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Abstract

We discuss the problem of combining the conflicting objectives of equity and utili-
tarianism, for social policy making, in a single mathematical programming model. The
definition of equity we use is the Rawlsian one of maximising the minimum utility over
individuals or classes of individuals. However, when the disparity of utility becomes
too great, the objective becomes progressively utilitarian. Such a model is particularly
applicable to health provision but to other areas as well. Building a mixed integer/linear
programming (MILP) formulation of the problem raises technical issues, as the objec-
tive function is nonconvex and the hypograph is not MILP representable in its initial
form. We present a succinct formulation and show that it is “sharp” in the sense that
its linear programming relaxation describes the convex hull of the feasible set (before
extra resource allocation or policy constraints are added). We apply the formulation
to a health care planning problem and show that instances of realistic size are easily
solved by standard MILP software.

1 Introduction

The dilemma over whether to pursue policies that emphasize equity (sometimes regarded
as “fairness”) or utilitarianism (“total good”) faces all societies. Such policies are often
in conflict and have been addressed by a number of authors, such as Binmore (2005)
and Sen and Williams (1982). Should we attempt to reduce differences in wealth at
the expense of economic efficiency? Is equity in health provision, for example, more
important than maximising the aggregate health of the population?

Utilitarianism was advocated by Bentham and Mill in the 18th and 19th centuries;

that is, maximising total utility irrespective of differences between individuals or classes



of individuals. Equity (egalitarianism) can be formulated in different ways. In this
paper we choose the maximin principle enunciated by Rawls (1972); that is, one seeks
to allocate goods so as to maximise the welfare of the worst off. There is evidence
to suggest that this is considered by the majority of the population to be the most
acceptable policy to pursue, at least in health matters (Yaari and Bar-Hillel, 1984).
But most people regard it as unreasonable to take such a policy to its extreme; that is,
to continue with such a policy when it takes too many resources from others. There is
some indirect evidence for this in Williams and Cookson (2006) and Yaari and Bar-Hillel
(1984). Hence we switch to a utilitarian objective in extreme circumstances.

Our discussion is perhaps most obviously relevant to health provision but is also
applicable to other areas, such as facility location (Ogryczak, 1997), famine relief (Hall
and Vohra, 1993), taxation (Young, 1995), communication network management (Nace
and Pioro, 2008), or even to timing traffic lights, given the incompatibility between
maximising traffic flow and minimising any person’s maximum waiting time.

In Section 2 we propose a social welfare function, based on a suggestion of Williams
and Cookson (2000), that combines equity and efficiency in the desired fashion for a
two-person problem. We build a mixed integer/linear programming (MILP) formulation
that maximizes the function subject to resource limitations and other constraints. This
requires that some technical issues be addressed, as the function is not only nonconvex,
but its hypograph is not MILP representable in its initial form.

It is not obvious how to extend the social welfare function to n persons, but we
propose in Section 4 an extension that appears to capture the underlying idea. We
provide a succinct MILP formulation that contains only n binary variables. We prove
that despite the simplicity of the model, it is nonetheless “sharp.” Jeroslow (1989)
defined an MILP formulation to be sharp if its linear programming (LP) relaxation
describes the (closure of) the convex hull of feasible integer solutions, making it the
“best” possible formulation as a mathematical programme. Our result shows that a
very compact formulation of the social welfare function can be sharp as well.

Of course, this MILP formulation only comprises the “core” of a practical model.
Additional (problem-specific) constraints must be added to impose resource limitations
and policy decisions, which will constrain the possible allocations of utilities. If the
constraints are suitably formulated, this will result in a genuine MILP model of the
allocation problem, for which integer programming methods will be required. However,
the original MILP model (before adding problem-specific constraints) is the “best”
possible in terms of sharpness.

Practical application often requires that resources be allocated to groups or classes
rather than to individuals, where the groups may have different sizes. We show in
Section 5 that the MILP formulation can be extended to this case without sacrificing

sharpness. The relevant proofs appear in the Appendix. In Section 6 we apply the



extended model to health care resources planning. We report computational tests in-
dicating that the model can be solved in a few seconds even for a thousand groups or
more.

There is a large literature on social welfare functions, although only a few combine
equity and efficiency. The Gini coefficient, McLoone index, Atkinson’s function, Hoover
index, and Theil index measure inequality. These and others are discussed by Tempkin
(1993). Maximin and lexicographic maximum functions aim to capture a Rawlsian fair-
ness criterion and are discussed, for example, by Blackorby et al. (2002), Daniels (1989),
Dworkin (1977), Luss (1999), Roemer (1998), and Stein (2006). Structural properties
of optimal solutions for utilitarian and lexmax objectives are derived in Hooker (2010).

Nash bargaining and Raiffa-Kalai-Smorodinsky bargaining may be seen as reflecting
both equity and efficiency. These and other schemes are discussed by Blackorby et al.
(2002), Gaertner (2009), and Yaari and Bar-Hillel (1984). Proportional fairness objec-
tives for communication networks are closely related to the Nash bargaining solution
and are discussed by Kelly et al. (1999) and Mazumdar et al. (1991), among others. The
efficiency cost of proportional and maximin fairness objectives is studied by Bertsimas
et al. (to appear). Welfare functions for health care allocation are discussed by Broome
(1988), Stinnett and Paltiel (1995), and Williams and Cookson (2000, 2006).

