (i) of Lemma 1 holds here as well and is omitted.

Part (ii). First, note that any given choice of p(x)’s determines θn and θm. Second, observe that, for

a fixed choice of θm and θn, a large enough decrease in ε will cause the LHS of (IR) to become binding

on the right hand side, ∆. This occurs no matter how α or E[D] changes with ε, because ψε < 0 and

limε→0 ψ = ∞. Third, note that, for fixed p(x)’s with θn, θm > 0, the objective function OP is strictly

increasing in ε. Therefore, it is optimal for CBP to set ε to be as low as possible, driving the expected

cost incurred by a trading firm up to its upper bound, ∆. Since capacity is limited, we have ruled out the
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possibility that terrorist threat is completely eliminated by choosing a high enough p(x) and a low enough

ε, without violating the (IR) constraint. 2

Proposition 5

Proof

i. By definition, the expected benefit offered by all elements of A∗ is equal to some constant, which we

denote by k. On inspecting (16) we note that for x1, x2 ∈ A∗ such that x1 < x2, we have:

x1{p(x1)[εLe + (1− ε)Lf ] + (1− p(x1))Le}+ (1− x1)Lf = k

= x2{p(x2)[εLe + (1− ε)Lf ] + (1− p(x2))Le}+ (1− x2)Lf ,

which implies:

p(x1)[εLe + (1− ε)Lf ] + (1− p(x1))Le > p(x2)[εLe + (1− ε)Lf ] + (1− p(x2))Le,

which finally gives us the result p(x1) < p(x2). Thus, we conclude that p(x) is strictly increasing in

x on the set A∗.

ii. We first introduce some new notation for expositional convenience:

A1 ∆= {x|p(x) = 1}; A0 ∆= {x|p(x) = 0}.

x∗u
∆= supA∗; x1

u
∆= supA1; x0

u
∆= supA0.

The three sets - A∗, A1, A0 - are not necessarily disjoint but they are exhaustive, i.e., A∗ ∪ A1 ∪

A0 = [0, 1]. It is straightforward to see that, for the sets A1 and A0, the expected benefit offered to

terrorists is monotonic in the risk score. Hence, the only risk scores that could potentially belong to

the intersection of these sets with A∗ are x1
u and x0

u.
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In order to prove the results in (ii), we first establish to results listed in the following steps:

1. If 0 < p(x) < 1, then x ∈ A∗ and (16) is satisfied.

2. ∀x ∈ [0, 1), p(x) = 1⇐⇒ dε
dp(x) ≤ 0.

3. ζ ≤ 0⇐⇒ dε
dp(x) > 0 =⇒ p(x) < 1, ∀x ∈ [0, 1), and p(x∗l ) = 0.

It can be verified that the results in the above steps imply the claims in (ii)-a), b) and c). Using

the result in step 3 we can conclude that p(x) < 1, ∀x ∈ [0, 1) and p(x∗l ) = 0. Then using the

result from part (i) along with the definition of x∗l and the results in steps 1 and 3, we find that

p(x) = 0, ∀x ∈ [0, x∗l ], [x∗l , 1) ⊂ A∗, and 0 < p(x) < 1, ∀x ∈ (x∗l , 1). This is enough to prove

(ii).

We now proceed with the proof:

Step 1. We can prove this result by contradiction. Assume that the result is not true. Then for the optimal

solution, consider x∗ ∈ A∗ and x̂ /∈ A∗ such that 0 < p(x̂) < 1. Then we have:

x∗{p(x∗)[εLe + (1− ε)Lf ] + (1− p(x∗))Le}+ (1− x∗)Lf

> x̂{p(x̂)[εLe + (1− ε)Lf ] + (1− p(x̂))Le}+ (1− x̂)Lf .

