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Abstract

In many services, the quality or value provided by the service increases with the time the
service-provider spends with the customer. However, longer service times also result in longer
waits for customers. We term such services, in which the interaction between quality and speed
is critical, as customer-intensive services. In a queueing framework, we parameterize the degree
of customer-intensity of the service. The service speed chosen by the service-provider affects the
quality of the service through its customer-intensity. Customers queue for the service based on
service quality, delay costs and price. We study how a service provider facing such customers
makes the optimal “quality-speed tradeoff”. Our results demonstrate that the customer-intensity
of the service is a critical driver of equilibrium price, service speed, demand, congestion in queues
and service provider revenues. Customer-intensity leads to outcomes very different from those
of traditional models of service rate competition. For instance, as the number of competing
servers increases, the price increases and the servers become slower.
Keywords: Customer-Intensity, Service Operations, Strategic Customers, Queues, Cost Disease.

1. Introduction

‘Festina Lente’ [Make haste slowly ]

– motto of Aldus Manutius (1449 – 1515).

In a wide variety of service industries, providing good customer service requires a high level of
diligence and attention. We refer to such services as customer-intensive services. Examples of such
services are health care, legal and financial consulting, and personal care (such as spas, hair-dressing,
beauty care and cosmetics). Economists have noted that some industries in the service sector,
including health services and education, have lagged significantly in their productivity growth,
despite rapid productivity improvements overall, in the last few decades (Triplett and Bosworth
2004, Varian 2004). For example, in the last decade, the health care industry displayed a negative
annual growth of−0.4% (Triplett and Bosworth, 2004. pp. 262-263). We note that low-productivity
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industries1 are predominantly customer-intensive.2

A major difficulty in improving productivity in such customer-intensive services is the sensitivity
of the service quality provided to the speed of service: as the service speed increases, the quality
of service inevitably declines. Often, the only way to increase productivity without sacrificing
quality is to increase capacity investments, which increases costs. This phenomenon has been
termed Baumol’s cost disease (Baumol 1993). Primary health care practice in the United States
epitomizes this problem. Due to high levels of demand, doctors need to rush between patients,3

spending most of their time treating acute illnesses - a process that is also dissatisfying to patients
(Yarnall et al 2003). As Surowiecki (2003) notes, “Cost disease isn’t anyone’s fault. (That’s why
it’s called a disease.) [. . .] you can control drug costs and limit expensive new procedures, but, when
it comes to, say, hospital care and doctor visits, the only way to improve productivity is to shrink
the size of the staff and have doctors spend less time with patients (or treat several patients at
once). Thus the Hobson’s choice: to lower prices you have to lower quality.” Thus, primary health
care services provide a clear context for the quality degradation associated with a service system
stretched to work at a fast pace while trying to serve a large number of patients.

The above examples suggest that focusing exclusively on improving productivity by increasing
the speed of service leads to a reduction in the value of the service provided. On the other hand,
increasing the service value by increasing the time spent serving each customer has its pitfalls.
First, it increases customers’ waiting times due to congestion effects from the slower service times.
Second, it increases the cost of the service, as the productivity (number of customers served) falls.
The first effect leads to lower customer value; the second, to higher prices.

In this paper, we study how a service provider can make the optimal “quality-speed” tradeoff
in the face of strategic customers– customers who join the service only if the utility (the value of
the service net of congestion costs) exceeds the price charged by the service provider. Congestion
costs are an outcome of the aggregate procurement decisions of all consumers in the market, since
every customer who joins the service imposes a negative externality (in the form of additional
expected waiting time) on all other customers. In turn, the tradeoff faced by the provider of a
customer-intensive service between quality (service value) and service speed forms the crux of our
model.

The extant academic research has not addressed the interaction between service value and
service speed, or its consequences. In general, the extant literature treats service value and service
times as independent performance metrics, despite the fact that their interaction is critical for

1It is difficult to compare productivity per se between different industries; what can be compared is their produc-
tivity growths over time. The literature (cf Triplett and Bosworth 2004) describes industries with low-productivity
growth as “low-productivity” industries. Of course, a sustained period of low productivity growth in an industry
would lead to low productivity relative to other industries. We thank the Departmental Editor for suggesting this
distinction.

2Customer-intensive services are generally characterized by high labor content, but high labor content need not
imply high customer-intensity (e.g., construction services).

3“I was seeing 30 people a day and always rushing. Patients were dissatisfied.... I was dissatisfied.” Dr. Bernard
Kaminetsky, M.D., F.A.C.P., (formerly with New York University, currently with MDVIP) in his testimony to the
Joint Economic Committee of the United States Congress, April 28, 2004.
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customer-intensive services. In our queueing model, “customer-intensity” is indexed explicitly by
the parameter α. The greater the customer-intensity of the service, the higher the value of α. (The
special case of α = 0 corresponds to the traditional queuing model, in which the service value is
independent of the service speed.)

We find that modeling customer intensity leads to outcomes very different from those of tradi-
tional queuing models. To give a flavor of these differences, we mention two such insights: (i) We
find that the service provider slows down (i.e., increases its service-time) as the customer-intensity
of the service increases. Thus, the equilibrium value of the service provided to customers is always
increasing in customer-intensity. As a consequence, such services are likely to have partial market
coverage; (ii) We find that competition in service rates does not dampen prices – in fact, the price
charged by the service provider increases as the number of competing servers increases. Further-
more, the equilibrium waiting costs are invariant with respect to the number of competing servers
(even as the price increases).

Related Literature:

The existing research in Service Operations treats quality and speed as independent performance
metrics. To our knowledge, there is no precedent in the queueing literature that models the
customer-intensity of a service or studies the interactions between service quality and service speed
arising from customer-intensity.

A number of papers address the decision-making of customers who choose whether or not to
join a queue based on rational self-interest, as in our model. Our paper differs from all of the extant
literature in that we explicitly model the dependence of service quality on service duration, and
explore the resulting equilibrium behavior of customers as well as the service provider’s service rate
and pricing decisions.

Admission fees have long been considered an important tool to control congestion in service
queues, dating back to the seminal paper by Naor (1969). Edelson and Hildebrand (1975) extend
Naor’s (1969) model by analyzing unobservable service queues. Following Mendelson and Whang
(1990), papers that explore equilibrium queue joining, pricing and/or service rate decisions include
Afeche (2006), Armony and Haviv (2000), Cachon and Harker (2002), Chen and Frank (2004),
Chen and Wan (2003), Gilbert and Weng (1998), Kalai et al (1992), Lederer and Li (1997), Li
(1992) and Li and Lee (1994). We refer the reader to Hassin and Haviv (2003)’s excellent review
of this literature. Other notable papers that explore the interaction between service quality and
congestion include Allon and Federgruen (2007), Chase and Tansik (1983), Gans (2002), Hopp et
al (2007), Lovejoy and Sethuraman (2000), Oliva and Sterman (2001), Png and Reitman (1994),
Ren and Wang (2008), Veeraraghavan and Debo (2009) and Wang et al (2010).

Research articles that acknowledge the existence of interactions between service duration and
quality in different domains include Kostami and Rajagopalan (2009) (dynamic decisions), de Veri-
court and Zhou (2005) (routing unresolved call-backs), Lu et al (2008) (manufacturing rework),
Hasija et al (2009) (an empirical study of call centers), de Vericourt and Sun (2009) (judgement
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accuracy), and Wang et al (2010) (medical diagnostic services). In these papers, the customer
demand is assumed to be exogenous and/or pricing decisions are absent.

2. A Model of Customer-Intensive Service Provision

We consider a monopolist providing a customer-intensive service to a market of homogenous, ratio-
nal consumers. We model the monopolist service setting using an unobservable M/M/1 queueing
regime.4 We use the M/M/1 model in the interests of expositional simplicity; however, we can
show that all our analytical results extend to general service distributions. Customers arrive at the
market according to a Poisson process at an exogenous mean rate Λ. We shall refer to Λ as the
potential demand for the service. We assume that customers are homogenous in their valuations of
the service, and incur a waiting cost of c per unit of time spent in the system. Upon arrival, every
customer decides whether to procure the service (join the queue) or quit (balk from the service)
based on the value of the service, the expected waiting cost and the price.

The service rate µ of the service provider is assumed to be common knowledge. The effective
demand for the service (i.e., the effective arrival rate), λ, is the aggregate outcome of all customers’
decisions (joining or balking). For any customer, the expected waiting time in an M/M/1 system
is as follows:5

W (µ, λ) =
{

1
µ− λ

(if 0 ≤ λ < µ), ∞ (otherwise).
}

(1)

Before we formalize our model of customer-intensive services, we discuss the classical queueing
model, which will serve as a useful benchmark.

2.1 The Classical Queueing Model

The classical queueing model (e.g. Naor 1969, Edelson and Hildebrand 1975) assumes that cus-
tomers receive a service value Vb, that is independent of the service rate µb (or equivalently, of the
service time τb = 1/µb). This will serve as a useful benchmark for our analysis of customer-intensive
service queues, and is indexed throughout this paper by the subscript b.)

In the classical queueing model, increasing the service rate (i.e., reducing the service time spent
with each customer), always results in higher revenues, as it allows the firm to serve more customers
and/or lower their expected waiting time. In this paper, we depart from the classical assumption
that the service value remains unaffected by changes in the service rate.

