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Abstract
Collecting data to discriminate between models of risky choice requires careful selection of
decision stimuli. Models of decision making aim to predict decisions across a wide range of
possible stimuli, but practical limitations force experimenters to select only a handful of them for
actual testing. Some stimuli are more diagnostic between models than others, so the choice of
stimuli is critical. This paper provides the theoretical background and a methodological framework
for adaptive selection of optimal stimuli for discriminating among models of risky choice. The
approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental
trial based on the results of the preceding trials. We demonstrate the validity of the approach with
simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original
Prospect Theory, and Cumulative Prospect Theory models.
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1. Introduction
The decision making literature includes many theories and models of decisions under risk.
Some models are axiomatized; some are expressed as process models. Some models are
tested with choice data; some are tested with eye-tracking, brain imaging, or
psychophysiological data. Some models are tested in lab settings; some are tested in
observational settings. What is common to all experimental tests of decision making models
is that they require decision stimuli to be presented to decision makers. In the traditional
paradigm, the researcher decides which stimuli to present in advance of the study. But such
design decisions are sometimes based on the researcher’s intuition and are fixed at the
beginning of the study. Some researchers have criticized decision making studies for “cherry
picking” stimuli to lead to particular violations (Binmore and Shaked 2007). A classic
example is the Allais paradox that shows a violation of the independence condition of
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Expected Utility Theory (EU). One can argue that the classic set of EU violations are based
on specific items well-chosen to produce violations. EU, for instance, can be shown to fit
relatively well if one uses a different set of well-chosen stimuli. Some choice pairs tend to
be more diagnostic between two models than other choice pairs, so the results of an
experiment can show a large effect favoring the predictions of one theory, or if the stimulus
set does not permit clear differentiation of model predictions, then its results may be
inconclusive. Thus, the choice of stimuli is critical. The problem of choosing stimuli for
decision making studies has largely been ignored by the literature.

In this paper we consider an algorithmic approach to the selection of decision stimuli that is
relatively general in its application. Rather than selecting specific stimuli in advance, we
propose an adaptive approach to select the stimuli for the next trial. The foundation of the
approach is Bayesian, so it involves a precise statement about the value of information and
which stimuli to present on the next trial. In this approach, the design adapts to the decisions
of the participant so that the next stimulus is selected so as to discriminate optimally
between models.

This paper provides the theoretical background and a methodological framework for
adaptive experimentation and demonstrates its feasibility and applicability with simulation
experiments.

1.1. Importance of Experimental Design
Although EU is widely regarded as the predominant normative theory of individual choice
under risk, its descriptive adequacy has been called into question by violations of EU in
behavioral studies (e.g., Allais 1953, Ellsberg 1961, Kahneman and Tversky 1979). The
persistence of these violations has led to alternative theories that can rationalize the observed
choice behavior, which has yielded a large number of so-called non-expected utility theories
(see Starmer 2000, for a partial review). These alternate theories vary in the processes they
propose (e.g., rank-dependent models, prospect theory), vary in the axioms they relax, and
vary in whether they are deterministic or stochastic. This latter issue is especially important
because data are noisy. Sometimes systematic violations of axioms can emerge from
particular noise patterns (Hey 2005). Despite ongoing experimental programs collecting vast
amounts of data aimed at testing those theories, a consensus “best descriptive theory to
unseat EU” has yet to emerge, as different studies have favored different models. This paper
is not meant to settle the debate, but offers a tool that may be useful for providing some
clarity in the experimental tests of these models. The method searches the entire feasible
stimulus space to find stimuli that optimize the discriminability of models being considered
(see also Aigner 1979).

In this paper, we focus on the search through the three-outcome gamble space in the
Marschak-Machina (MM-) Triangle, which consists of all possible gambles on three fixed
outcomes. The MM-triangle is essentially a probability simplex with the each vertex
representing a degenerate gamble that yields one of the three outcomes with certainty (lower
right – lowest outcome; lower left – middle outcome; top – best outcome). Camerer (1989)
and others have shown that different theories imply specific structures of indifference curves
in the MM-Triangle, so this is a useful structure to test different models. From an
experimental standpoint, there are a huge number of possible stimuli (pairs of gambles in the
triangle) from which only a few can be chosen in a given experimental study. Trying all
possible combinations of stimuli creates an intractable, combinatorial explosion problem.
Further, not all stimuli are equally informative or useful in their ability to discriminate
model predictions, so stimuli must be chosen wisely.
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Which stimuli are optimal for discriminating between indifference curves in the MM-
triangle? The top graph if Figure 1 shows the gamble pairs used in Camerer’s (1989)
experiment to discriminate models of risky choice, along with the indifference curves
predicted by an EU model and a weighted expected utility (WEU) model. While this design
coarsely spans most of the triangle, it cannot distinguish between the EU model and the
WEU model, because both models make the same choice predictions across all gamble pairs
in the particular design. A different gamble pair (bottom graph), can discriminate the
models. But how could this have been known before the models were fitted to data,
especially when there is heterogeneity across subjects in their relevant decision making
parameters? Heterogeneous parameters means that usually the locations of the optimal
stimuli are in different places of the MM-triange for different subjects. How can we
automatically find the “sweet spots” for discriminating classes of theories? Can we do so in
a manner that models hetereogeneity?

Our approach contrasts with those in the literature. For example, Wu and Gonzalez (1998)
used a ladder technique to explore important regions of the triangle in a systematic way, but
the ladder stimuli only coarsely spanned the regions of interest, and were selected in
advance of the study. Birnbaum (2005) selects stimuli to differentiate models (e.g., TAX,
RAM, and CPT) by analytically deriving axiomatic differences between the theories, and
constructing gambles that test those axiomatic differences (i.e., gambles for which the
axiomatic differences imply different choices). Is there a way to find such gamble pairs
automatically, while data collection is on-going?

Another method that has been used in the literature involves constructing a standard
sequence of choices, where the outcomes and/or probabilities for the next question are based
in part on previous choices. For example, focusing on Abdellaoui (2000)’s procedure for
estimating the weighting function in rank dependent utility models, these procedures use
bisection procedures to hone in on the slope of the indifference curves in the MM-triangle
and data provide the inverse image of the weighting function. These are elegant
nonparametric procedures but they are not currently designed to select stimuli in an optimal
manner to discriminate model predictions.

