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Cooperation in Games with Forgetfulness 
 
 
 

Abstract 
 

Companies and managers are apt to forget information, yet game theory assumes that all 
players have perfect recall.  This paper expands the literature by examining how 
introducing forgetfulness into a multi-player game-theoretic framework can help or 
hinder cooperative behavior.  We distinguish between forgetting histories and forgetting 
strategies, and explain how classic game theory models and equilibrium concepts should 
be adapted to accommodate imperfect recall.  We find that forgetfulness impacts the 
ability of firms to cooperate in countervailing directions.  On the one hand, forgetfulness 
can diminish the ability to punish deviators, making cooperation more difficult.  On the 
other hand, forgetfulness can make meting out severe punishments credible, and if the 
players forget their strategies then forgetfulness can also decrease the ability for players 
to effectively deviate, facilitating cooperation.  When players forget their strategies, their 
reduced ability to deviate may be so severe that the equilibrium payoff may be below the 
minimax
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1.  Introduction 

 While the game theory literature classically assumes perfect recall, players in 

economic games often forget the past.  This forgetfulness occurs partly due to the 

imperfect behavior of people, who forget past information.  Given that managers in firms 

are humans, and thus subject to human fallibility, it then follows that understanding the 

role of forgetfulness is important for analyzing strategic interactions in business. 

For firms, perfect recall is also synonymous with assuming that information is 

perfectly transferred across divisions and generations of leadership.  One can therefore 

argue that firms are even more likely to forget than individuals due to the decentralization 

of firms’ operations across time and divisions.  The importance of this information loss is 

evidenced by the large literature on knowledge management focusing on how to reduce 

this information loss (e.g., Stein 1995, Alavi and Leidner 2001, and Argote, McEvily and 

Reagans 2003).  These losses also have practical implications on firms’ decisions (see, 

Benkard 2000, Besanko, Doraszelski, Kryukov and Satterthwaite 2007). 

 For expositional purposes, we illustrate the context we have in mind with an 

example of two colluding firms.  Imagine that product managers at two competing 

companies, A and B, have colluded in the market place for several years.  The managers 

sustain this collusion through a Nash reversion punishment scheme.  One day the product 

manager at company A retires.  The product manager at company B is trying to figure out 

whether to continue his collusive conduct.  Perhaps the retiring manager at firm A has 

briefed her successor on the collusive conduct between the two firms.  On the other hand, 

the retiring manager might not have briefed her successor – either because she did not 

want to admit to acting in an illegal manner, or because she may have hundreds of these 

types of details that she manages and she may not have the time or the ability to fully 

brief her successor.  Thus, the manager of firm B has uncertainty about whether the 

arrangement between the two firms has been passed on to the next generation of 

managers.  Also, the manager of firm B has to figure out how the new manager will 

behave if the retiring manager has not briefed her successor about the arrangement. 

 This paper considers what happens to the ability of firms to cooperate when 

institutional forgetfulness occurs.  We focus on two types of information loss.  First, 

companies can lose knowledge of past historical events.  We model this information loss 
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as being complete in the model for simplicity, but in real life this likely corresponds to a 

lack of information transfer of key details.  Second, managers can fail to pass along 

information about their strategy for a multitude of reasons.  Perhaps the managers do not 

want to admit what their strategy was.  For example, a manager might not want to discuss 

illegal collusive behavior.  Alternatively, this information loss can happen because there 

are many different strategic decisions that each manager makes, and, because of people’s 

limited ability to process information, the manager may not be able to pass along all of 

the details about their strategy for every project.  Finally, decisions that are often modeled 

as a simple strategic decision (e.g., “collude”) may require institutional support that can 

be lost in a transition from one management to the other.  For example, when ADM set 

up a lysine price-fixing cartel, they had to figure out how to adhere to the collusive 

quotas without telling middle management or sales representatives what they were doing 

(Connor 2001).  When there is a change in management, the details about how one 

implements such a collusive regime can be lost, effectively causing the firm to forget to 

collude. 

A key question that arises in this analysis is what a firm does after it forgets its 

strategy.  If we consider the case where the firm forgets its strategy due to a management 

transition, it seems reasonable to assume that the next manager will act in a way that 

managers would typically act in a certain situation.  If managers are trained to approach 

competitors in an adversarial manner, the new manager would likely avoid collusion 

unless they had been briefed about the previous collusive relationship.  In this paper, we 

call such behavior a “norm” and illustrate how the presence of these norms affects the 

ability of firms to cooperate. 

 We show that forgetfulness can either help or hinder cooperation.  On one hand, 

forgetfulness makes it harder for the players to effectively punish deviators.  On the other 

hand, forgetfulness can sometimes make severe punishments credible.  Further, if the 

players forget their strategies then players who cheat on cooperation might forget their 

transgression and forget to defend against being punished.  One result is that 

forgetfulness can also entrench inefficient marketing behavior.  In fact, we find that 

forgetfulness could support on-the-path equilibrium payoffs that are below the minimax. 
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1.1 Key Issues and Prior Literature 

 Despite the fact that most of the game theory literature assumes that players have 

perfect recall, the idea of having forgetful players is not new.  Indeed, Von Neumann and 

Morgenstern (1953) discuss how to model forgetful players in their seminal book on 

game theory.  They suggest that four players playing a game of bridge should be modeled 

as a two-player game, with each team being modeled as a single forgetful player, where 

the player imperfectly communicates information to themselves through signaling.3  They 

then discuss that the right way to model a forgetful player would be to split the player 

into multiple versions of themselves and restrict the information sets between them.4  

While they acknowledge the issues that arise in this type of analysis, they never delve 

deeply into these issues. 

 This basic approach to modeling forgetfulness was used by Piccione and 

Rubinstein (1997).  Their seminal work, and a series of papers discussing forgetfulness in 

game theory in an issue of Games and Economic Behavior, discusses issues that arise in 

considering strategic forgetfulness in single-player games (Aumann et. al. 1997, 

Battigalli 1997, Gilboa 1997, Grove and Halpern 1997, Halpern 1997, Lipman 1997, and 

Segal 2000).  Much of the attention from these papers focuses on the case of the absent-

minded driver, where a single player forgets whether they have made a decision 

previously.  (This is called “repeated decisions” by Alpern 1988.)  We assume in our 

analysis that players have a calendar, so all players know which stage of the game they 

are playing.  Nevertheless, most of the debate about how decisions with forgetfulness 

should be modeled and analyzed applies even in cases without repeated decisions. 

One key issue raised in this literature is whether information about a player’s 

strategy is conveyed between the different versions of themselves in the game, and 

whether the different incarnations of the player can coordinate their strategies.  Piccione 

and Rubinstein consider the case where the players cannot communicate changes in their 

strategy to future selves and call such an approach multiself consistent.  Battigalli, 

extends this concept by defining a modified multiselves sequential equilibrium, which 

states that players cannot change the strategies for their future selves.  However, the 
                                                 

3 See Sec. 6.4.2 of their book. 
4 See Sec. 12.2.2 of their book. 
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concept of modified multiselves consistency does not answer how the strategies between 

the different selves are set.  Piccione and Rubinstein consider the case where the 

strategies are not coordinated between different incarnations of an individual.  In contrast, 

Aumann et al. (1997), propose that strategies are set during a planning stage, but that the 

different incarnations cannot communicate beyond that point.  Also, the plan set in that 

planning stage must be consistent with beliefs at the action stages, which are the decision 

nodes in the game. 

Our approach mirrors this discussion, but extends the analysis to multi-player 

games.  We consider two cases of forgetfulness.  In one case, we assume that players 

have a pre-game planning stage where they set their strategy for all future versions of 

themselves.  While the players can coordinate their strategy across the different versions 

of themselves at the beginning of the game, they cannot change the strategies of future 

selves later in the game; we will call this forgetting histories but not strategies.  The 

equilibria that arise from these assumptions are in the spirit with the concept of 

forgetfulness found in Aumann et al., and Halpern. 