2.2 Modeling Value in Customer-Intensive Services

In customer-intensive services, the quality of the service provided to a customer (and hence, ser-
vice value) increases with the time spent in serving the customer. In our model, service quality

4The M/M/1 queueing approximation has of course been applied to a large variety of settings– too numerous to
be listed here. See Green and Savin (2008) for an application to primary health care, and Brahimi and Worthington
(1991) on outpatient appointment systems.

5For an M/G/1 system, the mean waiting times can be calculated by the Pollaczek-Khinchin formula (Ross 2006).
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is reflected in the service value function V (τ) which increases with the mean service time τ . Fur-
thermore, in most situations, the marginal value to customers from an increase in service time
are diminishing. Therefore, we model customer-intensive services by constructing the service value
function V (τ) as a non-decreasing and concave function of the mean service time τ .6 Specifically,
we let V (τ) = (Vb + α/τb − α/τ)+ or simply expressed in service rates as,

V (µ) = (Vb + αµb − αµ)+ (2)

where x+ = max(x, 0).7 The parameter α ≥ 0 captures the customer-intensity of the service
provided. It determines the sensitivity of the service value to the service speed, and is a descriptor
of the “nature” of the service. Clearly, higher values of α suggest a stronger dependence of the
service value on the service time (highly customer-intensive tasks).

When α is zero, the value of the service provided equals Vb; this case is equivalent to the classical
queueing model. Thus, as discussed previously, Vb serves as a benchmark service value. Secondly,
for all α, when the service rate is µb = 1/τb, the value of the service provided is Vb. Therefore, µb(τb)
could be considered a benchmark service rate (time), providing a service value Vb to customers.

2.3 Customers’ Queue Joining Decision

Rational customers arrive to the system according to a Poisson process at rate Λ, and decide
whether to join the (unobservable) service queue. The potential demand (market size), Λ, price,
p, service rate, µ, waiting cost per unit time, c, and the resulting service value, V (µ), are common
knowledge to all arriving customers. We model the queue-joining decisions of customers as in
Hassin and Haviv (2003), and focus on symmetric equilibrium queue-joining strategies since all
customers are homogenous. Let γe(µ, p) denote the equilibrium probability that a customer would
join the queue at a server whose service rate is µ and admission price is p.8 Thus, the equilibrium
decision of customers γe(µ, p) is based on the value of the service, the price and the expected cost
of waiting.

Three market outcomes – full, zero or partial market coverage – are possible, depending on the
market size Λ and other parameters. These outcomes are: 1. Full coverage: If the net utility is
non-negative for a customer even when all the other potential customers join (i.e., V (µ) − (p +
cW (µ,Λ)) ≥ 0), then every customer will join the queue in equilibrium (i.e. γe(µ, p) = 1). 2. No
coverage: If the net utility is not positive for a customer joining the queue even when no other
customer joins the queue, (i.e., V (µ)− (p+ c/µ) ≤ 0), then no one joins the queue (i.e., γe(µ, p) =
0). 3. Partial coverage: When p + c/µ < V (µ) < p + cW (µ,Λ), each customer plays a mixed
strategy in equilibrium, meaning that each customer joins the queue with the same probability

6Customer-intensity depends only on the relationship between the service time and the service value for a customer.
Thus, a highly customer-intensive service need not be a high-contact service (Lovelock 2001).

7We can generalize V (µ) to be convex and decreasing in µ. Similarly, we can generalize V (τ) to be an increasing
and concave function of τ . While this leads to more analytical complexity in the model, our conclusions remain
identical.

8We indicate the equilibrium values of the various model variables by the subscript e.
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γe(µ, p) ∈ (0, 1) and balks with probability 1− γe(µ, p) ∈ (0, 1). Therefore, the equilibrium arrival
rate is λe(µ, p) = γe(µ, p)Λ and satisfies the condition V (µ)− p = cW (µ, λe(µ, p)).

2.4 Characterization of the Service Rate Decision Space

Clearly, the interaction between the service speed and the service value imposes a constraint on
the service provider’s feasible operating region (i.e. the range of service rates and prices he can
choose from, while still drawing customers). In this Section, we characterize the feasible range of
service-rates for the service provider, which is maximized at p = 0. We do this for two reasons:
(i) This characterization will be useful when we formulate and solve the service provider’s revenue
maximization problem, with the price determined endogenously, in the next Section; and (ii) The
characterization of the feasible space itself illustrates the impact of customer-intensity on business
and customer outcomes.

A service should be at least valuable enough that a customer does not mind waiting during
the process of service provision. Therefore, the value V (µ) must exceed c

µ , the expected waiting
costs during the service; i.e., V (µ) − c/µ ≥ 0. This condition ensures that a customer can expect
non-negative net value from the service (at p = 0), at least when no other customer precedes him
in the queue. Note that a customer’s service procurement imposes negative externalities on others,
as the expected waiting cost, c

µ−λ , increases with the effective demand, λ.
Rewriting V (µ)− c/µ ≥ 0, we have Vb + αµb − αµ ≥ c/µ, or equivalently, A1(α) ≤ µ ≤ A2(α),

where A1(α), A2(α) are the solutions for µ to the quadratic Vb + αµb − αµ = c/µ. Thus,

• µ ≥ A1(α) = Vb+αµb−
√

(Vb+αµb)2−4αc

2α . The service has to be fast enough. No one will wait forever
even if the service value is high. (Note that A1(0) = limα→0A1(α) = c

Vb
.)

• µ ≤ A2(α) = Vb+αµb+
√

(Vb+αµb)2−4αc

2α . The service cannot be too fast. It is not possible to provide
valuable service at very high service speeds. This additional constraint is unique to customer-
intensive services (Observe that A2(0) = limα→0A2(α) =∞.).

For a customer-intensive service of type α, we denote this operating service-rate region by
F(α) = [A1(α), A2(α)].9 Figure 1 shows the operating region and the associated net service value
for any service rate in the operating region, for various α. Figure 1 shows that the service provider
can choose from a larger range of service rates when the service is not very customer-intensive (i.e.,
when α is small). When α = 0, the net service value is increasing in the service rate µ, in the entire
range F(0) = [A1(0),∞). When α > 0, the net service value is unimodal in the region F(α), and
thus our results are applicable to services in which customers’ net value decreases after a service
time threshold.

3. Service Provider’s Revenue Maximization

The service provider’s objective is to maximize his revenues with respect to the service rate, µ and
the price, p. The service provider’s revenue function is given by R(µ, p) = pλe(µ, p), where λe(µ, p)

9As long as Vb ≥ c/µb, F(α) is non-empty, ∀α ≥ 0.
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Figure 1: The net service value (V (µ) − c/µ) and the operating region F(α) shown for α = 0
(dotted curve), α = 1 (dashed curve) and α = 3 (thick curve). However, for α > 0 the service rates
that provide non-negative net value are bounded in the interval [A1(α), A2(α)]. This implies that
for a customer-intensive service of type α, the customer experiences a decrease in net value, if the
service time exceeds a threshold.

is the equilibrium demand induced at the setting (µ, p). Therefore, the objective function of the
service provider is given by:

max{p≥0,µ∈F(α)} {R(µ, p) = pλe(µ, p)} ≡ max{µ∈F(α)}
{
max{0≤p≤V (µ)}{pλe(µ, p)}

}
. (3)

Thus, we solve the service provider’s revenue maximization problem in two steps. First, we find
the optimal price p(µ) for a given service rate, µ. Then, using p(µ), we find the revenue maximizing
service rate in the operating region F(α).

Recall that for any µ 6∈ F(α), the net service value derived by a customer is negative, and hence
no customer will join the service. Conversely, for each µ ∈ F(α), there exists a non-negative price
at which the service provider can attract customers. Hence we focus on µ ∈ F(α). Also recall that
W (µ, λ) = 1

µ−λ (by equation (1); hence the value derived by any customer at the arrival rate λ is
V (µ)− p− c

µ−λ . Customers will join the service until this value is driven to zero. The equilibrium
demand, λe(µ, p), as a function of the price is given as follows:

λe(µ, p) =


Λ if 0 ≤ p ≤ V (µ)− c

µ−Λ

µ− c
V (µ)−p if V (µ)− c

µ−Λ < p ≤ V (µ)− c
µ

0 if V (µ)− c
µ < p.

(4)

Using (4), it is easy to verify that for a given µ, the equilibrium demand, λe(µ, p), is a non-increasing
function of the price. The following proposition derives the service provider’s optimal pricing policy
for a given service rate µ. (The proofs of all results are provided in the Appendix.)

Proposition 1. Consider a customer-intensive service of type α. For any service rate µ ∈ F(α),
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the optimal price equals:

p∗(µ) =

{
V (µ)− c

µ−Λ if 0 ≤ Λ ≤ λ̂(µ)

V (µ)−
√
cV (µ)/µ if λ̂(µ) < Λ

where λ̂(µ) = µ−
√

cµ
V (µ) . The resulting equilibrium arrival rate is equal to:

λe(µ, p∗(µ)) =

{
Λ if 0 ≤ Λ ≤ λ̂(µ)
λ̂(µ) if λ̂(µ) < Λ.