1.2. Active learning approach to experiment design
We present an “active learning” approach that adapts the design (i.e., the decision stimulus)
in real-time as the experiment progresses. The idea is to run an experiment as a sequence of
stages, or mini-experiments, in which the stimulus of the next stage is chosen based on the
results of previous stages (Cohn et al. 1994, 1996), as depicted in Figure 2. Thus, the
information gained at each stage can be used to adapt the stimulus at subsequent stages to be
maximally informative in terms of classifying the structure of indifference curves in the MM
triangle. The sequentiality of repeatedly presenting gamble pairs to participants easily lends
itself to adaptation.

Because of the potential to increase simultaneously the efficiency of data collection (thereby
reducing the cost of conducting experiments) and the informativeness of what is being
learned (thereby improving the quality of statistical inference), the use of active learning has
become increasingly popular in recent years across a range of scientific fields. For example,
it has been applied to the detection of extrasolar planets (Loredo 2004), in clinical trials of
experimental drugs (Haines et al. 2003, Ding et al. 2008), in neurophysiology experiments
on spiking neurons (Lewi et al. 2009), to the estimation of visual psychometric and
psychophysical functions (Leek 2001, Kujala and Lukka 2006, Lesmes et al. 2006, 2010), to
the detection of banking fraud (Deng et al. 2009), in web-based surveys to elicit multi-
attribute decision heuristics (Netzer and Srinivasan 2007, Dzyabura and Hauser 2009), and
even in modeling human causal inferences (Steyvers et al. 2003, Kruschke 2008).
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Here, we utilize a previously developed active-learning framework that is specifically
intended for discriminating between mathematical models (i.e., families of probability
distributions indexed by one or more parameters). In this simulation-based framework,
called Adaptive Design Optimization (ADO; Cavagnaro et al. 2010), Bayesian decision
theory is used to identify the most informative stimulus at each stage of the experiment so
that one can infer the characteristics of the underlying model in as few steps as possible.
Essentially, each potential stimulus is treated as a gamble whose payoff is determined by the
outcome of a hypothetical experiment carried out with that design. By simulating many such
hypothetical experiments, an “expected utility” of each stimulus can be computed, and the
stimulus with the highest expected utility is chosen for the actual experiment. Between
stages, model probabilities and parameter estimates are updated via Bayes rule based on the
results of all preceding stages. The posterior estimates are then used to find an optimal
design at the next stage. This process continues until a stopping criterion is reached.

ADO has been shown to be effective for discriminating mathematical models of human
choice behavior in two-armed “bandit” problems (Zhang and Lee 2010), and for
discriminating power and exponential models of memory retention, which are notoriously
difficult to discriminate (Cavagnaro et al. 2011). Applying it to the problem of
discriminating theories of individual choice under risk poses new challenges, as it entails
optimization over a qualitatively different type of design variable – pairs of monetary
gambles. In addition, this application entails recasting the deterministic core theories as
probabilistic models because the methodology requires that the models under consideration
have well-defined likelihood functions. We do this by embedding the core theories in a
Bayesian stochastic framework with the minimal assumption that if gamble A is preferred to
gamble B, then A will be chosen over B at least half of the time. Choices are assumed to be
generated from some core theory with an unknown rate of variation. We represent
uncertainty about the “error rate” (i.e., the proportion of the time that the gamble with lower
utility is chosen according to the core theory) by treating it as a random variable between
zero and 0.5. This characterization captures both trembling hand and white noise types of
stochastic error, as the error rate is free to vary across gamble pairs (see section 2.2 for
details).

In the remainder of the paper, we describe in more detail the Adaptive Design Optimization
framework for discriminating models of risky choice. We begin with preliminaries of the
methodology, describing the stochastic specification, the parameterization of the design
space, and the design optimization problem that emerges within the ADO framework. We
next discuss the implementation of Bayesian updating, review some computational methods,
and consider metrics for performance evaluation. We then present simulation results, and
conclude with a discussion of generalizations and limitations.

2. Adaptive Design Optimization for Discriminating Models of Risky Choice
2.1. History and basic ideas of ADO

There is a sizable body of work in statistics on formal methods for optimizing the design of
an experiment (e.g., Lindley 1956, Kiefer 1959, Atkinson and Federov 1975a,b, Atkinson
and Donev 1992, Chaloner and Verdinelli 1995, Kreutz and Timmer 2009) including user
friendly statistical packages such as the SAS procedure PROC OPTEX. The work, however,
has focused almost entirely on the problem of identifying an optimal design that minimizes
the variance of the parameter estimates for a given model in the context of multiple linear
regression modeling. For example, optimal design strategies in factorial experiments for
linear and generalized linear models have been studied in economics (e.g., Aigner 1979,
Großmann et al. 2002, Vermeulen et al. 2008), psychology (e.g., McClelland 1997) and
marketing research (e.g., Kuhfeld et al. 1994). Also, these methods are not adaptive.

Cavagnaro et al. Page 4

Manage Sci. Author manuscript; available in PMC 2014 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Recent developments in statistical computing (Müller et al. 2004, Amzal et al. 2006) make it
possible to extend design optimization to nonlinear models, which are often found in the
behavioral and social sciences. Taking advantage of these computational breakthroughs,
Myung and Pitt (2009) developed a design optimization (DO) framework and illustrated its
application in the problem of discriminating nonlinear models of cognition in two content
areas: retention memory and category learning. The framework was designed to perform a
one-shot process performed prior to an experiment. Cavagnaro et al. (2010) further extended
it to the case of adaptive design optimization (ADO) in which DO is repeated after
collecting only a fraction of all data (Figure 2).

In the present study, we adopt the ADO framework of Cavagnaro et al. (2010) to adaptive
experimentation for discriminating generalized expected utility models of risky choice.
Before describing the details of the ADO framework, we discuss two prerequisite issues in
its application: (1) model specification (what is the proper probabilistic specification of a
model of risky choice that captures the effect of stochastic variation in choice behavior?)
and (2) design space (what are the design variables that can be optimized in a choice
experiment?).