In the other case we consider, players have no planning stage over which they can 

communicate a strategy to future versions of themselves.  We call this forgetting 

strategies and histories.  The equilibrium outcomes that come from these assumptions are 

in the spirit with the concept of forgetfulness found in Rubinstein and Piccione. 

In order define our equilibrium concept, we start with the formalization of a game 

as defined in Mas-Colell et al. (1995, p. 227).  In this formalization, a game is specified 

as { }uiHhpIA ),(),(),(,),(),(,,, ⋅⋅⋅⋅⋅=Γ ραχ , where χ represent nodes, A a set of possible 

actions, and I represents the players in the game, {1, …, I}.  The terms p and α are 

functions that define the structure of the game tree.  h is a collection of information sets, 

and H: χ → h assigns each decision node x to an information set H(x)∈h.  i: h → {1, …, 

I} assigns each information set to a player, ρ represents nature’s moves, and u is a payoff 

function assigned to terminal nodes. 

We modify the game as follows.  First, we partition each of the nodes belonging 

to player I as belonging to one of K incarnations of themselves.  Thus, the set of players 

could be modified as {11, …, 1K1, …, I1, …, IKI}.  Each information set is them assigned 

to one particular incarnation of one particular player.  Thus, i: h → {11, …, 1K1, …, I1, …, 
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IKI}.  Also, we assume perfect recall within each incarnation of the same individual.  

That is, consider nodes x, x’, y, y’ belonging to incarnation Jk, where x is a (possibly 

indirect) predecessor to y and x’ is a predecessor to y’.  Then H(y) = H(y’) only if H(x) = 

H(x’) and the action at x that leads (possibly indirectly) to node y is the same as the action 

at x’ that leads to node y’. 

Let β denote the behavioral strategies of the players, where β assigns a probability 

to action a∈A(x) for any node x’ such that H(x’) = H(x).  Define µ as a belief, where 

µ(x|h) represents the probability that the player attributes to the possibility of their being 

at node x conditional on being at information set h. 

Following Battigalli, we say that an assessment (µ, β) is weakly consistent if for 

all information sets h and x∈χ, µ(x|h) p(h|β) = p(x|β), where p denotes a probability.  We 

then use Battigalli’s definition of a modified multiselves sequential equilibrium to be a set 

of (µ, β) such that 

(1) ∀ a, a’ ∈ A(h), β(a|h) > 0 ⇒E(u| h, a; µ, β) ≥ E(u| h, a’; µ, β) 

(2) There exists a sequence of strictly positive weakly consistent assessments ((µk, 

βk))k≥1 such that limk→∞ (µk, βk) = (µ, β). 

We restrict our analysis in this paper to modified multiselves sequential equilibria.  

We assume that information that is learned by one incarnation of a player is not 

transferred to other incarnations of the player.  Thus, a forgetful player always forgets the 

history of the game.  In our framework, we only consider two-period games, with each 

period having a simultaneous-choice stage game.  Thus, this restriction means that if a 

player is forgetful they will not be able to observe what actions were played in the first 

period of the game. 

As noted above, we consider two possibilities about how the behavioral strategies 

are chosen within this framework.  In one case, the strategies are chosen in a planning 

stage before the game begins, consistent with the conceptualization of forgetfulness 

advocated by Aumann et al.  Once play begins, however, a player cannot change the 

strategies of future incarnations.  This restriction is required so the player cannot signal 

the past history to themselves and undo any forgetfulness in the past history of the game.  

Of course, an equilibrium of this type could only have a profitable deviation across 

incarnations in response to information which is later forgotten, because any other 
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profitable coordination could be attained during the planning phase.  We call this way of 

choosing strategies “forgetting histories, not strategies.” 

The other way one could model the choice of strategies is that each incarnation of 

the players could select their strategies without communicating with their other 

incarnations.  This assumption might be more reasonable than the assumption of a 

planning phase if the game with forgetfulness is used to model the actions of firms or 

organizations and where the forgetfulness reflects a transfer in management with an 

imperfect transfer of information.  In such a case, each incarnation selects a complete 

strategy, which includes choices for information sets for other incarnations.  This allows 

the player to analyze how, for example, future incarnations will respond to the player’s 

current actions.  In equilibrium, each of these incarnations will make the correct inference 

about how the different incarnations of themselves will behave.  However, the player 

cannot coordinate deviations between the different incarnations of the players.  This can 

change the way the game will play out.  For example, a player might wish to cooperate 

with their opponent today conditional on being able to cooperate in the next period, but if 

the player knows that the next incarnation of themselves will be non-cooperative, they 

may instead choose not to cooperate.  Also, conditional on the player not cooperating in 

period 1, being non-cooperative can be the optimal action for the player in period 2.  In 

this paper, we will call this later type of forgetfulness “forgetting strategies and 

histories.” 

One issue that arises in this latter type of forgetfulness is how the players assess 

what the strategies of the other incarnations of themselves will be.  In considering this, 

we consider a similar question of how players know the equilibrium strategies of the 

other players in games of perfect recall.  In perfect recall, one interpretation of the 

equilibrium is that the equilibrium is the result of pre-play negotiation, where players 

announce their strategies before the game as cheap talk, but where these strategies form 

equilibria because they are self-enforcing (Binmore 1992, p. 305, Mas-Colell et. al. 1995, 

p. 249).  This interpretation of how equilibria get selected is consistent with the formation 

of strategies with forgetfulness when we allow for a planning phase of the game.  

However, when we consider the case of players forgetting strategies and histories, we 

explicitly rule out communication of the strategies between the different incarnations of 
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the players.  In this case, we must consider the equilibrium strategies within incarnations 

as being set through one of the other mechanisms considered in the game theory 

literature.  Mas-Colell et al. suggest focal points or stable social conventions as other 

ways equilibrium strategies may be coordinated.  We follow this suggestion and give the 

term “norms” to these focal points or social conventions, which we believe is a relatively 

natural way to think about how managers at a firm will assume that future managers will 

behave.  That is, the players assume that the other incarnations of themselves (the future 

and past managers of the firm) likely behaved in a way that managers would typically act 

in a certain situation.5 

Before we summarize our results and lay out the outline of the paper, we also 

wish to acknowledge a literature that deals with forgetful consumers (e.g. Mullainathan 

2002, Mehta, Rajiv and Srinivasan 2004, Chen, Iyer and Pazgal 2005, and Ofek, Yildiz 

and Haruvy 2007).  However, in these papers there is no strategic interaction between the 

consumers.  Consumers’ forgetfulness can have an effect on the strategic interaction 

between the firms that supply the consumers; for example, in Chen et al., firms have a 

different pricing equilibrium than would emerge if consumers remembered prices 

perfectly.  However, the strategic players themselves – the firms in Chen et al. – are not 

forgetful.6  Similarly, in Ofek, Yildiz and Haruvy (2007) a decision maker learns about 

their own valuation of a product, but then forgets some information about the signals that 

they received about their valuation, remembering only whether their valuation was above 

the market price at the time of the decision.  However, the players do not adjust their 

current period actions to signal information strategically to their future selves.  One 

important issue that this literature raises is whether the players are aware of the fact that 

they are forgetful.  Consistent with Piccione and Rubinstein and many others, but in 

contrast with Mullainathan, we assume that players are aware of the fact that they may 

forget (and know when they have forgotten), and we allow players to account for this 

                                                 

5 Though we do not push this point further, one could imagine that if all managers would approach a 
particular situation in the same manner then it would be reasonable to model the norm as a pure-strategy.  
On the other hand, if there is a lot of heterogeneity in how managers would approach a particular situation, 
one might want to consider mixed-strategy norms. 
6 Besanko et al. consider how forgetting knowledge of productive efficiency – as measured by marginal 
cost – affects how a market will evolve.  However, firms in their model are not forgetful about anything 
related to their strategy. 
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forgetfulness in their strategies. 

