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Abstract

U.S. stock portfolios sorted on size, momentum, transaction costs, M/B, I/A and ROA

ratios, and industry classification show considerable levels and variation of return predictability,

inconsistent with asset pricing models. This means that a predictable risk premium is not equal

to compensation for systematic risk as implied by asset pricing theory (Kirby 1998). We show

that introducing market frictions relaxes these asset pricing moments from a strict equality to

a range. Empirically, it is not short sales constraints but transaction costs (below 35 basis

points) that help to reconcile the observed predictability with the Fama-French-Carhart four-

factor model and the Chen-Novy-Marx-Zhang three factor model, and partly with the Durable

Consumption model. Across the sorts, predictability in industry returns can be reconciled with

all models considered with only 25 basis points transaction costs, whereas for momentum and

ROA portfolios up to 115 basis points are needed.
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1. Introduction

It is well recognized that stock returns are to some extent predictable over time, as documented

by means of time-series regressions of stock returns on a set of forecasting variables. What remains

a puzzle is whether this predictability is an anomaly that could lead markets astray, a rational

feature of financial markets that reflects time-varying preferences and expectations, or an anomaly

that cannot be exploited by investors because of trading restrictions. Sorting portfolios on size, mo-

mentum, transaction costs, market-to-book, investment-to-assets and return-on-assets ratios, and

using industry classifications, we indeed find considerable levels and variation of return predictabil-

ity, inconsistent with asset pricing models. We, then, provide a way to directly assess whether such

return predictability is consistent with rational asset pricing when investors face market frictions

such as short sales constraints and transaction costs. In particular, we focus on the impact of mar-

ket frictions on the asset pricing models’ability to capture time-variation in return predictability,

and analyze whether cross-sectional differences in return predictability are consistent with what

might be expected when predictability is rational.

Rational asset pricing models imply that the joint process of returns and a stochastic discount

factor is not predictable in frictionless market. Assuming that investors can trade freely without any

costs or constraints, Kirby (1998) shows how to use this relation to infer the values of the coeffi cients

in a predictive regression of asset returns on a set of instruments. His approach indicates that the

ability to predict returns must be equal to a risk premium for undertaking systematic risk while

following a trading strategy intended to exploit predictability.

We extend this approach by analyzing next to the consistency of the rational asset pricing

models with the observed predictability, the cross-sectional differences in return predictability, and

taking into account market frictions. We find that the profits from a trading strategy intended to

exploit predictability need no longer be equal to a risk premium as implied by rational asset pricing

models. The inability to go short or the presence of transaction costs may force investors to deviate

from a trading rule that exploits predictability, thus lowering their profits.1

Although, especially since the removal of the uptick rule in 2007, investors can easily take short

positions in U.S. stock markets, many institutional investors are precluded by their charters from

doing so.2 At a minimum, our analysis of short sales constraints on predictability in asset returns
1For unconditional returns, He and Modest (1995) find that the combination of short sale constraints, borrowing

constraints and trading costs can reconcile the Consumption-CAPM with U.S. stock market returns. Luttmer (1996),
on the other hand, finds low levels of transaction costs (on the order of 50 basis points) to significantly weaken
restrictions on the variability of the intertemporal marginal rate of substitution, and finds in his tests little evidence
against power utility specifications with low risk-aversion parameters.

2Almazan, Brown, Carlson, and Chapman (2004) report that only about 30% of mutual funds are allowed by their
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is relevant to the latter. Transaction costs are known to be important to asset pricing and portfolio

holdings, as shown in many papers including He and Modest (1995), Luttmer (1996), Lynch and

Balduzzi (2000) and Liu (2004). There is also evidence of substantial cross-sectional and times

series variation in transaction costs observed in the markets, transaction costs decreasing over time

(Domowitz, Glen, and Madhavan (2001)) and with market cap (Hasbrouck (2009)). It is therefore

only natural to analyze the effect of transaction costs on the implications of predictability for asset

pricing models.

We analyze different portfolios based on single sorts on size, momentum, transaction costs (TC),

market-to-book (M/B), investment-to-assets (I/A) and return-on-assets (ROA) ratios, and industry

classification.3 Each sort yields ten different, equally weighted portfolios. We find substantial cross-

sectional variation in return predictability. Across the sorts, predictability (as measured by the R2

from predictive regressions) is highest (lowest) in high (low) TC stocks, small (big) stocks, low

(high) M/B, I/A and ROA stocks, and loser (winner) stocks. Overall, predictability is strongest

in TC-sorted portfolios, lowest in size-sorted portfolios, and comparable for the other five groups

of sorted portfolios, with R2’s that are usually between 10% and 30%, consistent with previous

literature.

Our empirical analysis tests two sets of asset pricing models. We use three linear factor models:

the CAPM, the Fama-French-Carhart four-factor and the recently introduced three-factor model

of Chen, Novy-Marx and Zhang (2010). In addition, we use three consumption-based models: the

Consumption-CAPM, the Durable Consumption model of Yogo (2006) and the Ultimate Consump-

tion Risk model of Parker and Julliard (2005).

We show that in frictionless markets these asset pricing models are not consistent with the level

of predictability observed in the various sorting portfolios, which confirms Kirby’s (1998) findings

for size-based portfolios. However our subsequent analysis shows that the predictability is mainly

an anomaly that cannot be exploited due to market frictions. Incorporating frictions significantly

improves the ability of the asset pricing models to generate levels of predictability consistent with

those observed in the market. Empirically, short sales constraints, because they imply unreasonably

high levels of alphas, cannot reconcile this predictability, but the presence of transaction costs does,

suggesting that unconstrained investors do not profit from predictability by taking short positions.

charters to sell short, while only 3% do so, and hedge funds, known for shorting, are not able to short an economically
significant fraction of shares outstanding (Lamont and Stein (2004)).

3The tests’assets are selected based on previous findings that show individual asset returns to be cross-sectionally
predictable from the characteristics that underly our sorting and that these characteristics are distinct from one
another (e.g., Fama and French (1992); Heston, Rouwenhorst, and Wessels (1999); and Korajczyk and Sadka (2004),
among others, deal with the issue of profitability of anomalous strategies).
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Transaction costs as low as 35 basis points monthly suffi ce to reconcile the observed predictabil-

ity with the Fama-French-Carhart four-factor and the three-factor model of Chen, Novy-Marx and

Zhang (2010). Industry-based portfolios require the lowest level of transaction costs to be rec-

onciled with all asset pricing models (always less than 25 basis points monthly), and momentum

and ROA-sorted portfolios the highest level (nearly 115 basis points monthly for the CAPM and

consumption-based models). With a three-month holding period, all models can be reconciled with

predictability with less than 50 basis points transaction costs. Finally, when sorting on transaction

costs, the critical level of transaction costs needed in each decile, is always lower than the actual

transaction costs observed for that portfolio. A separate Internet appendix shows our main findings

to be robust in an out-of-sample setting.