The corresponding equilibrium revenues are R(µ, p∗(µ)) = p∗(µ)λe(µ, p∗(µ)).

Proposition 1 derives the optimal price and the equilibrium demand (arrival rate) for any
arbitrary service rate µ. We find a threshold λ̂(µ) that defines the maximum number of customers
the service provider would serve at a given service speed µ. When Λ ≤ λ̂(µ), the service provider
clears the market. However, when the potential demand is higher (i.e., for all Λ > λ̂(µ)), the
service provider serves exactly λ̂(µ) customers and repels the rest, by making adjustments to the
admission price p∗(µ). In each case, the service provider extracts all the consumer surplus.

This result is driven by the negative externality that each customer imposes on all other
customers– in the form of an increase in their waiting costs. Thus, to accommodate an additional
customer, the service provider has to compensate all of its current customers for the additional
waiting costs they incur, by decreasing the price. As the arrivals to the system increase, serving
every additional customer requires an additional reduction in price, which eventually leads to the
scenario (at λ = λ̂(µ)) in which the increase in demand does not make up for the revenues lost due
to the corresponding price reduction. Hence, for large Λ, the service provider limits the number of
customers admitted to the system to λ̂(µ), by charging a suitable admission price. Therefore, as
long as Λ remains higher than the threshold λ̂(µ), small fluctuations in potential demand do not
affect the optimal price, and hence, revenues.

Proposition 1 showed that for any µ ∈ F(α), there exists a price p∗(µ) that maximizes the service
provider’s revenues. Having derived the optimal price for each service rate µ, we now analyze the
service provider’s optimal service rate decision. In the next Section (3.1), we analyze the case of
partial market ceverage (Λ > λ̂(µ)). We analyze the case of full market ceverage (Λ ≤ λ̂(µ)) in
Section 3.2.

3.1 Partial Market Coverage

In this section, we assume that the potential demand Λ is “high enough” that the service provider’s
optimal price and service rate decisions are not constrained by the availability of potential customers
(We can show that this condition translates, mathematically, to Λ > λ∗α , Vb+αµb−2

√
cα

2α .). To derive
the optimal service rate under partial coverage, we first establish that the equilibrium demand and
price curves (as a function of the service rate) are unimodal (details in the Appendix).
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The unimodality property of both demand and price are outcomes of the tension between service
value and waiting costs, as follows: Focusing exclusively on delivering a high value service requires
setting a slow service rate. This leads to high customer waiting costs and low demand. High
waiting costs also translate to a low price, since the maximum price the service-provider can charge
is the value of the service net of waiting costs. On the other hand, increasing the service rate
to minimize waiting costs leads to a low service value (and hence, low demand and a low price).
Thus, both demand and price are maximized at some intermediate service rates in F(α). Further,
since the service provider’s revenues are a product of the equilibrium demand and the price, the
revenue-maximizing service rate is an interior point in F(α).

Thus we see that even in markets where the potential demand is very large (i.e., Λ → ∞),
increasing the service speed does not lead to an increase in effective demand for customer-intensive
services, because of the drop in service quality. Thus, partial market coverage is a by-product
of the customer-intensity of services. Building on these observations, Proposition 2 provides the
equilibrium outcomes from the maximization of (3), the service-provider’s objective function.

Proposition 2. For a customer-intensive service of type α > 0, and when Λ > λ∗α,

1. The optimal service rate is equal to µ∗ = Vb+αµb
2α .

2. The corresponding optimal price is equal to p∗(µ∗) = Vb+αµb−2
√
cα

2 .

3. The demand at the optimal price and service rate equals λe(µ∗, p∗(µ∗)) = Vb+αµb−2
√
cα

2α = λ∗α.

Therefore, the optimal revenue for the service is equal to R(µ∗, p∗(µ∗)) = (Vb+αµb−2
√
cα)2

4α .

Proposition 2 shows that there exists a unique, interior service rate µ∗ in F(α) that maximizes
revenues. Proposition 2.1 shows that the optimal service rate, µ∗, is decreasing in α: as the service
becomes more customer-intensive, the service provider has a greater incentive to slow down and
spend more time on each customer. We also see this in the expression for the equilibrium service
value. From equation (2), the service value provided to customers in equilibrium is V (µ∗) =
(Vb + αµb)/2, which is increasing in α.

From Proposition 2.2, we note that the optimal price, p∗(µ∗), is unimodal in α – decreasing
for α < c/µ2

b and increasing for α > c/µ2
b . We saw that as the service becomes more customer-

intensive, the optimal service time increases. However, this does not imply that the net value of the
service provided also increases with customer-intensity. This is demonstrated by Proposition 2.2,
since the optimal price tracks the net value of the service. For low α (i.e., α < c/µ2

b), congestion
effects dominate the increase in service value as α increases. Hence, as the task becomes more
customer-intensive (i.e., α increases), the price falls. However, for high α values (α > c/µ2

b), the
optimal price is increasing in α: The increased service value from a longer service time dominates
any increase in the equilibrium waiting cost.

The equilibrium demand λe(µ∗, p∗(µ∗)) is also determined by the tradeoff between waiting costs
and the service value, and behaves similarly to the optimal price. At low values of α, waiting costs
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are more sensitive to small increases in α than is the service value. Hence, congestion considerations
dominate in this range. For higher values of α, the reverse is true – the service value is more sensitive
to increases in α than the waiting cost. The net effect is that the equilibrium demand is unimodal
– decreasing in α for α < V 2

b /c, and increasing in α for α > V 2
b /c (Proposition 2.3).

Finally, Proposition 2 captures the effect of the delay parameter c on service outcomes. Inter-
estingly, the optimal service rate, µ∗, is independent of the waiting cost, c; i.e., if customers are
more impatient, the additional waiting cost does not result in a faster service. As one might expect,
higher waiting costs lead to both lower prices, p∗(µ∗) and lower equilibrium demand λe(µ∗, p∗(µ∗)).
Consequently, the optimal revenues, R(µ∗, p∗(µ∗)), decrease with increased waiting costs.

3.1.1 Analysis of Value-Price-Demand Interactions

We shed further light on the subtle interactions among price, demand and service value as the service
rate changes in customer-intensive services. The equilibrium price, equilibrium demand, waiting
costs and the service value to customers are outcomes of these complex interactions. Lemma 1
studies the relationship between the equilibrium price and the equilibrium demand at any service
rate µ.

Lemma 1. [Property of α-symmetry:] For a customer-intensive service of type α, p∗(µ) and
λe(µ, p∗(µ)) have the following symmetric relationship around the optimal service rate µ∗ for any
given µ ∈ F(α): p∗(µ∗ + ε) = αλe(µ∗ − ε, p∗(µ∗ − ε)), where ε = (µ− µ∗).

Lemma 1 clearly demonstrates that prices and effective demand are two levers related to each
other by the customer-intensity parameter α. To better understand the implications of α-symmetry
between price and demand, we divide the operating region F(α) into 3 sub-regions as shown in
Figure 2. Region 1 corresponds to low service rates, Region 2 corresponds to intermediate service
rates, and Region 3 corresponds to high service rates.

When the service rate is low (Region 1), there is an over-investment in time of service, from
both the customers’ and the service provider’s perspectives. Although the service provided is of
high value, the cost of waiting is also high. In other words, increasing the service rate would
improve each customer’s service value (net of waiting costs), as well as the service provider’s total
revenues. In Region 1, increasing the service rate will lead to some loss of service value; however,
the gains from the waiting cost reduction dominate the loss in service value (At low µ, waiting
costs drop precipitously as µ increases.). Hence, the net service value provided to a customer is
increasing in the service rate. This allows the service provider to charge customers a higher price.
Furthermore, this service rate increase leads to higher throughput. By increasing the service rate,
the service provider therefore has the opportunity to simultaneously increase the price and the
number of customers served, thus increasing his revenues.

For intermediate service rates (Region 2), increasing the service rate no longer increases the net
value of the service for the customer, because the reduction in the service value is greater than the
reduction in waiting costs. Therefore, at any given price in this region, increasing the service rate
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Figure 2: The figure illustrates the symmetry of p∗(µ) (denoted by the thick line) and λe(µ, p∗(µ))
(denoted by the dotted curve) around µ∗ for customer-intensive services of types α = 2 and α = 0.5
(for Vb = 10 and µb = 5). The optimal service rate µ∗ and the corresponding equilibrium demand
is λ∗α = λe(µ∗, p∗(µ∗)). The maximum throughput, induced by the service rate µ, is λα.

leads to lower equilibrium demand (and consequently, lower revenues). However, by simultaneously
increasing the service rate and lowering the price, the service provider can increase the demand.
As the service rate is increased in Region 2, the net effect of lower price and higher demand is to
increase revenues up to the point µ∗ (see Figure 2). Beyond this point, revenues start falling.

When the service rate provided is in Region 3, decreasing the service rate is desirable, as it
leads to a higher price and higher equilibrium demand. In this region, the gain in service value
from decreasing the service rate is greater than the losses accrued from the increase in customer
waiting costs. Thus, as the service rate is reduced in Region 3, the equilibrium demand increases
in spite of the increase in the equilibrium price.

To summarize, service rates in both Region 1 and Region 3 are untenable in equilibrium. The
optimal service rate µ∗ must lie in the intermediate service rate region (i.e., Region 2).