2.2. Model specification
2.2.1. Patterns of Indifference Curves—Generalized expected utility models can be
specified according to qualitative patterns of indifference curves in the Marschak-Machina
probability triangle (Marschak 1950, Machina 1982). The MM-triangle is defined as
follows. Consider three outcomes, xL,xM,xH (low, medium, high) such that xL ≺ xM and xM
≺xH. The outcomes could be, for example, monetary prizes with xL < xM < xH. A gamble
over these three outcomes is denoted by (pL,xL;pM,xM;pH,xH), where pL is the probability of
the low outcome, pM is the probability of the medium outcome, and pH is the probability of
the high outcome. The set of all gambles over these outcomes can be represented by the
space of all probability triples (pL,pM,pH) such that pL + pM + pH = 1. The latter restriction
imples that pM = 1 − pH − pL, hence we can geometrically represent these gambles in the
unit triangle in the (pL,pH) plane.

It has been shown by Camerer (1989), among others, that different utility models produce
qualitatively different patterns of indifference curves in the Triangle. For example, the
indifference curves for EU are straight lines with the same slope (left panel of Figure 3). The
slope is naturally interpreted as the marginal rate of substitution of pH for pL. Those who are
risk averse will demand a higher price to bear risk, and hence their indifference curves will
be steeper. This qualitative characterization of EU can be captured by a single parameter
corresponding to the common slope of the indifference curves. Thus, we write EU(a), where
0 < a < ∞, for the expected utility model under which the common slope of the indifference
curves is a. For example, under EU(1/2), a gamble is preferred to a gamble ℬ that is
riskier (i.e., it has a lower probability of the middle outcome) than if and only if the slope
of the line segment from A to B in the Triangle is greater than 1/2. Formally, under EU(1/2),
≻ ℬ ⇔ |pH,B − pH,A|/|pL,B − pL,A| > 1/2.

Weighted Expected Utility (WEU; Chew 1983) can also be specified according to its
characteristic pattern of indifference curves. In WEU, the indifference curves are still
straight lines as in EU, but they are not parallel. Rather, they all intersect at a common point
outside the triangle (right panel of Figure 3). Under the “light hypothesis” of Chew and
Waller (1986), the curves fan out from a point southwest of the triangle. This qualitative
representation of WEU can be captured by two parameters corresponding to the location of
that point of intersection (x, y) in the Euclidean plane, where (0, 0) is the lower-left vertex of
the Triangle. Thus, we write WEU(x, y) for the WEU model under which the point of
intersection of the indifference curves is (x, y). For example, under WEU(−2,−3), gamble 
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is preferred to gamble ℬ if and only if the slope of the line segment connecting (x, y) to is
greater than the slope of the line segment connecting (x, y) to ℬ. Formally, under WEU(x,y),
≻ ℬ ⇔ |pH,A − y|/|pL,A − x| > |pHB − y|/|pL,B − x|.

2.2.2. Stochastic Specification—The specifications described above yield deterministic
choices between gambles. However, most people’s choices are stochastic. When asked the
same question multiple times, people often change their minds. This tendency to reverse
preferences across repeated questions is well-documented, and the reversals seem to be
systematic (e.g., see Stott 2006, for a summary). Therefore, to analyze pair-wise choice data,
it is necessary to supplement the deterministic theory with a stochastic framework. The
stochastic framework could take many other forms, including constant error or “trembling
hand” models (Harless and Camerer 1994), Fechner style logit or probit transformations
sometimes called ‘white noise’ models (Hey and Orme 1994, Blavatskyy 2007), random
preference models (Becker et al. 1963, Loomes and Sugden 1995), and hybrids of the three
(Loomes et al. 2002).

The methodology we present here is compatible with any stochastic specification that yields
a closed form likelihood function, but for clarity of illustration it may be helpful to consider
a simple “true-and-error” specification (Birnbaum and Gutierrez 2007). This specification
assumes that, in the absence of errors, the same person would make the same decision every
time when presented with the same choice. The probability of an error (i.e., a decision that is
the reverse of the true preference) in any given choice is constrained to be between 0.0 and
0.5. Formally, let di = {( i,ℬi)} be the ith gamble pair presented in an experiment. The
probability of choosing gamble i is given by

(1)

where εi is a random variable between 0.0 and 0.5. The flexibility of this framework should
allow most models to perform quite well, and increase the difficulty of discriminating
between them, making it ideal for testing the ability of ADO to discriminate core theories.

2.3. Design Space: Discriminating models in the MM-triangle
In a typical binary choice experiment to discriminate the models described above (e.g., Hey
and Orme 1994, Stott 2006), each participant is presented with many different pairs of
gambles from the probability triangle and asked to report which gamble they prefer from
each pair. The models can then be evaluated based on how well they fit the reported pattern
of preference (i.e., the choice data). We say that a model fits the choice data well when the
reported choices in the data are consistent with what would have been predicted by the
model for some particular range of its parameters. If the reported choices are not consistent
with what the model would have predicted for any range of its admissible parameters, then
the model fails.

When the goal of experimentation is to estimate the parameters of a single model, one seeks
data that can be fit well by that model for only a narrow range of its parameters. This yields
a very tight parameter estimate. On the other hand, when the goal of experimentation is to
discriminate between competing models, one seeks data that can be fit well by one of the
models under consideration, and not the others. That is, to discriminate models, the data
must be consistent with the predictions of one model but not the others. In that sense, the
key to discriminating choice models is to present pairs of gambles for which the models
under consideration make opposing, qualitatively different predictions, allowing the data to
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reject models that do not fit, regardless of which gamble is actually chosen. Note that
identifying qualitative differences between models is a particularly effective means of model
discrimination. It is not just that the superior model can provide a tighter quantitative fit, but
rather that the competitors cannot generate the correct data pattern to begin with.

The experimenter decides which pairs of gambles will be presented, and this decision can
greatly affect the potential of the experiment to discriminate the models. To illustrate, the
left panel of Figure 4 shows the predictions of a particular Expected Utility model over a
small set of gamble pairs. As shown in the right panel, this predicted pattern of choices is
also consistent with an Weighted Expected Utility model. Thus, this set of gamble pairs (i.e.,
design choices) would not discriminate between the two models. In this case, it would have
been advantageous to present the gamble pairs in the circled area shown in the lower panel,
where these two models make the most distinct predictions.