Our results shed light not only on time-series return predictability, but also on cross-sectional

differences in return predictability. We find strong differences across portfolio sorts, predictability

being much more diffi cult to reconcile in momentum and ROA-sorted portfolios than in industry

portfolios, and predictability being strongest in high TC-stocks, small stocks, low M/B, low I/A,

low ROA, and loser portfolios. Finally, in order for predictability to be consistent with asset pricing

models, these most predictable decile portfolios require a substantially higher level of transaction

costs than the highest decile portfolios, a result expected if the predictability observed in the market

is, indeed, rational.

2. Consistency of predictability with asset pricing models

In a standard asset pricing framework, investors maximize their expected utility (over consump-

tion), leading to the first-order conditions

Et [mt+1Ri,t+1] = 1, (1)

where mt+1 is an admissible pricing kernel or stochastic discount factor, Ri,t+1 is the gross return

on asset i and Et[·] indicates the expectation conditioned on the full set of information available

at time t. This equality states that the joint process (mt+1Ri,t+1), not returns themselves, cannot

be predicted using time-t information. We consider below the implications of Equation (1) for

predictive regressions.

2.1. Asset pricing implications for the coeffi cients in predictive regressions

Kirby (1998) shows how asset pricing theory restricts measures of predictability from linear

regression to certain values in frictionless markets, enabling for testing its consistency. We begin
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by briefly repeating his derivations.4

Consider a regression of excess returns ri,t+1 on a constant and a set of K instruments zt,

ri,t+1 = βi,u0 + β′i,uzzt + εi,t+1. (2)

Let qt+1 be a normalized pricing kernel that has expectation one, i.e., qt+1 = mt+1/E [mt+1]. As

mt+1 itself, qt+1 assigns a price zero to excess returns, ri,t+1, and to managed excess returns, ztri,t+1,

E

 qt+1ri,t+1

qt+1ztri,t+1

 = 0⇔

 E [ri,t+1] + Cov [qt+1, ri,t+1]

E [ztri,t+1] + Cov [qt+1, ztri,t+1]

 = 0. (3)

Rearranging terms and pre-multiplying by E [xtx
′
t]
−1 , where xt =

(
1 z′t

)′
we get

 E [ri,t+1]− µ′zΣ−1zz Σrz

Σ−1zz Σrz

−
 −Cov [qt+1, ri,t+1] + µ′zΣ

−1
zz Cov [qt+1, ri,t+1 (zt − µz)]

−Σ−1zz Cov [qt+1, ri,t+1 (zt − µz)]

 = 0, (4a)

⇔

 βi,u0

βi,uz

−
 βi,r0

βi,rz

 = 0. (4b)

Here µz = E [zt], Σzz = V ar [zt], and Σrz = Cov [ri,t+1, zt]. Equation (4) defines the unrestricted

and restricted intercepts, βi,u0 and βi,r0, and slope coeffi cients, βi,uz and βi,rz. (See Appendix A

for details of the derivations.)

If the predictability we observe in the market is consistent with the asset pricing model, then

under the assumption of frictionless markets, the coeffi cients from predictive regressions are re-

stricted to be exactly equal to the values in the second part of Equation (4a). This means that

predictability observed in the market must be consistent with the exposure to systematic risk un-

dertaken by an investor following a trading strategy that exploits predictability (i.e., consistent

with the covariance between asset returns and the pricing kernel) and constitutes a basis for a risk

premium.

Note that we reject the asset pricing model whenever it generates levels of predictability different

from the observed predictability, whether too low or too high. These two cases are not symmetric,

however, as the trading strategy aimed at exploiting the mispricing of predictability implies taking

either short or long positions respectively. When the actual effect of an instrument in the market is

stronger than the model suggests, that is, a payoff from a trading strategy that exploits predictabil-

ity is higher than a premium required by the actual risk exposure of such a strategy, long positions

in such strategies can take advantage of this additional premium. In the opposite situation, when

4Readers interested in details of the derivations should consult Kirby (1998).
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the pricing model overstates the effect of an instrument so that the compensation received in the

market is lower than implied by the asset pricing model, investors would like to short sell.

2.2. Incorporating frictions in the trading process

Next, we introduce short sales constraints and transaction costs into our economy.

2.2.1. Short sales constraints

He and Modest (1995) show that the presence of short sales constraints affects the first-order

conditions of the investors’portfolio problem. For excess returns, we obtain

E

 qt+1ri,t+1

qt+1ri,t+1zt

 ≤ 0, (5)

where we follow He and Modest in assuming that the vector of instruments takes only non-negative

values and has an unconditional mean equal to one, µz = ι5. It is important to note that we are

using excess returns, which means that the no-short-selling constraint pertains only to risky assets.

Pre-multiplying Equation (5) with E [xtx
′
t]
−1 we can write Equation (4) as βi,u0

βi,uz

−
 βi,r0

βi,rz

 =

 (
1 + ι′Σ−1zz ι

)
E [qt+1ri,t+1]− ι′Σ−1zz E [qt+1ztri,t+1]

−Σ−1zz ιE [qt+1ri,t+1] + Σ−1zz E [qt+1ztri,t+1]

 . (6)

First, we consider a special case in which unconditional returns are assumed to be priced

correctly such that E [qt+1ri,t+1] = 0. This is an important case since our main focus lies in the

impact of market frictions on the conditional trading strategies that exploit predictability (managed

returns). This means that the effect of short sales constraints applies to dynamic strategies only.

Using this assumption, the first terms on the right-hand-site in Equation (6) become zero and the

non-positive second terms (using also that Σzz is positive and diagonal) then imply:

βi,u0 − βi,r0 ≥ 0, (7)

βi,uz − βi,rz ≤ 0.

To ensure that Σ−1zz > 0 we orthogonalize the instruments, which results in a diagonal variance-

covariance matrix Σzz. Note that under this assumption the restriction on intercept is redundant

since it is equivalent to restricting the sum of the slope coeffi cients to be non-negative, which is

satisfied when restricting only the slope coeffi cients.

5Standardizing the mean to be equal to one does not affect the predictive regression coeffi cients, or R2s, but does
affect the bounds of the restrictions with short sales constraints and transaction costs. The auxiliary results (available
from the authors on request) show that our results are not sensitive to this normalization.
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Incorporating short sales constraints into our analysis weakens the restrictions imposed on

regression measures of predictability. Investors prohibited from short selling assets may not be able

to equate their profits with risk premiums implied by the asset pricing models when the actual effect

of some instruments is weaker in the market than the model suggests, that is,
(
βi,uz ≤ βi,rz

)
. Thus,

an asset pricing model with short sales constraints would be rejected only in the opposite situation,

when
(
βi,uz ≥ βi,rz

)
, meaning that investors are overcompensated for true risk exposures.