Figure 2 also illustrates the potential for service systems with very different service value propo-
sitions to earn identical revenues. A service provider may choose to provide high quality service at
a high price to a limited number of customers, or it may provide lower quality service at a lower
price to a large number of customers. Comparable revenues may be attained through either of
these service strategies. Modeling customer-intensity through α allows us to capture the presence
of such options in service provision.
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3.2 Full Market Coverage

In Section 3.1, we analyzed the equilibrium in markets with partial coverage. Proposition 3 below
derives the equilibrium in markets in which full coverage is possible. We find that customer intensity
plays a similar, important role in these markets–thus, the insights for partial coverage derived in
Section 3.1 continue to hold under full coverage.

Proposition 3. For a customer-intensive service of type α > 0, and when Λ ≤ λ∗α,

1. The optimal service rate is equal to µ∗ = Λ +
√
c/α

2. The corresponding optimal price is equal to p∗(µ∗) = Vb + αµb − αΛ− 2
√
αc.

3. The equilibrium demand λe(µ∗, p∗(µ∗)) at the optimal price and service rate is Λ.

Proposition 3.1 shows that, just as in the case of partial market coverage, the optimal service
rate µ∗ decreases in α. The service provider spends more time on each customer as the service
becomes more customer-intensive. As one would expect for full coverage, λe(µ∗, p∗(µ∗)) = Λ; i.e.,
the service provider serves all customers in equilibrium (Proposition 3.3). Thus, as the customer-
intensity α increases, the optimal service rate µ∗ falls, while the equilibrium arrival rate remains
unchanged at Λ. This leads to increased waiting costs as α increases. In fact, the expected waiting
cost is

√
cα. In equilibrium, customers wait longer (i.e., the congestion increases) as the service

becomes more customer-intensive.
From Proposition 3.2, we see that the optimal price is convex in α. We first focus on the

case of Λ < µb. In this range, when α < c
(µb−Λ)2

, the optimal price is decreasing in α. Yet we
saw that when α increases, the service provider increases the service time with every customer,
which would increase the service value provided (Proposition 3.1). As α increases in this range of
parameter values, the higher waiting cost (due to the increased service time) dominates the increase
in service value, leading to a degradation in the net value of the service provided to customers. To
accommodate this loss, the service provider has to cut the price as α increases. Thus, if we compare
two services of low customer-intensity (with α < c

(µb−Λ)2
), the more customer-intensive service will

be more congested but less expensive than the other.
However, when α is high (> c

(µb−Λ)2
), the gains in service value are significant enough to offset

the increase in waiting costs as α increases. Therefore, both the optimal price and the service time
(or, service value) increase in α. Comparing two services that are both highly customer-intensive
(α > c

(µb−Λ)2
), the service with higher α is both more expensive and more congested than the other.

Finally, the case when Λ ≥ µb is similar to the first case above: The price is decreasing in α,
while the service value is increasing in α, for the entire range of α. In this case, the greater the
customer-intensity, the more congested but cheaper the service will be.
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4. Model with Service Rate Competition

In this section, we consider the effect of multiple competing servers owned by a single service
provider (firm) that provides a service of customer-intensity α. Although the service provider sets
an admission price to maximize total revenues, the individual servers have the flexibility to set
their own service speed / quality (for example, consider primary care physicians who belong to the
same health network or the same hospital that, in turn, determines the admission price for patient
visits). For ease of exposition, we initially restrict our attention to a firm with two servers and then
show how our results extend to multiple servers. The firm sets the admission price p to maximize
its total revenues. Each server individually decides its service rate to maximize its own revenues
under the admission price p set by the firm. Arriving customers decide whether to join the system,
and if they join, which server to go to, based on the service value offered by the servers, waiting
costs at the servers, and the price. We focus on the Nash equilibrium of the system comprised of
the firm, the servers and customers making all these decisions.

We model each server as an M/M/1 queueing regime.The queue joining decision of a customer
is given by γj(µ1, µ2, p,Λ), for j = 0, 1, 2, where γ0(·) denotes the probability of balking, and γ1(·)
and γ2(·) denote the probability of joining queue 1 and queue 2, respectively. Under pure strategies,
i.e. γi = 1 for some i, either one server gains all the customers (Λ), or none of the servers serves
any customers. We prove that none of these outcomes are possible in equilibrium. We thus focus
on mixed strategies. Again, as in Section 3, we divide our analysis into two cases based on market
coverage. When the market is sufficiently large, i.e. Λ ≥ 2 · λ∗α = Vb+αµb−2

√
cα

α , we show that, in
equilibrium, both servers choose their service rates as if they were monopolies, and the firm chooses
the single-server monopoly price. When the market is small, i.e. when Λ < Vb+αµb−2

√
cα

α , we show
that the firm chooses a price such that all of the consumer surplus is extracted, and the market is
fully covered by the firm.

Proposition 4. When the market is sufficiently large, given by the condition Λ ≥ 2λ∗α = Vb+αµb−2
√
cα

α ,
the servers act as monopolists. The optimal service rate set by server i is given by: µ∗i = Vb+αµb

2α

for i = 1, 2. The firm’s optimal price is p∗ = Vb+αµb−2
√
cα

2 .

Proposition 4 simply states that in a large enough market, the price charged by the service
provider remains unaffected by competition within his network. All our insights on customer-
intensive services, derived for the single-server monopoly in Section 3, continue to hold.

When the market is smaller, i.e. when Λ < Vb+αµb−2
√
cα

α , competition affects the servers’ and
the firm’s strategies. The servers compete by adjusting their service rates, while the firm adjusts
its admission price for the service. We find that the net values (V (µi) − cW (µi, λi), for i = 1, 2)
provided by the servers are equal and positive in equilibrium. Server i’s equilibrium demand is
λi = Λ/2; thus, the entire market is covered by the two servers (i.e., λ1 + λ2 = Λ). The service
provider extracts the entire consumer surplus by charging an appropriate price p∗.

Proposition 5. When the potential demand for the service is low, i.e., Λ < 2 · λ∗α = Vb+αµb−2
√
cα

α ,
the two servers share the market demand equally in equilibrium by setting their service rates to
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µei = Λ
2 +

√
c/α, for i = 1, 2.

Proposition 5 shows that the equilibrium service rate µei is less than µ∗, the optimal service rate
under monopoly (recall Proposition 3.1). Thus, under service-rate competition, the firm provides a
higher service value at a slower rate through its servers than it would if there were only one server.
Moreover, we find that customers’ expected waiting costs in the multi-server case (cW (µei ,Λ/2) =
√
cα) is identical to that under monopoly (cW (µ∗,Λ) =

√
cα). Therefore, the service value net of

waiting costs increases under server-competition for market share.
Our structural results continue to hold when there are n (> 2) servers competing on service

rates. We find that (i) In small markets (Λ < n · λ∗α = nVb+αµb−2
√
cα

2α ), each additional server
induces every server to slow down further; (ii) Otherwise, the market is large enough that each
server acts as a local monopolist.

Proposition 6. When there are n servers, full market coverage is assured for Λ < n · λ∗α =
nVb+αµb−2

√
cα

2α . The service provider charges an admission price p∗n = Vb + αµb − αΛ/n − 2
√
cα,

which is strictly increasing and concave in the number of servers, n.

Proposition 6 shows that under full market coverage, the firm’s price (and therefore, the total
revenues) increases with the number of competing servers. As a special case, we see that the
equilibrium price under competing servers is greater than the monopoly price.

The results of Proposition 6 are driven by the impact of customer-intensity on service rates.
For customer-intensive services, the greater the competition, the slower the equilibrium service
rates chosen by the servers. Although the servers compete amongst themselves for customers, they
choose to provide higher service value over faster service rates, which in turn allows the firm to
charge higher admission prices.

In practice, there may be investment costs to hire and maintain servers. In such cases, the service
provider needs to calculate the optimal number of servers as a trade-off between the additional
revenues earned by adding servers and the incremental investment costs. Suppose the cost of
additional servers is increasing and convex. Since the price p∗n is increasing and concave in the
number of competing servers (as established in Proposition 6), the service provider will increase
the number of servers until the marginal revenue from adding one more server is exceeded by the
marginal cost. Since p∗n is increasing in α, the optimal number of servers is ceteris paribus increasing
in customer-intensity.

5. Summary, Insights and Future Directions

We have argued that the results from traditional queueing models are not applicable to customer-
intensive services, wherein the service quality is sensitive to the time spent with the customer. The
tradeoff between quality and speed is at the crux of the service-provider’s problem, and his choice
of an intermediate service rate in the face of rational customers reflects this tradeoff.

Thus our model provides fundamentally new insights into the nature of customer-intensive
services. In the discussion below, we focus on a couple of these insights and examine the related
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empirical evidence in the context of primary care services. However, the conclusions from our model
are applicable across a wide variety of industries.
Service Speed and Market Coverage:

An implication of service degradation with speed is that service-level (quality) targets are met only
at slow service times, necessitating a larger investment in capacity/servers. This increases the costs
of providing the service. Thus, Baumol’s cost disease (discussed in Section 1) is a consequence of
the customer-intensity of the service. What could exacerbate this disease is our analytical result
that, as the service gets more customer-intensive, the service provider slows down, and increases
the time spent with each customer.