Other papers related to ours include Bernheim and Thomadsen (2005), which also 

studies forgetfulness in a multi-player setting.  However, in that paper forgetfulness has 

an impact only on players’ strategy through their anticipatory emotions.  Without these 

anticipatory emotions, the forgetfulness does not have an effect.  In contrast, we assume 

that players are fully rational and do not have an emotional response to manage.7  Finally, 

Anderlini, Gerardi and Lagunoff (2007) consider a similar model of dynasties, where 

players live only one period but consider the payoffs of their prodigy when making 

decisions.  The players never observe what happens in other periods, but they can send 

signals to the immediately succeeding generation.  This model could be thought of as a 

model of forgetfulness – where forgetfulness occurs 100% of the time, although the 

goals, mechanics and results of that paper differ substantially from ours.   

 The outline of the remainder of the paper is as follows.  Section 2 lays out the 

modeling framework used in most of the paper.  In Section 3, we analyze cooperation 

with forgetfulness in histories and strategies.  In Section 4, we analyze cooperation in 

games with forgetfulness in histories but perfect recall in strategies.  Finally, Section 5 

concludes. 

 

2.  Model 

 We analyze the effect that forgetfulness has on the ability of players to cooperate 

using a simple two-stage game framework.  The players make simultaneous choices in 

the first stage, and the choices of the first stage are then revealed.  Between the first and 

second stages, each player is forgetful with probability λ ∈(0,1).  If the player is forgetful, 

they are replaced by a different incarnation of themselves; this incarnation has the same 

payoff as the individual, but there is no communication between the incarnations so no 

information from the first stage is passed to the next incarnation when the player forgets.  

The forgetfulness occurs independently among the players, so the probability that both 

players forget is λ2.  The players know whether they have been forgetful, but they cannot 

                                                 

7 More broadly, our paper is also related to games with bounded rationality.  For example, Rubinstein‘s 
(1986) paper about games with automata players could be construed as studying a different form of 
forgetfulness. 
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observe whether their opponent has been forgetful.  The players then play the second 

stage, which is assumed to have at least two Nash equilibria with different payoffs for the 

players. 

Most of the analysis focuses on a fairly generic yet simple version of this game.  

The first stage of the game is assumed to have a cooperative outcome that gives better 

payouts for both players than any stage-Nash equilibrium gives, but which itself is not a 

stage Nash equilibrium.  This first stage is not explicitly modeled in this paper because all 

that is important is the immediate gains in payoffs from cheating on the cooperative 

outcome – the other details about the first stage game are unimportant.  The second-stage 

game consists of a symmetric 2x2 simultaneous move game pictured in Figure 1.  Our 

goal is to use a simple, but fairly generic, game, with the key property being that this 

stage has two pure-strategy stage Nash Equilibria (due to the parameter restrictions), one 

with a high payoff and one with a lower payoff.  In addition to the pure-strategy 

equilibria of AA and BB, there is also a mixed-strategy Nash equilibrium where each 

player plays action A with probability 
cb

b
−−

−
1

.  The effect of forgetfulness on the ability 

to cooperate can be analyzed through just the second stage of the game and examining 

the largest differences between average payoffs that are received after cooperation is 

sustained in the first stage compared to those sustained if cooperation is violated by either 

player in the first stage.8 

 

3. Forgetting both Strategies and Histories. 

We first consider cooperation in games where players forget both strategies and 

histories.  We model players forgetting their strategies by assuming that players who 

forget their strategy follow a strategy that is dictated by a cultural or business norm.  For 

example, if the norm is to act cooperatively, then when a player forgets the past he will 

play action A.  In the case where forgetfulness is a result of human behavior, this 

assumption of following a norm can be justified by the idea that a forgetful player will 

behave in a way that this individual generally behaves when they face a similar scenario.  

In the case where forgetfulness arises due to a change in management, this intuition is 
                                                 

8 Deviations by more than one player can be treated in any arbitrary self-enforcing manner. 
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strengthened: the most reasonable belief about the future management’s behavior is to 

assume that future management will behave the way managers typically behave when 

faced with similar situations.  We allow the norm to be either a pure-strategy or a mixed-

strategy norm.  In the latter case, the randomness in the mixing can represent either true 

randomness or alternatively a distribution of types, where the old management does not 

know at the time of their first-stage decision the type of new management that will 

replace them if such a transition does occur. 

 We show that while cooperation is often easiest to sustain under cooperative 

norms, there exist conditions where cooperation can best be sustained under non-

cooperative norms.  We then note that forgetfulness can either aid or obstruct the ability 

of the players to cooperate depending on the payoffs of the game.  This tension is the 

result of the fact that while forgetfulness can hinder cooperation because players may 

forget to punish their opponents for deviations, forgetfulness can also facilitate 

cooperation because a player may avoid deviating for fear that they will forget to act 

defensively against punishment and because forgetfulness can make credible severe 

punishments which hurt both players.  Finally, we demonstrate that these later effects can 

dominate strongly enough that the on-the-path equilibrium payoffs can be below the 

minimax when there is some forgetfulness. 

 

3.1 A Simple Example 

To illustrate these effects, consider the two-stage game represented in Figure 2.  

The first stage of this game is a classic prisoner’s dilemma, and the second stage of this 

game has three equilibria: (A, A) gives each player a payoff of 1, (B, B) gives a payoff of 

0, and a mixed-strategy equilibrium, where each player plays action A with probability 

8/9, and receives a payoff of 4/9. 

We first analyze whether cooperation can be sustained in the first period under the 

classic assumption of perfect recall.  The equilibria of the second stage can be used to 

create a reward and punishment scheme for the first period.  If both players play A if 

cooperation is sustained in the first period, and B if there were any deviations in the first 

period, then the best equilibrium (A, A) is given as a reward for cooperation and the 

worst equilibrium (B, B) is given as punishment.  The difference in payoffs between this 



 

11 

reward vs. punishment is 1, which is less than 1.5 (=5.5 - 4), the amount that players 

would gain from unilaterally cheating on the cooperative outcome in the first stage.  

Thus, the second-stage reward from cooperating in the first period is not large enough to 

prevent cheating, and there will be no cooperation in the first stage. 

Now suppose that each player forgets their strategy and the history of the game 

between the two stages with a probability λ.  We illustrate the example by setting λ = ½.  

Then, the following strategies played by both players forms a modified multiself 

sequential equilibrium: In stage 1, play cooperate.  In stage 2, the player plays A if they 

are forgetful.  If the player recalls the first stage, they play A if they recall cooperation, 

but play B if they recall any deviation. 

We can verify this equilibrium by solving backwards.  Suppose, first, that the 

player recalls cooperation being sustained in the first period.  Then if the player plays A 

they can expect the other player to play A – regardless of whether the other player forgets 

the past or not – and get a payoff of 1.  On the other hand, if the player deviates to B then 

they will receive a payoff of only ½.  Thus, playing A when the player recalls 

cooperation from period 1 is a best response.  Note that if the player is forgetful between 

the two periods, they will assume that the other player and the previous incarnation of 

themselves played the equilibrium strategies.  Thus, the calculations that support them 

playing A is the same as those for when the player recalls cooperation.9  Finally, suppose 

that the player recalls a deviation in the first period.  If the player follows their strategy 

and plays B then they will get a payoff of ½λ.  On the other hand, if the player deviates 

and plays A, they will receive a payoff of λ – 4(1–λ), which is smaller than ½ λ as long as 

λ < 8/9.  Note that this last calculation demonstrates that a player will not “pretend to 

forget” the past in hopes of cooperating. 