Next, we allow for mispricing also in the unconditional returns, and estimate the minimum value

of E [qt+1ri,t+1] that satisfies the restrictions in Equation (6). Following Chen and Knez (1996),

we interpret αJ = E [qt+1ri,t+1] to be an admissible performance measure. From Equation (3), we

see that it is equal to the difference between the expected return on an asset and the expectation

given its risk exposure, as implied by the asset pricing model. Hence, we refer to this measure as

a generalized Jensen’s alpha or αJ . We can then determine whether short sales constraints can

reconcile predictability with rational theory by assessing whether these generalized Jensen’s alphas

are achievable in the market. This enables us to assess whether the required alphas are reasonable

in magnitude and high enough to cover potential transaction costs. Then we can draw a conclusion

as to whether predictability is consistent with that particular asset pricing model.

2.2.2. Transaction costs

To analyze the effect of transaction costs, we follow Luttmer (1996) and differentiate between the

return on a long position, τAri,t+1, and the return on a short position, τBri,t+1 with τA ≤ 1 ≤ τB.

He and Modest (1995) show that in the presence of transaction costs, the restrictions imposed by

a valid pricing kernel qt+1 on excess asset returns, change to τA

τAι

 ≤ E
 qt+1ri,t+1

qt+1ztri,t+1

 ≤
 τB

τBι

 , (8)

where the second set of inequalities follow after taking unconditional expectations and using µz = ι.

Combining it with Equation (6), we obtain the following restrictions

τA − ι′Σ−1zz ι∆ ≤ βi,u0 − βi,r0 ≤ τB + ι′Σ−1zz ι∆, (9)

−Σ−1zz ι∆ ≤ βi,uz − βi,rz ≤ Σ−1zz ι∆,

where ∆ = τB − τA. (See Appendix A for details of the derivations.) Note that, unlike the case of

short sales constraints, here the restriction on the intercept is binding since it is not guaranteed by

the restrictions on the slopes.
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Equation (9) shows that incorporating transaction costs in the tests for predictability weakens

the restrictions derived in frictionless markets. The difference between the restricted and unre-

stricted coeffi cients should now be within a range determined by the bid-ask spread parameter and

a normalization term that accounts for the variability of the instruments. If the instruments are

more variable, managed portfolios require more trading and taking larger positions. Hence, small

differences in betas may induce large differences in returns. Given the level of transaction costs, this

would imply that the difference between βi,uz and βi,rz must be smaller, which is, indeed, reflected

in the multiplication by Σ−1zz . For the intercept, the bounds are truncated by τA and τB since with

no instruments βi,u0 − βi,r0 is simply E [ri,t+1] + Cov [qt+1, ri,t+1], i.e., the mispricing or Jensen’s

alpha that should be between τA and τB. With instruments there is additional trading required

and the bounds on the intercepts become wider by a similar term as for the slope coeffi cients.

This is normalized by the sum of the elements in Σ−1zz , as all betas affect the intercept. Finally,

with no transaction costs, the restrictions in Equation (9) collapse to the frictionless market case.

Otherwise, the higher the bid-ask spread the higher the difference between the predictability in the

market and that implied by asset pricing models.

By specifying the restrictions as in Equation (9), we can test the extent to which transaction

costs can reconcile the predictability in financial markets with asset pricing models. We do so

by deriving for the transaction costs a threshold value within the range of which the estimated

coeffi cients will fall. If the level of such a threshold is close to the values of transaction costs

observed in the market, we can conclude that predictability is consistent with that particular

pricing model.

3. Measurement issues

Our empirical analysis considers three linear factor models and three consumption-based mod-

els known to be at least partially successful in previous work. To analyze the level of return

predictability observed in asset returns, we compare return predictability observed in the data to

values restricted by the asset pricing models using R2s and Wald tests.

3.1. Asset pricing models

Pricing kernels implied by linear factor models

In general a pricing kernel linear in factors takes the following form:

mt+1 = 1− δ′ft+1, (10)
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where ft+1 is the vector of factors, and δ is a vector of parameters assumed to be constant.

As a starting point, we use the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and

Lintner (1965) in which the vector ft+1 contains only one factor, namely, the return on the market

portfolio in excess of the risk-free rate (MKT). We also use the four-factor model (FFC) based on

Fama and French (1993) and Carhart (1997), in which the vector ft+1 contains, next to the MKT

factor, three additional factor-mimicking portfolios: the small minus big portfolio (SMB), the high

minus low portfolio (HML), and the up minus down momentum portfolio (UMD).

In addition to these models, we use the three-factor model recently proposed by Chen, Novy-

Marx, and Zhang (2010) (CNMZ), which is motivated from investment-based asset pricing. In

the CNMZ-model the vector ft+1 contains the factor (MKT) and two additional investment-based

factor-mimicking portfolios: the investment factor (I/A), which is the difference between the return

on low-investment stocks and the returns on high-investment stocks, and the ROA factor (ROA),

which is the return on a portfolio of stocks with high returns on assets in excess of the return

on a portfolio of stocks with low returns on assets. CNMZ show that this model outperforms the

Fama-French model in explaining anomalies in the cross-section of stock returns.

Pricing kernels implied by the consumption-based models

We start with the standard Consumption-CAPM (CCAPM) as introduced by Breeden (1979)

for example. Assuming power utility function with constant relative risk aversion γ, the pricing

kernel takes the following form:

mt+1 = δ

(
Ct+1
Ct

)−γ
, (11)

where δ is the time discount factor and Ct is the consumption expenditure at time t.

Parker and Julliard (2005) propose to extend the contemporaneous measure with the subsequent

time periods to account for possible slow consumption adjustment, which gives a pricing kernel of

the form,

mS
t+1 = Rft,t+S

(
Ct+S
Ct

)−γS
, (12)

where Rft,t+S is the risk free rate from time t to t+ S, and S represents the number of subsequent

periods in which the consumption may adjust. For large S, this model is referred to as the Ultimate

Consumption Risk model.

The above models assume the utility function to be separable across goods and time. Yogo

(2006) shows that allowing the marginal utility to be nonseparable improves the model’s ability

to simultaneously explain the variation in expected returns across stocks and the variation in the

equity premium over time. He considers a Durable Consumption model based on Epstein and Zin
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(1991) preferences and a nonseparable utility function in nondurable and durable consumption.

This results in the following pricing kernel:

mt+1 =

[
δ

(
Ct+1
Ct

)−1/σ (v (Dt+1/Ct+1)

v (Dt/Ct)

)1/ρ−1/σ
R
1−1/κ
W,t+1

]κ
, (13)

where v (D/C) =
[
1 + α

[
(D/C)1−1/ρ − 1

]]1/(1−1/ρ)
, Dt is the stock of durable goods, κ = (1− γ) / (1− 1/σ) ,

σ > 0 is the elasticity of intertemporal substitution, γ > 0 is the relative risk aversion, ρ > 0 is

the elasticity of substitution between the two consumption goods, and α ∈ (0, 1) is the fraction of

wealth allocated to durable goods.