For a highly customer-intensive service such as primary care, the service provider gains by
focusing on service quality and spending adequate time with each patient, rather than by increasing
throughput by speeding up the service. Paradoxically, this approach leads to greater revenues and
service value. Recent empirical research findings in primary care services confirm our conclusions.
Chen et al (2009) and Mechanic et al (2001) examine primary care visit data in the United States
between 1989 and 2005, and show that primary care visit durations have increased (i.e., the average
service rate is slower) with an accompanied increase in service value. It is optimal for firms providing
primary care services to invest in high-quality, slower service, and therefore, partial market coverage
is likely to be observed. It has been documented that an increasing fraction of the U.S. population
resorts to emergency room visits due to the lack of adequate access to primary care (Pitts et al
2008).

Slowdown and longer services have also created a new primary care model, termed “concierge
medicine”. Concierge primary care practices announce and limit the number of patients they
accept, and offer them highly customized primary care, spending as much time as needed with
each patient, with minimal delays. In return, concierge physicians charge higher fees, that also
have the effect of limiting the demand for the service, thus reducing congestion. For example,
MDVIP (http://www.mdvip.com/) founded in 2000, is a national network of 250+ physicians who
provide preventive and personalized health care. Concierge doctors affiliated to MDVIP care for
a maximum of 600 patients each. MDVIP, MD2 International (http://www.md2.com), Current
Health (http://www.currenthealth.com), and Qliance Primary Care (http://www.qliance.com) are
some leading concierge primary care firms in the market. The longer duration of patient care in
concierge practice leads to the service provider providing more valuable service to a limited number
of customers.

Partial market coverage is likely to be observed in other highly customer-intensive services, such
as legal/financial consulting, educational services and other healthcare related services.
Pricing under Service Rate Competition:

We find that as the number of competing servers increases, every server slows down further. As a
consequence, server competition enhances the service value delivered in equilibrium, while holding
the equilibrium congestion (waiting) costs constant, and exerts an upward pressure on the price
charged by the provider of the customer-intensive service. These results, which are in sharp contrast
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to previous queuing research, are driven by customer-intensity.
For customer-intensive services such as primary care, adding service agents improves quality

but may not reduce congestion. Service rate competition among the agents leads to the desirable
outcome of higher quality but also to a higher admission price. In primary care settings, there
is strong empirical evidence of higher prices when the number of primary care physicians in a
market increases. This empirical finding in the seminal paper by Pauly and Satterthwaite (1981)
has subsequently found support in several studies that confirm price increases due to competition
in primary care service provision (see Gaynor and Haas-Wilson (1999) and references therein).
The theoretical explanations offered for such observations of price increases have been based on
tacit collusion and informational inefficiencies. In contrast to these explanations, our paper posits
that such increases in price can emerge naturally under service competition, when the value of the
service increases with the time spent in serving the customer.
Future Directions:

Several directions seem promising for future research. One extension could be to model and
study the effects of different kinds of market heterogeneity. Competing servers could vary in their
customer-intensities (e.g. based on their choices of patient-care models or investments in training
agents). Whether customer-intensity differentiation is a viable competitive strategy or not is an
interesting research question. A second extension would be to model multiple service providers that
independently set their prices and service rates, which would require a model of full-price competi-
tion. Simplifying such a model in other ways (such as eliminating customer choice by assuming an
exogenously specified joining rate) and/or employing other methodologies, such as computational
approaches, might be required. Another interesting extension of this research would be to model
information asymmetry – especially in customer-intensity. Presumably, there are occasions when
customers do not know the exact content of the service offered. Debo et al (2008) model incentive
effects in the context of such ‘credence’ services; similar issues are pertinent to customer-intensive
services.
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Appendix

Proof of Proposition 1: We begin by showing the optimal price, p∗(µ) for Λ > A2(α). In this
case, the service provider cannot serve all potential customers even when the price is equal to zero.
The equilibrium arrival rate, λe(µ, p), is determined by the following equation in this case:

V (µ)− p = cW (µ, λe(µ, p)). (5)

The revenue of the service provider, R(µ, p), is given by:

R(µ, p) = p

(
µ− c

V (µ)− p

)
. (6)

Recall that the service value is the upper-bound for the price, i.e. V (µ) ≥ p. Therefore, the revenue
function is concave in the price, p, for the set of admissible prices (for 0 ≤ p ≤ V (µ)), as the second
order condition is negative:

0 >
δ2R(µ, p)
δp2

= − 2c
(V (µ)− p)2

− 2pc
(V (µ)− p)3

The optimal price, maximizing the service provider’s revenues for a given service rate µ, is found
using the first order condition:

0 =
δR(µ, p)
δp

= µ− c

V − p
− pc

(V − p)2
.

p∗(µ) = V (µ) −
√
cV (µ)/µ is the unique solution of the first order condition within the set of

admissible prices, p ∈ [0, V (µ)]. Plugging p∗(µ) into equation (5) we find the resulting equilibrium
arrival rate:

λe(µ, p∗(µ)) = µ−
√

cµ

V (µ)
.

The equilibrium arrival rate, λe(µ, p∗(µ)), is independent of the potential demand, Λ. This shows
that the optimal price given service rate µ is equal to V (µ) −

√
cV (µ)/µ for all Λ ≥ µ −

√
cµ
V (µ) .

So far, we have derived the optimal price p∗ for all Λ ≥ µ−
√

cµ
V (µ) .

To complete the proof, we need to derive the optimal price for Λ < µ −
√

cµ
V (µ) . Note that

the service provider can serve all potential customers at a non-negative price for Λ ≤ µ −
√

cµ
V (µ) .

For a given service rate µ, the equilibrium demand, λe(µ, p), is decreasing in price. Therefore, the
maximum number of customers that can be served (maximum throughput) at rate µ, Λ̄(µ), is found
by setting the price equal to zero. Using the following equation we find Λ̄(µ).

V (µ) =
c

µ− Λ̄(µ)
⇒ Λ̄(µ) = µ− c

V (µ)

If Λ̄(µ) is greater than the potential demand Λ, then the service provider can serve all potential
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customers, charging a price greater than zero. For Λ < µ−
√

cµ
V (µ) , Λ̄(µ) > Λ:

Λ̄(µ) = µ− c
V (µ) ≥ µ−

√
cµ
V (µ) > Λ, since V (µ) ≥ c

µ for all µ ∈ F(α).

For Λ < µ−
√

cµ
V (µ) , all arriving customers join the queue, if the net utility of joining when all

others join the queue at price p is non-negative, i.e. V (µ) − p − cW (µ,Λ) ≥ 0. The net utility
decreases in price, and it is non-negative for p ≤ V (µ)− c

µ−Λ . Thus the service provider’s revenue
as a function of price can be written as:

R(µ, p) =


pΛ if 0 ≤ p ≤ V (µ)− cW (µ,Λ)

p
(
µ− c

V (µ)−p

)
if V (µ)− cW (µ,Λ) < p ≤ V (µ)− c

µ

0 if p > V (µ)− c
µ ,

(7)

Differentiating the revenue function with respect to price we get:

δR(µ, p)
δp

=


Λ if 0 ≤ p ≤ V (µ)− c

µ−Λ

µ− c
V (µ)−p −

pc
(V (µ)−p)2 if V (µ)− c

µ−Λ < p ≤ V (µ)− c
µ

0 if p > V (µ)− c
µ ,

(8)

The revenue, R(µ, p) is clearly increasing in price for p ≤ V (µ) − c
µ−Λ . Increasing the price

further at p = V (µ) − c
µ−Λ will decrease the demand (throughput) but it may still increase the

revenues. Note that the revenue function for p > V (µ)− c
µ−Λ is equivalent to the revenue function

given by equation (6), which is maximized at p = V (µ)−
√

cV (µ)
µ . The revenues decrease in price

at p = V (µ)− c
µ−Λ because V (µ)− c

µ−Λ > V (µ)−
√

cV (µ)
µ for Λ < µ−

√
cµ
V (µ) :

√
cV (µ)
µ

=
c

µ− (µ−
√

cµ
V (µ))

>
c

µ− Λ
.

As a result, the optimal price at service rate µ, for Λ < µ −
√

cµ
V (µ) is p∗(µ) = V (µ) − c

µ−Λ . The
resulting equilibrium arrival rate is equal to λe(µ, p∗(µ)) = Λ.

p∗(µ) =

{
V (µ)− cW (µ,Λ) if 0 ≤ Λ ≤ λ̂(µ)
V (µ)−

√
cV (µ)/µ if λ̂(µ) < Λ.

(9)

Thus we have derived p∗ for all Λ.

Preparatory Results for Lemmas 1, 2 and Proposition 3: Before we prove the lemmas, we
prove two main preparatory results.

Result 1: Service provider’s revenue function R(µ, p) is non-decreasing in demand, Λ.
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Proof: For a given service rate µ and price p, the service provider’s revenue as a function of the
potential demand, Λ, is given as follows:

R(µ, p) =


pΛ if cW (µ,Λ) ≤ V (µ)− p
p
(
µ− c

V (µ)−p

)
if cW (µ, 0) < V (µ)− p < cW (µ,Λ)

0 if V (µ)− p < cW (µ, 0).