2 Problem and Basic Approach

We suppose that a population consists of individuals (or classes of individuals) and that
our policies would result in an allocation of utilities w1, ug, ..., U, to these individuals. In
the health context these utilities could be quality adjusted life years (QALYs) (Broome,
1988; Dolan, 1998).

We will endeavor to implement a policy (e.g., resource allocation) that maximises
the utility of the worst off—that is, maximises min;{u; }—unless this takes too many
resources from the others. Following a suggestion in Williams and Cookson (2000) for
the two-person case, we will switch from a Rawlsian to a utilitarian criterion when
inequality exceeds a threshold; that is, when |u; — ua| > A. We therefore define a
social welfare function that has the contours shown in Fig. 1. When |u; — ug| < A,
the contours reflect the Rawlsian function min{u;,us}, and otherwise they reflect the
utilitarian function u; + us. The advantage of a formulating a social welfare function
is that it can be maximized, subject to resource limitations and other constraints, so
as to determine the most desirable equity/efficiency tradeoff. It is not obvious how to
extend this approach beyond two persons, but we will propose below an extension that
captures the underlying motivation.

Maximising this social welfare function has the effect of adhering to a Rawlsian

criterion unless the cost to the other party is too great. Suppose that due to limited
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Figure 1: Contours of the social welfare function for a 2-person problem. The diagonal contours
correspond to a utilitarian criterion, and the L-shaped contours to a Rawlsian criterion. The curve
reflects resource limits.

health care resources, allocations of utility must lie in the region under the curve in
Fig. 1. The curve indicates that person 1 is difficult to treat, because allocating all
resources to person 1 is much less effective than allocating all resources to person 2.
Furthermore, the marginal cost of improving person 1’s health becomes very high as
the limit is approached.

A purely Rawlsian solution allocates equal utility to each person, as indicated by
the open circle. However, this requires great sacrifice from person 2. A small diversion
of resources to person 2 would have substantial benefit while only slightly degrading
the health of person 1. It may therefore be rational to switch to a utilitarian objective.
In fact, the maximum value of the social welfare function, indicated by the black dot,
occurs in the utilitarian region.

The level at which to set A is clearly judgemental and likely to be a point of disagree-
ment among the parties concerned. However, once a value for A has been settled upon,
maximising the social welfare function allows the same policy to be applied consistently
whenever a budgeting decision is taken. It is necessary to agree on an efficiency/equity
compromise only once, when the value of A is selected, rather than revisiting the issue
every time it comes up in practice.

Furthermore, the model allows policy makers to examine the consequences of a

given value of A across a wide variety of cases. They can Computie allocations in typical



scenarios for each of several values of A. Stakeholders can then examine each scenario
and indicate which allocation they prefer. The value of A that results in the most
popular (or least objectionable) allocation might then be selected. Once it is selected,
the stakeholders can be assured that the same policy is applied consistently across the
board.

One could, of course, maximize a linear combination of utilitarian and Rawlsian

objectives:

Z u; + amin {u; }

which is easy to model because it is concave. However, this raises the question of how to
justify and interpret any particular multipler «. By contrast, A has intuitive meaning
and is measured in the same units as utility. It is the level of inequality at which
efficiency considerations take over. In a health care context, for example, a resource
allocation in which some persons enjoy A QALYs more than others should begin to

take efficiency into account.

3 Two-person Problem

We wish to allocate utilities u1, us to two individuals so as to maximise a social welfare
function with the contours illustrated in Fig. 1. Because we want the function to be
continuous, in the Rawlsian case we define its value to be 2 min{us, ug} + A rather than

min{uy, us}. The optimization problem is therefore to maximize z subject to

- 2min{ug,ue} + A if jug —ug| <A
AR
Uy + us otherwise (1)

uy,ug > 0

and subject to additional constraints on wui,us that are added to represent resource
limits or policy restrictions. Such constraints will be illustrated in Section 6.

We wish to write an MILP model for (1). In order for the problem to be MILP
representable (Jeroslow, 1987, 1989), its hypograph must be the union of a finite number
of polyhedra with the same recession directions. We do not repeat the definitions of
hypograph and recession directions here but refer the reader to Jeroslow (1987, 1989),
Hooker (2009), or Williams (2009). If the polyhedra do not have the same recession
directions, then some innocuous constraints can be added to equalise the recession cones.

The hypograph of (1) is the union of two polyhedra, defined respectively by the two



disjuncts:

z<2u +A

z <up + ug
z2<2uy +A |V

uy,uz >0
u17u220

The first disjunct corresponds to the maximin case and the second to the utilitarian
case.
The two polyhedra have different recession cones. The recession cone for the first is

spanned by the four vectors
(u1,u9,2) = (1,1,2),(1,0,0),(0,1,0),(0,0,—1)
The recession cone for the second is spanned by the vectors
(u1,u9,2) = (1,1,0),(1,0,1),(0,0,-1)

However, if we add the constraints u; — us < M and us — u; < M to each disjunct,

then the polyhedra have the same recession cone, spanned by the vectors
(u1,u9,2) =(1,1,2),(0,0,-1)

This is illustrated in Fig. 2. The hypograph is now represented by the big-M model

z2<2u;+ A+ (M-A), i=1,2 (a)
z <wup +us+ Al —9) () @)
up —ug <M, upg—ug <M (c)

Uy, U2 Z Oa (NS {0’1}

We can also give the two polyhedra the same recession cone (namely, the origin)
by imposing bounds u1,us < M. In this case the formulation is the same except that
constraints (c) are replaced by wuy,us < M.