3.2. Difference measures

We start by presenting the estimation procedure for the pricing kernels implied by linear factor

models given in Equation (10). In this case, the moment conditions are,

E [h(ri,t+1, xt; θi)] = E



ft+1 (1− δft+1)

mt+1 − µm
zt − µz(

ri,t+1 − xtβi,u
)
xt(

−ri,t+1 (mt+1 − µm)− µmxtβi,r
)
xt


= 0, (14)

where ri,t+1 is the excess return on asset i, xt = [1, z′t], zt is the (K × 1) vector of forecasting

instruments. Also, βi,u =
(
βi,u0 β′i,uz

)′
and βi,r =

(
βi,r0 β′i,rz

)′
. The first moment con-

dition identifies the parameters of the factor model. The subsequent moment conditions identify

the means of the pricing kernel and the instruments. The last but one set of moment conditions

identifies all unrestricted coeffi cients in the predictive regressions. Finally, the last set of moment

conditions identifies the coeffi cients restricted by the asset pricing model.

For the consumption-based models, we estimate the additional parameters jointly on all sorted

portfolios, hence we obtain one set of parameter values for each model.6 For the CCAPM we obtain

the coeffi cient of risk aversion γ = 147. For the Ultimate Consumption Risk model we estimate

γ to be 69 and allow consumption to adjust over the subsequent 33 months. For the Durable

Consumption model, we obtain the following parameter values, the coeffi cient of risk aversion,

γ = 142, the elasticity of intertemporal substitution, σ = 0.020, the elasticity of substitution

between the two consumption goods, ρ = 1.07, and the fraction of wealth allocated to durable

6The values of parameters estimated separately on each sort do not vary considerable from the ones estimated
jointly and hence would have little influence on our results.
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goods, α = 0.716. Our results (available from the authors on request) are robust to reasonable

changes in these parameters. Additionally, we require for this model a proxy for the return on

wealth for which we use the value weighted market index (following Yogo (2006) and Epstein and

Zin (1991)).

The system of equations in (14) is exactly identified, which means that the parameters β̂i,u are

exactly the same as the OLS estimates from a linear regression of excess returns on forecasting

variables. GMM estimation implies that we solve for 1/T
∑
h(ri,t+1, xt; θ̂i) = 0. Under standard

regularity conditions, the parameter θ̂i is asymptotically distributed as

√
T (θ̂i − θ)

d−→ N
(

0,
(
D′iΩ

−1
i Di

)−1)
, (15)

where Di = E
[
∂h
∂θi

(yi,t+1, θi)
]
and Ωi =

∑∞
j=−∞E

[
hi,th

′
i,t−j

]
.

3.2.1. Wald test-statistics

We use a Wald test to evaluate predictability in asset returns. Let βi =
(
βi,u βi,r

)′
be the

vector of unrestricted and restricted regression parameters, that is, the last 2 (K + 1) elements of

θi, and Λi its covariance matrix. This unknown covariance matrix can be replaced with a consistent

estimator without affecting the limiting distribution of the test statistic. We calculate it as the

(2 (K + 1)× 2 (K + 1)) submatrix of the asymptotic covariance matrix of the GMM estimator θ̂ :(
D′iΩ

−1
i Di

)−1
, which is consistently estimated using the White covariance estimator

Ω̂i = T−1
T∑
t=1

hi,th
′
i,t. (16)

The Wald test-statistics, in frictionless markets, follow from the following minimization7

Wi = min
βi

T
(
βi − β̂i

) [
Λ̂i

]−1 (
βi − β̂i

)′
(17a)

subject to : βi,u = βi,r. (17b)

Under the null hypothesis and standard regularity conditions, Wi converges to a χ2K+1 distribu-

tion, where (K + 1) is the number of forecasting instruments (including constant) and restrictions.

To address possible small sample bias, we also obtain p-values using Monte Carlo simulations.

7This follows from Wolak (1987) who showed that the Wald statistic defined as

Wi = T
(
Rβ̂i

) [
RΛ̂iR

′
]−1 (

Rβ̂i

)′
where R = [IK+1,−IK+1] , and IK+1 is the (K + 1) × (K + 1) identity matrix, is also the optimal value of the
objective function defined in (17a).

11



In the presence of short sales constraints the Wald test-statistcs follow from

Wi = min
βi

T
(
βi − β̂i

) [
Λ̂i

]−1 (
βi − β̂i

)′
(18a)

subject to :
βi,u0 ≥ βi,r0
βi,uz ≤ βi,rz

. (18b)

Under this null hypothesis, the Wald test-statistic converges to a mixture of χ2 distributions (Kodde

and Palm (1986)) and we can obtain p-values using Monte Carlo simulations.

When transaction costs are introduced the constraint for the minimization problem changes to

Wi = min
βi

T
(
βi − β̂i

) [
Λ̂i

]−1 (
βi − β̂i

)′
(19a)

subject to :
τA − ι′Σ−1zz ι∆ ≤ βi,u0 − βi,r0 ≤ τB + ι′Σ−1zz ι∆

−Σ−1zz ι∆ ≤ βi,uz − βi,rz ≤ Σ−1zz ι∆
. (19b)

Given that these bounds are dependent, we follow the approach suggested by Wolak (1991), who

notes that from an asymptotic point of view for each i at most one of the inequalities is relevant,

so we test only this relevant restriction. Under the null hypothesis, the Wald test-statistic in the

presence of transaction costs converges to a mixture of χ2 distributions,8 and we can obtain p-values

using simulations. We do account for the estimation error in Σ̂zz when estimating the above Wald

test-statistic.

3.2.2. Regression R2s

Our second measure of restrictions implied by asset pricing models is the difference between the

unrestricted R2i,u and restricted R
2
i,r:

R2i,u −R2i,r =
β′i,uzΣzzβi,uz

σ2ri
−
β′i,rzΣzzβi,rz

σ2ri
. (20)

We then proceed by calculating the admissible differences in R2i,u and R
2
i,r for the various market

setups in our analysis. In the absence of market frictions, the null-hypothesis is that βi,uz = βi,rz,

and the admissible difference between R2i,u and R
2
i,r is zero.

Let β̃i,z =
(
β̃i,uz β̃i,rz

)′
be the solution to the minimization problem in (18a), which in the

case of short sales constraints leads to β̃i,uz ≤ β̃i,rz. Hence, the resulting values of β̃i,uz and β̃i,rz

lead to an admissible difference R2i,u − R2i,r that is consistent with the asset pricing model when

short selling is not allowed.
8This follows from Driessen, Melenberg, and Nijman (2005), who refer to this procedure as local hypothesis

testing, and show it to be a special case of the test proposed by Kodde and Palm (1986). As they also show, a global
interpretation would imply that we overestimated the size of transaction costs needed to avoid statistical rejection of
the model, or, equivalently, underestimated the influence of transaction costs on model misspecification.
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Finally, with transaction costs, the solution to the minimization problem in (19a), defined as

βi,z =
(
βi,uz βi,rz

)′
, must fall within the transaction cost bounds. Again, the resulting values

of βi,uz and βi,rz lead to an admissible difference R
2
i,u−R2i,r that is consistent with the asset pricing

model with transaction costs.