(10)

R(µ, p) is continuous in Λ. To show this, we only need to show that the function is continuous at
the transition point cW (µ,Λ) = V (µ)−p. cW (µ,Λ) = c

µ−Λ is increasing in Λ for Λ ≤ µ. Rewriting
the transition point, cW (µ,Λ) = V (µ) − p, and solving for Λ we get: c

µ−Λ = V (µ) − p ⇒ Λ =
µ− c

V (µ)−p . Which shows that R(µ, p) is continuous in Λ for Λ ≥ 0.
Clearly, R(µ, p) is increasing in Λ for cW (µ,Λ) ≤ V (µ) − p and constant in Λ for cW (µ,Λ) >

V (µ)− p. This proves that R(µ, p) is non-decreasing in Λ for Λ ≥ 0.
Result 2: For Λ ≥ λ̄α = max{µ∈F(α)}{λe(µ, p∗(µ))}, the optimal price, p∗(µ), and the re-
sulting equilibrium arrival rate, λe(µ, p∗(µ)), have the following symmetric relationship around
β =

(
Vb+αµb

2α

)
for any µ ∈ F(α).

p∗(β + ε) = αλe(β − ε, p∗(β − ε)),

where ε = µ − Vb+αµb
2α . The desired result is obtained by plugging in µ = (β + ε) and µ = (β − ε)

and into p∗(µ) and λe(µ, p∗(µ)) (derived in Proposition 1) respectively.

Remark 1. As long as the typical service value Vb is greater than the expected waiting cost during
a typical service, c

µb
, i.e. Vb >

c
µb

, we have a non-empty operating region, F(α) for a customer-
intensive service of type α.

Having proven Results 1 and 2, we are now ready to prove the lemmas.

Proof of Proposition 2:

1. For Λ > A2(α), the objective function in equation 3 is unimodal in the service rate, µ. The
revenue function R(µ, p∗(µ)) = µ(Vb +αµb−αµ)− 2

√
cµ(Vb + αµb − αµ) + c is continuous in µ for

µ ∈ [A1(α), A2(α)].
The revenue function is differentiable in µ for µ ∈ [A1(α), A2(α)]:
The first derivative δR(µ,p∗(µ))

δµ = Vb + αµb − 2αµ − c(Vb+αµb)−2cαµ√
cµ(Vb+αµb−αµ)

, exists and is continuous for

µ ∈ [A1(α), A2(α)].
The first derivative, δR(µ,p∗(µ))

δµ = 0, crosses 0 at three points; A1(α), µ∗ = Vb+αµb
2α and A2(α).

µ∗ ∈ (A1(α), A2(α)) for α, c > 0. As a result, µ∗ is either the unique maximizer or the unique
minimizer of R(µ, p∗(µ)) for µ ∈ [A1(α), A2(α)]. We show that µ∗ maximizes the revenue function:
R(A1(α), p∗(A1(α))) and R(A2(α), p∗(A2(α))) are equal to zero because both the optimal price,
p∗(Ai(α)), and the resulting equilibrium arrival rate, λe(Ai(α), p∗(Ai(α))), are clearly equal to
zero, since the service value, V (µ), is equal to the waiting cost during the service, c/µ, at these
points.
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Now, we show that R(µ∗, p∗(µ∗)) is greater than zero. R(µ∗, p∗(µ∗)) = (Vb+αµb−2
√
cα)2

4α > 0 for
all α > 0, since Vb + αµb − 2

√
cα > 0 from Remark 1.

This shows that R(µ, p∗(µ)) is increasing in µ for µ ∈ (A1(α), µ∗) and decreasing in µ for µ ∈
(µ∗, A2(α)), which proves that the optimal service rate is µ∗ = Vb+αµb

2α .
2. From Proposition 1 p∗(µ∗) = Vb+αµb−2

√
cα

2 .
3. From Proposition 1 λe(µ∗, p∗(µ∗)) = Vb+αµb−2

√
cα

2α .
This proves the optimality of the above service setting for Λ > A2(α).
We now show that the above operating setting is optimal, even for all Λ ≥ λ∗e(µ

∗, p∗(µ∗)) =
Vb+αµb−2

√
cα

2α :
The revenue function R(µ, p) is non-decreasing in the potential demand, Λ, for all µ, p,Λ ≥ 0

from Result 1. Therefore, the optimal revenue R(µ∗, p∗(µ∗)) is non-decreasing in Λ for all Λ ≥ 0.
The service provider can achieve R(Vb+αµb2α , Vb+αµb−2

√
cα

2 ) by serving Vb+αµb−2
√
cα

2α customers at rate
µ = Vb+αµb

2α , charging price p = Vb+αµb−2
√
cα

2 for all Λ ≥ Vb+αµb−2
√
cα

2α . In other words, the optimal
revenue for Λ > A2(α) can be achieved by the identical operating setting (price and service rate)
when the potential demand is lower than A2(α) (Vb+αµb−2

√
cα

2α ≤ Λ ≤ A2(α)).
The optimal revenues are non-decreasing in the potential demand, Λ, and therefore the above

setting is optimal for all Λ ≥ λ∗α = Vb+αµb−2
√
cα

2α , since it is optimal for Λ > A2(α) and A2(α) >
Vb+αµb−2

√
cα

2α .
Proof of Lemma 1:[α-symmetry] Proposition 2 indicates that β defined in Result 2 is equal to
the optimal service rate, µ∗, for Λ > λ̄α. The result of the Lemma immediately follows from Result
2, plugging in µ∗ for β.

Lemma 2. For any α > 0, the optimal price for a given service rate, p∗(µ), and the resulting
equilibrium demand, λe(µ, p∗(µ)), are unimodal in the service rate, µ.

Proof of Lemma 2: For Λ > λ̄α, p∗(µ) and λe(µ, p∗(µ)) are unimodal (increasing and then
decreasing) in the service rate, µ. We will prove that p∗(µ) is unimodal in µ. Unimodality of
λe(µ, p∗(µ)) follows from the α-symmetry property. For Λ > λ̄α, the optimal price for service rate

µ ∈ F(α) is p∗(µ) = V (µ)−
√

cV (µ)
µ .

p∗(µ) is equal to zero for µ = Ai(α) where i = 1, 2. We pick an interior point β = Vb+αµb
2α in the

operating region, F(α). Clearly, β ∈ (A1, A2) for α, c > 0.
The optimal price for β, p∗(β) is non-negative as long as the condition in Remark 1 holds. For

α, c ≥ 0,

p∗(β) =
Vb + αµb − 2

√
cα

2
> 0⇔ (Vb + αµb)2 − 4cα > 0.

If Vb > c/µb, then (Vb + αµb)2 − 4cα > (Vb − αµb)2 > 0, since c < Vbµb from Remark 1.
We will prove the unimodality of p∗(µ) by showing that the first derivative δp∗(µ)

δµ crosses 0 only
once in (A1(α), A2(α)) and this point is the maximizer of the price, p∗(µ), with respect to µ for
µ ∈ (A1(α), A2(α)). Hence the first order condition is satisfied at a unique, interior point.

FOC : δp∗(µ)
δµ = −α+ c(Vb+αµb)

2µ2
√
cV (µ)
µ

= 0
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The first derivative is continuous for µ ∈ (A1(α), A2(α)). Reorganizing the terms, we can write

the first order condition as: 2αµ2
√

cV (µ)
µ = c(Vb + αµb).

For notational convenience, let (Vb +αµb) = K. Therefore V (µ) = K −αµ. Plugging in K and
squaring both sides of the equation, we get: 4α2µ4 c(K−αµ)

µ = c2K2

⇒ cK2

4α2
= µ3(K − αµ). (11)

Note that the left hand side of equation (11) is constant with respect to µ. We show that the right
hand side crosses this constant only once for µ ∈ [A1(α), A2(α)].

The right hand side, µ3(K − αµ), is unimodal in the service rate µ: δ
δµµ

3(K − αµ) = µ2(3K −
4αµ).
Clearly the right hand side is increasing in µ for µ < 3K

4α and decreasing for µ > 3K
4α .

We now show that the RHS term in equation (11) is less than cK2

4α2 when µ = A1(α) and greater
than cK2

4α2 when µ = A2(α), which proves that the right hand side crosses the left hand side only
once in the operating region, F(α), since the right hand side is unimodal in µ.

If we plug in K for the value of Ai(α), we get:

Ai(α) =
K ∓

√
K2 − 4αc
2α

for i = 1, 2.

Let RHS(µ) = µ3(K − αµ). Let LHS = cK2

4α2 . Then we have:

RHS(A1(α)) = c(K−
√
K2−4αc)2

4α2 ≤ LHS and RHS(A2(α)) = c(K+
√
K2−4αc)2

4α2 ≥ LHS,
which yield the desired result. Note that the weak inequalities in the above equations are strict if
α > 0, and that they are equalities if α = 0.