Model (2) is a sharp formulation of (1), meaning that it has the tightest possible con-
tinuous relaxation. Its continuous relaxation describes a polyhedron whose projection

onto the original variables is the (closure of) the convex hull of the hypograph.
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Figure 2: Modified social welfare function for which the hypograph is the union of two polyhedra
with the same recession cone.

4 Many-person Problem

We now allot utilities uy, ..., u, to n individuals. One way to generalize the two-person

problem (1) is to observe that (1) can be written

2 <A+ 2upin + max {0, u; — Umin — A} + max {0, uz — Umin — A}

3)

uy,uz > 0

where upi, = min{uj,us}. Thus each person i makes a utilitarian contribution if u;
differs from i, more than A. If u; > ug + A, the first max term of (3) contributes
U1 — Umin — A and the second max term nothing, yielding u; + uo altogether, and
similarly if ug > u; + A. Otherwise, both max terms vanish.

The pattern in (3) can be generalized as follows:

z < (n—1)A 4 numin + Zmax {0, u; — Upmin — A}
i=1

(4)

u; >0, all 4

where i, = min;{u,;}. Thus person ¢ contributes w; if u; differs from wy,;, more than

A and is otherwise represented by Umin-



Suppose for illustration that u; < --- < u,. If everyone makes a utilitarian contri-

bution, then the summation in (4) becomes

—(n=1)A—=(n—-1u —&—Zui

i>1

and the inequality constraint in (4) becomes z < >~ | u;. If no two utilities differ by
more than A, the summation in (4) vanishes, and the resulting inequality constraint

yields a maximin solution. If only uy, ..., u; are within A of uy, the constraint becomes

z < (k—l)A—i—kul—i—Zui
i=k+1

This is a combination of the lowest order statistic with the n —k highest order statistics,
where the lowest is multiplied by k so that all persons receive equal consideration.
Thus everyone in lower stratum (within A of the bottom) is identified with the least
advantaged person, and the lower stratum receives weight in proportion to its size.
One might achieve a roughly similar effect by giving more weight to lower terms in a
linear combination of order statistics, but then the problem of justifying and interpreting
weights is only compounded, because there are so many of them. Also it is difficult to
model such a function for solution by optimization methods. The function proposed
here requires only one parameter A, regardless of the number of individuals involved,

and it has a practical MILP formulation.

4.1 Mixed Integer Formulation

As in the two-person case, the n-person problem can be formulated as an MILP if we
suppose that
Uj*UiSM, aHZ,_] (5)

We can in principle write an MILP model for (4)-(5) based on a union of polyhedra
similar to that used in the two-person case, but this results in exponentially many 0-1

variables. A much more compact model to maximizes z subject to

zg(n—l)A—i—Zvi (a)
i=1

w< v <w+ (M—A),;, alli (¢)

w; >0, 5 €{0,1}, alli

and again subject to resource and policy constraints. The interpretation of §; is that it

is 0 when u; — umin < A and is 1 otherwise.



Theorem 1 The MILP model (6) is a correct formulation of problem (4)-(5).

Proof. We must show that any feasible solution of the problem is a solution of (6),
and vice-versa. To show the former, consider any feasible solution (u,z). We exhibit
values of v, w,d such that (u, z,v,w,d) is a feasible solution of (6). Supposing without

loss of generality that i, = uq, set

0, if u; — <A
w = uy, (51’7'111‘):{ (0,20) tamm (7)

(1,u; — A) otherwise

To show that (b) and (c) in (6) are satisfied, note that when u; — u; < A, they are
satisfied due to (7). When u; —uy > A, (b) and the first inequality in (c) are satisfied
due to (7), and the second inequality in (c) is satisfied because u; —u; < M is given.

To show (a), write it as

z<(n—=1)A+nu + Z(vi—ul)—i— Z(vi—ul)
7 7
up —up < A u; —uy > A

Substituting the values of v; given in (7), this becomes

z<(n—1)A+nu + Z(ul—ul)—i— Z(W-M-A)
% A
u; —up < A u; —uyp > A

which is implied by (4).
We now suppose that (u, z,v,w, d) satisfies (6) and show that (u, z) satisfies (4) and

) )

uj —u; < M for all ¢, j. To show the latter, note that (c) implies that v; — (M — A)d; <

w < v; for any 1, j, and therefore
Vj — Y S M—A (8)

But because v; > u; — A and v; < u; due to (b), (8) implies u; —u; < M, as claimed.
To show that (u, z) satisfies (4), write (6a) as

zg(n—l)A+nu1—&—Z(vi—ul)—l—Z(vi—ul) (9)
5il=0 (SrL'Z:].

Each term of the first summation satisfies

vi—up <w-—u; <0< (u; —ug — AT (10)



where the first inequality is due to (b) and ¢6; = 0. Noting from (b) and (c) that
w < v; < u; — A for all ¢, we have w < uq, whence the second inequality in (10). Also

each term of the second summation satisfies
V; — U SuifulfAS (’U,Z'fulfA)Jr

where the first inequality is due to (b) and ¢; = 1. Inequality (9) therefore implies (4),
as desired.

4.2 Proof of Sharpness

The model (6) is sharp because the projection of its continuous relaxation onto (z,u)-

space is the convex hull of the original problem. The continuous relaxation of (6) is

zg(n—l)A—i—Zvj (a)
i=1

u; — A <w, alli (dy)
v; <u; — Ad;, alli (e;)
w<w;, alli (f)
v <w+ (M —A)j;, alli (9:)
§; >0 all ¢ (hy)
6; <1, u; >0, alli

Theorem 2 The model (6) is a sharp formulation of the problem (4)-(5).