Using the result in Lemma 2 and (11) we know that any candidate optimal solution must satisfy

the following three conditions:

αt =
(

1− θm
θn

)
∆, (30)

θnw(E(D) + E(S)) = ∆, (31)

0 ≤ p(x) ≤ 1, ∀x. (32)

Denoting a small perturbation in the value of p(x̂) by dp(x̂), and using (30) and (31), we obtain:

dθn
dp(x̂)

= gn(x̂)dx̂;
dθm
dp(x̂)

= gm(x̂)dx̂, (33)
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dαt(θn, θm)
dp(x̂)

=
∂αt
∂θn

dθn
dp(x̂)

+
∂αt
∂θm

dθm
dp(x̂)

= [θmgn(x̂)− θngm(x̂)]
∆dx̂
θ2
n

, (34)

We can use (30) in (31) to rewrite (31) as follows:

φ(θm, θn, αt, ε) = ∆− θnw(E(D) + E(S)) = 0.

Using the Implicit Function Theorem on the above equation we obtain:

dφ

dp(x̂)
= 0 =

∂φ

∂θm

dθm
dp(x̂)

+
∂φ

∂θn

dθn
dp(x̂)

+
∂φ

∂αt

dαt
dp(x̂)

+
∂φ

∂ε

dε

dp(x̂)
,

or equivalently:

dε

dp(x̂)
= −

[ ∂φ
∂θm

dθm
dp(x̂) + ∂φ

∂θn

dθn
dp(x̂) + ∂φ

∂αt

dαt
dp(x̂)

∂φ
∂ε

]
. (35)

Now choose the magnitude of dp(x̂) such that x∗ would continue to offer the highest benefit to

terrorists if ε were left unaltered. Also, in (35), choose the sign of dp(x̂) such that dε < 0. It

is always possible to do so because 0 < p(x̂) < 1, unless dε/dp(x̂) = 0. In the latter case, we

adopt the convention that the principal would increase p(x̂) to a value such that dε/dp(x̂) 6= 0,

or set p(x̂) = 1. This can be done because, while dε/dp(x̂) = 0, a change in p(x̂) does not

affect the principal’s objective function value.

After choosing the appropriate dp(x̂) we find that dε < 0, i.e., the new value of residual risk is

ε′ = ε+ dε such that ε′ < ε. Two cases can arise:

Case 2.1: x∗ continues to offer the greatest benefit to terrorists. Since ε′ < ε, we have managed

to improve the principal’s objective function value, while ensuring feasibility. Hence, the previ-

ous solution could not have been optimal.
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Case 2.2: x′ now offers the greatest benefit to terrorists, where x′ 6= x∗. We have:

x∗{p(x∗)[εLe + (1− ε)Lf ] + (1− p(x∗))Le}+ (1− x∗)Lf

≥ x′{p(x′)[εLe + (1− ε)Lf ] + (1− p(x′))Le}+ (1− x′)Lf

> x′{p(x′)[ε′Le + (1− ε′)Lf ] + (1− p(x′))Le}+ (1− x′)Lf .

Once again, since we have improved the objective function value, the previous solution could

not have been optimal. Thus, we have shown that at the optimal solution, any container with

risk score x, such that 0 < p(x) < 1, offers the same (maximal) expected benefit to terrorists,

denoted by k.

Step 2. To prove the “necessary” part of the claim made in this step, we need to establish that at opti-

mality p(x) = 1 for some x ∈ [0, 1) =⇒ dε/dp(x) ≤ 0.

For such an x, if x /∈ A∗ and dε/dp(x) > 0, then a reduction in the value of p(x) would result

in a lower ε, and therefore in an improvement in the principal’s objective function value, which

would imply that the solution we started out with, could not have been optimal. (The reduction

in p(x) is small enough that x continues to be outside A∗.)

We now rule out the possibility that x ∈ A∗. If x ∈ A∗, then we can eliminate the case that

p(1) = 0. Otherwise (x = 1) offers benefit Le and therefore has to belong to A∗. This violates

the strict monotonicity of p(x) on A∗, as shown in part(i) of the proposition. Similarly, we can

also rule out the possibility that 0 < p(1) < 1, because, if 0 < p(1) < 1, then using the result in

(i) we can conclude that (x = 1) ∈ A∗. Once again, that would violate the same monotonicity

property of p(x). Finally we rule out the possibility that p(1) = 1 since we already showed that

amongst the elements of A1, only x1
u can belong to A∗. Therefore, x cannot belong to A∗. This

concludes the proof of the “necessary” part of the claim.