The point satisfying the first order condition in the operating region is a maximizer since
p∗(A1(α)) = p∗(A2(α)) = 0. Furthermore, the price is positive in the operating region, F(α), since
the optimal price is positive at an interior point β, i.e. p∗(β) > 0, and the first derivative of p∗(µ)
crosses zero only once. Thus we have shown that p∗(µ) is unimodal (increasing and then decreasing)
in the service rate µ.
Result 3: For a customer-intensive service of type α > 0, the revenue maximizing, equilibrium
demand λe(µ∗, p∗(µ)) is strictly lower than λα = max{µ∈F}{λe(µ, p∗(µ))}. The service rate leading
to λα is greater than the optimal service rate, i.e., µ̄ = argmax{µ∈F}{λe(µ, p∗(µ))} > µ∗. The
equilibrium demand, λe(µ, p∗(µ)), is still increasing in the service rate, and the optimal price,
p ∗ (µ), is decreasing in the service rate, at the optimal service rate, µ∗.
Proof: The revenue maximizing equilibrium demand, λe(µ∗, p∗(µ∗)) is smaller than the maximum
equilibrium demand, λ̄α = max{µ∈F(α)}{λe(µ, p∗(µ))}. By definition we have λ̄α > λe(µ∗, p∗(µ∗)).

We know that λe(µ, p∗(µ)) is unimodal in µ from Lemma 2. We first show that λe(µ, p∗(µ)) is
increasing in the service rate at µ = µ∗.
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Differentiating the equilibrium demand λe(µ, p∗(µ)) with respect to µ we get:

δλe(µ, p∗(µ))
δµ

= 1− cK

(K − αµ)
√
cµ(K − αµ)

.

Evaluating the first derivative at µ∗ we get: δλe(µ,p∗(µ))
δµ

∣∣∣
µ=µ∗

= 1− 2
√
αc/K.

To prove the result, we need to show that 1 − 2
√
αc/K ≥ 0. Re-organizing the equation, we get:

K2 ≥ 4αc, which holds for all K,α, c ≥ 0, which follows from Remark 1: Remark 1 suggests that
Vb > c/µb. Recall that K = Vb + αµb. Therefore, the condition in Remark 1 is equivalent to
(K−αµb)(K−Vb) > αc. Both µb and Vb are non-negative. Therefore we can rewrite the condition
of Remark 1 as follows:

(K − Vb)Vb > cα for Vb ∈ [0,K]. (12)

Inequality 12 holds for all Vb ∈ [0,K], and therefore it holds for the value of Vb that maximizes
(K − Vb)Vb in [0,K]. (K − Vb)Vb is maximized when Vb = K/2.

max{0≤Vb≤K}{(K − Vb)Vb} = K2/4⇒ K2

4
> αc.

Therefore, Remark 1 implies the result K2 ≥ 4αc, which in turn implies that

δλe(µ, p∗(µ))
δµ

∣∣∣∣
µ=µ∗

≥ 0.

Thus, we have shown that λe(µ, p∗(µ)) is increasing in the service rate at µ = µ∗. Therefore, the
throughput maximizing service rate is µ̄ ≥ µ∗.

We begin with the following Lemma, characterizing the optimal price that clears the market
demand, which helps us build conditions for Proof of Proposition 3.

Lemma 3. For any customer-intensive service of type α, when the potential demand is such that
Λ < λα, there exists µ̄1(Λ) and µ̄2(Λ) in F(α), such that the optimal price p∗(µ) clears the market
for all µ ∈ [µ̄1(Λ), µ̄2(Λ)].

Proof of Lemma 3: When the potential demand Λ < λ̄α, there exists µ1(Λ) and µ2(Λ) in F(α)
such that λe(µ, p∗(µ)) ≥ Λ for µ ∈ [µ1(Λ), µ2(Λ)]. The result of the Lemma follows from the fact
that λe(Ai(α), p∗(Ai(α))) = 0 for i = 1, 2 and from the unimodality of λe(µ, p∗(µ)) (Lemma 2).

Lemma 3 shows that for low values of potential demand, there exists a closed interval of service
rates [µ̄1(Λ), µ̄2(Λ)] ⊂ F(α), where it is optimal to clear the market. A corresponding price p∗(µ)
can be chosen so that the market demand is cleared for any service rate µ in this interval. Note
that Λ = λe(µ̄1(Λ), p∗(µ̄1(Λ))) = λe(µ̄2(Λ), p∗(µ̄2(Λ))).

If the potential demand, Λ, is higher than λα, then the service provider cannot clear the market
at any service rate µ in the operating region F(α). Using the results of Lemma 3 and Proposition

22



1, we can write the resulting equilibrium arrival rate as:

λe(µ, p∗(µ)) =


λ̂(µ) = µ−

√
cµ
V (µ) if A1(α) ≤ µ < µ̄1(Λ)

Λ if µ̄1(Λ) ≤ µ ≤ µ̄2(Λ)

λ̂(µ) = µ−
√

cµ
V (µ) if µ̄2(Λ) ≤ µ ≤ A2(α),

(13)

A representative example of the equilibrium demand leading to full market coverage can be seen
in the right panel of Figure 2. Note that the service provider covers the entire demand Λ in the
interval [µ̄1(Λ), µ̄2(Λ)] . Again applying Proposition 1, we can rewrite the optimal price, p∗(µ), for
a given service rate as follows:

p∗(µ) =


V (µ)−

√
cV (µ)/µ if A1(α) ≤ µ < µ̄1(Λ)

V (µ)− cW (µ,Λ) if µ̄1(Λ) ≤ µ ≤ µ̄2(Λ)
V (µ)−

√
cV (µ)/µ if µ̄2(Λ) ≤ µ ≤ A2(α).

(14)

Therefore, the equilibrium revenue equals R(µ, p∗(µ)) = p∗(µ)λe(µ, p∗(µ)). We can now derive the
service provider’s optimal service rate and price using the above revenue function.
Proof of Proposition 3: We will show that when the demand is low, (Λ < Vb+αµb−2

√
cα

2α ) the
service provider’s optimal service rate is µ∗ = Λ+

√
c/α, the price is p∗(µ∗) = Vb+αµb−αΛ−2

√
αc,

and the optimal equilibrium demand is equal to Λ (i.e. the market coverage is full).
1. For the small market scenario, the service provider’s objective function is given by:

R(µ, p∗(µ)) =


µ(K − αµ)− 2

√
cµ(K − αµ) + c if A1(α)µ < µ̄1(Λ)

(V (µ)− c
µ−Λ)Λ if µ̄1(Λ) ≤ µ ≤ µ̄2(Λ)

µ(K − αµ)− 2
√
cµ(K − αµ) + c if µ̄2(Λ) ≤ µ < A2(α).

(15)

The objective function is continuous in µ as Λ = λe(µ, p∗(µ)) and V (µ) − cW (µ,Λ) = p∗(µ)
at µ̄1(Λ) and µ̄2(Λ), which implies that the revenues are equal at the transition points between
regions.

Recall that Lemma 3 shows that there exists µ̄1(Λ) and µ̄2(Λ) such that all potential customers
join the queue at the optimal price, p∗(µ), for all µ ∈ [µ̄1(Λ), µ̄2(Λ)] when Λ < λ̄α. Λ < Vb+αµb−2

√
cα

2α

and Λ̄ > Vb+αµb−2
√
cα

2α from Result 3. Therefore A1(α) < µ̄1(Λ) < µ̄2(Λ) < A2(α) in the small
market scenario.

Let Region A be A1(α) < µ ≤ µ̄1(Λ), Region B be µ̄1(Λ) < µ ≤ µ̄2(Λ) and Region C be
µ̄2(Λ) < µ < A2(α). We will show that the optimal service rate is in Region B, for Λ < Vb+αµb−2

√
cα

2α .
Note that in Region A and Region C the objective function is equivalent to that of the large

market scenario (R(µ, p∗(µ)) = µ(K − αµ) − 2
√
cµ(K − αµ) + c), which is maximized at µ = K

2α

(Proposition 2).
µ̄2(Λ) = max{µ|λe(µ, p∗(µ)) = Λ}, is greater than K

2α since λe(µ, p∗(µ)) is unimodal by Lemma
2 and µ̄ = argmax{µ∈F(α)}{λe(µ, p∗(µ))} > K

2α by Result 3. Therefore, the objective function in
equation (15) is decreasing in µ in Region C.
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We show that the objective function is increasing in µ in Region A, by showing that µ̄1(Λ) <
K
2α . By definition λe(µ̄1(Λ), p∗(µ̄1(Λ))) = Λ. λe(µ, p∗(µ)) is unimodal in µ from Lemma 2 and
arg max{µ∈F(α)}{λe(µ, p∗(µ))} > K

2α from Result 3. These facts imply that for Λ < Vb+αµb−2
√
cα

2α =
λe( K2α , p

∗( K2α)), µ̄1(Λ) < K
2α .

As a result, the service rate that maximizes the objective function is in Region B. Differentiating
the objective function, R(µ, p∗(µ)), with respect to the service rate we get:

δR(µ, p∗(µ))
δµ

=


(K − 2αµ)

[
1− c√

cµ(K−αµ)

]
if A1(α) < µ < µ̄1(Λ)

Λ
(

c
(µ−Λ)2

− α
)

if µ̄1(Λ) ≤ µ ≤ µ̄2(Λ)

(K − 2αµ)
[
1− c√

cµ(K−αµ)

]
if µ̄2(Λ) ≤ µ < A2(α).

(16)

The first order condition is given by:

FOC : 0 =
δR(µ, p∗(µ))

δµ
= Λ

(
c

(µ− Λ)2
− α

)
.