Proof. The proof consists of two parts. We first show that (11) implies the following;:

A A .
zg(n—l)A—i—(l—i-(n—l)M)ui—i—(I—M)Zuj, all ¢ (ki)
J#i
Uj — Uj S M, all Z,j (613)
u; >0, all 7

We then show that every valid inequality for the original problem is implied by (12).
Because (6) is a correct model of the problem, it follows that (12) describes the convex
hull of the feasible set, and (6) is a sharp model.

Part I. We wish to show that (11) implies (12). We saw in the proof of Theorem 1
that (11) implies (¢;;) for all ¢, j. To show that (11) implies (k;) for any 4, we show that

(ki) is a surrogate (nonnegative linear combination) of inequalities of (11). First, note

10



that the following inequalities are surrogates of (11) for each i:
P é + (1 é . ( )
Vi S W a7 ) Di
v; < Uy (g:)

because (p;) = % (&;) + 77 (¢:) and (¢;) = % (e;) + (h;). Now we have the following
for each i, j:

A A
v S vt <1 - ) u; (rij)

)= @)+ i) + (1+@-03) @)
which shows that (k;) is a surrogate of (11), as desired.

Part II. It remains to show that any inequality z < au + b that is valid for the
problem is implied by (12). For this it is enough to show that z < au + b is dominated
by a surrogate of (12).

First we observe that (u1,...,un,2) = (0,...,0,(n — 1)A) is feasible in (4) and
must therefore satisfy z < au + b. Substituting these values into z < au + b, we obtain
b> (n—1)A. Also, for any ¢t > 0,

(U1, Uup,2) = (t,...,t,nt + (n —1)A)
is feasible in (4), which implies

—(n—1
Zaizn_b(nfm

Letting ¢ — oo, we get that > . a; > n. It suffices to show that any z < au + b
with ), a; = n is dominated by a surrogate of (12), because in this case an inequality
with ). a; > n can be obtained by adding multiples of u; > 0 to an inequality with

> =n.

We let N = {1,...,n} and define index sets as follows:

. A .
I:{zeN’l—Mgaigl}, J:{ZGN

A
a,»<1—M}, K=N\({UlJ)

11



We next associate multipliers «; with (k;) and 8;; with (¢;;), defined by

M A e
nA( 1+M> ifiel

“7 1-al
~—atl otherwise
n—|[I|
1 (n—all ) s . (13)
— —a; ifield, jeK
K| ( n—|I|
Bii =9 1, ifi,j€ K and i j
0 otherwise

where a[l] =}, ; a;, and similarly for a[I] and a[K]. The quantities f;; are feasible
nonnegative flows on edges (4, j) of a complete directed graph whose vertices correspond
to indices in K, with a net supply of a; — a[K]/|K| at each vertex i. Such flows exist
because the net supply over all vertices is ), (a; — a[K]/|K|) = 0.

We first show that the linear combination 3, cvi(k;) + 3_;; Bij(£i5) is the inequality
z < au+ (n—1)A, given that >, a; = n. It is easily checked that ) . o; = 1, so that
the linear combination has the form z < du+ (n — 1)A. It remains to show that d = a.
We have

di:<l+(n—1)]@> (1—)§aj+z (Bji — Biz)

Using the fact that ), a; = 1, this becomes
A
J

When i € I, each 8;; = 0, and we immediately get from (14) that d; = a;. When i € J,

(14) becomes

n — all] 1 (na[[] >

dl' = — — — a; = a;
o~ 2 16 (i

When i € K, (14) becomes

n—all n — all]
=i <n—|1| w3 U )

jek\{i}

[J|\ n—all
(”|K|> - ’W* 2_ (i = fi)

jek\{i}

12



Using the fact that a[J] = n — a[I] — a[K], this simplifies to

_ a[K]
di = K] + ) (fii — fij) (15)

jeR\{i}

But this implies d; = a;, because the second term is the net supply at vertex i, which
is a; — a[K]/|K]|.

We conclude that 2 < au+(n—1)A is the linear combination 3 7; ovi (ki) +3_,; Bij (i)
Since b > (n—1)A, z < au+0b is dominated by a surrogate of (12) and therefore implied
by (6), provided we show that the multipliers «;, 8;; are nonnegative.

We observe first that «; > 0 for i € I because a; > 1 — A/M, due to the definition
of I. To show that a; > 0 for i & I, we note that a; < 1 for ¢ € T implies o; < 1/n,
from the definition of «;. Thus «[I] < 1, which implies o; > 0 for ¢ € I. To show that
Bij > 0 for i € J and j € K, we note that a; < 1 for ¢ € I implies that a[I] < |I],
whence n— all]

o (16)
But a; < 1 —A/M for i € J\ {j} implies a; < 1, which along with (16) implies that
Bij = 0. Finally, 8;; = fi; for i,j € K is by definition a nonnegative flow.

5 Modeling Groups of Recipients

Policy makers often allocate resources to groups or classes of recipients rather than
individuals. This is true in particular for health care planning, where funding for spe-
cific types of treatments is allocated to classes of patients depending on the type and
prognosis of their illness. The classes generally vary in size.