4. Data and summary statistics

4.1. Data description

Our empirical analysis uses monthly equally weighted portfolios formed on the basis of NYSE,

Amex, and Nasdaq stocks.9 We classify the universe of stocks independently into ten size, ten

market-to-book ratio (M/B), ten momentum, ten investment-to-assets (I/A), ten return-on-assets

(ROA), ten transaction costs (TC), and ten industry portfolios.

We obtain from the Kenneth French data library the data on size, M/B, momentum, and

industry equally weighted deciles. Equally weighted I/A and ROA deciles are from Chen, Novy-

Marx, and Zhang (2010) (CNMZ). The estimates of transaction costs are from Hasbrouck (2009).10

We use returns, dividends and prices from the Center for Research in Security Prices (CRSP) and

accounting information from the Compustat Annual and Quarterly Industrial Files. The sample

period is from February 1965 until December 2009. For the ten ROA deciles and the CNMZ

factors described below, the sample runs from January 1972 to June 2009, due to the availability

of accounting information.

We employ commonly used forecasting variables selected on the basis of findings from previous

studies: a dummy for the January effect (Jan); a credit risk premium (Prem) constructed as the

difference in yields between Moody’s Baa ranked bonds and Moody’s Aaa ranked bonds; a term

structure premium (Term) constructed as the difference between the 90- and 30-day Treasury bill

rate; a dividend yield on the S&P 500 index (Div); and the lagged return on the market index

(Mkt). Except for the January dummy, all of the forecasting variables are lagged one month.

To construct the pricing kernels implied by the linear factor models we obtain data on the Fama-

French-Carhart factors from the Kenneth French data library. For the consumption-based models

we use consumption, durable stock, and population data reported by the Bureau of Economic

Analysis (BEA). We measure consumption growth as the percentage change in the seasonally

9Tests run with the value-weighted portfolios lead us to similar conclusions, although we find smaller R2s. The
results are available from the authors on request.
10We are grateful to Ken French, Long Chen, and Joel Hasbrouck for making these data available. We extend the

data of CNMZ to match our sample period for the I/A portfolios and use a shorter period from January 1972 to
June 2009 for the ROA portfolios, due to the availability of accounting information. To form transaction costs decile
portfolios each month we sort CRSP stocks based on their previous year estimate of transaction costs.
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adjusted, aggregate, real per capita consumption expenditures on nondurable goods and services.

We construct the evolution of the durable stock by iterating forward the initial real value of the

durable stock, by adding the real durable expenditure and subtracting a quarterly depreciation rate

of 6%.

For the instruments, we base our empirical analysis on the assumption that the variance-

covariance matrix of instruments Σzz is diagonal. To satisfy this assumption, we orthogonalize

the forecasting variables by regressing them step-wise on each other and a constant, and using the

residual terms for the instruments. We also make sure the instruments have mean one by adding

a constant.

4.2. Predictability in sorted portfolio returns

Table 1 reports in Panel A the R2’s and Wald test-statistics from the OLS regression defined in

Equation (2) using all five instruments. Panel B report analogous statistics using the bias-corrected

slopes and standard errors proposed by Amihud and Hurvich (2004).

The results in Panel A show that we are able to explain quite a large fraction of stock return

variance. We observe substantial cross-sectional variation in predictability across different sorts,

the R2’s from the predictive regressions, in general, varying between 5% and 30%. Moreover,

the cross-sectional differences in return predictability are consistent with cross-sectional differences

in market size and transaction costs under the assumption that predictability is rational. The

portfolio of the highest transaction costs, smallest stocks, lowest market-to-book ratio portfolio

and low momentum portfolio have the highest R2’s in our sample. The portfolio with the biggest

stocks and the utility industry are the least predictable. Predictability is gradually monotonically

decreasing when moving from the first decile (P1) to the last (P10), save for the TC and I/A sorts.

For the transaction costs portfolios, as expected under rationality, predictability increases with

transaction costs. For the portfolios sorted on I/A we observe a slight U-shaped pattern.11

The portfolio with the smallest stocks is considerably more predictable than other size-deciles.

When we leave out the portfolio with highest predictability for all sorts, the R2’s are lowest for the

size portfolios, roughly half the R2’s for the other sort portfolios. All of the portfolios exhibit R2’s

higher than 5% save for the highest size deciles and one ROA and industry portfolio.12

The Wald test-statistics always reject the null hypothesis that all coeffi cients are zero when

we pool all portfolios within each sorting as well as when we treat each portfolio separately, save

11We also observe a slight increase in R2 for P10 in case of sorts on M/B and ROA.
12Numbers similar to those reported in this table are commonly observed in empirical studies of monthly returns

on equally weighted portfolios (e.g., Kirby (1998); Ferson and Korajczyk (1995)).
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the portfolio of the largest stocks. Also, the majority of the (unreported) slope coeffi cients are

individually significantly different from zero. The pattern of the Wald test-statistics resembles the

pattern of the R2’s, except for momentum, where we find little variation in the level of the Wald

test-statistics.

Panel B of Table 1 reports analogous statistics but using the Amihud and Hurvich (2004) bias-

correction. Although we observe a decrease in the Wald test-statistics when we incorporate it, the

bias correction has little influence on the p-values and R2’s. Hence, our conclusion with respect

to predictability in test assets is not altered by this small sample bias and we proceed without

bias correction in our GMM framework. Moreover, the similarity in R2’s indicates that the bias is

not large, and that the differences in Wald test-statistics above are driven mainly by the upward

correction to the standard errors. Incorporating this bias-correction in our further analysis would

most likely only strengthen our conclusions.

5. Empirical results

To see whether the documented predictability is consistent with an asset pricing model, we start

from a frictionless market, in which agents can trade without any costs or constraints. We then

relax this assumption by introducing first short sales constraints and then proportional transaction

costs.

5.1. Frictionless markets

The starting point of our analysis is the restriction given in Equation (4). Table 2 presents

the results from our seven sets of portfolio sorts and six asset pricing models. Panel A of Table 2

gives the average admissible and realized differences across the portfolios between the restricted

and unrestricted R2s for the various asset pricing models. Without market frictions, the admis-

sible difference between unrestricted and restricted R2s should be zero under the null-hypothesis.

The results show that the realized differences vary roughly between 5% and 15%. The smallest

differences are observed for the size-based portfolios, and the highest differences are for the M/B

and momentum-based portfolios, for all asset pricing models. Across the models, the CNMZ model

gives the smallest values for the difference between unrestricted and restricted R2. Nevertheless, all

the values in Panel A are clearly far from the admissible zero value, and the differences between

asset pricing models are fairly small.