Given that the players will not deviate from their 2nd period strategies, we analyze 

what the expected values of the 2nd period payoffs are at the time of the first period 

                                                 

9 Recall from Section 1.1 that the part of the strategy that occurs under recall and the part that occurs after 
forgetfulness are chosen by different incarnations of the players without any coordination.  Thus, the recall 
part of the strategy must be optimal conditional on the forgetful incarnation’s strategy, and the forgetful 
part of the strategy must be optimal conditional on the strategy of the incarnation with recall.  We also 
consider how the results change when players have a planning stage where they set the strategies for all of 
their incarnations jointly, below. 
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decision.  If the players play cooperate, the players can then anticipate that (A, A) will be 

played in the 2nd stage, and that they will receive a payoff of 1.  On the other hand, if the 

player unilaterally deviates in the 1st stage, their expected 2nd stage payoff is  

)1(4)1(
2
12 λλλλλ −−−+      (1) 

where the first term represents the probability that both players forget the past, the second 

term reflects the payoff when only the other player forgets that there was a deviation, and 

the third term reflects the payoff when the deviator forgets that the game is in punishment 

mode.  The last contingency, that both players recall the past and obtain zero, occurs with 

probability (1 – λ)2.  When λ = ½, the payoff in equation (1) becomes –5/8.  Note that the 

difference in the 2nd period payoffs in the cooperation state vs. the punishment state is 

now 1 – (–5/8) = 1.625, which is enough to ensure cooperation in the first stage. 

 Thus, cooperation in stage 1 can be supported under forgetfulness, even while it 

cannot be supported under perfect recall.  It may seem counter-intuitive to some readers 

that forgetfulness can aid cooperation given that a player who has been cheated on may 

forget to punish a deviator.  However, in this example, this effect was more than offset by 

the risk that a deviator would take that they might themselves forget that they deviated in 

the first period and thus they may forget to defend themselves against a severe 

punishment.  Later in this paper we will demonstrate that this last effect can be so strong 

that in some cases it may be possible to sustain below minimax payoffs. 

 We next consider what happens when players instead forget the past history of the 

game, but not their strategies.  As noted in Section 1.1, this means that each player sets 

the strategy for all incarnations of themselves in an initial planning stage.  In this case, 

cooperation is not achievable, as was true in the perfect recall case.  The reason for the 

different result is that players are able to coordinate playing a deviation in the 1st stage in 

the 2nd stage action even when the player forgets by choosing the optimal strategies for 

all incarnations of themselves in a planning stage.  To see that no equilibrium has 1st 

stage cooperation, consider that the payoff of any such proposed equilibrium must be less 

than or equal to 5 = 4 + 1 (the cooperation payoff, plus the greatest obtainable payoff for 

the 2nd stage game).  On the other hand, a player could profitably deviate from the 

proposed cooperation by unilaterally deviating to this strategy (which will be set in the 
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planning stage): play Fink in the first period, play B in the second period regardless of 

what is remembered.10  The minimum payoff of this deviation would be 5.5, since the 

minimum payoff that this player would receive in the second period, conditional on 

playing B, is zero.  Thus, in this game it is impossible to support full cooperation when 

players forget the history of the game, but not their strategies.  We chose this example to 

highlight the differences between the two different types of forgetfulness.  However, we 

note later that forgetfulness in history but not strategies can sometimes aid cooperation. 

 

3.2 Impact of Imperfect Recall on the Ease of Cooperation 

We now return to considering the more-general two-stage game described in 

Section 2, where the second stage is represented by Figure 1.  Note that A is the unique 

best response to an opponent playing action A with a probability greater than 
cb

b
−−

−
1

, 

while B is the unique best response to an opponent playing A with a lower probability.  

This implies that there are three Nash equilibria of the stage game: Both players could 

play A, both players could play B, or both players could mix, playing A with probability 

cb
b
−−

−
1

.  The payoffs of these equilibria (to each player) are 1, 0 and 
cb

bc
−−

−
1

, 

respectively. 

Under perfect recall, the strongest equilibrium incentives for cooperation in the 

first stage result from strategies involving both players playing A when cooperation was 

sustained in the first period.  The defection strategy that gives the strongest incentives is 

for both players to play B if c > 0, or both players playing A with probability 
cb

b
−−

−
1

 if 

c < 0.  The firms will then cooperate in the first stage if the unilateral gains from 

deviating are less than )
1

1,1(Max
cb

bc
−−

+ . 

                                                 

10 This deviation need not be the most-profitable deviation; all that is required to prove that cooperation 
cannot occur in equilibrium is find a deviation that obtains higher profits than following the proposed 
equilibrium strategies.  If there is a response to the opponent’s strategy that provides a higher payoff than 
playing B provides, conditional on being in the state caused by the player’s deviation, then the player 
should propose that response in the planning stage for both the recall and forgetful 2nd-stage contingencies. 
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We examine how forgetfulness affects the ability of firms to cooperate by 

calculating how forgetfulness affects this maximum wedge between the expected payoffs 

that are earned when cooperation is sustained in the first stage compared to the expected 

payoffs that are earned when cooperation is violated by one player in the first stage. 

The strategies for each player will be a 5-tuple: {PCC, PCD, PDC, PDC, PF}, where 

PS reflects the probability that the player will play action A if the state for that player is S.  

The five states they can face are CC if the player recalls both players playing cooperate in 

period 1, CD if the player recalls player 1 cooperating but player 2 deviating in period 1, 

DC if the player recalls player 1 deviating but player 2 cooperating in period 1, DD if the 

player recalls both players deviating in period 1, or F if the player has forgotten what 

happened in period 1.  We do not require the players to have symmetric strategies, so we 

denote the probability that player i = 1, 2 will play A in state S as PSi. 

We begin by considering what probabilities can be supported on the equilibrium 

path for any equilibrium supporting cooperation in the first stage.  Consider the strategy 

of player 1.  Denote as P1: 

P1 ≡ (1–λ) PCC1 + λ PF1    (2) 

P1 represents the unconditional probability that player 1 will play action A in the second 

period if cooperation is sustained in the first period. 

Consider three cases.  First, if (2) is greater than 
cb

b
−−

−
1

 then the best response 

for player 2 is to play A with probability 1.  Thus, PCC2 = PF2 = 1.  Note that the 

probability of playing A in the forgetfulness state must be a best response to the 

probability that the other player plays A on the equilibrium path.  Given that player 2 

plays A with probability 1, it must also be that PCC1 = PF1 = 1.  Thus, one set of potential 

equilibrium strategies involves a fully cooperative norm and both players playing A with 

probability 1 on the path. 

Second, suppose that P1 is less than 
cb

b
−−

−
1

.  Then the same logic dictates that 

PCC2 = PF2 = 0, which in turn implies that PCC1 = PF1 = 0.  Thus, the second set of 

potential equilibrium strategies involves both players playing A with probability 0 on the 

equilibrium path.  
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Finally, consider the case where P1 = 
cb

b
−−

−
1

.  Then any set of actions is a best 

response for player 2.  However, P1 can only represent a best response for player 1 if 

player 2 plays action A with probability 
cb

b
−−

−
1

.  Thus, there is a third set of on-the-

path equilibrium strategies such that (1–λ) PCC1 + λ PF1 = (1–λ) PCC2 + λ PF2 = 
cb

b
−−

−
1

. 

We use the above results to analyze which norms are best for fostering 

cooperation between players.  We find that if the probability of forgetting is low enough, 

cooperation is most-easily supported by cooperative norms (always playing A).  On the 

other hand, if the probability of forgetting is high enough, cooperation can only be 

sustained under a non-cooperative norm. 

