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Abstract

In our model an individual forms beliefs over events based on the frequencies

of occurrences of the events in past cases. However, in some cases, he might not

know whether or not a speci�c event has occurred. Our model suggests that

ambiguity may arise due to this sort of partial information and that attitude

towards ambiguity can be explained by the way the individual process such im-

precise cases. An individual who tends to put low weight on the possibility that

an event occurred in these imprecise cases will turn out to be ambiguity averse,

whereas an individual who tends to put high weight on the possibility that this

event occurred will turn out to be ambiguity loving.

The model is followed by an experiment designed to test the main features

of the model. It is corroborated that given precise data subjects are ambiguity

neutral while given imprecise data subjects are ambiguity averse.
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1 Introduction

1.1 Motivation

Suppose that you are about to undergo some medical treatment. You have agreed

to this treatment knowing that it was successful in 30 out of 50 past cases and it

was unsuccessful in the remaining 20. Instead, assume that you were given the same

information as before and were further noti�ed that 20 additional records were lost

due to a technical problem and therefore the success of the treatment in these cases

is unknown. How would you feel about going through the treatment under these

alternative circumstances? Is it possible that the additional information in this second

scenario lowers your con�dence in the treatment? In this work we explore how such

vague information e¤ects beliefs that are formed based on past data.

Many experimental studies, following Ellsberg (1961), show that people�s beliefs in

uncertain (ambiguous) situations cannot be quanti�ed by a single additive probabil-

ity measure. Among the most notable theories that can accommodate the observed

behavior are Schmeidler�s Choquet Expected Utility (CEU) model (1989), and Gilboa

and Schmeidler�s Maxmin Expected Utility (MMEU) model (1989). In order to ac-

count for non-neutral attitudes to ambiguity the former uses a capacity (non additive

probability) and the latter uses a set of probabilities. However, none of these the-

ories explains where beliefs come from, nor what the origin of uncertainty attitudes

is. In these works as well as in others the axiomatic derivations are in the spirit of

the subjective expected utility derivations of de Finetti (1937), Savage (1954), and

Anscombe-Aumann (1963). �Beliefs�are derived from an �as-if�representation using

only what is considered observable behavior data and above all no claim is made about

the actual cognitive processes that leads to decisions.

This approach has several limitations. First, in the absence of a theory of belief

formation, one cannot tell which beliefs are reasonable in a given context. This point

was forcefully made by Gilboa, Postlewaite, and Schmeidler (2004), and it seems to be
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a major motivation for recent derivations of case-based probabilities by Billot, Gilboa,

Samet, and Schmeidler (2005) and Gilboa, Lieberman, and Schmeidler (2006). We

maintain that a theory of belief formation which restricts the range of reasonable

beliefs is just as important when discussing non-Bayesian beliefs.

Second, the standard axiomatic approach remains silent on the causes of, say, am-

biguity aversion. What are the basic mechanisms that underlie this phenomenon? Is

it an almost-paranoid tendency to believe that nature is malevolent, as suggested by

Maccheroni, Marinacci, and Rustichini (2006)? Is it a personality trait, in which case

we may expect that entrepreneurs would be less prone to it than the population at

large, or is it a feature of the environment? While there is some neurological work

attempting to compare patterns of brain activation while making decisions under risk

and under uncertainty (Hsu, Bhatt, Adolphs, Tranel, and Camerer 2005, and Rusti-

chini, Dickhaut, Ghirardato, Smith and Pardo 2005), there is practically no cognitive

account of uncertainty aversion in the literature.

Third, models that elicit beliefs solely from choices have been criticized for their

inability to distinguish between ambiguity as an epistemic state and ambiguity aversion

as a feature of preferences. A decision maker who faces a mildly uncertain situation and

is very sensitive to uncertainty may behave in the same manner as a decision maker who

faces an extreme uncertain situation and is almost indi¤erent to uncertainty. Gajdos,

Hayashi, Tallon, and Vergnaud (2006) overcame this problem by introducing objective

information into the objects over which preferences are de�ned. However, in their work

the information is provided as sets of priors, whereas statistical information is rarely

given in such a form. It appears that our understanding of ambiguity aversion would

bene�t from a cognitive model that can explicitly describe available information, as

well as the process by which it is used to generate non-Bayesian beliefs.

In the present model an individual forms a belief over an event using empirical

frequencies in past cases. However, some information regarding this event may be
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imprecise. That is, in some past cases the event is neither known to have occurred

nor to have not occurred. In this model ambiguity emerges due to this feature of the

data. Had data been precise no ambiguity would arise and beliefs would be determined

uniquely according to the number of past cases in which this event occurred out of the

total number of cases. With imprecise data the frequency of occurrences is consistent

with a range of values. This brings to mind two opposite approaches individuals may

follow when processing data. An individual following the �rst approach will tend to

treat these imprecise cases as if the evaluated event had not occurred in them, resulting

in the formation of �low� beliefs. An individual following the second approach will tend

to treat these past cases as if the event had occurred in them, resulting in the formation

of �high� beliefs. In the framework of CEU the former beliefs correspond to ambiguity

aversion which traditionally is interpreted as pessimism and equivalently, the latter

beliefs correspond to ambiguity loving or optimism.

The model is accompanied by an experiment which was designed to examine if

actual behavior of decision makers is in accordance with that imposed by the model. In

particular it tests whether imprecise data is a cause for ambiguity aversion. The results

indicate that individuals who are presented with precise information form additive

beliefs, while those who are presented with imprecise information form non-additive

beliefs. In fact it is shown that these non-additive beliefs re�ect ambiguity aversion.

1.2 Example

Mr. Blue is trying to predict whether the stock market will rise or fall tomorrow. When

forming beliefs Mr. Blue bases his evaluation on past cases. A good starting point for

his evaluation of an event is the experienced relative frequency of occurrences of this

event. He can perfectly recall the exceptional days in which the stock market rose or

fell dramatically, say by at least 4%. He can consequently deduce in which days the

change in the stock market was less signi�cant (we refer to this event as event A). His

evaluation of A will then equal the number of these days out of the total number of
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days in which he observed the stock market. Since in most days the stock market did

not change radically, he may feel con�dent enough to assign a high probability to the

event that the stock market will change by less than 4%.