Panel B of Table 2 shows the Wald tests for the differences between the restricted and un-

restricted slope coeffi cients. We can clearly reject the null hypothesis for all models and for all
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portfolio sorts. Consistent with the difference between realized and admissible R2’s in Panel A, the

Wald test-statistics are smallest for the CNMZ model. Across the sorts, the Wald test-statistics

are now highest for the size-based portfolios and lowest for the momentum-based portfolios. How-

ever, the size of the test-statistics is such that the null-hypothesis is rejected in all cases and the

differences are not very meaningful.

To illustrate, Panels C and D show differences between unrestricted and restricted regression

coeffi cients for the top and bottom decile of each sort for one linear factor model (FFC) and one

consumption-based model (DCM).13 Most of the differences are positive except for the coeffi cients

for the term spread and the intercept. The cross-sectional pattern in the coeffi cients shows that

the differences in coeffi cients are bigger for more predictable portfolios.

5.2. Short sales constraints

Because investors may not be able to short sell undesired assets, we allow for the possibility

that the premium on conditional strategies earned in the market is smaller than the risk premium

implied by the asset pricing model, first assuming the unconditional returns to be priced correctly.

In this case, the asset pricing model with short sales constraints is rejected only when investors are

overcompensated for true risk exposure. The setup of Table 3 is analogous to the one presented for

the frictionless case in the previous table.

Panel A shows the average admissible difference in unrestricted and restricted R2’s to be fairly

small, usually about 0.50%, about 0.25% for the CNMZ model and about one percentage point for

the ultimate consumption risk model. In all cases, the realized differences reported below them are

well beyond these admissible ones.

In Panel B, we find that an inability to go short does not improve the consistency of predictability

with asset pricing models. We observe a decline in Wald test-statistics relative to the frictionless

market case but can still reject the null hypothesis for all models and all portfolio sorts at any

reasonable level of significance. Apparently, the short positions in dynamic strategies are not

crucial for capturing the predictability observed in our sample.

Panels C and D show again the differences in regression coeffi cients, which, consistent with the

restrictions, are either zero or positive for the intercept and negative for slope coeffi cients. We still

observe a similar cross-sectional pattern as in the frictionless market case, that differences between

coeffi cients are bigger for more predictable portfolios.

We then relax the assumption that unconditional returns are priced correctly, and allow for

13 Internet appendix reports those differences for the remaining asset pricing models.
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simultaneous mispricing in both unconditional and conditional returns. Given the above results,

we now ask how much unconditional mispricing (not accessible due to short sales constraints) we

must accommodate to reconcile theory with the observed predictability. The starting point are

restrictions as given in Equation (6) in which we interpret αJ = E [qt+1ri,t+1] to be a generalized

Jensen’s alpha measure. We estimate the threshold values of this generalized alpha, which is a

minimum value needed to reconcile the asset pricing models with the predictability observed in the

portfolio sorts at the 5% significance level. Table 4 gives the estimated alphas in basis points per

month.

Panel A shows that, in all cases, high alphas are needed, with the highest values for the CAPM

and Consumption-models. The FFC four-factor model is the only model that requires (absolute)

alphas below one percent per month for all sorts save TC-sort.14 Across the sorts, the industry

portfolios need the lowest level of alphas to be reconciled with predictability, below one percent for

all models except the CAPM. The other sorts, in particular the ones based on momentum, ROA,

and TC, require alphas as high as 4% per month.

Panels B and C show the values of the alphas needed to reconcile the most and least predictable

portfolios. The results show the predictability of the portfolio of stocks with the highest market

capitalization (Big), the highest ROA, the lowest TC, and the least predictable industry (Utilities)

to require an alpha of only 10 basis points per month for almost all models. We can thus reconcile

predictability in these portfolios for all those asset pricing models once short sales constraints

are accounted for, with a relatively small alpha. Across the other sorts, the least predictable

portfolio can be reconciled with reasonable levels of alpha (below 30 basis points) for the FFC

four-factor model and the CNMZ three-factor model save for the TC-sort. This is also so for the

Durable Consumption model, with the exception of the I/A-sort. We cannot reconcile any portfolio

predictability with asset pricing theory for the most predictable portfolio, as these portfolios require,

across all sorts except industries, and asset pricing models, (negative) alphas between 0.50% and

5.5% per month.

The estimated alphas suggest that for predictability to be consistent with the asset pricing

models in case investors face short sales constraints, unconditional risk premiums must be substan-

tially smaller than implied by the models. Given previous studies of performance evaluation we

can see that these minimum values of alphas estimated in Table 4 are above any reasonable level

in absolute terms. This means that short sales constraints are not able to reconcile predictability

14Similar values are obtained by Ferson and Harvey (1999), who find for the Fama-French model alphas of up to
6% per year for the 25 size and market-to-book ratio portfolios, and up to 11% per year for the industry portfolios.
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save for a number of the highest decile portfolios.

5.3. Transaction costs

To determine whether payoffs from predictability are suffi ciently high to cover transaction costs,

we analyze whether proportional transaction costs can reconcile the predictability observed in the

data. Hence, the asset pricing models are only rejected when investors’compensation is outside the

bounds determined by the transaction costs given in Equation (9). As transaction costs increase,

these bounds increase and the restrictions on the measures of predictability weaken. Table 5

presents the results for transaction costs of 50 basis points.

In terms of differences in R2’s between restricted and unrestricted models in Panel A, we find

that the realized difference in R2s still exceeds the admissible differences under the null hypothesis,

but they are often of a similar order of magnitude. The admissible R2’s are smallest for the CNMZ

model and highest for the UCR model. The differences between the realized and admissible R2’s

are often only a few percentage points for all asset pricing models and never exceed 4%, except for

a few cases for the UCR model.

The Wald tests in Panel B further highlight the importance of transaction costs. With 50 basis

points transaction costs, we are able to reconcile at the 5% significance level the FFC four-factor

and the CNMZ three-factor models for all portfolio sorts, and the Durable Consumption model

for four out of seven portfolio sorts. Furthermore, the predictability of the industry portfolios is

reconciled for all models. Except for the industry portfolios, the CAPM and UCR models are

rejected for all other portfolio sorts. Thus, the Wald test-statistics indicate that the introduction

of transaction costs can reconcile observed predictability with at least the FFC and CNMZ models.

Given that the bounds on transaction costs are symmetric around zero we observe in Panels

C and D the differences between unrestricted and restricted regression coeffi cients to have both

positive and negative signs that are consitent with frictionless markets case. We also see less

cross-sectional variation in those differences in comparison to the frictionless market case.

5.3.1. Critical transaction cost levels

Given these results, the question arises how much an investor would be required to incur in

transaction costs for the documented predictability to be reconciled with the models considered

here. Table 6 shows the lowest values of transaction costs for which we cannot reject the null

hypothesis at the 5% significance level. Given that the level of transaction costs is heavily dependent
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on trading frequency, we report the results for two holding periods: one month and three months.15

To be on the conservative side, we correct for overlapping observations when quarterly holding

periods are used by adjusting the covariance matrix of the estimated parameters by a factor three.