Recall that Λ = λe(µ, p∗(µ)) = µ −
√

cµ
K−αµ at µ = µ̄i(Λ) for i = 1, 2. Therefore we can write

µ̄1(Λ) = Λ +
√

cµ̄1(Λ)
K−αµ̄1(Λ) . Plugging this value into δR(µ,p∗(µ))

δµ we get:

δR(µ, p∗(µ))
δµ

∣∣∣∣
µ=µ̄1(Λ)

= Λ
[
K − 2αµ̄1(Λ)

µ̄1(Λ)

]
.

The value of δR(µ,p∗(µ))
δµ is positive for µ̄1(Λ) ≤ K

2α . µ̄1(Λ) is monotonically increasing in Λ
for 0 ≤ Λ ≤ Λ̄ since λe(µ, p∗(µ)) is unimodal (increasing and then decreasing) in µ (Lemma 2).
Therefore, the objective function is increasing in µ at µ = µ̄1, since µ̄1(Λ) ≤ K

2α . This proves that
the optimal service rate, µ∗, is greater than µ̄1(Λ) for low potential demand (Λ < K−

√
cα

2α ).

Similarly, we show thatR(µ, p∗(µ)) is decreasing in µ at µ = µ̄2(Λ) by plugging in Λ+
√

cµ̄2(Λ)
K−αµ̄2(Λ)

for µ̄2(Λ):
δR(µ, p∗(µ))

δµ

∣∣∣∣
µ=µ̄2(Λ)

= Λ
[
K − 2αµ̄2(Λ)

µ̄2(Λ)

]
< 0.

The above value is negative since µ̄2(Λ) > K
2α . Therefore, an interior point of [µ̄1(Λ), µ̄2(Λ)]

satisfies the first order condition for Λ < K
2α−

√
c/α. The unique solution of the first order condition

for µ ∈ [µ̄1(Λ), µ̄2(Λ)] is µ∗ = Λ +
√
c/α, which proves the result of Proposition 3.

2. The optimal price, p∗(µ∗), is equal to Vb + αµb − αΛ− 2
√
αc, from Proposition 1.

3. The resulting equilibrium demand, λe(µ∗, p∗(µ∗)), is equal to the potential demand Λ by
Proposition 1.
Proof of Proposition 4: Proposition 4 shows that for Λ ≥ Vb+α−2

√
cα

α , competing servers can
achieve monopoly revenues, by using the optimal monopoly operating setting, µ∗ and p∗(µ∗). Note
that the potential demand Λ must be at least two times the optimal monopoly equilibrium demand,
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λe(µ∗, p∗(µ∗)).
We begin by showing that for any potential demand Λ ≥ 0, a server serving at rate µ and

charging price p is better off in the single server setting than in the multi-server setting. Recall
that the revenue of the server in the single server setting is given by R(µ, p). Let R1(µ1, µ2, p) be
the revenue of server 1, providing service with rate µ1, when server 2 is providing service with rate
µ2, at price p in the two server competition case. R(µ, p) ≥ R1(µ, µ2, p) for all µ, µ2 ∈ F(α) and
p ≥ 0.

R1(µ, µ2, p) =


pΛ if V (µ)− p− cW (µ,Λ) ≥ max{0, V (µ2)− p− cW (µ2, 0)}
pλ1e(µ, µ2, p,Λ) if cW (µ,Λ) > V (µ)− p ≥ c/µ
0 if V (µ)− p− cW (µ, 0) ≤ max{0, V (µ2)− p− cW (µ,Λ)}.

(17)

where λ1e(µ1, µ2, p,Λ) is the equilibrium arrival rate for server 1.
Let us examine the first line in equation (17). In the multi-server competition setting, server 1

can serve all potential customers if the net value of an arriving customer from joining server 1 when
all other customers join server 1, is non-negative and greater than the net value of joining server 2
when no other customer joins server 2, i.e. V (µ)− p− cW (µ,Λ) ≥ max{0, V (µ2)− p− cW (µ2, 0)}.
Recall that in the single server setting, non-negativity of the net value (V (µ)− p− cW (µ,Λ) ≥ 0)
is sufficient to serve all potential customers. Clearly server 1 is better off in a single server setting
than in a multi server setting when V (µ)− p− cW (µ,Λ) ≥ 0.

Let us examine the case in which cW (µ,Λ) > V (µ) − p ≥ c/µ (line 2 in Equation (17)). In
the single server setting, customers join the queue until the net utility from joining equals zero.
However in a multi-server setting, the net utility of joining server 2 may be positive when λe(µ, p)
customers join server 1 and Λ− λe(µ, p) customers join server 2. Therefore, customers will deviate
to server 2 until an equilibrium is reached, i.e. until the net utility from joining server 1 equals the
net utility from joining server 2.

Hence, R(µ, p) ≥ R1(µ, µ2, p) for all µ, µ2 ∈ F(α) and p ≥ 0, which implies:

max{µ∈F(α),p≥0}{R(µ, p)} ≥ max
{µ∈F(α),p≥0}

{R1(µ, µ2, p)} (18)

for all Λ ≥ 0.
Therefore, in the multi server setting when cW (µ,Λ) > V (µ)− p ≥ c/µ, the equilibrium arrival

rate for server 1, λ1e(µ, µ2, p,Λ), is less than or equal to the monopoly equilibrium arrival rate,
λe(µ, p) =

(
µ− c

V (µ)−p

)
.

For Λ ≥ Vb+αµb−2
√
cα

α , the optimal equilibrium demand in the single server setting is given by
λe(µ∗, p∗(µ∗)) = Vb+αµb−2

√
cα

2α .
In the two server setting, the service provider can serve 2λe(µ∗, p∗(µ∗)) customers, charging

p∗(µ∗) when both servers serve at rate µ∗i = µ∗, hence doubling the optimal monopoly revenues. In
this case, the equilibrium demand at each server is equal to λe(µ∗, p∗(µ∗)). Clearly, the net value
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of an arriving customer from joining either server is equal to zero, therefore an arriving customer
is indifferent among the options to join server 1, join server 2 and to balk from the service. Hence
this setting is an equilibrium for customers.

When the service provider charges price p∗(µ∗), (µ∗, µ∗) is a Nash Equilibrium for the servers,
since they achieve the maximum revenue (shown in the LHS of the equation (12)) by choosing µ∗.
(i.e. µ∗ is the best response of a server to any service rate adopted by the other server).
Proof of Proposition 5: Proposition 5 indicates that for Λ < Vb+α−2

√
cα

α , there exists a symmetric
Nash equilibrium (µe, µe) such that all potential customers procure the service and agents equally
share the potential demand. Further, we have µe = Λ

2 +
√
c/α.

We prove the proposition by showing that none of the players (the servers and customers) have
incentive to deviate from µe. An arriving customer’s net value from joining server i when half of
the customers join server i is given by: NVi(µi, p,Λ/2) = V (µi)− p− c

µi−Λ/2 .

Let µe maximize NVi(µi, p,Λ/2): Differentiating NVi(µi, p,Λ/2) with respect to µi we get:

δNVi(µi, p,Λ/2)
δµi

= −α+
c

(µi − Λ/2)2

The second order condition indicates that NVi(µi, p,Λ/2) is concave in µi for µi ≥ Λ/2:

δ2NVi(µi, p,Λ/2)
δµ2

i

=
−2c

(µi − Λ/2)3
< 0.

The first order condition is satisfied at µe = Λ
2 +

√
c/α, hence µe maximizes NV (µi, p,Λ/2). The

resulting net value is given by:

NV (µe, p,Λ/2) = Vb + αµb − αΛ/2− 2
√
cα− p.

Clearly the net value for an arriving customer from joining server i is non-negative for p ≤
Vb +αµb −αΛ/2− 2

√
cα, when agents serve at rate µe and customers mix equally between servers

1 and 2.
It can be shown that, server i, serving Λ/2 customers, has no incentive to deviate from µe,

because doing so decreases the net value for an arriving customer joining server i, which will
result in lower equilibrium demand for the server i. Given this, it follows that (µe, µe) is a Nash
equilibrium for service agents for all p ≤ Vb + αµb − αΛ/2− 2

√
cα.

The maximum price that can be charged by the service provider is p∗2 = Vb+αµb−αΛ/2−2
√
cα.

The service provider optimizes the revenues by charging p∗2 and fully extracting the consumer
surplus. This result extends to n servers, and holds for all Λ < nVb+α−2

√
cα

2α .

Proof of Proposition 6: To prove the Proposition, we first derive the equilibrium service rate
for n agents and the resulting optimal price, when Λ < nVb+αµb−2

√
cα

2α .
We use the result of Proposition 5 to derive the service rates under the Nash equilibrium.

Agents maximize the net value NV (µi, p,Λ/n). Therefore, the equilibrium service rate is µe(n) =

26



Λ
n +
√
c/α. The service provider then fully extracts the consumer surplus, and the resulting optimal

price is thus given by:
p∗n = Vb + αµb − αΛ/n− 2

√
cα.

Clearly p∗n is increasing in the number of agents, n.
The marginal increase in price is given by:

p∗(n+1) − p
∗
n =

αΛ
n(n+ 1)

,

which is decreasing in the number of servers, n, and approaches zero as n→∞.
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