In principle, such a situation can be modeled by introducing a utility variable u; for
each individual, and imposing side constraints that require individuals within a given
class to receive the same allocation. However, this can result in a very large MILP
model. Fortunately, it is possible to build a sharp model for the problem by allocating
utility to groups rather than individuals, even when the groups have different sizes.

We therefore suppose there are m groups of recipients, and each group ¢ has size
n;. Because each member of a group receives the same allocation, we split the utility
allocated to a group evenly among the members of the group. Let u; be the per capita

utility in group i, so that the group’s total utility is n;u;. The optimization problem

13



therefore maximizes z subject to

Z< (i”z - 1) A+ <im) Unin + ini (s — Umin — A)T
i=1 i=1 i=1

u; —u; <M, alli,j
ule, all 4

(17)

and subject to resource and policy constraints, where again wmin = min;{u;}.
The most nearly utilitarian case occurs when there is a group k that is far below
the others in average utility, i.e., u; — ugx > A for all i # k. In this case the inequality

constraint in (17) becomes
z2<(np—1)A+ anm
i

It is not quite utilitarian, as there is an offset that depends on which group is worst off.
This is because the utilities in the worst-off group are equally low and therefore within

A of the lowest, which means they do not receive utilitarian treatment.

5.1 The Two-group Problem
It is interesting to examine the two-group problem, which maximizes z subject to
z < (n1+n2 — 1)A 4 (n1 + n2)Umin + 171 (U1 — tmin — A) T + n2(ug — Umin — A)T

up—us <M, ug—ug <M

Uy, U2 > 0
(18)
and side constraints. A graph of the model with n; < ny appears in Fig. 3. Note that

the utilitarian contours now have slope —nj/ny rather than —1.

5.2 MILP Model

An MILP formulation of the multi-group problem maximizes z subject to

7 i=1
U; — A S (7 S U; — Aél, all 4 (b) (19)
w<y <w+ (M—A);, ali (¢)
u; >0, 6 €{0,1}, alli

and side constraints. Again d;; = 1 when u; —u; > A.

14



Figure 3: Contours of the social welfare function for the 2-group problem with ny < no.

Theorem 3 Model (19) is a correct formulation of (17).

The proof is similar to the proof of Theorem 1 and is given in the Appendix.
Theorem 4 Model (19) is sharp.

The extension to groups significantly complicates the proof of sharpness, which is like-

wise given in the Appendix.

6 Application to Health Care

A central problem of health care policy is to allocate scarce resources to classes of
patients, depending on their prognosis and the extent to which they would benefit
from various treatments. Treatments frequently have an all-or-nothing character, as
in the case of a surgery, chemotherapy regimen, or organ transplant. Because utility
is allocated equally to the members of a group, we must be able to model the case in
which a treatment is given to all members of the group or none.

We therefore introduce a 0-1 variable y; that is equal to 1 when everyone in group %
receives a specified treatment. Let g; be the average net gain in QALYs for a member

of group ¢ when the treatment is administered. Then the per capita utility of group ¢ is
U = ¢iY; + (20)

where «; is the average QALYs that result from medical management without the

15



treatment in question. If ¢; is the added cost per patient of administering the treatment,

the budget constraint becomes
Zniciyi < B (21)
i

where B represents the funds available for providing the treatments. The resulting
MILP model maximizes z subject to (19) along with constraint (20) for all 4, constraint
(21), and y; € {0, 1} for all 4.

Patients in a group may present different states of health and therefore benefit in
different degrees from the same treatment. It may therefore be important in practice
to divide a group into relatively homogeneous subgroups. The subgroups would be
distinguished by different values of ¢; and/or «; in the above model.

To illustrate this process we present a small but fairly realistic example. The medical
literature contains cost-per-QALY estimates for a wide variety of treatments, and most
of the relevant papers and/or estimates are available online in the CEA Registry (Tufts
Medical Center, 2010) or the United Kingdom’s NICE website (NHS, 2010). However,
these studies span different eras, geographical regions, and clinical settings, which re-
sult in incomparable cost estimates. In addition, most studies examine very specific
treatments or interventions.

We therefore built a model around cost-per-QALY data provided by a single source,
Briggs and Gray (2000), which covers a limited selection of treatments but provides
estimates based on a common methodology. Briggs and Gray derive their costs per
QALY in part from net QALY gains reported for these treatments by Williams (1985).
In most cases, we obtained the per-patient cost ¢; by multiplying the average cost per
QALY in the Briggs and Gray article by the net QALY gain in the Williams article.

The data we used for the MILP model appear in Table 1. The group sizes are based
approximately on various estimates of the relative frequency of each intervention in the
United States. However, the relative frequency of kidney dialysis patients is reduced
to one-third the prevailing rate, because otherwise this very large population would
overwhelm our small example.

The groups corresponding to pacemakers, hip replacements, and aortic valve replace-
ments are divided into three subgroups, of which subgroup B represents the average cost
per QALY reported by Briggs and Gray (2000). Groups A and C reflect deviations from
the average and allow policymakers to consider different prognoses among patients with
the same basic disease. The nine categories of candidates for coronary artery bypass
grafts (CABGs) are explicitly distinguished by Briggs and Gray, and the costs per
QALY reflect their estimates.