In the preceding example, the parameters of the models were specified in advance so that the
models’ predictions were known precisely. In this idealized situation, it is easy to find
optimal gamble pairs for discriminating the models, just by visual inspection of the gamble
space. However, in real experiments there are often more than just two models under
consideration and their parameters are uncertain. This can make it extremely difficult to
know in advance which gamble pairs have the best chance of discriminating the models. In
the next section, we describe how ADO can be used to search the gamble space to find
optimal gamble pairs for discriminating models of risky choice.

2.4. Algorithm
As mentioned above, an ADO experiment proceeds across a sequence of stages, or mini-
experiments, in which the design at each stage is optimized based on the experimental
results of preceding stages. Thus, the two main components of an ADO experiment are
intelligent querying at each stage and information updating between stages. Intelligent
querying means identifying the optimal design that is expected to provide the most useful
information possible (i.e., don’t test what you already know, test to clarify what you don’t
know) about the phenomenon under investigation. The optimal design is then renewed using
the information gained in one mini-experiment to improve optimization in the next mini-
experiment. This notion can be formalized as a Bayesian decision problem in which the state
of knowledge is summarized in prior distributions, and on the bases of observed outcomes in
stages, this knowledge is updated using Bayes rule to yield a posterior distribution
specifying the likelihood of the model.

Formally, following Cavagnaro et al. (2010), ADO for discriminating the models of risky
choice defined earlier entails maximizing a utility function U(d) defined as

(2)

where s (= 1,2,…) is the stage of experimentation, m (= 1,2,…, K) is one of K models under
consideration, d is a design to be optimized, and y is the choice outcome of a mini-
experiment with design d. In the equation, ps(y|m,d) = ∫θ p(y|θm, d)ps(θm)dθm is the marginal
likelihood of the observed choice y given model m and design d, which is the average
likelihood weighted by the parameter prior ps(θm). Similarly,

 is the “grand” marginal likelihood, obtained by averaging
the marginal likelihood across K models weighted by the model prior ps(m).
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Choosing a utility function that adequately captures the goal of the experiment is a critical
part of ADO (see, e.g., Chaloner and Verdinelli 1995, pp. 277–281, for a review of utility
functions). The particular form of the utility function in (2) is motivated by its information
theoretic interpretation. That is, U(d) represents the mutual information (Cover and Thomas
1991, p. 18) between the random variable M defined over a set of K models {m = 1, 2,…,K},
representing uncertainty about the true, data-generating model, and the random variable Y|d,
representing uncertainty about the outcome of a mini-experiment with design d (Cavagnaro
et al. 2010) as follows:

(3)

As such, U(d) can be interpreted as the reduction in uncertainty about the true model that
would be provided by observing the outcome of a mini-experiment conducted with design d.
Accordingly, the optimal design  that maximizes U(d) at stage s is the one that provides
the maximum information about the true model given the most up-to-date expectations
about the models and the parameters.

The model probabilities and parameter priors are updated on each stage of experimentation.
Specifically, upon the specific outcome zs of a mini-experiment carried out with the optimal
design , the model probabilities and parameter priors to be used to find an optimal design
at the next stage are updated via Bayes rule and Bayes factor calculation (e.g., Gelman et al.
2004) according to the following equations

(4)

(5)

where  is the Bayes factor defined as the ratio of the marginal likelihood of
model k to that of model m given the outcome zs and optimal design . The ADO process
continues until one model emerges as a clear winner under some appropriate stopping
criterion, such as ps(m) > 0.99.

Finding the optimal design  is a nontrivial problem as the computation requires solving
simultaneously high-dimensional integration and optimization, which are in general
analytically intractable. Recently, a promising and fully general approach to solving the
problem has been proposed by statisticians (Müller et al. 2004, Amzal et al. 2006). It is a
Markov chain Monte Carlo (MCMC: Robert and Casella 2004) approach that allows one to
find the optimal design without having to directly evaluate the utility function U(d) or
optimize it with respect to the design variable d. For small-scale problems, one can of course
use standard numerical methods such as simple Monte Carlo integration and grid searches.

3. Simulations
As with any new methodology, it is important to verify that it can work in a controlled
environment (e.g., where it is already known which model is generating the data) before
implementing it in experiments with human participants. To that end, we conducted
computer simulations to demonstrate the effectiveness of ADO for discriminating models of
risky choice. The first set of simulations focused on two models that are well studied in the
literature: EU and WEU. The reason for starting with such familiar models was to provide
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confirmation that the optimal designs match our intuitions about which types of designs can
discriminate the models. In the second set of simulations, we use ADO to discriminate
between two variants of Prospect Theory: Original Prospect Theory (Kahneman and
Tversky 1979) and Cumulative Prospect Theory (Tversky and Kahneman 1992). Here our
goal was to show that ADO can be discriminate among the more complex and more current
models of decision making.

3.1. EU vs. WEU
The models under consideration in the first set of simulations were Expected Utility (EU)
and Weighted Expected Utility (WEU). The models were parametrized as described above,
with the parameters for WEU bounded between 0 and −10 (i.e., the point of intersection of
the indifference curves under WEU was assumed to be somewhere within a 10×10 box
southwest of the probability triangle).

The ADO simulations began with equal model probabilities (i.e., p(EU) = p(WEU) = 0.5)
and uniform priors over parameters and stochastic error rates. Each stage of the simulations
consisted of a single trial. At each stage, an optimal gamble-pair for discriminating the
models was found by the algorithm described above, and a choice between the gambles in
that pair was generated by computer from a “true” generating model – either EU or WEU
with some fixed values of their respective parameters. The design space from which gamble-
pairs were selected for presentation at each stage is depicted in Figure 5. This space was
obtained by rounding probabilities in the Triangle to the nearest 0.1, eliminating gamble-
pairs for which the models will always make the same predictions (e.g., neither model
predicts violations of stochastic dominance), and only considering gambles on the boundary
of the triangle.

To provide a baseline against which to compare the performance of ADO, we also
conducted simulations using a “random” design strategy. In these simulations, the
optimization part of ADO was turned off and the gamble-pair at each stage was selected at
random (uniformly from the same discretized design space), making it possible to separate
the effects of choosing an optimal gamble-pair from the effects of sequential testing with
Bayesian updating. Comparison of these data with those obtained in the ADO simulations
provides an indication of the algorithm’s efficiency relative to a design strategy with no
optimization built in.