In addition, on most accounts Mr. Blue cannot recall the exact change of the stock

market on days in which it was not signi�cant. Speci�cally he can only remember

a small amount of days in which the stock market fell (rose) by less than 4% and

generally he cannot be sure about what occurred in the rest. Now Mr. Blue is asked to

express his belief regarding the event �the stock market will fall by less than 4%�(event

B). Consider the following two extreme approaches for evaluating the likelihood of this

event: 1. assuming there is no su¢ cient reason to believe that the stock market is more

likely to rise rather than fall (and vice versa), the evaluation will be approximately

half of the likelihood ascribed to event A. 2. Considering only days in which he is

certain this event occurred (and disregarding the rest) the evaluation will be the relative

frequency of such days out of the total number of days. This second approach totally

neglects the possibility that the event may have occurred in some of the remaining

days. Hence, Mr. Blue will most de�nitely be willing to say that his belief regarding

event B is higher than the second evaluation. Still under these circumstances, he may

feel reluctant to evaluate this event at the level of the �rst evaluation and therefore he

will lower his belief beneath this value. Consequently, his evaluation will be between

the two extreme evaluations. Given that he has the same type of data with respect to

the event �the stock market will rise by less than 4%�(event C), his evaluation of this

event will follow a similar path. Thus, Mr. Blue�s beliefs are non additive as the sum

of the evaluation of B and C is lower than the evaluation of their union (event A).

In the present model, an imprecise event is an event about which data is vague.

That is, in some past cases it is neither known to have occurred nor to have not

occurred (such as the events B and C). A precise event is an event that is either

known to have occurred or known to have not occurred in each past case (such as

event A). In circumstances where some events are imprecise, Mr. Blue�s beliefs will
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convey his attitude towards ambiguity. Evaluation by the second approach will exhibit

extreme ambiguity aversion while evaluation by the �rst approach will re�ect ambiguity

neutrality. It is equally possible to demonstrate beliefs which exhibit an ambiguity

loving attitude by modifying the belief formation process in the appropriate way.

The rest of the paper is organized as follows. In the next section two evaluation

approaches which exhibit di¤erent attitudes toward ambiguity are formally introduced

and studied, followed by more related literature. Proceeding, section 3 contains the

experimental design and the main �ndings. Finally, Section 4 includes a discussion.

2 The Model and Results

2.1 Belief Formation

Let 
 = f!1; :::; !ng be a �nite set of states of nature (n > 2) and let � be an algebra
of subsets of 
 called events which is given by the power set 2
: A dataset D of length

T , is a sequence of events indexed by i = 1; :::; T :

D = (B1; :::; BT )

where Bi 2 �n f�;
g : A dataset is also referred to as memory.

The set of all datasets or memories of length T is denoted by DT := �n f�;
gT

and the set of datasets of any length is denoted by D :=
[

T2f1;2;:::;1g

DT :

A case i is the ith element of a dataset D. The event Bi is interpreted as the

information that the individual has regarding the occurrences in case i. Two types of

cases are excluded, the �rst are cases in which B = �. Excluding these cases implies

that the evaluator is aware of all the possible states of nature, thus the event that is

known to have occurred cannot be empty. The second type of cases that are excluded
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are cases in which B = 
: These cases add no information to the evaluation of the

outcomes since they do not narrow the set of states of nature that have or have not

occurred. Observe that for any two cases i and j for which Bi � Bj, case i is more

informative than j, since the set of events that are known to be realized and not realized

inferred by case i includes the set of these events inferred by case j.

A capacity v is a mapping from 2
 into [0; 1] such that v(�) = 0, v(
) = 1 and v is

monotone, that is v(A) � v(A0) whenever A � A0: Let V be the set of all capacities.

In this model v depends on data, namely, v : D ! V. For any dataset D, vD is the

capacity that the decision maker attaches to the dataset. Given D = (B1; :::; BT ), we

de�ne 8j � T

Fj(A) =

8<: 1 if A � Bj
�
jA\Bj j
jBj j otherwise

(1)

and

Gj(A) =

8<: 0 if A \Bj = �

1� � jA
c\Bj j
jBj j otherwise

(2)

where Ac denotes A�s complement and 0 � � � 1. Two types of evaluations of an

event are considered:

vFD(A) =

XT

j=1
Fj(A)

T
(3)

and

vGD(A) =

XT

j=1
Gj(A)

T
: (4)

In some cases in the dataset the individual may not be sure whether event A

occurred or not. Knowing that B occurred in case j, equations (1) and (2) determine

how much weight the individual puts on the possibility that A occurred in this case.

When A � B it is obvious that A occurred and the maximum weight (i.e., 1) is put
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on this possibility, according to both equations, while when A \ B = � it is obvious

that A had not occurred and no weight is put on this possibility. When the conditions

above are not satis�ed (that is, when A + B and A \ B 6= �) it is unclear whether A

occurred and the equations generally provide di¤erent answers.

When � = 1 the equations are identical, and the weight put on the possibility that

A occurred equals the proportion of states in B which suggest that A occurred. With

this parameter, the equations yield an additive probability measure and therefore this

approach is referred to as neutral. For � < 1; an individual following (1) will put

a lower weight on the possibility that A occurred compared to the neutral approach,

whereas an individual following (2) will put a higher weight on this possibility. Roughly

speaking, the former approach leads to low beliefs, while the later approach leads to

high beliefs. We refer to the former as a pessimistic approach and to the later as an

optimistic approach.

Beliefs increase with � according to Equation (3) and decrease according to Equa-

tion (4). For the extreme value of � = 0; Equation (3) corresponds to the lowest

possible beliefs given the dataset. An individual holding such beliefs presumes the

event has not occurred unless he is informed otherwise. Equation (4) corresponds to

the highest possible beliefs given the dataset. Holding these beliefs is in accord with

assuming that the event has occurred unless informed otherwise.1 Any belief in the

range between these two extreme beliefs is considered plausible given the dataset.