To prove the “sufficiency” part of the claim we need to establish that at optimality, ∀x ∈ [0, 1),

the relationship dε/dp(x) ≤ 0 =⇒ p(x) = 1 holds.
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Since an increase in p(x) results in a reduction of ε provided dε/dp(x) < 0, this necessar-

ily implies an improvement in the objective function value. Hence, the principal will increase

p(x) till it hits the upper bound 1. Also, recalling our convention of setting p(x) to 1 in case

dε/dp(x) = 0, we have now proved the sufficiency condition.

Step 3. We now relate the condition dε/dp(x) ≤ 0 to the existence of ζ. The critical value, ζ, can

be obtained by evaluating the condition dε
dp(x) ≤ 0 in (35). The following should be helpful in

evaluating (35):

∂φ

∂θm
= −θnw

∂E(D)
∂λ

∂λ

∂θm
= −θnw

ψ2 + σ2

2(1− λψ)2
ΛF (αt) ≤ 0, (36)

∂φ

∂θn
= −w(E(D)+ψ)−θnw

∂E(D)
∂λ

∂λ

∂θn
= −w(E(D)+ψ)−θnw

ψ2 + σ2

2(1− λψ)2
Λ(1−F (αt)) ≤ 0,

(37)

∂φ

∂αt
= −θnw

∂E(D)
∂λ

∂λ

∂αt
= −θnw

ψ2 + σ2

2(1− λψ)2
Λf(αt)(θm − θn) ≥ 0, (38)

∂φ

∂ε
= −θnw

[
∂E(D)
∂ε

+ ψε

]
= −θnw

[
(1− λψ)2λψ + λ2(ψ2 + σ2)

2(1− λψ)2
+ 1
]
ψε > 0. (39)

Using (33) - (39), we find that:

dε

dp(x)
=
gm(x)dx
∂φ/∂ε

[
θnwΛF (αt)E(D)

λ(1− λψ)
+
(

∆
θn

+
θnwΛ(1− F (αt))E(D)

λ(1− λψ)

)
gn(x)
gm(x)

]
− gm(x)dx

∂φ/∂ε

[(
θnwΛf(αt)αtE(D)

λ(1− λψ)

)((
1− αt

∆

) gn(x)
gm(x)

− 1
)]

(40)

Defining η = ∆λ(1−λψ)
θ2
nwΛE(D)

> 0, and using (39) and (40), we find that dε
dp(x) ≤ 0 if and only if:

gn(x)
gm(x)

≥ ζ =
f(αt)αt + F (αt)

f(αt)αt(1− αt
∆ ) + F (αt)− 1− η

. (41)

If ζ ≤ 0, then we require that the denominator f(αt)αt(1 − αt
∆ ) + F (αt) − 1 − η < 0, which

would imply that dε
dp(x) > 0, ∀x ∈ [0, 1). Then, together with the result in Step 2, we conclude
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that p(x) < 1, ∀x ∈ [0, 1).

Now consider x ∈ A0. Then:

lim
x→x∗−l

[xLe + (1−x)Lf ] ≤ x∗l {p(x∗l )[εLe + (1− ε)Lf ] + (1− p(x∗l ))Le}+ (1−x∗l )Lf . (42)

Since p(x∗l ) ≥ 0, therefore Le is necessarily greater than or equal to p(x∗l )[εLe + (1− ε)Lf ] +

(1 − p(x∗l ))Le. The relationship in (42) can hold only if p(x∗l ) → 0. Hence, ∀x ∈ [0, x∗l ], we

have p(x) = 0.

iii In order to characterize the properties of the optimal p(x) when ζ > 0, we use the proofs of the steps

in part (ii) of the proposition.