In the first set of simulations, data were generated at each stage from WEU(−7.0, −1.5) with
error rates εi drawn independently at each stage from a uniform distribution on the interval
(0, 0.5). The indifference curves implied by this data-generating model are depicted in
Figure 6. The point of intersection of the indifference curves is so far from the Triangle that
the curves seem to be parallel at first glance, even though they actually fan out, with slopes
ranging from as steep as 1/3 in the upper left to as shallow as 1/5 in the lower right. This
means that an EU model with appropriate parameters could generate the same predictions as
this WEU model for most gamble pairs, making it exceedingly difficult to discriminate
between them.

We used the Bayes factor1 to measure the strength of evidence in favor of one model over
the other. The Bayes factor, a standard method of model selection in Bayesian analysis, is
defined as the ratio of the posterior marginal likelihoods of the two models, derived from
Bayesian updating, and provides a direct and naturally interpretable metric for model
selection (Kass and Raftery 1995). A Bayes factor of ten, for example, means that the data

1The Bayes factor is superior to measures that assess only goodness of fit, such as r2 and percent variance accounted for (Myung
2000).
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are ten times more likely to have occurred under the one model than under the other. A low
Bayes factor does not indicate that the models are performing poorly, however. The Bayes
factor indicates relative model plausibility, not absolute model plausibility, so a value near
one could also result from both models performing equally well.

A typical profile of the Bayes factor in favor of WEU as a function of stage s in the ADO-
simulations is shown by the solid black line in Figure 7. For reference, rule-of-thumb
benchmarks (Kass and Raftery 1995) for “substantial” (Bayes factor of 3.2), “strong” (Bayes
factor of 10), and “decisive” (Bayes factor of 100) evidence are also indicated in the graph.
The Bayes factor obtained in the typical ADO simulation far exceeds the rule-of-thumb
threshold for decisive evidence, reaching a peak of 3.3x105 after 50 stages. In contrast, the
Bayes factor obtained in the typical random-design simulation, indicated by the dotted gray
line in Figure 7, did not conclusively discriminate the models even after all 50 stages were
completed. Similar results were obtained in other simulations that were run with different
parameters of the generating model.

In examining the Bayes factor curve for the ADO simulation in Figure 7, it is notable that
the curve is fairly flat for the first 15 stages before rising sharply in favor of WEU. This is
not unexpected because both models should be able to fit the observed data pattern well
when there are relatively few data points to constrain them. Moreover, in these early stages
the parameter estimates are diffuse and design selection is strongly influenced by the priors.
Once the parameter estimates are sufficiently precise, ADO is able to find designs for which
the models make opposite predictions, which emerges by stage 20.

To understand the model-discrimination process more clearly, it is helpful to examine which
gamble-pairs were selected over the course of the simulation. It turns out that only two
different gamble-pairs were selected in the final 37 stages of the experiment: {(0.0, 0.5),
(0.4, 0.6)} and {(0.5, 0.0), (0.9, 0.1)}. They are depicted in Figure 8, along with some select
iso-curves of the data-generating model. What is special about these two pairs is that they
define parallel line segments with slope 1/4. This means that under any EU model, if the
safer gamble (i.e., the one on the leg of the triangle) is preferred in one pair, then the safer
gamble must be preferred in both pairs, and vice versa. Formally, {(0.0, 0.5) ≻ (0.4, 0.6)}
⇔ {(0.5, 0.0) ≻ (0.9, 0.1)}). On the other hand, WEU models do not necessarily have this
restriction. In particular, the data-generating model, with it’s indifference curves fanning out
from about 1/3 in the upper left to about 1/5 in the lower right, yields a preference for the
safer gamble in the upper-left pair but not in the upper-right (i.e., {(0.0, 0.5) ≻ (0.4, 0.6)}
but {(0.9, 0.1) ≻ (0.5, 0.0)}). Since no EU model can match this pattern, the posterior
marginal likelihood of EU based on these data is extremely low, resulting in very high
Bayes factor in favor of WEU. Careful examination of the design space revealed that these
two gamble pairs are the only ones in the space that define parallel line segments for which
the data-generating model prefers the safer gamble in one pair and the risky gamble in the
other. If the data-generating model were known in advance, it would not be difficult to
construct such a design. It is essentially a version of Allais’ paradox with probabilities that
are custom-tailored to discriminate this particular data-generating model from an EU model.
ADO finds this discriminating design automatically and hammers away with it because it
provides the strongest evidence in favor of the data-generating model.

To ensure that the advantage of ADO was not due to the choice of WEU as the data-
generating model, we repeated both the ADO and random-design simulations with choices
at each stage generated from EU(0.297). The indifference curves implied by EU with this
parameter closely match those implied by the WEU model used in the first set of
simulations, with the common slope of the indifference curves being 0.297. Because of this
similarity, it would be natural to guess that the same gamble-pairs that were optimal for
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discriminating the models in the first set of simulations would be optimal in this set of
simulations. However, upon closer inspection, it is clear that the gamble-pairs that were
favored in the first simulation, particularly {(0.0, 0.5), (0.4, 0.6)} and {(0.5, 0.0), (0.9, 0.1)},
would not yield data that could discriminate the models in this case. The reason is that
EU(0.297) would choose the safer option from both of these pairs (i.e., {(0.0, 0.5) ≻ (0.4,
0.6)} and {(0.5, 0.0) ≻ (0.9, 0.1)}) as shown in Figure 9, since the pairs define parallel line
segments. This data pattern could be matched by a WEU model for a very wide range of
parameters; the model need only imply indifference curves that are always steeper than 1/4.
Thus, one could not conclusively identify EU as the generating model (or, equivalently, rule
out WEU as a possible data-generating model) based on observations from these two gamble
pairs alone. Different gamble-pairs would need to be presented to discriminate the models in
this case.

EU was the data-generating model in the second set of simulations. The results are shown in
Figure 10, and show that ADO automatically adapted to the new testing setup and found
gamble-pairs that discriminate the models. The Bayes factor surpassed 10,000 after 50
stages, while the Bayes factor in the random-design simulation never even reached the first
rule-of-thumb cutoff of 3.2.