Theorem 1: Suppose that 
cb

b
−−

−
≤

1
λ .  Then the strongest incentives for cooperation in 

the first period of the game are created by a strategy and norm that has equilibrium 

actions that are fully cooperative. 

Proof: Consider a strategy that has fully cooperative equilibrium actions PCC1 = PF1 = 

PCC2 = PF2 = 1.  In this case, the players can anticipate that if they cooperate in period 1 

then their ex ante period 2 payoff will be 1=Cπ . 

Now consider the actions for other states S = CD, DC, or DD.  If 

)1()1)(1(1 λ
λ

λ −
−

−−−
−

>
cb

bPS  then the best response for player 2 is PS2 = 1, which in 

turn would mean that player 1’s best response would be PS1 = 1.  Similarly, if 

)1()1)(1(1 λ
λ

λ −
−

−−−
−

<
cb

bPS  then PS1 = PS2 = 0 in equilibrium.  The third possibility is 

that both players play a mixed strategy such that 
)1()1)(1(1 λ

λ
λ −

−
−−−

−
>

cb
bPS . 

If PS1 = PS2 = 1, then the ex ante payoff for the players in state S would still be 1.  

Thus, this could not be part of a punishment scheme.  If PS1 = PS2 = 0 the ex ante payoff 

to each player would be: 

λ2 + λ(1 – λ)(b + c)     (3) 
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where the first term represents the probability that both players are forgetful times the 

payoff of 1 that they receive in this case, λ(1 – λ)b represents the probability times the 

payoff that the player receives if they are forgetful but their opponent is not, and λ(1 – λ)c 

represents the case where their opponent is forgetful and they are not.  Note that if neither 

player is forgetful both players play B and get a payoff of zero.   

If, instead, both players play a mixed strategy, the ex ante payoff from that state is 

cb
bcM

−−
−

=
1

π . 

 To calculate the greatest incentives for cooperation in stage 1, we can take the ex 

ante payoff the players will receive from cooperating and subtract from it the lowest 

payoffs that can be imposed on the player in a punishment state.  Thus, cooperation in 

stage 1 can be sustained when PCC1 = PF1 = PCC2 = PF2 = 1 as long as the incentive to 

deviate in stage 1 is less than or equal to 

1 – min[λ2 + λ(1 – λ)(b + c), 
cb

bc
−−

−
1

].            (4) 

 Suppose instead that PCC1 = PF1 = PCC2 = PF2 = 0.  Following a similar logic as 

before, three outcomes can be consistent with a modified multiself sequential 

equilibrium: PSi = PSj = 0, PSi = PSj = 1 or PSi = PSj = 
)1)(1( cb

b
−−−

−
λ

.  The ex ante 

payoffs from these three strategies is 0, (1 – λ)2 + λ(1 – λ)(b + c) and 
cb

bc
−−

−
1

 

respectively.  Thus, the cooperation can be sustained in stage 1 when PCC1 = PF1 = PCC2 = 

PF2 = 0 as long as the incentive to deviate in stage 1 is less than or equal to  

0 – min[(1 – λ)2 + λ(1 – λ)(b + c), 
cb

bc
−−

−
1

].            (5) 

We can show that the incentives for cooperation in stage 1 are stronger under the fully 

cooperative norm by comparing (4) and (5).  Consider the case where  

[(1 – λ)2 + λ(1 – λ)(b + c)] <
cb

bc
−−

−
1

.  Then we can see that (4) > (5) by noting that 

1 – min[λ2 + λ(1 – λ)(b + c), 
cb

bc
−−

−
1

] ≥ 1 – λ2 – λ(1 – λ)(b + c) 

     > –1 + 2λ – λ2 – λ(1 – λ)(b + c)   
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     = – [(1 – λ)2 + λ(1 – λ)(b + c)]. 

If 
cb

bc
−−

−
1

 < [(1 – λ)2 + λ(1 – λ)(b + c)] , then 

1 – min[λ2+λ(1–λ)(b + c), 
cb

bc
−−

−
1

] ≥ 1–
cb

bc
−−

−
1

> 0–min[(1–λ)2+λ(1–λ)(b+c), 
cb

bc
−−

−
1

]. 

We must also compare the best incentives for cooperation when PCC1 = PF1 = PCC2 

=PF2 = 1 compared to the best incentives for cooperation when  

(1–λ) PCC1 + λ PF1 = (1–λ) PCC2 + λ PF2 = 
cb

b
−−

−
1

.  Again we see that the incentives are 

greatest when PCC1 = PF1 = PCC2 =PF2 = 1, but the details are more tedious.  We present 

the rest of the proof in the Appendix. 

Q.E.D. 

 

While theorem 1 demonstrates that cooperation in period 1 can be best supported 

by a fully-cooperative norm when the probability of forgetting is not too high, it is not 

possible to sustain any punishment under this norm when there is too much forgetfulness.  

However, it is still possible to create a reward and punishment scheme for cooperation in 

period 1 under other norms even under high levels of forgetfulness.  In some cases, 

having even a small wedge between what the players earn if they cooperate in the first 

stage compared to what they earn if they deviate can lead to a large gain across the two 

periods if the stage equilibrium for the game in period 1 is significantly lower than the 

cooperative payoff in period 1. 

Theorem 2: Suppose that 
cb

b
−−

−
>

1
λ .  Then cooperation in period 1 can only be 

sustained by norms that are not fully cooperative. 

Proof: Note that if 
cb

b
−−

−
>

1
λ , it must be that PSi = 1 in equilibrium if PF(-i) = 1 

because (1–λ) PS(-i) + λPF(-i) ≥ λPF(-i) > 
cb

b
−−

−
1

.  Thus, the only way to get a reward-and-

punishment scheme is through a norm that is not fully cooperative.  If 
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cb
c

cb
b

−−
−

≤<
−−

−
1

1
1

λ  then one can create a reward and punishment with PFi = 0 for all 

players, yielding the incentives in equation (5).   

If 
cb

cb
−−
−−

>
1

)1,max(λ , it is possible to support a punishment scheme with mixing.  

We prove this by building a simple, although inefficient, symmetric reward and 

punishment scheme.  Due to the symmetry, we drop subscripts denoting the player’s 

identification.  Denote the unconditional probability that each player plays action A as 

( ) FS PPP λλ +−= 1 , where PS is the probability with which the players’ strategy dictates 

playing action A given that the player recalls that the state is S.  The ex ante expected 

payoffs to each player, entering a given state, is  

( )( )cbPPPx +−+= 12π      (6) 

Note that ( )cbPcb
P

x

−−++=
∂
∂ 12π .  This derivative is cb

P

x

+−=
∂
∂π  at  

P = 
cb

b
−−

−
1

.  If –b + c > 0 then a reward and punishment scheme can be created when 

PCC = ε for some small ε > 0, PF = ⎟
⎠
⎞

⎜
⎝
⎛ −−

−−
− ελ

λ
)1(

1
1

cb
b  and PCD = PDC = PDD = 0.  

When –b + c < 0 then a reward and punishment scheme can be created when PCC = 1 – ε 

for some small ε > 0, PF = ⎟
⎠
⎞

⎜
⎝
⎛ −−−

−−
− )1)(1(

1
1 ελ
λ cb

b  and PCD = PDC = PDD = 1. Q.E.D. 

 

We next examine how forgetfulness can change the ability of players to cooperate 

relative to what is observed under the classical assumption of perfect recall.  The 

following theorem demonstrates that forgetfulness in histories and strategies can either 

ease or hinder the ability of players to cooperate. 

Theorem 3a: Suppose that –b > c > 0.  Then the maximum incentives to cooperate in the 

first stage of the game are greater for positive levels of λ in the neighborhood of zero 

than they are when λ=0. 