The kidney dialysis candidates are categorized by expected lifespan while on dialysis,
to reflect the fact that the cost per patient as well as the QALYs gained depend on how
long the patient survives. The relative size of each category is based on survival rates for
the United States reported by NKUDIC (2010). The annual cost per patient is derived
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from (a) Briggs and Gray’s estimate of £14,000 per QALY; (b) an average of 0.688
QALYs per year of dialysis, based on converting to a 0-1 scale the Index of Well Being
for such patients reported in Evans et al. (1985), which Briggs and Gray cite as their
source; and (c) an average of 0.85 additional years of life obtained for each year spent
on dialysis. This results in a per-capita annual dialysis cost of (14,000)(0.688)(0.85),
or about £8200. Some categories are further subdivided by prognosis due to the high
per-patient cost, because otherwise, funding a single category would consume a large
fraction of the budget.

The expected QALYs without intervention, given by «;, depends entirely on such
population characteristics as age, general state of health, and environment. The data
used here do not represent any particular population but are selected only to reflect one
possible set of circumstances. The total budget is set at £3 million because this figure
creates enough shortage to force some hard decisions.

Table 2 presents the results of solving the MILP model over various ranges of A.
These results are not intended as policy recommendations, because the solution depends
on population characteristics, budget, costs, and treatment options, which vary from
one situation to another. Nonetheless, the results show that combining equity and
efficiency in this manner can lead to interesting and perhaps unexpected conclusions.

The table shows that pacemakers are advisable under any combination of equity
and efficiency, as are hip and valve replacements except in the mildest cases. However,
resources shift from CABGs to kidney dialysis as A increases. Dialysis has a higher
cost per QALY, but this is overridden by the poor prognosis without treatment when
equity is more important.

There are also subtleties that one might not predict. Kidney dialysis first appears
for patients with the best prognosis, for whom it is slightly less expensive per QALY
and extends to other patients as equity is more heavily emphasized. Most CABGs drop
out rather suddenly when A > 5.6 QALYs. In fact, CABGs for double and triple artery
disease are almost always funded or defunded together, even though these subgroups
have different characteristics. The same is true of dialysis decisions for most patients
with less than 10 years life expectancy on dialysis. Some kidney transplants drop out
when A reaches an intermediate value but come back in when equity dominates. A
similar pattern occurs for valve replacements for mildly afflicted patients.

In general, the solution is more sensitive to A when A is between 5 and 6. This
suggests that a politically acceptable compromise may place A in this neighborhood.
It is in this range where the greatest number of interest groups are near the boundary
between approval and disapproval of A.

As expected, the average QALYs per person generally declines as A increases,
because larger values of A imply less emphasis on maximizing utility. However, due

to the presence of discrete choices, there are some exceptions. The maximin solution
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Table 1: Data for health care example.

Intervention Cost, QALYs Cost, QALYs Subgroup
per person  gained per without size
c; qi QALY intervention n;
(£) (£) o
Pacemaker for atrioventricular heart block
Subgroup A 3500 3 1167 13 35
Subgroup B 3500 5 700 10 45
Subgroup C 3500 10 350 5 35
Hip replacement
Subgroup A 3000 2 1500 3 45
Subgroup B 3000 4 750 4 45
Subgroup C 3000 8 375 5 45
Valve replacement for aortic stenosis
Subgroup A 4500 3 1500 2.5 20
Subgroup B 4500 5 900 3 20
Subgroup C 4500 10 450 3.5 20
CABG! for left main disease
Mild angina 3000 1.25 2400 4.75 50
Moderate angina 3000 2.25 1333 3.75 55
Severe angina 3000 2.75 1091 3.25 60
CABG for triple vessel disease
Mild angina 3000 0.5 6000 5.5 50
Moderate angina 3000 1.25 2400 4.75 55
Severe angina 3000 2.25 1333 3.75 60
CABG for double vessel disease
Mild angina 3000 0.25 12,000 5.75 60
Moderate angina 3000 0.75 4000 5.25 65
Severe angina 3000 1.25 2400 4.75 70
Heart transplant
22,500 4.5 5000 1.1 2
Kidney transplant
Subgroup A 15,000 4 3750 1 8
Subgroup B 15,000 6 2500 1 8

Kidney dialysis
Less than 1 year survival

Subgroup A 5000 0.1 50,000 0.3 8
1-2 years survival

Subgroup B 12,000 0.4 30,000 0.6 6
2-5 years survival

Subgroup C 20,000 1.2 16,667 0.5 4

Subgroup D 28,000 1.7 16,471 0.7 4

Subgroup E 36,000 2.3 15,652 0.8 4
5-10 years survival

Subgroup F 46,000 3.3 13,939 0.6 3

Subgroup G 56,000 3.9 14,359 0.8 2

Subgroup H 66,000 4.7 14,043 0.9 2

Subgroup I 77,000 5.4 14,259 1.1 2
At least 10 years survival

Subgroup J 88,000 6.5 13,538 0.9 2

Subgroup K 100,000 7.4 13,514 1.0 1

Subgroup L 111,000 8.2 13,537 1.2 1

LCoronary artery bypass graft
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Table 2: Results of health care example. A 1 in the body of the table indicates that the treatment
is given to all members of a subgroup, and 0 that it is given to none. The subgroups are defined in
Table 1. The last column indicates the average expected QALYs per person. These results are not
intended as general policy recommendations, because they reflect one particular set of population
characteristics, costs, and treatment options, which may differ substantially from one situation to
another.