a) Using (40) and (41), we conclude that ζ > 0 implies that for x ∈ [0, 1) if gn(x)/gm(x) < ζ,

then p(x) < 1. Therefore, if x ∈ [0, x∗l ], then p(x) = 0. On the other hand, if x ∈ (x∗l , 1) then

we can rule out the possibility that p(x) = 0. Otherwise the result in part (i) of the proposition

would be violated. Hence, 0 < p(x) < 1, and using the result of Step 1 in the proof of part (ii),

we can conclude that x ∈ A∗ and satisfies (16). In summary, if 0 ≤ gn(x)/gm(x) < ζ then x

and p(x) satisfy the same properties as any other point when ζ ≤ 0.

b) For x ∈ [0, 1), when gn(x)/gm(x) ≥ ζ > 0, then using (40) and (41), we conclude that

p(x) = 1.

iv. We now verify that the optimal solution thus obtained will necessarily satisfy the condition θn > θm.

Assume that this is not the case. Then (9) implies that αt = 0, or that there is no C-TPAT membership.

We are now in the situation equivalent to the Base Case. We already know that the optimal p(x) for the

Base Case is a non-decreasing function of x. The strict FOSD relationship betweenGn(x) andGm(x)

implies En[p(x)] > Em[p(x)] (where Eν [p(x)] represents the expectation of p(x) with respect to the

function Gν(x)). The result θn > θm follows, leading to a contradiction. Hence, the optimal solution

in the above proposition will satisfy the condition θn > θm.
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2

Corollary 1:

Proof We start with the optimal p(x) obtained from the Base Case and use it in the context of C-TPAT. This

means that θn is common to both scenarios. Since the optimal p(x) from the Base Case is a non-decreasing

function of x, therefore using the strict FOSD ordering of Gn(x) and Gm(x) we find that θm < θn. Using

(11) and the result that ε < 1, from Lemma 2, we find that αt > 0. Then using our assumption that

F (x) > 0, ∀x > 0, we infer that F (αt) > 0. Then using (10), we conclude that the effective arrival rate, λ,

is lower in the C-TPAT case. We also know that the (IRb) and (IR) constraints are identical, and that:

∂E(D)
∂λ

=
ψ2 + σ2

2(1− λψ)2
> 0;

∂E(D)
∂ε

=
[

(1− λψ)2λψ + λ2(ψ2 + σ2)
2(1− λψ)2

]
ψε < 0.

Hence, we can conclude that a strictly lower ε is sustainable with C-TPAT, while using a common p(x) (the

optimal form from the Base Case) for both scenarios. From Lemma 1 we know that θn > 0 and hence,

x∗lb < 1. Since, in this example, ε is lower for the C-TPAT scenario, we find that the expected benefit offered

by each element of A∗b , except x∗lb, is strictly lower than before, the latter being held constant. Hence, we

can increase p(x∗lb) slightly in the C-TPAT scenario and achieve a strictly lower expected cost relative to the

Base Case. This change does not violate feasibility, in particular the (IR) constraint is not violated, as the

increase is made on a set of measure zero.

Alternately, such an increase can be made feasibly, if the reduction in ε for the C-TPAT scenario is chosen

such that the (IR) constraint is just short of being tight.

With regard to the trading firms, we know, from Lemmas 1 and 2, that the participation constraint is

binding in both scenarios. Hence, the non-member firms achieve zero surplus in both cases. However, the

member firms incur a lower cost than member firms, as is evident from (9). 2

Corollary 2:

Proof
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i. Follows directly from the result in Proposition 5 and the strict MLR property.

ii. & iii. We know that for x ∈ [x∗l , x
∗
u), the condition in (16) is satisfied. We also know that p(x∗l ) = 0. Hence,

OP = k = x∗l + (1− x∗l )Lf . Therefore, for x ∈ [x∗l , x
∗
u), we find that p(x) = 1−x∗l

x
1−ε∗ .