Theorem 3b: Suppose that –b < c.  Then the maximum incentives to cooperate in the 

first stage of the game are greater when λ=0 than they are for positive levels of λ. 
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Proof: Theorem 1 demonstrates that the maximum incentive to cooperate when 

cb
b
−−

−
≤

1
λ  is given by 1 – min[λ2 + λ(1 – λ)(b + c), 

cb
bc
−−

−
1

].  Also,  

λ2 + λ(1 – λ)(b + c) < 
cb

bc
−−

−
1

 when c > 0.11  If we take the derivative 

λ
λλλ

∂
+−−−∂ )])(1(1[ 2 cb = –2λ(1–b–c) – (b+c).  This is negative if –b < c, and it is 

positive in the neighborhood of λ=0 if –b > c.   The last thing to consider is what happens 

when 
cb

b
−−

−
>

1
λ .  In this case, the maximum feasible wedge between the reward and 

punishment payoffs is 1 –
cb

bc
−−

−
1

.  However, this is less than 1, and does not change 

with the level of forgetfulness.    Q.E.D. 

 

 Note that forgetfulness can make cooperation easier despite the fact that a player 

that was cheated upon might forget to punish the player that cheated; this is due to two 

countervailing effects.  First, the player who cheated might forget that they were being 

punished and play A even when the optimal action, given that they cheated, would be to 

play B.  This effect was illustrated with concrete numbers in the example of Section 3.1.  

Second, the player that was cheated upon will also play responses that are not optimal 

given that the other player cheated.  While this hurts the one meting out the punishment, 

it also hurts the player who cheated. 

 While this second effect cannot be demonstrated using the second-stage game 

represented in Figure 1, a game whose second-stage is presented in Figure 3 offers a 

concrete example.  The minimax payoff for this game is -5/2.  Delivering the minimax 

requires mixing between actions A and C with probability ½ each.  The best response to 

this action is to play either B or C.  However, any player delivering the minimax would 

get an expected payoff between -50 and -47.5, depending on which action the deviating 
                                                 

11 c > 0 in either case, since –b is always positive.  Thus, –bc/(1–b–c) > 0.  To see that λ2 + λ(1 – λ)(b + c) < 
–bc/(1–b–c), note that λ2 + λ(1 – λ)(b + c) is quasi-concave.  Thus, the maximum of λ2 + λ(1 – λ)(b + c) in 
the interval λ∈[0, –b/(1–b–c)] must occur at one of the end points.  At λ = 0, λ2 + λ(1 – λ)(b + c) = 0.  At λ= 
–b/(1–b–c), λ2 + λ(1 – λ)(b + c) = –bc/(1–b–c).  If c < 0, λ2 + λ(1 – λ)(b + c) > –bc/(1–b–c) in this interval, 
which means that forgetfulness neither helps nor hurts the ability for the players to cooperate. 
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player chooses.  However, the player meting out the punishment could instead earn 

higher profits if they always played C.  Thus, the minimax is not credible. 

 The minimax can be credible, however, if the players are forgetful.  Consider this 

strategy and norm combination (played by both players) for a second stage of the game. 

(a) If the player forgets, play A. 

(b) If the player recalls that both players cooperated in stage 1, play A. 

(c) If the player recalls that there was a deviation in the first stage, play C. 

Note that if the player recalls cooperation then (A, A) forms a Nash equilibrium.  Thus, if 

the players recall cooperation then there is no incentive to deviate.  Similarly, if the 

player is forgetful, A is still a best response since they can expect that their opponent will 

play A in equilibrium.  We need to also confirm that a player who recalls a deviation will 

follow this strategy.  If they follow their strategy, they will earn a payoff of –5λ.  If they 

deviate to action A their payoff will instead be λ – 100(1 – λ) = –100 + 101λ < –5λ as 

long as λ < 100/106, while if they deviate to action B their payoff will be 0λ – 5(1 – λ) = 

–5 + 5λ < –5λ as long as λ ≤ ½. 

Imagine now that λ = ½.  Then the payoff to the deviating player in the second 

stage is indeed the minimax payoff of –5/2.  While generally the level of forgetfulness 

will not be set at the perfect level to deliver the most severe punishment, this example 

nevertheless demonstrates that forgetfulness can make credible punishments that are 

more-severe than the most-severe punishments one could obtain under perfect recall.  

Note that while forgetfulness allows the player to credibly deliver a harsher punishment 

to an opponent who deviates, in equilibrium this more-severe threat means that this costly 

punishment is never endured.  Thus, the ability to commit to being ignorant of a deviation 

– leading to pain on both sides – allows the players to obtain higher profits than they 

would obtain under perfect recall.12 

                                                 

12 There is some precedence for ignorance about an opponent’s actions leading to higher profits: Coughlan 
and Mantrala (1994) use a dynamic pricing game to show that prices are higher if firms believe that there 
will be a stronger price retaliation than actually exists.  In their model, the players are able to fit observed 
behavior with the mistaken impressions of the behavior of their competitors.  However, both firms can be 
better off with both firms having uncertainty over what the strategies of their opponents are rather than 
having their strategies laid bare. 
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While the punishments that arise when players forget strategies and histories can 

be severe enough to make cooperation easier to sustain, it can also entrench 

inefficiencies.  In fact, the risk to a player of inflicting great harm to themselves when 

they forget that they are being punished may be severe enough that equilibrium payoffs 

can be below the minimax. 

We illustrate this possibility with the two-stage game pictured in Figure 4.  Note 

that the minimax payoff of this game is zero.  However, when λ∈[⅓, ½], there exists a 

sequential equilibrium with payoffs below zero where both players play the following 

strategy and norm: each player plays A in the first period.  In the second period, both 

players play X if the player remembers both players playing A in the previous period or if 

the player has forgotten what happened previously; otherwise they play Y.  To confirm 

that this strategy is an equilibrium, note by inspection that on-the-path it does not pay for 

a player to deviate from playing X in the second period because their stage payoff will be 

1, which is the maximum possible stage payoff.  Further, if the player recalls a deviation 

in the first period then the player should play Y as long as λ ≤ 5/6.  This is because their 

payoff of playing Y is 0, while their payoff of playing X is λ – 5(1 – λ).   We can then 

examine what would happen in the first period given these second period strategies.  The 

expected total payoff if the player plays A is –2 + 1 = –1.  If the player deviates, on the 

other hand, their expected payoff is 0 + λ2 – 5λ(1 – λ).   Thus, the players will not deviate 

in period 1 as long as –1 ≥ – 5λ + 6λ2 → 0 ≥ (3λ – 1) (2λ – 1), which corresponds to the 

interval λ∈[⅓, ½].  Thus, the players will not deviate in the first period, and the 

equilibrium payoff is –1 even though the minimax is equal to 0. 

 

 Finally, we note that once there is enough forgetfulness, cooperation becomes 

more difficult to sustain as the players become more forgetful.  This occurs because once 

there is enough forgetfulness, the link between the two periods becomes so weak that 

there is no effective way to punish deviators in the first period.  This can be formalized 

by the following theorem: 

Theorem 4: The difference between the maximum and minimum second-period payoffs 

that can be implemented in an equilibrium goes to zero as λ→1. 
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Proof: Denote the total (unconditional) probability of playing action A in the state where 

the players cooperated in period 1 as PR1 and PR2.
13  Denote the total (unconditional) 

probability of playing action A in the state where a deviation is recalled as PP1 and PP2.  