How the design is adapted to the new testing situation can be seen once again by inspecting
the designs that were chosen across stages. Just as in the first simulation, two gamble pairs
were particularly favored by ADO, being presented in 32 of the 50 stages. This time, they
were {(0.0, 0.6), (0.3, 0.7)} and {(0.1, 0.0), (0.8, 0.2)}, depicted in Figure 11. What is
notable about these two gamble-pairs is that they do not form parallel line segments. Their
slopes are 1/3 and 2/7, respectively, meaning that they “fan out” slightly. Since the common
slope of the indifference curves in the generating model is 0.297, which is less than 1/3 but
greater than 2/7, the generated data indicate that the riskier gamble is preferred from the first
pair (being chosen on 13 out of 16 presentations). This means that the indifference curve of
the generating model near (0.0, 0.6) and (0.3, 0.7) must be less steep than 1/3, and that the
safer gamble is preferred from the second pair, suggesting that the indifference curve of the
generating model near (0.1, 0.0) (0.8, 0.2) must be steeper than 2/7. These data essentially
trap the range of possible slopes of the indifference curves of the generating model between
1/3 and 2/7. This severely limits the degree to which the indifference curves under WEU can
fan out and still remain consistent with the data, so much so, in fact, that a better explanation
of the data, according to the Bayes factor, is the less complex EU model. ADO found this
design automatically.

3.2. OPT vs. CPT
ADO decisively discriminated EU from WEU. The next set of simulations were intended to
show that ADO can be used to discriminate among more complex models of decision
making, which assume more complex patterns of indifference curves than the straight lines
of EU and WEU. Two such models that have received considerable attention in recent years
are Cumulative Prospect Theory (CPT; Tversky and Kahneman, 1992) and Original
Prospect Theory (OPT; Kahneman and Tversky, 1979). CPT is widely viewed as a technical
and theoretical advancement over OPT, but attempts to discriminate between the two models
empirically have yielded mixed results, in part because the models make such similar
predictions for the majority of gambles (Wu et al. 2005). Therefore, a useful test of ADO
would be to determine if it can discriminate between these two, as well as to tell them apart
from EU and WEU.

Both OPT and CPT apply an S-shaped transformation υ(x) to outcome values, and an
inverse-S shaped transformation π(p) to outcome probabilities. The difference between the
models is in how those transformations are combined in the valuation of gambles.
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Qualitatively speaking, CPT captures the psychophysical notion of ’diminishing sensitivity’
toward outcomes in the sense that decision makers using CPT weigh extreme outcomes (on
both the low and high ends) more heavily than intermediate outcomes in their decision
processes (Fennema and Wakker 1997). This difference is very difficult to detect
empirically, however, unless one elicits choices at highly specialized gamble pairs. For
example, in a gamble with three possible outcomes (x > y > 0), and equal probabilities of
yielding the two highest outcomes (p probability of x, and p probability of y), OPT would
attach equal weights π(p) to the outcomes x and y. In contrast, CPT would attach less weight
to the second outcome y than to the first outcome x (π(p+p) − π(p) versus π(p)).

The nonlinear transformations involved in both OPT and CPT allow the two models to
produce a wide range of patterns of indifference curves including various regions of
curvature, concavity, and convexity. Camerer (1989) outlines several properties of the
indifference curves for OPT under the assumption of a convex probability weighting
function, and Wu and Gonzalez (1998) describe the fanning-in and fanning-out properties of
the indifference curves for CPT assuming an inverse s-shaped weighting function, but a
fully general characterization in qualitative terms is not available. Because of this, we will
specify the models directly using the full utility functions. For CPT, utilities of three-
outcome gambles are assigned using with the formula

where υ(xi) is a monotonic value function and w(pi) is a monotonic risky weighting function.
Many different functional forms have been suggested for the value function, but for three
just outcomes xL < xM < xH we may assume without loss of generality that υ(xL) = 0 and
υ(xH) = 1, yielding the utility function

This simplification leaves one parameter, υ = υ(Xm) with 0 ≤ υ ≤ 1, to characterize the value
function. As for the probability weighting function, of the many different functional forms
that have been suggested (see Stott 2006, for a summary), the most commonly used is

with 0 < r < 1, as originally suggested by Tversky and Kahneman (1992). Thus CPT can be
specified with two parameters, 0 < υ, r < 1, representing the perceived value of the middle
gamble and the parameter of the probability weighting function, respectively.

OPT is parameterized similarly. Specifically, the “editing operation” of OPT yields two
different expressions for the utility of a gamble, depending on whether or not pL = 0. In
particular

Thus, the predictions of OPT and CPT coincide when pL = 0 (i.e., on the vertical leg of the
MM-Triange).
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Since both OPT and CPT can predict deviations from the straight-line indifference curves of
EU and WEU, they can be discriminated from EU and WEU by testing for curvature inside
the triangle. Further, since OPT and CPT differ primarily in the degrees of curvature they
predict inside the triangle, discriminating between them requires testing inside the triangle,
not on its edges as in the preceding simulations. Within the ADO framework, this required
expanding the design space to include gambles in the interior of the triangle. The new design
space, depicted in the left panel of figure 12, consists of 485 pairs of gambles. This set was
constructed by first considering all possible pairs of gambles on the three outcomes,
rounding each probability to the nearest 0.1, and finally eliminating pairs in which one
gamble stochastically dominates the other.

As in the first set of simulations, we ran simulations with two different design strategies:
ADO and ”Fixed.” The Fixed design is intended to provide another baseline against which
to compare the results of the ADO designed experiments. The stimuli in the Fixed design
were those selected by Camerer (1989) in a previous experiment to discriminate among
models of risky choice. The set of stimuli from Camerer’s experiment consists of 14
different pairs of gambles, which are depicted in the right-hand panel of figure 12. In our
simulations using the Fixed design, stimuli were chosen sequentially from these 14 gamble
pairs. That way, after 14 stages all 14 pairs had been presented once, and after 28 stages all
14 pairs had been presented twice, and so forth. This design strategy could be expected to
perform better than the ”random” design strategy that was used as a baseline in the previous
set of simulations because the choice of gamble pairs was informed by knowledge of model
behavior in past studies.