Two cases arise: either the point (x = 1) ∈ A∗, or (x = 1) /∈ A∗. In the former case, p(1) = 1−x∗l
1−ε∗ ≤

1 =⇒ ε∗ ≤ x∗l . For the latter case, using the result in part (i) of the proposition, we know that

p(1) = 1, and the expected benefit offered at (x = 1) is lower than x∗lLe + (1− x∗l )Lf , i.e.,

ε∗Le + (1− ε∗)Lf < x∗lLe + (1− x∗l )Lf =⇒ ε∗ < x∗l .

2

Proposition 6:

Proof

i. Starting with the optimal solution for a given value of inspection capacity κ, if we increase κ slightly

while keeping all other model parameters fixed, then since ψκ < 0, and

∂E(D)
∂ψ

=
(1− λψ)2λψ + λ2(ψ2 + σ2)

2(1− λψ)2
> 0,

it is clear that the (IR) constraint is now slack. Using (29) and the assumption thatψε < 0, we conclude

that a strictly lower value of ε is now sustainable with the original p(x). Since, in this example, ε is

lower for the new scenario with greater capacity, we find that the expected benefit offered by each

element of the original A∗, except x∗l , is strictly lower than before, the latter being held constant.

Hence, we can increase p(x∗l ) slightly in the scenario with greater capacity, and thereby achieve a

strictly lower expected cost relative to the original scenario. This change does not violate feasibility,

in particular the (IR) constraint is not violated, as the increase is made on a set of measure zero.

Alternately, such an increase can be made feasibly, if the reduction in ε, for the scenario with greater
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capacity, is chosen such that the (IR) constraint is just short of being tight. Hence, there is an improve-

ment in the objective function value. Since we have shown earlier that O∗P = x∗lLe + (1 − x∗l )Lf ,

therefore an increase in κ must result in a strict decrease in x∗l .

ii. For the unique equilibrium, we know that:

θn =
∫ 1

x∗l

1− x∗l
x

1− ε∗
gn(x)dx =

∫ 1

x∗l

1− x∗l
x

1− x∗l
gn(x)dx; θm =

∫ 1

x∗l

1− x∗l
x

1− x∗l
gm(x)dx.

Therefore,

dθn
dx∗l

=
∫ 1

x∗l

1− 1
x

(1− x∗l )2
gn(x)dx < 0 =⇒ dθn

dκ
=
dθn
dx∗l

dx∗l
dκ

> 0.

By a similar analysis for θm we can conclude that dθm
dκ > 0.

iii. We define:

β =
θm
θn

=

∫ 1
x∗l

(
1− x∗l

x

)
gm(x)dx∫ 1

x∗l

(
1− x∗l

x

)
gn(x)dx

.

Then:

dβ

dx∗l
=

[∫ 1
x∗l

(
1− x∗l

x

)
gn(x)dx

] [∫ 1
x∗l

(
− 1
x

)
gm(x)dx

]
−
[∫ 1
x∗l

(
1− x∗l

x

)
gm(x)dx

] [∫ 1
x∗l

(
− 1
x

)
gn(x)dx

]
[∫ 1
x∗l

(
1− x∗l

x

)
gn(x)dx

]2 ,

or equivalently:

dβ

dx∗l
=

[1−Gm(x∗l )]
∫ 1
x∗l

1
xgn(x)dx− [1−Gn(x∗l )]

∫ 1
x∗l

1
xgm(x)dx[∫ 1

x∗l

(
1− x∗l

x

)
gn(x)dx

]2 .

To evaluate the sign of dβ
dx∗l

, we rely on the equivalence of MLR ordering and Uniform Conditional

Stochastic Ordering (UCSO) (Whitt 1980), for the univariate case. Then for the non-decreasing func-
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tion −1/x where x ∈ [x∗l , 1], this implies:

∫ 1
x∗l

(−1
x

)
gn(x)dx

1−Gn(x∗l )
≥

∫ 1
x∗l

(−1
x

)
gm(x)dx

1−Gm(x∗l )

=⇒ [1−Gm(x∗l )]
∫ 1

x∗l

(
1
x

)
gn(x)dx ≤ [1−Gn(x∗l )]

∫ 1

x∗l

(
1
x

)
gm(x)dx.