The ex ante payoff to player i in any state S is  

( ) ( )cPPbPPPP SiiSiSSiiSSi
S −+−+= −−− 11 )()()(π     (7) 

Note that )1( λ−≤− PiRi PP .  Thus, PiRi PP ⎯⎯→⎯ →1λ .  It immediately follows from 

equation (7) that P
i

R
i ππ λ⎯⎯→⎯ →1  for both players.  Thus the difference in the maximum 

and minimum payoffs that can be supported in the second period go to zero, and the 

ability to support cooperation in the first stage of the game disappears, as the level of 

forgetfulness gets close to 1. 

Q.E.D. 

 

4. Forgetting Histories, but Not Strategies 

 We make only one distinction between modeling games where players forget both 

histories and strategies and games where players forget histories but not strategies: when 

players forget their past actions, but not their strategies, their current decisions are based 

upon the strategies they coordinated across all incarnations during pre-play planning 

period.  Confirming that a set of strategies form an equilibrium requires (1) confirming 

that the strategies of each player, across their various incarnations, form a Nash 

equilibrium, and (2) confirming that the strategies form a modified multiselves sequential 

equilibrium, as defined earlier in the paper. 

Note that all equilibria of games where players forget histories but not strategies 

are also equilibria that could occur if players forget both histories and strategies.14  

However, the converse is not true: there are some equilibria that arise when players forget 

histories and strategies that are not equilibria if players forget histories but not strategies.  

The contrast between analyzing games where players forget histories and 

strategies and games where players forget histories but recall their strategy is that in the 

                                                 

13 PRi ≡ (1–λ) PCCi + λ PFi 

14 Set the norm as the actions players would choose to specify in the planning stage for the contingencies 
where they forgot the past. 
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latter case the strategy the players follow after they forget is chosen by each player before 

they start the game.  One important consequence is that it becomes possible for the 

players to hard-code messages to their future selves about what actions they should take 

when they are forgetful.  Thus, for example, a player who wants to cheat on an agreement 

in an early stage of the game can hard-code into their strategy to play an optimal 

deviation plan, which includes an optimal defense of their strategies.  For example, it is 

no longer possible to impose punishments that deliver below-minimax payoffs when 

players remember their strategies because a player who deviates from an agreed upon 

strategy can program their own future actions (via their strategies) in a way that allows 

them to receive at least the minimax.  By contrast, the actions that players take after they 

forget in games where the players forget their strategies are set by convention (and, thus, 

never in the players control). 

 However, forgetfulness in histories but not strategies can still aid cooperation by 

making credible severe punishments that are very expensive to both players.  We 

illustrate this by returning to the game whose second-stage is presented in Figure 3.  We 

analyzed properties of this game in Section 3, where we noted that meting out the 

minimax payoff of -5/2 is not credible under perfect recall, but is credible when players 

forget their strategies and histories.   

It turns out that this punishment is also credible when players forget their histories 

but not their strategy.  In essence, players will follow the same strategies as in Section 3; 

however, the norm of actions chosen by players if they forget the history of the game is 

now chosen by players at the start of the game.  Thus, we need to confirm that there are 

no profitable deviations from this strategy.   

Consider this strategy (played by both players) game:  

(a) Cooperate in the first stage of the game. 

(b) Play A if (1) the player recalls that both players cooperated in stage 1, or (2) if the 

player cannot recall what happened in the first stage. 

(c) Play C if the player recalls that there was a deviation in the first stage. 

In Section 3.2 we proved that these strategies form a modified multiselves sequential 

equilibrium.  To confirm that this is an equilibrium when players always recall their 

strategies, we must also show that the player will not choose a different strategy for the 
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overall game.  We see from the previous analysis that each of the contingent actions in 

the second period is optimal given the prescribed equilibrium, and given the second stage 

strategies, it is not optimal to deviate in the first stage.  However, a player who deviated 

in the first period is also able to hard-code a particular action into their deviation strategy.  

Thus, a player who deviates can deviate in a way that causes them to act as if they have 

recall of their own past actions.15  In Section 3.2, we saw that a player who is planning on 

deviating and not cooperating in the first stage should play action C in the second stage as 

long as λ ≤ ½.  Thus, if the player deviates from the strategy, it will be in a way that 

deviates in the first period and then plays C in the second period regardless of whether 

they remember or forget.  Imagine now that λ = ½.  Then the payoff to the deviating 

player in the second stage is the minimax payoff of –5/2.  As before, we note that the 

level of forgetfulness will generally not equal the level that delivers the most severe 

punishment.  This is not our goal here.  Rather, the example is merely meant to illustrate 

that forgetfulness of histories but not strategies can make cooperation easier by making 

severe punishments credible. 

 

5.  Conclusion 

 This paper expands the game theory literature by removing the assumption of 

perfect recall in multi-player strategic games.  Games with imperfect recall can be 

analyzed using a modified classical game-theoretic framework.  We distinguish between 

forgetting histories and forgetting strategies, and explain how classical game theoretic 

models and equilibrium concepts should be adapted to accommodate imperfect recall.  

We find that imperfect recall can sometimes ease cooperation, although it can also 

reinforce inefficient outcomes or make cooperation more difficult in some games.  In 

games with forgetfulness in histories and strategies, forgetfulness has countervailing 

effects on cooperation: the diminished ability to punish reduces the ability to cooperate, 

while the diminished ability to effectively deviate and the increased credibility of severe 

punishments aids cooperation.  Either effect may dominate.  In fact, the latter effects may 

be large enough that there can exist equilibria with on-the-path payoffs that are below the 
                                                 

15 The action that their strategy prescribes after they are forgetful cannot account for their rival’s actions, 
however.  While this does not affect the current example, there are other situations where this can matter.  
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minimax.  Our examination of games where players forget histories but not strategies 

highlights that even if players always remember their strategies, forgetfulness can still 

increase the ease of cooperation if forgetfulness allows players to punish deviations with 

more severe punishments than they would be willing to mete out under perfect recall.  

 There are several business applications of the results discussed in the current 

research. For example, firms make large investments in information technology to 

document prior strategies and actions. These investments are made with the expectation 

that a better recall will lead to better decisions which in turn will result in higher profits 

for the firm. However, a key result of this paper is that forgetfulness can help in 

cooperation. This would then imply that it is not always in the firm’s best interest to 

document history. It would be insightful to study what the extent of this investment in 

information technology should be. Also, in a competitive setting would all firms invest 

the same in documenting past actions and strategies? 
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Appendix 

Completion of Proof of Theorem 1 

 We must also compare that the incentives are greatest when PCC1 = PF1 = PCC2 

=PF2 = 1, but the details are more tedious.  Thus, we present the rest of the proof in this 

Appendix. 

We compare the best incentives for cooperation when PCC1 = PF1 = PCC2 =PF2 = 1 

compared to the best incentives for cooperation when  

(1–λ) PCC1 + λ PF1 = (1–λ) PCC2 + λ PF2 = 
cb

b
−−

−
1

.  We allow the two players to have 

asymmetric strategies.  While this can create unequal punishments for the two players, it 

is possible that in the unmodeled first stage one player needs greater incentives for 

cooperation than the other player.  That said, we find that the case of fully cooperative 

norms still yields the best incentives for cooperation. 

 In the case where the players mix after cooperation, it must be that the players do 

not mix after there is a deviation in any scheme which punishes such a deviation.  For 

logic similar to that in the text, it must be that the players’ strategies must be such that 

either both players play A with probability 1 or both play A with probability 0 if the 

players recall a deviation. 

Case 1: Both players play A if they recall that they are in a punishment state 

In this case, the players will play action A with the ex ante probability (1–λ+λPFi) and 

they will play action B with the ex ante probability λ(1–PFi).  Note that in order for 

(1–λ) PCC1 + λ PF1 = (1–λ) PCC2 + λ PF2 = 
cb

b
−−

−
1

 it must also be the case that 

cb
cPFi −−

−
≤−

1
1)1(λ      (a.1) 

cb
bPFi −−

−
≥+−

1
1 λλ .    (a.2) 

The ex ante punishment profit for player i (playing against player j) is then  

(1–λ+λPFi) (1–λ+λPFj) + (1–λ+λPFi)λ(1–PFj)b + λ(1–PFi)(1–λ+λPFj)c      (a.3) 

We can then compare the maximum incentives to cooperate with those that we can have 

under the fully cooperative norm: 
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cPPbPPPP
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FjFiFjFiFjFi )1)(1()1()1()1)(1(
1

))(1(1
?