A Pace- Hip Aortic CABG Heart Kidney Kidney dialysis Avg.
range maker repl. valve L 3 2 trans. trans. <1 1-2 2-5 5-10 > 10 QALYs
0-3.3 111 111 111 111 111 111 1 11 0 0 000 0000 000 7.54
3.4-4.0 111 111 111 111 111 111 O 11 1 0 000 0000 000 7.54
4.0-4.4 111 111 111 111 111 111 O 01 1 0 000 0000 001 7.51
4.5-5.01 111 011 111 111 111 111 1 01 1 0 000 0000 O11 7.43
5.02-5.55 111 011 011 111 111 111 O 01 1 0 000 0001 O11 7.36
5.56-5.58 111 011 011 111 111 011 O 01 1 0 000 0001 111 7.36
5.59 111 011 011 110 111 111 O 01 1 0 000 0001 111 7.20
5.60-13.1 111 111 111 101 000 000 1 11 1 0 111 1111 111 7.06
13.2-14.2 111 011 111 011 000 000 1 11 1 1 111 1111 111 7.03
14.3-15.4 111 111 111 011 000 000 1 11 1 1 101 1111 111 7.13
15.5—up 111 011 111 011 001 000 1 11 1 0 011 1111 111 7.19

Table 3: Solution times in seconds for m groups and different values of A. Instances with
more than a few hundred groups seem very unlikely to occur in practice.

A

m 0 1 2 3 4 5 6 ()
330 0.02 1.2 0.67 0.56 0.50 0.30 0.03 0.02
660 0.03 4.1 1.6 1.6 0.92 0.80 0.06  0.02
990 0.02 5.2 3.1 3.6 1.5 1.5 0.08  0.02

1320 0.00 15 4.3 4.2 2.7 3.0 0.09  0.02
1980 0.02 24 11 11 11 5.4 0.14  0.02
2640 0.00 32 19 14 8.6 8.8 0.19  0.02
3300 0.17 51 43 44 34 13 0.25  0.02

(A > 15.5) results in greater utility than solutions corresponding to 5.60 < A < 15.4.
One might argue that solutions in this range should be eliminated because they are
dominated by the maximin solution with respect to both utility and equity.

This small problem, which allocates utilities u; to 33 groups and contains 1089
integer variables, was solved in a small fraction of a second. We created much larger
instances by making k copies of each group and increasing the budget by a factor of
k, for k = 10,20, 30,40, 60,80,100. We solved the instances using CPLEX 12.2 on a
desktop PC running Windows XP with a Pentium 2.8 GHz dual-core processor. The
computation times appear in Table 3.

Interestingly, the problem is harder to solve for intermediate values of A than for
the pure utilitarian and Rawlsian cases. Nonetheless, it is readily solved for any value

of A, even when there are upwards of 3000 groups. This may be due in part to the
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sharp model of the social welfare function.

Models with hundreds or thousands of groups are probably too large to interpret in
any case, due to the complexity of interactions. A more practical approach is to identify
treatments worthy of funding for any reasonable A, based on a first-cut model with
broad treatment categories. These treatments can be fully funded and removed from
the problem, allowing policy analysts to subdivide the more controversial categories for
closer scrutiny while keeping the model size within bounds. Solution times for such

models will be negligible.

7 Conclusions

We showed how to formulate a social welfare function that combines equity and efficiency
in a fashion that often seems reasonable, particularly in a health care context. It
captures the idea that the worst-off should receive highest priority until this requires
too much sacrifice from others. The threshold is reflected by a single parameter A that
measures the level of inequality at which a utilitarian objective begins to take over from
a Rawlsian objective.

We proposed what seems to be a natural generalization of the social welfare function
to the n-person case. Although formulating an MILP model of the problem raises
technical issues, we provided a compact MILP formulation with only n binary variables.
We proved that, despite its simplicity, the model is sharp and therefore provides the best
possible linear relaxation of the social welfare function. We also showed that it can be
extended to groups of individuals without sacrificing sharpness. Finally, we illustrated
how to adapt the extended model to a realistic health care problem and showed that
life-sized instances can be easily solved using widely available MILP software.

Variants of our model are clearly possible. For example:

(i) Instead of working with a fixed A, we could allow it to vary with the magnitude

of the values of the utilities u;.

(ii) We could combine a utilitarian objective with a lexicographic maximum rather

than a Rawlsian maximin objective.

A more ambitious but essential research goal is to find a way to justify a choice of
A on principle rather than by political compromise. This is a task for philosophical as

well as mathematical analysis.
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Appendix

Proof of Theorem 3. We show that any feasible solution of problem (17) is a solution
of (19), and vice-versa. To show the former, consider any feasible solution (u,z). We
exhibit values of v, w, d such that (u, z,v,w,d) is a feasible solution of (19). Supposing
without loss of generality that wmi, = u1, let (v,w,d) be asin (7). It can be shown as
in the proof of Theorem 1 that (b) and (¢) in (19) are satisfied. To show (a), write it as

z < <an — 1) A+ <an> up + an(vz —uy) + an(vz —uq)
i i s ;
u; —up < A u; —uyp > A
Substituting the values of v; given in (7), this becomes
z < (an — 1) A+ (an> uy + an(ul —uy) + Zni(ui —u; — A)
i i i i

up —up < A u; —uy > A

which is implied by (17).
We now suppose that (u, z,v,w,d) is feasible in (19) and show that (u, z) is feasible
in (17). It can be demonstrated as in the proof of Theorem 1 that u satisfies the second

constraint of (17). To show that (u, z) satisfies the first constraint, write (19a) as

z < (Z n; — 1) A+ <Z nz> ur + Y i —w) + Y ni(v; —wg)  (22)
i i i i
6; =0 5; =1
Each term of the first summation satisfies
ni(v; —ur) < ng(w—u1) <0 < ny(u; —ug — AT (23)

where the first inequality is due to (b) and ¢6; = 0. Noting from (b) and (c) that
w < v; < u; —AJ; for all 4, we have w < uy, whence the second inequality in (23). Also

each term of the second summation satisfies

ni(vi - ul) S ni(ui — Uy — A) S nz(ul — Uy — A)+
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where the first inequality is due to (b) and §; = 1. Inequality (22) therefore implies the

first constraint of (17), as desired.