Therefore, we can conclude that dβ
dx∗l
≤ 0, and dβ

dκ = dβ
dx∗l

dx∗l
dκ ≥ 0. Using (30) we know that:

d[F (αt)]
dκ

= f(αt)
dαt
dκ

= −∆f(αt)
dβ

dκ
≤ 0.

iv. Note that using (10) and the results in (ii) and (iii), we find that:

dλ

dκ
=

∂λ

∂αt

dαt
dκ

+
∂λ

∂θm

dθm
dκ

+
∂λ

∂θn

dθn
dκ

= Λf(αt)(θm − θn)
dαt
dκ

+ ΛF (αt)
dθm
dκ

+ Λ(1− F (αt))
dθn
dκ

> 0.

2
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C Appendix: The Last Mile

In this Appendix we discuss what more is required to fully characterize the optimal solution to the container

inspection problem.

C.1 Base Case

Using Proposition 1-(ii) it is clear that the objective function value, OP is strictly increasing in x∗lb. Hence,

the principal will try to make it as small as possible at the optimal solution. Therefore at optimality, either

x∗lb = 0 or the feasibility constraint on p(x) is tight, i.e., εb = x∗lb, provided εb is a continuous function

of x∗lb. We rule out the possibility that x∗lb = 0, since we have assumed that there isn’t enough inspection

capacity to achieve that outcome. We know that if dεb
dx∗lb

exists and is well defined everywhere then εb is

continuous in x∗lb.

Using (20), and differentiating with respect to x∗lb we find:

dφ

dθn
= 0 =

∂φ

∂θn

dθn
dx∗lb

+
∂φ

∂εb

dεb
dx∗lb

, (43)

Using (3) and the expression for p(x), we find:

dθn
dx∗lb

=
d

(∫ 1
x∗lb

1−x∗lb
x

1−εb
gn(x)dx

)
dx∗lb

=
∫ 1

x∗lb

−1
x

1− εb
gn(x)dx+

dεb
dx∗lb

[∫ 1

x∗lb

1− x∗lb
x

(1− εb)2
gn(x)dx

]
. (44)

Now using the above result in (43), we find:

dεb
dx∗lb

=
∂φ
∂θn

∫ 1
x∗lb

gn(x)dx
x(1−εb)

∂φ
∂θn

∫ 1
x∗lb

1−
x∗

lb
x

(1−εb)2 gn(x)dx+ ∂φ
∂εb

(45)

Using Lemma 1 we rule out the possibility that εb = 1, which is equivalent to no inspection. Now plugging

in the values of ∂φ
∂θn

and ∂φ
∂εb

from (22) and (23) respectively, we find that dεb
dx∗lb

is well defined, and therefore

εb is continuous in x∗lb, provided the denominator in the RHS of (45) is never equal to zero. If the latter
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condition is true, then we can claim that at optimality ε∗b = x∗lb. Also, since the objective function is strictly

increasing in x∗lb, therefore the optimal value of x∗lb would be unique. This implies that the optimal value

ε∗b = x∗lb would be unique, and using the expression p(x) = 1−x∗lb
x

1−εb
, ∀x ∈ [x∗lb, 1) along with (3), we can

conclude that the optimal value for θn would be unique.

C.2 C-TPAT

We identify sufficient conditions, subsequent to the results in Corollary 2, under which ε∗ varies contin-

uously with x∗l , and results in a unique equilibrium outcome for the container inspection problem with

C-TPAT.

CBP is still left with the following optimization problem:

minOP = min
x∗l ∈[0,1],ε∗

[x∗lLe + (1− x∗l )Lf ],

s.t.

ε∗ ≤ x∗l .

The other constraints that have to be adhered to are (30) and (31). Note that the objective function in the

optimization problem is strictly increasing in x∗l . Also, if ε∗ is a continuous function of x∗l , then at the

optimal solution either x∗l = τ or ε∗ = x∗l . We have assumed that there isn’t enough inspection capacity to

achieve the former outcome, hence, it must be the case that ε∗ = x∗l at optimality. This necessarily implies

that x∗u = 1 and p(x∗u) = 1, where x∗u
∆= supA∗.