Equations (3) and (4) should be treated only as a rough approximation of a belief

formation process and must not be taken literally. It is their qualities we �nd appealing

and not necessarily their exact values. According to both equations, a stronger indi-

cation that an event A occurred in case j increases the perception of its likelihood.2

However, as long as this indication is vague, the belief according to (3) will tend to be

1The lowest value of vFD(A) and the highest value of v
G
D(A) can also be interpreted as the lowest

and highest additive probabilities assigned to event A in the core, respectively.
2This is captured by the property that both formulas increase with the expression jA\Bj j

jBj j .
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relatively low while the belief according to (4) will tend to be relatively high.

In the next section we study the properties of beliefs based on (3) and (4) and

connect them to the literature. Among the two, we �nd procedure (3) much more

natural and in the experimental section it is veri�ed that participants� behavior is

consistent with it.

2.2 Attitudes towards Ambiguity

In this section it is shown that Equation (3) represents ambiguity aversion while Equa-

tion (4) represents ambiguity loving, where the degree of ambiguity aversion or love

depends on �.

First, a few known properties of capacities that will prove useful are presented. A

capacity v is convex if for all A and A0 v(A) + v(A0) � v(A [A0) + v(A \A0) and it is

concave if the inequality is reversed.

A capacity v is a belief function3 if it satis�es, for any collection A1; :::; An of subsets

of 
; v(
S

i=1;:::;n

Ai) �
P

fH:H�f1;:::;ngg(�1)jHj+1v(
T
i2H

Ai): This condition is known to be

equivalent to the following: for every event A,
P

B�A(�1)(jAj�jBj)v(B) � 0: Note that

n = 2 is the convexity condition of v, thus every belief function is convex.

De�ne �v by �v(A) = 1� v(Ac).4 Then the following properties hold:

� v is a capacity if and only if �v is a capacity

� v is concave if and only if �v is convex

� if v is a probability then v = �v.

Note that for any event A; Gj(A) = 1� Fj(Ac); so we get vGD = �vFD:
3A "belief function" is a technical term in Dempster (1967 and 1968) and Shafer�s (1976) theory.
4In the context of cooperative game theory �v is called the dual game and when v is a belief function

Dempster (1967 and 1968) and Shafer (1976) call �v an upper probability.
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The concept of ambiguity aversion is that decision makers prefer to be exposed to

randomness in situations in which probabilities are known as opposed to situations in

which they are unknown. In order to capture this idea Schmeidler (1989) suggested a

behavioral axiom by which a decision maker who is indi¤erent between two alternatives

will (weakly) prefer the mixture of the two. The rationale behind this notion is that

when probabilities are unknown one alterative can be used as a hedge against the

other, which thereby reduces the uncertainty. Similarly, the reverse preference towards

mixing re�ects ambiguity loving while indi¤erence expresses ambiguity neutrality.

Schmeidler (1989) shows that in the context of CEU this notion of ambiguity aver-

sion (loving) translates into convexity (concavity) of the capacity. A capacity which

is a probability, naturally, re�ects ambiguity neutrality. Not all the literature agrees

that convexity (concavity) is a necessary condition for ambiguity aversion (loving), yet

it generally does agree that it is a su¢ cient one (see, for example, Ghirardato and

Marinacci, 2002 and Epstein and Zhang, 2001. See an exception to this approach in

Wakker, 2008 which discusses the importance of relative convexity).

According to the above notions, using the CEU decision rule the following proposi-

tions establish the attitudes towards ambiguity of beliefs based on data in our model:

Proposition 1 vFD and v
G
D as de�ned in equations (3) and (4) respectively are capaci-

ties.

Proposition 2 vFD as de�ned in Equation (3) is a belief function.

All proofs can be found in Appendix A. Proposition 1 establishes that vFD and

vGD are both capacities. Proposition 2 shows that v
F
D is in fact a belief function and

thus convex. Moreover, since vGD = �vFD the convexity of v
F
D implies the concavity of

vGD. Therefore, evaluating the likelihood of events according to Equation (3) leads to

behavior of ambiguity aversion, while evaluating the likelihood of events according to

Equation (4) leads to behavior of ambiguity loving. When � = 1 we have neutrality

towards ambiguity. Note that when there is no vagueness regarding the occurrences of
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events in the data (that is, data are precise) any � leads to an additive probability and

therefore the individual�s attitude towards ambiguity in these circumstances cannot be

identi�ed.

Ghirardato and Marinacci (2002) developed a notion of comparative ambiguity

aversion5 by which 1 is more ambiguity averse than 2 if for every two alternatives,

one ambiguous and the other not, if 2 prefers the unambiguous alternative over the

ambiguous one then so does 1. In the context of CEU the characterization of this

de�nition is that for every event, 2�s capacity of this event is larger or equal to that

of 1�s.6 In the present framework it is easily seen that for a given dataset, according

to procedure (3) ((4)), a smaller (larger) � corresponds to a more ambiguity averse

individual.

2.3 Ambiguous Events

In recent literature there are several de�nitions of ambiguous events. Usually ambigu-

ous events are derived endogenously from observed behavior. Generally speaking, an

event is deemed to be ambiguous if the decision maker�s preferences imply so (without

going into detail about the exact de�nitions). The de�nitions of ambiguous events were

translated into conditions on the capacities in the CEU model, or into conditions on

the set of probabilities in the MMEU model.

Nehring (1999) showed that for MMEU preferences, unambiguous events can be

identi�ed with events on which all probabilities agree. Furthermore, since a capac-

ity can be associated with a set of probabilities, he was able to de�ne unambigu-

ous events in the CEU model by the associated probability set in the same man-

5Following Yaari�s (1969) notion of comparative risk aversion Epstein (1999) was the �rst to de�ne

comparative ambiguity aversion.
6The notion of �more ambiguity averse" also requires that the two decision makers�utilities over

prizes are essentially the same. However, they later argue that even when their utilities are not

identical, the same idea of capacity domination can be used to compare between attitudes towards

ambiguity.
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ner. Zhang (2002) and Epstein and Zhang (2001) showed that for a subclass of

CEU preferences with a convex (concave) capacity the set of unambiguous events is

fA jv(A) + v(A0) = v(A [ A0) 8A0 such that A0 � Acg, which is equivalent to

fA jv(A) + v(Ac) = 1g. Ghirardato and Marinacci�s (2002) de�nition of unambiguous

events agrees with Epstein and Zhang�s de�nition when expressed in terms of capaci-

ties and with Nehring�s de�nition when expressed in terms of the set of probabilities.