The first thing we notice is that the level of transaction costs needed to reconcile predictability

with a particular model varies considerably across the models and portfolio sorts. Panel A gives

the values of the transaction costs needed to reconcile the predictability in all portfolios within

each sort. For the monthly holding period, the CAPM, CCAPM and Ultimate Consumption Risk

models require the highest transaction costs, more than 70 basis points except for the TC and

industry portfolios. Consistent with the results in the previous table, the FFC four-factor model

and CNMZ three-factor models are reconciled across all portfolio sorts for the one-month holding

horizon, with transaction costs below 35 basis points. In addition, the Durable Consumption model

can be reconciled with transaction costs below 50 basis points, for all portfolio sorts except size

and ROA sorts.

When we move to a three-month holding horizon, the thresholds decrease and we now need

45 basis points to reconcile all models except the Ultimate Consumption Risk model. Also in

particular, the performance of the consumption-based models has improved in comparison to a

one-month holding period. This is precisely the horizon at which these models were shown to be

successful in previous studies.16

Across the sorts, the industry portfolios need the lowest levels of transaction costs (up to

25 basis points at the monthly horizon), and the momentum and ROA portfolios the highest

levels of transaction costs (up to 113 basis points at the monthly level), to reconcile the observed

predictability. At the quarterly level, the differences between the sorts are very small.

Panels B and C show the values of transaction costs needed to reconcile predictability in the

most and least predictable portfolios. With a one-month holding period, the least predictable

portfolio can be reconciled at a relatively low level of transaction cost - less than 30, and often less

than 10, basis points. For the size and industry portfolios, and often for momentum and ROA sorts,

the required level of transaction costs is negligible at about two basis points. With a three-month

holding period, we need at most 45 basis points for the least predictable portfolio.

15The difference in results between the one-month and three-month holding periods is driven not only by the
differences in trading frequency, but also by the different levels of predictability observed in quarterly as opposed to
monthly data. Unreported results (available from the authors on request) reveal for the three-month holding period a
pattern of predictability similar to the one observed for the one-month horizon returns (i.e., in terms of cross-sectional
dispersion and the significance levels of the slope coeffi cients), but we find slightly higher R2s.
16For a comparison with the performance of the consumption-based asset pricing model across the data frequency

(monthly, quarterly, and yearly) see Jagannathan and Wang (2007).
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It is the most predictable portfolio which is harder for the asset pricing models to capture. Panel

A shows that with a monthly horizon, two models are able to reconcile the observed predictability

across all portfolio sorts with transaction costs below 35 basis points, but even those are not

consistent with the most predictable portfolios save for industries. Only the FFC four-factor model

is consistent with the bottom portfolio at a level of transaction costs of 55 basis points. For the

CNMZ three-factor model and Durable Consumption model, 95 basis points are needed. With a

quarterly holding period, for almost all models and sorts 85 basis points will do, except for the TC

portfolios.

Looking across the results for the one- and three-month holding periods, we see that although

both the level of predictability and threshold values of transaction costs change, we still need the

lowest transaction costs to reconcile the FFC four-factor model, CNMZ three-factor model and

Durable Consumption model with the predictability observed in the data. Moreover, the two

factor models are reconciled with as few as 35 basis points when investors rebalance their portfolio

monthly; all models are reconciled with at most 50 basis points when they trade quarterly, which

is consistent with observed levels of transaction costs in the major financial markets.

5.3.2. Common variation in transaction costs and predictability

If transaction costs are indeed able to reconcile observed predictability with rational theory,

one would expect our difference measures to vary consistently with the level of transaction costs.

The results in Table 1 already showed that we find the strongest differences in return predictability

across portfolios sorted on transaction costs, predictability being strongest in the highest transaction

costs portfolio, which is consistent with our expectations under the assumption that predictability

is rational. Likewise, from the estimated critical level of transaction costs, we find the highest

TC-portfolio to require a higher level of transaction costs (65 basis points) to be reconciled with

rational theory than the lowest TC-portfolio (25 basis points), and these critical transaction costs

are smaller than the actual transaction costs associated with these portfolios (7.08% and 50 basis

points, respectively). Thus, predictability, inconsistent with rational asset pricing in frictionless

markets, is stronger in portfolios of stocks that have high transaction costs but can also be reconciled

within the observed levels of transaction costs.

Next to this cross-sectional evidence, Figure 1 shows the estimates of the transaction costs,

R2’s from predictive regressions and frictionless market Wald test-statistics for size- and TC-sorted

portfolios estimated on a rolling window starting in January 1991.17 First, the results confirm a de-

17To conserve space we only report the results for those two sorts as they are the most relevant when linking
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creasing trend in transaction costs found in previous studies (e.g., Domowitz, Glen, and Madhavan

(2001), Hasbrouck (2009)). Importantly both the R2’s and all Wald test-statistics from frictionless

markets are also decreasing over time. Thus, also in the time series, the variation in transaction

costs appears to line up with variation in predictability.

In sum, both the time-series and cross-sectional evidence supports the notion that the inability

of asset pricing models to generate the observed levels of predictability in frictionless markets, can

be reconciled within the bounds of observed transaction costs.

6. Conclusions

Our main focus in this study is on the consistency of predictability with asset pricing theory

when investors face market frictions such as short sales constraints and transaction costs. Kirby

(1998) shows that in frictionless markets, profits from a trading strategy that exploits predictability

equal a risk premium implied by asset pricing models. We show that market frictions mitigate these

restrictions so that this equality need not be satisfied.

We find that different portfolios, based on single sorts on size, market-to-book ratio, momentum,

investment-to-assets, return-on-assets, transaction costs, and industry classification, show substan-

tial cross-sectional variation in return predictability. Our results show that the premium earned

in the market when implementing a strategy that tracks predictability is higher than the premium

based on a true risk exposure of such strategy, confirming the findings of Kirby (1998). However,

these premiums are not suffi ciently high to cover transaction costs of fewer than 35 basis points in

many cases.

In particular, with transaction costs of 35 basis points, the Fama-French-Carhart four-factor

model and the three-factor model by Chen, Novy-Marx, and Zhang (2010) always generate levels

of predictability consistent with the ones observed in sorted portfolios. Industry-based portfolios

require the lowest level of transaction costs to be reconciled with asset pricing models, momentum

and ROA-sorted portfolios the highest.