Proof of Theorem 4. The proof has two parts. We first show that the continuous

relaxation of (19) implies the following:

A A
z < an—l A+ ni—l—Man ui—l—(l—M)anuj, all ¢ (ki)

J J#i J#i
Uj — Uyg < M, all i,j (gij)
u; >0, all ¢
(24)

We then show that every valid inequality for the orginal problem (17) is implied by
(24). Because (19) is a correct model of the problem, it follows that (24) describes the
convex hull of the feasible set, and (19) is a sharp model.

Part I. We wish to show that the continuous relaxation of (19) implies (24). We saw
in the proof of Theorem 3 that it implies (¢;;) for all ¢, j. To show that the continuous
relaxation of (19) implies (k;) for any ¢, we show that (k;) is a surrogate of the relaxation.

The following surrogates are derived in the proof of Theorem 2:

(k) = (@) + Y mylrig) + (mit 40 Sy | (@)
J#i J#i
which shows that (k;) is a surrogate, as desired.

Part II. Tt remains to show that any inequality z < au + b that is valid for the
problem is implied by (24). For this it is enough to show that z < au + b is dominated
by a surrogate of (24).

First we observe that (uq,...,un,2) = (0,...,0,(n[N]—1)A) is feasible in (17) and
must therefore satisfy z < au + b. Substituting these values into z < au + b, we obtain
b> (n[N] —1)A. Also, for any ¢t > 0,

(U1,...,up,2) = (t, ..., ¢, tn[N]+ (n[N] —1) A)

is feasible in (17), which implies
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Letting ¢t — oo, we get that a[N] > n[N]. It suffices to show that any z < au + b with
a[N] = n[N] is dominated by a surrogate of (24), because in this case an inequality
with a[N] > n[N] can be obtained by adding multiples of uw; > 0 to an inequality with
a[N] = n[N].

We define index sets as follows:

. A
J:{zeN ai<ni(1—M>},
K=N\(IUJ)

We next associate multipliers with (24) as shown and define them as follows:

ﬁ% (ai—ni (1-2)) ifiel

“7Y 1-al
- _a| T otherwise
1(5 ) ified jekK (%)
T Wi — a; I y J
K|
Bii =4 1, ifi,5 € K and i # j
0 otherwise

where

nlN] = (V] = i) (1= 2 ) — al1)
(1 g )

The quantities f;; are feasible nonnegative flows on edges (i, j) of a complete directed

graph whose vertices correspond to indices in K, with a net supply of

at each vertex 4. Such flows exist because the net supply over all vertices is ), s; = 0.

We first show that the linear combination ), a;(k;) + >_,; Bi;€i; is the inequality
z < au+ (n[N] — 1)A, given that ), a; = n[N]. It is easily checked that ) a; =1,
so that the linear combination has the form z < du + (n[N] — 1)A. It remains to show
that d = a. We have

A A
d; = ni+Man a; + n; <1M>Zozj+2(5jiﬂij) (26)

J# J#i J#i
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Using the fact that Ej a; = 1, this implies
A A
di = gpriNlos+m (1= 47) + > = ) (27)

When i € I, each §;; = 0, and we get from (27) that d; = a;. When i € J, (27) becomes

E =

jEK

When i € K, (27) becomes

=5, +Z ‘K| ag Z(f]z flj)

jed JjeR\{i}
|K|S + S[K]
‘K| + Z f]l fl]
Jer\{i}

Using the definition of S; and the fact that n[N] = a[I] + a[J] + a[K], this becomes
A 1 A
d; = (1 - M) n; — K] <(n[N] —n[I] —n[J]) (1 - M) - a[K]) +‘€;\:{(fji — fij)
J %

Using the fact that n[N] = n[I] + n[J] + n[K], this simplifies to

4 3) (o)

—ai—si+ Y (fi— i)

JeR\{i}

- f’Lj

Because the summation is just the net supply s; at node ¢, this yields d; = a;, as desired.

We conclude that z < au + (n[N] — 1)A is the linear combination ), a;(k;) +
>_i; Bijliy. Since b > (n[N] —1)A, z < au + b is dominated by a surrogate of (24) and
therefore implied by (19), provided we show that the multipliers in (25) are nonnegative.

We observe first that «; > 0 for @ € I because a; > n;(1 — A/M), due to the
definition of I. To show that a; > 0 for i € I, we note that a; < n; for i € I implies
a; < 1/n[N], from the definition of ;. Thus «(I) < 1, which implies «; > 0 for 7 & I.
To show that 3;; > 0 for ¢ € J and j € K, we note that a; < n; for 7 € I implies that
a[I] < n[I], whence

A
2| l-= )i+ ——2a+— >q 2
S _( M)n + T a; + T a (29)
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where the second inequality is due to the fact that a; < (1 — A/M)n; for i € J. But
(29) and the definition of 8;; imply that 8;; > 0 for ¢ € J and j € K. Finally, 8;; = fi;
for i,j € K is by definition a nonnegative flow.
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