Klibano¤, Marinacci and Mukerji�s (2005) de�nition is the same as Nering�s when

expressed in terms of the set of probabilities.

Although this study�s focus is not observed behavior of a decision maker, it is

still possible to ask which events are perceived in our model as unambiguous by the

de�nitions mentioned above. The following de�nes imprecise information and classi�es

the set of imprecise events. We proceed by showing how these de�nitions relate to the

existing de�nitions of unambiguous events.

GivenD = (B1; :::; BT ); we de�ne case j as precise with respect to event A if Bj � A

or Bj � Ac. Namely, in case j it is known whether or not A was realized. We refer to

A as precise with respect to case j when the condition is satis�ed, and to A as precise

when it is precise with respect to every case in the dataset. This de�nition extends

naturally to cases and datasets. Case j is regarded as precise when it is precise with

respect to every event in 2
, i.e., when Bj = f!ig for some !i 2 
. A dataset is precise

when all cases in it are precise and is imprecise otherwise.

As stated in Proposition 1 and Proposition 2, beliefs in our model are represented

by convex and concave capacities. It turns out (as the next Lemma shows) that under

these conditions, Nehring�s de�nition of unambiguous events is equivalent to that of

Epstein and Zhang. Therefore, we refer to an event as unambiguous if it satis�es any

one of these two de�nitions.

Lemma 1 Let v be convex (concave) and let A be an event. Then v(A) + v(A0) =

v(A [ A0) for all A0 disjoint from A if and only if v(A) = �v(A):
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Proposition 3 For � < 1; event A is precise given D if and only if A is unambiguous.

Furthermore, the set of precise events forms an algebra.

Proposition 3 states that ambiguity, in our model, is due to partial information in

the data, and that should have information been precise no ambiguity would arise.

The next proposition shows that only an imprecise memory leads to a non additive

probability measure.

Proposition 4 Let � < 1 and let vFD and v
G
D be de�ned as in equations (3) and (4)

respectively, then vFD and v
G
D are probabilities if and only if the dataset is precise. In

this case vFD = v
G
D.

Note that for � = 1; vFD and v
G
D are additive probabilities with no dependence on

the precision of the data.

2.4 Bibliographic Note

Several other works discuss belief formation based on data. Demptser and Shafer (DS)

(Dempster 1967, 1968 and Shafer 1976) presented a mathematical theory of evidence

in which they modeled the connection between an individual�s con�dence in the belief

and the evidence he possesses. They came up with a �belief function�. It turns out

that the evaluation according to procedure (3) satis�es their mathematical conditions.

Indeed, DS�s theory and the present model share the same basic motivation. Both

models attempt to capture the concept of beliefs based on judgment of evidence that

need not turn out to be an additive probability measure. DS did not explain where the

evidence comes from; it may be observations, rumors, or other sources of information.

Nevertheless, their model mainly �ts circumstances in which data contains di¤erent

pieces of informations about the current situation rather than separate past cases.

In two related works, Ja¤ray (1991) and Gonzales and Ja¤ray (1998) construct a

preference relation based on data which contain imprecise cases. This construction

makes use of beliefs which �t our formalization with � = 0:
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Both Carnap (1952 and 1980) and Viscusi (1989) propose an updating process by

which the posterior (additive) probability is a weighted average of a prior probability

and the observed relative frequency, where the weight of the relative frequency depends

positively on the sample size. More related to our work is Billot et al. (2005) which also

presents a procedure describing how individuals form additive beliefs given available

data. The main distinction between this model and ours is the type of data the

individual can possess. Billot et al. considers only cases with precise information,

while we allow for cases with imprecise information as well. This enables us to capture

the notion of ambiguity due to imprecise information. Eichberger and Guerdjikova

(2007) extends Billot et al. (2005) by considering the sample size in order to account

for ambiguity.

3 Experimental Test of the Model

This section describes two experiments that examine whether actual behavior of de-

cision makers is supportive of the model�s main implications. The �rst experiment is

concerned with belief formation given precise dataset. It tests whether the perception

of the likelihood of an event matches the frequencies of occurrence of this event in

the data. The second and the main experiment�s aim is to shed light on formation of

beliefs given an imprecise dataset and, in particular, to test the statement that decision

makers are ambiguity averse in the presence of imprecise data.

Participants in Experiment 1 were 80 economics students in undergraduate and

graduate studies at Tel-Aviv University. Participants in Experiment 2 were 292 under-

graduate students both from economics at Haifa University and engineering at Ben-

Gurion University.7 The students were asked to participate in a short experiment (that

lasted about 15 minutes) in the beginning of the class.

7Originally there were 5 more participants in the experiments whose answers were excluded, since

it was clear from their forms that they misunderstood the questions.
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The introductory instructions in the two experiments were the same. In the begin-

ning of each session, before distributing the forms, the setting of the experiment was

presented. The subjects were informed that some of them will be randomly chosen

to participate in a lottery that will take place at the end of the experiment. This

lottery, which is speci�ed explicitly in their forms, is concerned with a drawn of a ball

from an urn. Furthermore, not all of them face the same lotteries. The subjects were

asked to state whether they prefer to participate in the lottery or rather to be given

a certain amount of money. They were required to do so for every amount of money

that appeared in their forms which included values that varied between 10 NIS to 140

NIS.

The subjects were told that those of them who would be randomly chosen at the

end of the experiment (the proportion was approximately 1 subject out of 25) will get

a monetary prize according to their choices. More speci�cally, a certain sum of money

will be selected at random at the end of the experiment. If a selected student stated that

he preferred this particular sum over the lottery, he would be given this sum, whereas

if he stated that he preferred the lottery he would be given the amount according to

its outcome (in line with the BDM procedure, Becker, DeGroot and Marschack, 1964).

It was further explained that for the rest of the subjects the decisions are hypothetical,

but since they all have a chance to be chosen, they all have a good reason to state

their true preferences. Finally, it was emphasized that there is no correct answer and

that the answer depends solely on their personal preferences. After explaining the

experiment out loud the subjects were asked to read the instructions in their forms.