Our paper uncovers an interesting area of study that we leave for future research. We find that

similarly predictable portfolios (e.g., momentum and M/B stocks) are reconciled with different level

of market frictions. Hence, better understanding the cross-sectional nature of these portfolios will

enable us to better understand the cross-sectional differences in return predictability and vice versa.

predictability to transaction costs. The results for the other sorts are available from the authors on request.
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Appendix A. Details of the derivations

Here, we derive the restrictions given in Section 2 for the markets without frictions and with

transaction costs. We start with Equation (3) and pre-multply by E [xtx
′
t]
−1 to get

0 = E

 1 z′t

zt ztz
′
t

−1E
 qt+1ri,t+1

qt+1ztri,t+1

 (A.1)

=

 1 + µ′zΣ
−1
zz µz −µ′zΣ−1zz

−Σ−1zz µz Σ−1zz

 E [ri,t+1] + Cov [qt+1, ri,t+1]

E [ztri,t+1] + Cov [qt+1, ztri,t+1]


=

 E [ri,t+1]− µ′zΣ−1zz Σrz

Σ−1zz Σrz

−
 −Cov [qt+1, ri,t+1] + µ′zΣ

−1
zz Cov [qt+1, ri,t+1 (zt − µz)]

−Σ−1zz Cov [qt+1, ri,t+1 (zt − µz)]

 (A.2)

which leads to restrictions in frictionless market given in Equation (4a) above.

When transaction costs are present the restrictions imposed by the asset pricing models are

given in Equation (8), which together with Equation (6) gives: 1 + ι′Σ−1zz ι −ι′Σ−1zz
−Σ−1zz ι Σ−1zz

E

 qt+1ri,t+1

qt+1ztri,t+1

 =

 βi,u0

βi,uz

−
 βi,r0

βi,rz

 (A.3)

Note that −Σ−1zz ι is a column vector with only negative elements, while all elements of Σ−1zz are

non-negative. For the slope coeffi cients we get:

βi,uz − βi,rz = −Σ−1zz ιE [qt+1ri,t+1] + Σ−1zz E [qt+1ztri,t+1] . (A.4)

The minimum value of ( A.4) is therefore obtained when E [qt+1rt+1] = τB and E [qt+1ztri,t+1] =

τAι, while the maximum is obtained when E [qt+1ri,t+1] = τA and E [qt+1ztri,t+1] = τBι. Thus:

−Σ−1zz ιτB + Σ−1zz ιτA ≤ βi,uz − βi,rz ≤ −Σ−1zz ιτA + Σ−1zz ιτB ⇔ (A.5)

−Σ−1zz ι∆ ≤ βi,uz − βi,rz ≤ Σ−1zz ι∆.

For the intercept we get:

βi,u0 − βi,r0 =
(
1 + ι′Σ−1zz ι

)
E [qt+1ri,t+1]− ι′Σ−1zz E [qt+1ztri,t+1] . (A.6)

Here we have that (1 + ι′Σ−1zz ι) > 0, and ι′Σ−1zz is also positive. Thus, the minimum value of ( A.6)

is obtained when E [qt+1ri,t+1] = τA and E [qt+1ztri,t+1] = τBι, while the maximum is obtained

when E [qt+1ri,t+1] = τB and E [qt+1ztri,t+1] = τAι. Thus:(
1 + ι′Σ−1zz ι

)
τA − ι′Σ−1zz ιτB ≤ βi,u0 − βi,r0 ≤

(
1 + ι′Σ−1zz ι

)
τB − ι′Σ−1zz ιτA ⇔ (A.7)

τA − ι′Σ−1zz ι∆ ≤ βi,u0 − βi,r0 ≤ τB + ι′Σ−1zz ι∆,

which together with Equation ( A.5) is equal to the restrictions given in Equation (9) above.
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Table 1: Predictability ctd.

Panel A of the table presents the results of fitting the following linear regression model:

ri,t+1= βi0+βi1Jant+1+βi2 Pr emt+βi3Termt+βi4Divt+βi5Mktt+εt+1.

We report R2s and the Wald test-statistics from testing the null hypothesis that all slope coeffi cients are

zero within one portfolio and jointly for all portfolios with p-values underneath. P1 is the lowest decile, P10

the highest decile, sorted on size, market-to-book ratio, momentum, I/A, ROA, and transaction costs. The

sample period is from February 1965 until December 2009 save for the ROA deciles for which the sample

runs from January 1972 to June 2009, due to the availibility of the accounting information.

Panel B presents the reduced-bias estimation of Amihud and Hurvich (2004) of the predictive slopes estimated

in Panel A by fitting the following linear regression model:

ri,t+1= βi0+βi1Jant+1+βi2Premt+βi3Termt+βi4Divt+βi5Mktt+φ2v
c
t,Prem+φ3v

c
t,T erm+φ4v

c
t,Div+εt+1.

where vct,j , for each j = {Prem, Term,Div} , are computed using fitted values from the following first-

order autoregressive AR(1) model:

zt,j = θ + ρzt−1,j + vt,j ,

and using a bias-corrected estimate for ρ̂c = ρ̂+ (1 + 3ρ̂) /n+ 3 (1 + 3ρ̂) /n2. The bias-corrected standard

errors take into account estimation error in ρ̂c.

The bias-corrected slope estimates for the predictive instruments (i.e., the β̂
c′
s) are used to compute the

R2s and the Wald test-statistics analogously to Panel A.
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Table 4: The generilized Jensen’s alphas

Linear factor models Consumption-based models
CAPM FFC CNMZ CCAPM DCM UCR

Panel A: Jointly
Size -355 -96 -154 -342 -187 -355
M/B -285 -85 -156 -287 -194 -258

Momentum -398 -45 -96 -379 -242 -398
I/A -290 -34 -139 -287 -213 -269
ROA -398 -42 -183 -328 -384 -398
TC -379 -116 -203 -352 -413 -355

Industries -118 -29 -32 -84 -65 -96

Panel B: Most Predictable Portfolio
Small -420 -182 -273 -420 -255 -441

Low M/B -118 -161 -259 -355 -269 -355
Losers -506 -83 -312 -484 -341 -528
I/A -366 -53 -226 -355 -290 -275
ROA -528 -96 -355 -379 -342 -346
TC -468 -299 -285 -379 -364 -473

Industries -118 -52 -32 -118 -53 -139

Panel C: Least Predictable Portfolio
Big -10 -10 -10 -10 -10 -10

High M/B -102 -22 -20 -96 -27 -89
Winners -28 -20 -13 -32 -21 -64

I/A -102 -24 -27 -96 -53 -37
ROA -10 -16 -10 -10 -15 -15
TC -10 -45 -53 -10 -10 -10

Industries -10 -10 -10 -10 -10 -10

The table gives the minimum values of the generalized Jensen’s alpha in basis points for which we cannot

reject the null hypothesis that the difference between the unrestricted and restricted coeffi cients falls within

a short sales constraints bound at the 5% significance level. The results are based on joint tests for all

coeffi cients across all portfolios (Panel A) and separately for each portfolio (Panel B for the portfolio with

the highest predictive R2 , Panel C for the portfolio with the lowest predictive R2). The sample period is

from February 1965 until December 2009. For the ten return-on-assets deciles and the CNMZ factors, the

sample runs from January 1972 to June 2009, due to the availibility of the accounting information.
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Figure 1: Time-varying predictability measures.

32