As before, in both design conditions the data were generated at each stage i from some
“true” model, with stochastic error rates εi drawn independently from a uniform distribution
on the interval (0, 0.5). We ran many simulations with various combinations of data-
generating model, model parameters, and design strategy. In every case, the simulations
using ADO to select stimuli were able to conclusively identify the data-generating model.
The simulations using the Fixed design were sometimes able to identify the data-generating
model conclusively, but sometimes not. Further, in the Fixed design experiments, the
strength of evidence was never as strong as in the experiments using ADO. To illustrate
these results, we will present the outcomes of four particular simulations: one with each
design strategy when the data-generating model is OPT, and one with each design strategy
when the data-generating model is CPT.

We begin with the simulations in which OPT was the data-generating model. Figure 13
shows the results of two such simulations – one in which the Fixed design was used (left
panel), and one in which ADO was used (right panel). In both cases, the data-generating
model was OPT with υ = 0.601 and r = 0.910. These parameter values are typical in the
literature and provide an adequate benchmark. The graphs in Figure 13 show how the
posterior probability of each model changed across stages of the experiments. The graph on
the left shows that the Fixed design experiment did not conclusively identify the data-
generating model, even after 84 stages. It seems to have generated substantial evidence
against EU and WEU (i.e., the models with straight-line indifference curves), which have
posterior probabilities of 0.067 and 0.062 after 84 stages. However, it never conclusively
discriminated between OPT and CPT, which have posterior probabilities of 0.461 and 0.410,
respectively, after 84 stages. In contrast, the right-hand graph shows that the ADO
experiment conclusively identified OPT as the data-generating model. After 84 stages of
experimentation with ADO, the posterior probability of OPT is over 0.999, yielding a Bayes
factor well over 1,000.00.
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One notable difference between the two graphs is greater volatility of the posterior
probabilities in the ADO experiment relative to the Fixed design experiment. This is not
surprising given the criteria by which ADO selects stimuli on each stage: ADO selects
stimuli that provide “the most information about the true model given the most up-to-date
expectations about the models and parameters.” That is, ADO chooses gamble pairs at each
stage that are simultaneously the most advantageous and disadvantageous for all models.
Each has a great deal to gain and a great deal to lose. When the choice of gamble pair is true
to the data-generating model (i.e., when it is not reversed by stochastic error) the posterior
probability of the data-generating model stands to rise substantially. However, when the
choice of gamble pair is reversed by stochastic error, the posterior probability of the data-
generating model also stands to decrease substantially. This results in a volatile trend for the
posterior model probabilities, which will trend toward 1.0 for the data-generating model
(and toward 0.0 for its competitors) as long as the stochastic error rate is less than 0.5.

When stimuli are not tailored to be maximally informative, as in the Fixed design, the
volatility of the posterior model probabilities is lower. In the extreme case, when the
stimulus at a given stage is minimally informative, the result at that stage will neither
increase nor decreases the posterior probabilities, regardless of the observed choice at that
stage. This would be the case, for example, if all of the models under consideration made
identical prediction about the stimulus. It is precisely this type of situation that gives rise to
the step-function-like appearance in the graph of the posterior probabilities in the Fixed
design. The probabilities are constant across several consecutive stages, followed by a spike
or dip, and then constant for several more consecutive stages. This pattern is due to the
relative informativeness of the small, finite set of gamble pairs in the Fixed design. A few of
them are informative, but the rest are not. When the fixed design happens upon an
informative stimulus, the posterior probabilities jump, either up or down depending on the
actual choice at that stage.

The graphs in Figure 14 show that a similar story unfolded in the simulations for which CPT
was the data-generating model (with parameters υ = 0.401 and r = 0.71, which are also
typical in the literature). To wit, the posterior probability of CPT in the ADO condition was
volatile across stages, but approached 1.0 as the experiment progressed, indicating that ADO
successfully identified CPT as the true, data-generating model. Indeed, after 84 stages, the
posterior probability of CPT was greater than 0.9999.

The Fixed design also fared well in identifying CPT as the data generating model. After 84
stages in the Fixed condition, the posterior probability of CPT was 0.9604. This equates to a
Bayes factor of 24.25, which would be classified as “strong” evidence in favor of CPT
according to the guidelines of Kass and Raftery (1995). However, as in the previous
simulation with OPT as the data-generating model, the posterior probabilities in the Fixed
condition were flat for many stretches of the experiment, indicating that many of the stimuli
were non-informative – essentially wasted. The posterior probability was particularly flat for
the last 24 stages, suggesting that the experiment had already extracted all of information
that it could without changing to new stimuli.

What do these simulations reveal about which stimuli are optimal for discriminating
between OPT and CPT? To answer this question, we can start by examining Figure 15,
which depicts the stimuli that were selected by ADO when CPT was the generating model
(left) and when OPT was the generating model (right). What’s remarkable about these two
figures is the lack of overlap between the two designs. Aside from a few stimuli on the
horizontal and vertical legs of the triangle, ADO selected different stimuli in the two
simulations. This is should not be surprising since the “true” indifference curves were
different in the two simulations. The power of ADO is it’s ability to zero-in on the data-
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generating model and find stimuli that are custom tailored to discriminate that particular
model from its competitors. Here, as was the case in the simulations to discriminate EU and
WEU, the optimal stimuli are those that most closely match the indifference curves of the
data-generating model; a different data-generating model necessitates a different design.2

Seen from this perspective, the stimuli that the two simulations share in common could be
seen as those that are optimal for making maximal headway when there is very little
information about the data-generating model (i.e., early in the experiment). This
interpretation is confirmed by examining the order in which stimuli were selected by ADO.
The stimuli that the two simulations do not share in common are those that are specifically
tailored based on the results of the preceding observations. Accordingly, since the υ
parameter (which controls the steepness of indifference curves in both OPT and CPT) was
set to 0.601 when OPT was the data-generating model compared to 0.401 when CPT was the
data-generating model, the stimuli in the OPT simulation are noticeably “steeper” than those
in the CPT simulation.