3.1 Experiment 1

In this experiment a comparison is made between the behavior of subjects who were

provided with the exact proportions of di¤erent balls in an urn to that of subjects who

were not informed about the proportions but were given a precise dataset of past cases

(draws) in which the frequencies of occurrences of events �t the above proportions.
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Two di¤erent kinds of forms were randomly distributed among all subjects within

each class that participated in the experiment. The forms corresponded to two treat-

ments: the experimental group (Treatment a) and the control group (Treatment b).

The general structure of the forms in both experiments 1 and 2 can be found in Ap-

pendix B. Subjects in the experimental group were told that the urn contains a total of

90 balls of four di¤erent types with unknown proportions: yellow balls marked with O,

white balls marked with O, yellow balls marked with X and white balls marked with

X. Then, they were given information concerning the outcomes in eight past draws of

a ball from this urn (with replacement). This dataset appears in Table 1.8 Subjects in

the control group, who faced a di¤erent urn, were not provided with a dataset of past

draws but rather were told that their urn contains exactly three yellow balls and �ve

white balls.9 The ratio of yellow balls in Treatment b0s urn was equal to proportion of

observations in which a yellow ball was drawn in Treatment a0s dataset.

Table 1 : Dataset of Treatment a

Case Ball Type

1 Yellow with O

2 White with X

3 White with X

4 White with O

5 Yellow with X

6 White with O

7 Yellow ball

8 White with X

Subjects in both treatments were o¤ered to participate in the following lottery: �if

at the end of the experiment, a yellow ball will be drawn from the urn, you will get

8All treatments in both experiments (apart from Treatment b in which there is no sample) included

two versions in which the order of the cases in the dataset were shu ed.
9The subjects were not informed that there were two separate urns in treatments a and b.
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150 NIS (around 40 USD). Otherwise, you will get nothing�. Finally, subjects were

asked to state whether they prefer the lottery over a sure amount of money M , for

each M 2 f10; 20; :::; 140g.

The certainty equivalent (CE) is taken to be the lowest amountM that is preferred

over the lottery. The average CE in treatment i is denoted by CEi for i = a; b.

Participants of both treatments were o¤ered the same lottery, therefore a higher CE

re�ects a higher belief that a yellow ball will be drawn from their urn.10 The null

hypothesis of the experiment is that CEa = CEb.

Results:

A detailed distribution of choices in all treatments in the experiments appears in Ap-

pendix C. There were 38 subjects in Treatment a and 42 subjects in Treatment b.

The average CE of the experimental group and the control group were found to be

CEa = 67:37 and CEb = 69:52 respectively. The results indicate that these two CEs

are not signi�cantly di¤erent (t = �0:4 and p = 0:69). Therefore, we cannot reject

the null hypothesis that CEa = CEb. In addition, the samples�variances are also not

signi�cantly di¤erent (F = 1:41 and p = 0:15).

In other words, these �ndings support the statement that individuals form a belief

over an event that matches the proportion of cases in memory in which this event had

occurred.

Note that the result that there is no signi�cant di¤erence between the two CEs

holds despite the small number of past cases in Treatment a�s dataset. This is in line

with the evidence that people take small samples too seriously as in the phenomena of

the �law of small numbers�(see Tversky and Kahneman, 1971).

10A discussion of this measure is postponed to Section 3.3.
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3.2 Experiment 2

In order to demonstrate that subjects are ambiguity averse in the presence of imprecise

data (that is, they behave in accordance with F in Equation (3) and � < 1),11 it is

shown that their beliefs (CEs) are lower than those induced by the neutral approach

(i.e., � = 1).

A direct test would compare the subjects�CE to that of ambiguity neutral individ-

uals given the same imprecise data. The problem is that the CE value of ambiguity

neutral individuals is unknown. The key of the experiment is to obtain this neutral

CE indirectly in a parallel treatment, which is explained in detail in the following

subsection.

Eight kinds of forms, which represented eight di¤erent treatments, were randomly

distributed among all subjects within each class that participated in the experiment.

All the forms had the same structure of the form of the experimental group in Ex-

periment 1, that is, all forms had a dataset of 8 cases of past draws and a proposed

lottery which was de�ned over the type of the ball that would be drawn at the end

of the experiment. The states of nature in all treatments were the di¤erent types of

balls that could be drawn from the urn. That is, 
 = fwhite with O, white with X,

yellow with O and yellow with Xg. The treatments di¤ered in their dataset and their

proposed lottery. The dataset that appeared in the treatments was either precise

with respect to the events in question (shown in Table 3) or imprecise with

respect to any one of these events (shown in Table 4). All lotteries had the same

structure as the one that appeared in Experiment 1: you will win 150 NIS if the type

of the drawn ball is Z and 0 otherwise. The lotteries di¤ered according to the type of

the ball Z, which could be one of the following: white (W ), yellow (Y ), yellow with O

(Y O) or yellow with X (Y X).

11Both the requirement that people follow procedure F and that � < 1 are necessary for ambiguity

averse behavior. Stating both conditions each time is cumbersome, therefore in the sequel the condition

of following F is omitted.

18



The treatments are denoted by T iZ , where i 2 fP; IPg and Z 2 fW;Y; Y X; Y Og:

The upper index i indicates whether the dataset is precise (P ) or imprecise (IP ), and

the lower index Z indicates what is the type of ball that will grant a prize if drawn out

of the urn. The average CE of each treatment is denoted by CEiZ in the same manner.

A summarized description of all 8 treatments can be found in Table 2.

Table 2: Treatment Description

Treatment

No.

Treatment

Name

Sample

type

Lottery

type (Z)

No. of

Subjects

1 T PW Precise W 32

2 T IPW Imprecise W 32

3 T PY Precise Y 46

4 T IPY Imprecise Y 42

5 T PY O Precise Y O 46

6 T IPY O Imprecise Y O 38

7 T PY X Precise Y X 33

8 T IPY X Imprecise Y X 23

The discussion is divided into two parts. The �rst part, which includes treatments

1� 4 tests the main hypothesis of the experiment and the second part which includes

treatments 5 � 8, is a robustness test which veri�es that the results hold for di¤erent

events.