In order to establish that ε∗ is a continuous function of x∗l , it is sufficient to show that dε∗/dx∗l exists and

is well defined. Using (31) and (41), we define the following two functions:

φ(θm, θn, αt, ε∗) = ∆− wθn[E(D) + ψ] = 0, (46)

Ψ(θm, θn, αt, ε∗, ζ) = ζ − f(αt)αt + F (αt)
f(αt)αt(1− αt

∆ ) + F (αt)− 1− η
= 0, (47)
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We now define the sets: χ = {x|gn(x)/gm(x) ≥ ζ}, and Φ = Null Set. Then:

x∗u = 1, if ζ ≤ 0;
= 1, if ζ > 0 and χ = Φ.
= inf χ, if ζ > 0 and χ 6= Φ.

This relationship can be represented graphically in the Figure below. Assuming gn(x)/gm(x) is a smooth

gn(1)/gm(1)
ζ

xu*

1
gn(1)/gm(1)

xu*
1

ζ

Figure 6: The relationship between ζ and x∗u.

function of x, we can conclude that dζ/dx∗u exists and is well defined ∀x∗u ∈ [0, 1). We now use the Implicit

Function Theorem on (46) and (47) by evaluating dφ/dx∗l = 0 and dΨ/dx∗l = 0. We find:

∂φ

∂θm

dθm
dx∗l

+
∂φ

∂θn

dθn
dx∗l

+
∂φ

∂αt

dαt
dx∗l

+
∂φ

∂ε∗
dε∗

dx∗l
= 0, (48)

∂Ψ
∂θm

dθm
dx∗l

+
∂Ψ
∂θn

dθn
dx∗l

+
∂Ψ
∂αt

dαt
dx∗l

+
∂Ψ
∂ε∗

dε∗

dx∗l
+
∂Ψ
∂ζ

dζ

dx∗l
= 0. (49)

To help simplify the above expressions, we note that:

dαt
dx∗l

=
d
[(

1− θm
θn

)
∆
]

dx∗l
=
−∆
θn

dθm
dx∗l

+
θm∆
θ2
n

dθn
dx∗l

,

dζ

dx∗l
=

dζ

dx∗u

dx∗u
dx∗l

,

dθn
dx∗l

=
d

[∫ x∗u
x∗l

(
1−x∗l

x
1−ε

)
gn(x)dx+ [1−Gn(x∗u)]

]
dx∗l

= −
∫ x∗u

x∗l

gn(x)dx
x(1− ε)

+
dε

dx∗l

[∫ x∗u

x∗l

(
1− x∗l

x

(1− ε∗)2

)
gn(x)dx

]
+

1− x∗l
x∗u

1− ε∗

 gn(x∗u)
dx∗u
dx∗l
− gn(x∗u)

dx∗u
dx∗l
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dθm
dx∗l

=
d

[∫ x∗u
x∗l

(
1−x∗l

x
1−ε

)
gm(x)dx+ [1−Gm(x∗u)]

]
dx∗l

= −
∫ x∗u

x∗l

gm(x)dx
x(1− ε)

+
dε

dx∗l

[∫ x∗u

x∗l

(
1− x∗l

x

(1− ε)2

)
gm(x)dx

]
+

1− x∗l
x∗u

1− ε∗

 gm(x∗u)
dx∗u
dx∗l
− gm(x∗u)

dx∗u
dx∗l

Using the above relationships in (48) and (49), we observe that we have a pair of simultaneous linear equa-

tions in two variables - dε∗

dx∗l
and dx∗u

dx∗l
- which can be represented as follows:

φ1
dx∗u
dx∗l

+ φ2
dε∗

dx∗l
+ φ3 = 0,

Ψ1
dx∗u
dx∗l

+ Ψ2
dε∗

dx∗l
+ Ψ3 = 0.