2

λλλλλλλλλλ

λλλ

−−−−−−−−−−−−−
−−

−
>+−−−

Which can be rearranged as 

0)1)(1()1)(1()()1](1)1)(1[(
1

2
?

2 >−−−−−−+−−−−−−+
−−

+ cPbPcbcbPP
cb

bc
FiFjFjFi λλλλ

(a.4) 

The second derivative of the left-hand side with respect to λ is 2(1–b–c)(–PFi–PFj+PFiPFj), 

which is negative.  Thus, this function is quasi-convex, meaning that the minimum must 

occur at one of the endpoints in the region we consider. 

At λ = 0, the left side of (a.4) is 0
1

2 >
−−

−
−

cb
bc . 

At 
cb

b
−−

−
=

1
λ , the left side of (a.4) is 

)1)(1()1)(1(
1

)1)(1(2222 2

cPbP
cb

PPbbccb
FiFj

FjFi −−−−−−
−−

−−++−−
λλ  (a.5) 

If c≥ b, we can use the inequality 
cb

cPFi −−
−

≤−
1

1)1(λ  and note that  

(a.5) ≥ 
cb

ccbcPPbbccb FjFi

−−

−−−−−−−−++−−

1
)1)(1()1)(1()1)(1(2222 2

 

        = 
cb

cbcPPb FjFi

−−

−−+−−

1
)1)(()1)(1(2

. 

Each term is positive on inspection.  If c<b, then we plug 
cb

b
−−

−
=

1
λ into (a.5) 

 (a.5) = 
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          ≥ 
cb

bcPbPPc FiFjFi

−−

++−

1
)1(2 2

 

Each term is positive. 

Case 2: Both players play B if they recall that they are in a punishment state 

In this case, the players will play action A with the ex ante probability λPFi and they will 

play action B with the ex ante probability 1–λPFi.  The ex ante punishment profit for 

player i (playing against player j) is then  

λ2PFiPFj + λPFi(1– λPFj)b + (1– λPFi)λPFjc         (a.6) 

We can find the values of PFi and PFj that minimize this payoff: 

[ ]bcbP
P
a

F
Fi

+−−=
∂
∂ )1()6.(

2λλ  < 0. 

The last inequality occurs because λPFi ≤ 
cb

b
−−

−
1

 (or else mixing would not be possible 

on-the-equilibrium path).  This implies that the punishment is minimized when PFi = 1.   

[ ] [ ]ccbccbP
P
a

F
Fj

+−−=+−−=
∂
∂ )1()1()6.(

1 λλλλ . 

This is non-positive if λ ≤ 
cb

c
−−

−
1

, in which case we should set PFj = 1.  If λ > 
cb

c
−−

−
1

 

this is positive, so we want to set PFj as low as possible.  This is PFj = 0 if λ ≤ 
cb

c
−−

−
1

1 , 

but λλ +−
−−

−
= 1

1 cb
bPFj  if λ > 

cb
c
−−

−
1

1 .  (This reflects the minimum value for PFj that 

allows mixing on the equilibrium path.   

Case 2A: λ ≤ 
cb

c
−−

−
1

 

Plugging in PFi = PFj = 1, the punishment in (a.6) becomes λ2 + λ(1– λ)b + λ(1– λ) c, 

which is the same as the punishment payoff we get under the fully cooperative norm.  

This makes sense, since we have the same cooperative norm in this case.  However, the 

“reward” payoff is greater when PCC1 = PCC2 = 1 compared to when (1–λ) PCC1 + λ PF1 = 

(1–λ) PCC2 + λ PF2 = 
cb

b
−−

−
1

. 
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Case 2B: ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−−
−

−−
−

−−
−

∈
cb

b
cb

c
cb

c
1

,
1

1min,
1

λ . 

Plugging in PFi = 1 and PFj = 0 to (a.6) yields a punishment of λb.  We can then compare 

the maximum incentives to cooperate with those that we can have under the fully 

cooperative norm: 

b
cb

bccb λλλλ −
−−

−
>+−−−

1
))(1(1

?
2  

0
1

)1(1
?

2 >
−−

−
−−−−−⇒

cb
bcccb λλ             (a.7) 

If we take the second derivative of (a.7) with respect to λ confirms that this is a quasi-

concave.  Thus, the minimum must occur at one of the edges of the interval we are 

considering.  Note that if the true lower bound is 0 or upper bound is –b/(1–b–c) then we 

are looking at a wider span of values for λ, which can only have a lower minimum. 

At 
cb

c
−−

−
=

1
λ , (a.7) is 0

1
1 >

−−
−

−
cb

bc . 

At 
cb

c
−−

−
=

1
1λ , (a.7) is 0

1
11

1
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−−
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−≥
−−
+−

+
cb
cb
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cbc .        (a.8) 

Case 2C: ⎥⎦
⎤

⎢⎣
⎡

−−
−

−−
−

∈
cb

b
cb

c
1

,
1

1λ . 

Plugging in PFi = 1 into equation (a.6) and then comparing with the incentives for 

cooperation in stage 1 when PCC1 = PF1 = PCC2 =PF2 = 1 yields  
?

22 0)1(
1

)()1(1 >++−−+
−−

−
−+−−−− cPbcbP

cb
bccbcb FjFj λλλλλ  (a.9) 

We can take the second derivative of the left side (a.9) with respect to λ and we can 

confirm that it is negative, implying that this is a quasi-concave function.  Thus, we only 

need to check this condition at the two end points. 

At 
cb

c
−−

−
=

1
1λ , 01

1
=+−

−−
−

= λλ
cb

bPFj .  This gives the same calculations as we 

performed in (a.8). 

At 
cb

b
−−

−
=

1
λ , 1

1
2

−
−−

−
=

cb
bPFjλ  

Plugging these into equation (a.9) yields  
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0
1

)1()1(
1

2)1(21
2222

>
−−
−

+−=−
−−

−−−−+++++−
+

cb
cbcc

cb
bcbcbbbbcbcbb  

Q.E.D. 
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Figure 1: 

 A B 
A 1, 1 b, c 
B c, b 0, 0 

     c < 1, b < 0. 

Figure 2:  Two Stage Game 
 

       Stage One          Stage Two 
 Coop Fink   A B 

Coop 4, 4 -1, 5.5  A 1, 1 -4, ½  
Fink 5.5, -1 0, 0  B ½, -4 0, 0 

 

Figure 3: 

 A B C 
A 1, 1 -100, 0 -100, -5 
B 0, -100 0.5, 0.5 -5, 5 
C -5, -100 5, -5 0, 0 

 

The minimax payoff is –5/2.  A player wishing to impose the minimax on their opponent 
must mix, playing A with probability ½ and C with probability ½.   This gives the other 
player a payoff of –5 if they play action A or –5/2 if they play B or C.  Playing B with a 
higher probability would increase the payoffs to a player playing either B or C, while 
playing A or C with a higher probability increases the payoff to an opponent playing B or 
C, respectively, (or an opponent playing A) so this is the minimax.  Thus, playing either 
B or C is a best response to this minimax. 
 

 

Figure 4: 

       Stage One          Stage Two 
 A B   X Y 

A -2, -2 -5, 0  X 1, 1 -5, 0 
B 0, -5 0, 0  Y 0, -5 0, 0 
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