3.2.1 Part 1

The dataset that appeared in Treatment T PW , consisted of eight past cases which were

precise with respect to the event W (see Table 3). The dataset of Treatment T IPW is

obtained by replacing two precise cases in the dataset of Treatment T PW - one in which

W had occurred (Case 1) and one in which W had not occurred (Case 8) - by two

imprecise cases with respect to the event W . All other six past cases were practically
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una¤ected (see the dataset of T IPW in Table 4).12 The subjects were o¤ered the lottery

�win 150 NIS if a white ball is drawn and 0 otherwise� in both treatments T PW and

T IPW .

Table 3: Precise dataset

Case Ball Type

1 White with O

2 Yellow with X

3 Yellow with X

4 Yellow with O

5 White with X

6 Yellow with O

7 White ball

8 Yellow with X

Table 4: Imprecise dataset

Case Ball Type

1 A ball with O

2 Yellow with X

3 Yellow with X

4 Yellow with O

5 White with X

6 Yellow

7 White ball

8 A ball with X

According to the model, individuals who observe the precise dataset given in Treat-

ment T PW , regardless of their �, hold the same belief about event W . Note that

F1(W ) = 1 and F8(W ) = 0 given this precise data. An individual in Treatment T IPW

who follows the neutral approach (i.e., � = 1) holds the same belief aboutW as that of

individuals in Treatment T PW ; since given this imprecise dataset, Fj(W ) = �
jW\Bj j
jBj j = 1

2

for j = 1; 8; and Fj is the same as in Treatment T PW for any j 6= 1; 8. In contrast,

an individual with a pessimistic approach (i.e., � < 1) holds a lower belief regarding

W . Therefore, the experimental �ndings support the hypothesis that subjects follow a

pessimistic approach (or � < 1) if subjects in Treatment T IPW hold a lower belief than

that of subjects in Treatment T PW .

One may be concerned that the belief of subjects in Treatment T IPW regarding event

12Case 6 is also di¤erent in the two samples. Nevertheless, this di¤erence should not a¤ect the

results, since this case is precise with respect to the relevant events in treatments 1 � 4. The reason

for this di¤erence will become apparent in part 2 of Experiment 2.
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W may indeed be lower than that of subjects in Treatment T PW but that their belief

regarding the complement event Y may be higher. This set of beliefs would not re�ect

ambiguity aversion and would be inconsistent with the model. The role of treatments

T PY and T
IP
Y is to verify that this does not occur.

The dataset that appeared in Treatment T PY was identical to that in Treatment T
P
W

and the dataset that appeared in Treatment T IPY was identical to that in Treatment

T IPW . The lottery that was o¤ered in both T PY and T IPY was �win 150 NIS if a yellow

ball is drawn and 0 otherwise�. The hypothesis of this part of Experiment 2 is that

the beliefs given imprecise data are lower than those given precise data both for the

event W and for the complement event Y . Put di¤erently, both CEIPW < CEPW and

CEIPY < CEPY .

Results of Part 1:

The average CE of Treatment T PW is CEPW = 65:3, and of Treatment T IPW is CEIPW =

50:9. The results indicate that CEPW is higher than CE
IP
W , where the di¤erence between

the two is signi�cant (t = �2:46 and p = 0:008). Likewise, the average CE of Treatment

T PY is CEPY = 78:5 , and of Treatment T
IP
Y is CEIPY = 70. Here again, CEPY is higher

than CEIPY , and the di¤erence between the two is signi�cant at the 6% level (t = �1:59

and p = 0:057).

The only di¤erence between treatments T PW and T IPW and between treatments T PY

and T IPY is the imprecision of the dataset. Therefore, the �ndings support the model�s

main idea that imprecise data is a source for ambiguity aversion.

A simple alternative procedure of belief formation that may come to mind is that

individuals form beliefs according to the frequency of occurrence of the precise cases

in memory while ignoring the imprecise cases. Had this been true, CEPW should have

been higher than CEIPW and CEPY should have been lower than CE
IP
Y and hence it is

ruled out by the results.

Note that the experimental results support the model�s idea that beliefs are based
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on the relative frequency of events in the data. To demonstrate this point a comparison

between the results of Treatment T PY (in Experiment 2) and of Treatment a in Exper-

iment 1 is made. Recall that the only di¤erence between the two treatments is that in

the dataset of Treatment a, 3 out of 8 draws were yellow, while in that of Treatment

T PY 5 out of 8 draws were yellow. In both treatments the lottery was �you will win 150

NIS if a yellow ball is drawn and 0 otherwise�. It was found that CEa is signi�cantly

lower than CEPY . This comparison indicates �rst, that subjects do base their beliefs on

the dataset and second, that these beliefs are higher when the frequency of occurrence

of an event in past cases is higher. This comparison should be treated cautiously, since

the two treatments were conducted in separate classes. Nevertheless, the �ndings in

treatments T PW and T PY , which were preformed in the same classes, further support this

result. In Treatment T PW the frequency of occurrence of W is lower than that of Y in

Treatment T PY , and at the same time CE
P
W is signi�cantly lower than CEPY .

3.2.2 Part 2

Formally, in order to con�rm that the subjects�beliefs exhibit ambiguity aversion in

the presence of imprecise data, we need to elicit their beliefs for each event in �

(which amount to 14 events excluding � and 
). Furthermore, these beliefs need to be

obtained both for imprecise and precise data. This means that 28 treatments need to

be preformed, which is way too large a number from any practical aspect. Therefore,

in treatments 5 � 8 we chose to focus on two such of these events, a draw of yellow

with X and a draw of yellow with O, both of which contain a single state of nature

as opposed to the events in treatments 1 � 4 which contain two. We view this as a

robustness test which checks whether the previous results hold for additional events.