These can be solved for dε∗

dx∗l
. Provided φ1Ψ2−φ2Ψ1 6= 0, this is sufficient to establish that ε∗ is continuous

in x∗l . Finally, Lemma 2 (i) rules out the possibility that ε = 1. Thus, under the stated sufficient conditions,

we can conclude that ε∗ = x∗l , at optimality.

From the optimization problem that CBP is left with, it is clear that, since we are choosing the smallest

possible value of x∗l , the optimal value of x∗l is unique. This uniquely identifies the values of ε∗, θn, θm, and

αt; thus bearing out the claim that the optimal solution is unique.
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D Appendix: Glossary of Notation

• x: risk score, or the conditional probability that a container concealing terrorist contraband escapes

detection up through the primary inspection stage.

• b: base probability of terrorist attack in the period of analysis.

• ca: cost to terrorists of planning and carrying out an attack with WMD.

• Le: losses inflicted on the US if terrorist contraband escapes detection and enters into the country.

• Lf : losses engendered by the economic dislocation resulting from a terrorist weapon being found

inside a maritime container.

• τ : deterrence threshold, or the threshold value of risk score such that lower risk scores offer terrorists

an expected benefit that is lower than their cost of carrying out the attack.

• Gn(x): CDF associated with the distribution of risk scores in the container population of a non-

member trading firm.

• gn(x): pdf associated with the distribution of risk scores in the container population of a non-member

trading firm.

• Gm(x): CDF associated with the distribution of risk scores in the container population of a member

trading firm.

• gm(x): pdf associated with the distribution of risk scores in the container population of a member

trading firm.

• εb: the residual risk post secondary inspection in the Base Case, or probability of not detecting a

terrorist weapon during secondary inspection.

• ε: the residual risk post secondary inspection in the C-TPAT scenario, or probability of not detecting

a terrorist weapon during secondary inspection.
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• κ: scaled inspection capacity, which is a composite of equipment and labor resources available with

CBP for inspecting containers.

• S: service time associated with secondary inspection of a container; E(S) denotes its first moment;

E(S2) denotes its second moment.

• ψ: speed-accuracy-tradeoff function that gives the value of expected service time as a function of ε

and κ.

• σ2: variance of service time for secondary inspection.

• φ: random component of the service time, with mean zero and variance σ2.

• p(x): probability of tagging a container with risk score x, for secondary inspection.

• E(D): expected waiting time in the secondary inspection queue.

• Λ: raw arrival rate of containers to a US port.

• λ: effective arrival rate of containers to the secondary inspection facility.

• θn: probability of inspecting a container belonging to a non-member firm.

• θm: probability of inspecting a container belonging to a member firm.

• ∆: upper bound on the per container congestion cost that can be borne by a trading firm.

• di: waiting cost per unit time, for firm i.

• ri: mean revenue per container, for firm i.

• w: waiting cost per unit time per dollar of revenue, for firm i.

• Pi: penalty for failing an audit, for member firm i.

• Bi: upper bound on penalty for failing an audit, for member firm i.
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• q: frequency of audit in the period of analysis.

• ci(q): allocated cost per container of undergoing an audit, for member firm i.

• γi: per container cost of compliance with C-TPAT, for firm i.

• α: normalized cost of compliance, or compliance cost; α = γi+qci(q)
ri

• αt: threshold value of compliance cost, below which trading firms participate in C-TPAT.

• F (α): CDF associated with the distribution of compliance cost amongst trading firms.

• f(α): pdf associated with the distribution of compliance cost amongst trading firms.

• β: multiple of per-container benefit from shirking in the specification of Bi.

• OP : CBP’s objective function for the container inspection problem.

• A∗b : set of risk scores which offer the maximum benefit to terrorists, for the Base Case.

• A∗: set of risk scores which offer the maximum benefit to terrorists, for the C-TPAT scenario.

• x∗lb: infimum of the set A∗b .

• x∗l : infimum of the set A∗.

• x∗u: supremum of the set A∗.
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