In this part four treatments were preformed, T PY O, T
IP
Y O, T

P
Y X and TIPY X . The

datasets in this part are the same as in the previous part. The dataset in treatments

T PY O and T
P
Y X is the same as in treatments T

P
W and T PY , which is precise with respect

to the events Y O and Y X (see Table 3). The dataset in treatments T IPY O and T
IP
Y X is
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the same as in treatments T IPW and T IPY , which is imprecise with respect to the events

Y O and Y X (see Table 4). Note that the imprecise observations in Treatment T IPY O

are cases 1 and 6, while the imprecise observations in Treatment T IPY X are cases 6 and

8. Furthermore, in the precise dataset the event Y O occurred in case 6 and had not in

case 1, and the event Y X had occurred in case 8 and had not in case 6. This leads us

to the same analysis and the same type of hypothesis from Part 1, that CEIPY O < CE
P
Y O

and CEIPY X < CE
P
Y X .

Results of Part 2:

The following are the main results: CEPY O = 63:3, and CEIPY O = 52:4. Evidently,

CEPY O is higher than CE
IP
Y O and signi�cantly di¤erent (t = �1:88 and p = 0:03).

Also CEPY X = 69:1 and CE
IP
Y X = 48:7. Here again, CE

P
Y X is higher than CE

IP
Y X , and

signi�cantly di¤erent (t = 2:72 and p = 0:005).

3.3 Some Remarks about the Design

Both experiments are based on a between subjects approach as opposed to a within

subjects approach. Ideally, we may want to compare the belief of the same subject

given alternative datasets or di¤erent information. However, one cannot hope to give

the same subjects di¤erent datasets concerning the same event without worrying that

the former dataset in�uences the evaluation of the event given the later dataset. In the

between subjects approach the results indicate that on average the subjects are ambi-

guity averse in the presence of imprecise data. This does not rule out the possibility

that some subjects are ambiguity neutral or even ambiguity loving.

In both experiments the subjects�beliefs are measured indirectly by their CEs. The

reason we preferred this method over alternative techniques that elicit beliefs directly

is twofold. First, the later techniques introduce a major concern that does not arise

in the context of the method employed in the present work. Asking subjects about

their beliefs directly may suggest to them that there exists a �correct�belief that they
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are expected to hold. Two such possibilities are a belief that puts equal weights on

all states of nature regardless of the dataset and a belief that coincides perfectly with

the dataset�s frequencies. This problem is less likely to arise using our method as

subjects are asked about their CE which has a much stronger association to subjective

preferences. In addition, we �nd our experimental design much easier to convey to

subjects.

Obviously, the alternative methods have the advantage that the elicited beliefs could

have been compared to those predicted by the model. However, we maintain that the

direction of change in beliefs given di¤erent datasets is much more important than the

exact value of these beliefs. Especially, in view of the fact that we take the model

only as a rough description of a belief formation process which tries to highlight one

possible source of ambiguity among many. For the purpose of comparing the direction

of change in beliefs both approaches are equally suitable.

4 Discussion

In this work we introduce a model of belief formation based on a dataset, where some

observations are imprecise. The use of imprecise data leads to a belief which is non

additive. Our model may be interpreted as an approximation of the actual mental

process that the individual goes through while evaluating likelihood of events, which

the individual may or may not be aware of. Focusing on the mental process enables

to narrow down the possible beliefs that people would hold and highlight the role of

imprecise information in causing ambiguity. We suggest that imprecise information is

a source for non-neutral attitude towards ambiguity, in particular ambiguity aversion,

and present experimental evidence which support this feature of the model.

Next, we discuss three modi�cations of the model, for which the main results would

hold as well. Following Billot et al. (2005), we can easily enrich our model by allowing
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cases to vary in their characteristics.13 Thus, an individual�s evaluation of an event in

a given situation will be a weighted average of the outcomes in past cases where the

weights are determined by the relevance or similarity of these past cases to the current

situation. When restricting cases to possess identical characteristics, the evaluation

reduces to that of the basic model, i.e., to a simple average or the relative frequency

of occurrences.

One of the main limitations of the present model is that the belief formation does

not depend on the number of observations in the dataset. One might expect that

when an individual accumulates more data about a certain situation, ambiguity will

gradually disappear. Eichberger and Guerdjikova (2007) introduce ambiguity into the

framework of Billot et al. (2005) by allowing the individual to hold a set of conceivable

probabilities given past cases. As the dataset grows the ambiguity diminishes. It is

possible to capture this element in our model by making additional assumptions about

the memory accumulation process. For instance, assume memory relies on personal

experience as well as other peoples�experience. Naturally, personal experience is more

detailed and thus more precise than second hand experience. At an early stage of

the individual�s life his experience relies mostly on others�experience. With age, the

proportion of personal experience of total experience grows. In this modi�cation, a

larger memory contains a higher proportion of precise cases. Therefore, beliefs based

on it re�ect less ambiguity.

In order to discuss another feature of our model, consider an extreme situation

in which the individual has a single imprecise case in memory Bj. According to the

model, all states in Bj are perceived to be equally likely. This is in accordance with

Laplace�s principle of insu¢ cient reason which is best applied to situations endowed

with symmetry. This principle is not as appealing in asymmetric circumstances in

which there is good reason to believe that some states are more likely than others.

13In an earlier version of this paper we do include this feature. This version includes only extreme

attitudes toward ambiguity, i.e., � = 0, and it also has an axiomatization for this case.
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Our model could be easily modi�ed to incorporate such an element by replacing Fj(A)

(Equation (1)) with:

~Fj(A) = �

P
!2A\Bj L(!)P
!2Bj L(!)

(5)

where L(!) are all positive weights. If initially !i is perceived to be more likely than !j;

it is most reasonable to set L(!i) > L(!j). It follows that given the same information

in memory regarding !i and !j the evaluation of the former will be weakly higher than

the later. In symmetric situations L(!i) equals L(!j) for every i and j, and hence

Equation (5) is reduced to Equation (1). In this modi�ed version of the model based

on Equation (5), the paper�s main theoretical results continue to follow through.

The settings in the urn experiments reported in this paper have the underlying

symmetry property in which Equation (1) applies. The following is a short description

of an experiment that we have conducted, which �ts the circumstances of the modi�ed

model better. The experiment was concerned with subjects�beliefs about the color

of a car at a randomly chosen spot in a parking lot nearby. It is clear that some car

colors are perceived to be more ordinary than others, such as blue compared to purple.

Part of the subjects in the experiment were provided with the actual frequencies of the

various colors of cars that were parked in the lot three days earlier, while others were

provided with coarser data which were imprecise in the model�s terms. The �ndings of

the experiment indicate that imprecise data is a source for ambiguity aversion also in

such asymmetric circumstances.
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Apendix A

Proof of Proposition 1

Let D = (B1; :::; BT ). vFD(�) = 0 since for any j, �\Bj = � and thus Fj(�) = 0: For

any j, 
 � Bj, thus Fj(
) = 1 and vFD(
) = 1: Finally, take any A � A0, for all

Bj, f!j! 2 A \Bjg � f!j! 2 A0 \Bjg thus Fj(A) � Fj(A
0) and vFD(A) � vFD(A

0):

Therefore vFD is a capacity. Since v
G
D(A) = �v

F
D(A), v

G
D is a capacity as well.

Proof of Proposition 2

Take any dataset D = (B1; :::; BT ):First we will prove for any j; and any collection

A1; :::; An of subsets of 


Fj(
[

i=1;:::;n

Ai) �
X

fH:H�f1;:::;ngg

(�1)jHj+1Fj(
\
k2H

Ak) (�)

holds i.e. Fj is a belief function.

Note that for any probability measure p the following rule holds:

p(
[

i=1;:::;n

Ai) =
X

fH:H�f1;:::;ngg

(�1)jHj+1p(
\
k2H

Ak):

Take any j and any collection A1; :::; An of subsets of 
: Let p be the probability

measure de�ned by p(A) = jA\Bj j
jBj j for all A 2 
. Then if Bj � A, Fj(A) = p(A)

and otherwise Fj(A) = �p(A) � p(A) (for � � 1). If
S

k=1;:::;n

Ak + Bj, it follows thatT
i2H

Ai + Bj for all H; and therefore

Fj(
[

i=1;:::;n

Ai) = �p(
[

i=1;:::;n

Ai) =
X

fH:H�f1;:::;ngg

(�1)jHj+1�p(
\
k2H

Ak) =X
fH:H�f1;:::;ngg

(�1)jHj+1Fj(
\
k2H

Ak)

hence (�) holds. If, on the other hand,
S

i=1;:::;n

Ai � Bj, then

:

Fj(
[

i=1;:::;n

Ai) = p(
[

i=1;:::;n

Ai) =
X

fH:H�f1;:::;ngg

(�1)jHj+1p(
\
k2H

Ak) �X
fH:H�f1;:::;ngg

(�1)jHj+1Fj(
\
k2H

Ak)
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hence (�) holds as well.

Since (�) holds for all cases it also holds for the average, that is,

vFD(
[

i=1;:::;n

Ai) =

PT
j=1 Fj(

S
i=1;:::;n

Ai)

T
�

PT
j=1

P
fH:H�f1;:::;ngg(�1)jHj+1Fj(

T
k2H

Ak)

T

and hence

vFD(
[

i=1;:::;n

Ai) �
X

fH:H�f1;:::;ngg

(�1)jHj+1vFD(
\
k2H

Ak)

Furthermore, vFD(
) = 1 and vFD(�) = 0 therefore vFD is a belief function which

concludes the proof .

Proof of Lemma

Assume v(A)+v(A0) = v(A[A0) for all A0 such that A\A0 = �, then in particular,

v(A) + v(Ac) = v(
). Therefore v(A) = �v(A):

Let v be convex and assume v(A) = �v(A). Take A0 such that A \ A0 = �; then

v(A) + v(A0) � v(A [ A0): Assume by negation that v(A) + v(A0) < v(A [ A0): Then

by the de�nition of �v we have �v(A)+ (v(
)� �v(A0c)) < v(
)� �v((A[A0)c): Therefore,

�v(A) + �v((A [ A0)c) < �v(A0c) which is a contradiction since �v must be concave. A

similar proof could be applied for a concave capacity.

Proof of Proposition 3

Let memory be precise with respect to A: Then for every j either Bj � A or

Bj � Ac: If Bj � A (then Bj \A 6= �) then both Fj(A) = 1 and Gj(A) = 1: If Bj � Ac

(then Bj \ A = �) both Fj(A) = 0 and Gj(A) = 0: It follows that vFD(A) = vGD(A):

Thus, vFD(A) = v
F
D(A) and v

G
D(A) = v

G
D(A).

Assume memory is imprecise with respect to event A: Then there exists a case

j such that Bj * A and Bj * Ac: Therefore, Fj(A) < Gj(A) (for � < 1): By the

de�nitions of F and G, Fj(A) � Gj(A) for every j and thus, vFD(A) 6= vGD(A):

We turn to prove that precise events form an algebra. Observe that � and 
 are

precise events. Furthermore, by the de�nition of a precise event, if A is precise then

so is Ac: Therefore all we have to show is that if A and A0 are precise events then so is
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A[A0: Assume A and A0 are precise, then for all j; Bj is contained in one the following

events: A \ A0; (A n A0); (A0 n A); (A [ A0)c. But this means that Bj is contained in

(A [ A0) or (A [ A0)c: Therefore A [ A0 is a precise event.

Proof of Proposition 4

Take dataset D = (B1; :::; BT ): Assume it is precise (i.e. Bj =wi for some i). In

this case Fj(A) = Gj(A) for every A and j: Thus vFD = vGD. In order to show that

vD is a probability it is su¢ cient to show that it is additive. Take any two disjoint

events A and A0. For every j, if A [ A0 � Bj then either A � Bj or A0 � Bj and not

both. Furthermore if A [A0 + Bj then both A + Bj and A0 + Bj: Thus Fj(A [A0) =

Fj(A) + Fj(A
0) for every j: Therefore vD(A [ A0) = vD(A) + vD(A0):

Let vD be additive and assume by negation that there exists a case j in memory

which is imprecise. Take A and A0 disjoint such that A [ A0 = Bj: Then � = Fj(A) +

Fj(A
0) < Fj(A [ A0) = 1 (similarly, 2 � � = Gj(A) + Gj(A0) > Gj(A [ A0) = 1). For

every i; Fi(A) + Fi(A0) � Fi(A [ A0) (similarly, Gi(A) + Gi(A0) � Gi(A [ A0)) thus,

vD(A [ A0) 6= vD(A) + vD(A0) which is a contradiction.
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