The take-home message is that the “sweet spot” for discriminating between OPT and CPT is
a moving target. It depends on the the data-generating model, its parameters, and the set of
models under consideration. In some cases, a fixed design will happen upon informative
stimuli simply because the data-generating model in those cases happens to “match” the
stimuli in the fixed design. For example, the Fixed design from Camerer (1989) was quite
good at discriminating between OPT and CPT for the parameters of CPT that were used in
the second simulation (υ = 0.401 and r = 0.71). Indeed, this value of r is precisely what was
originally estimated by Tversky and Kahneman to fit their aggregated choice data, so the
Fixed design could prove to be useful for discriminating OPT and CPT for the average
participant. However, more recent studies have shown that individual parameters of CPT
vary widely (e.g., Stott 2006), which means that an effective design must be able to
discriminate between models for a wide variety of parameters. There is no guarantee that
any experiment will yield data that can discriminate between models, but to maximize the
odds of doing so across a wide range of possible models and parameters, and to do so
without wasting trials, the design must be adaptive.

4. Discussion
To discriminate among decision-making models, data are required that accentuate model
differences. Such data can be extremely difficult to obtain when models make identical
predictions for the vast majority of decision stimuli that could be presented. Models of
decision making aim to predict decisions across a wide range of possible stimuli, but
practical limitations force experimenters to select only a handful of them for actual testing.
To help experimenters make such decisions, we have presented an adaptive experimentation
method, ADO, for generating decision-stimuli that capitalizes on the sometimes fine
differences between decision-making models. To do so most efficiently, the ADO method
uses active learning to choose adaptively the most informative decision-stimuli in real-time
as the experiment progresses.

As a first-step in demonstrating the potential of ADO, we showed simulation results
verifying that the ADO method finds pairs of three-outcome gambles that correctly
discriminate either EU or WEU in relatively few trials. Fine-grained analyses of the
simulation data showed that different gamble pairs were required to discriminate between

2One notable similarity between the two designs shown in Figure 15 is the inclusion of several parallel stimuli across the hypotenuse
of the Triangle. This could be seen as an implicit test of ‘hypotenuse parallelism’ – a property of CPT indifference curves that is not
shared by OPT or WEU (Camerer 1989). At the very least, it confirms that information about the slopes of the indifference curves
near the hypotenuse is important for discriminating among EU, WEU, OPT and CPT.
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the models, depending on which model actually generated the data and the specific
parameters of the true model. For example, the stimuli that were effective for identifying
EU(.297) when it was the data-generating model, would not have been effective for
identifying WEU(−7.0,−1.5) when it was the data-generating model, and vice versa. The
adaptibility of ADO allowed it to find highly specialized gamble pairs that were uniquely
suited for identifying the data-generating model.

The EU and WEU models considered in the simulation study both predict straight-line
indifference curves in the triangle, making the predicted direction of preference on any
given pair of gambles determined solely by the angle between gambles in the triangle. For
this reason, it sufficed for ADO to consider only gambles on the boundary of the probability
triangle. To show that the method presented here is easily adapted to include more complex
models, we conducted additional simulations to show that ADO finds pairs of gambles that
correctly discriminate among EU, WEU, OPT, and CPT. In these simulations, it was
essential to sample stimuli in the interior of the triangle to pick up the curvature of the
indifference curves implied by OPT and CPT. These simulations further showed that ADO
can find optimal stimuli for discriminating more than two models in the same experiment.

In future work, it will be useful to consider more extensive design spaces by varying the
outcome values in gambles as well as the outcome probabilities. The design space can also
be extended to including gambles with more than three possible outcomes, which may help
to further discriminate between models that mimic one another very closely in the
probability triangle. For example, TAX can predict violations of stochastic dominance on
gambles with more than four outcomes, whereas prospect theory does not (Birnbaum 2008).
It is straightforward to extend the current ADO framework to these situations. Having
demonstrated the applicability and desirable features of ADO in simulation experiments, we
plan to implement the methodology in an actual descision-making experiment with human
participants.

Our adaptive approach to comparing models of decision making may remind some readers
of related work in adaptive conjoint analysis (e.g., Netzer and Srinivasan 2007, Dzyabura
and Hauser 2009). However, these approaches have a different set of goals than trying to
find the best questions for comparing models. These approaches aim to minimize the
number of questions needed to estimate a multi-attribute preference model or decision
heuristic. It is analogous to maximizing the “statistical power” of an experiment: the axioms
of additive conjoint measurement are assumed to hold in the choices and the algorithms for
selecting stimuli facilitate efficient scaling (i.e., attaching numbers). The ADO approach
presented here differs in that it aims to test and compare parameterized models that may rely
on different sets of axioms. An application of ADO to conjoint anaysis would be to find
designs that optimally test the axioms of conjoint analysis. If a modeler really wanted to test,
say, additivity, what would be the best set of choices to give subjects? This would involve
an extension of ADO because it is about testing axioms with multiple antecedents like
double and triple cancellation, or optimal tests of transitivity (again, more than one
antecedent condition). The decision-making-under-risk framework is a special case because
there are models with parametric forms, we understand well the implications of violations of
the axioms, and we understand the properties of the functional forms.

We to note that not all variables in an experimental design can be optimized. The application
of ADO requires that the experimental variables to be optimized can be quantified in the
likelihood function and the prior (Myung and Pitt 2009, p. 511). In its current form, ADO is
not applicable to non-quantitative variables such as choice of task (binary choice vs.
certainty-equivalence estimation), choice of participant population (children vs. clinical
population), and some categories of independent variables, in particular nominal variables
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(e.g., word vs. picture stimuli). ADO might therefore be viewed as optimizing only part of
the experiment, but even in this capacity, it can significantly influence design choices and
the resulting experimental outcome.

Another limitation of ADO is the assumption that the set of models under consideration
includes the model that actually generated the data (i.e., the “true” model). This assumption,
obviously, is likely to be violated in applications because our understanding of the topic
being modeled is sufficiently incomplete to make any model only a first order
approximation of the true model. Ideally, one would like to optimize a design for an infinite
set of models representing all conceivable realities. To our knowledge, no implementable
statistical methodology is currently available to solve a problem of this scope.

It is worth noting the stochastic nature of the ADO framework in which sequential decision
processes are carried out on the basis of probabilistic inputs. That is, ADO attempts to infer
the underlying state (i.e., the data generating model) that one cannot directly observe by
maintaining a probability distribution over the set of all possible states and then updating the
distribution based on observables that themselves are probabilistic. The ADO framework is
an example of what is known as the partially observable Markov decision process (POMDP)
in artificial intelligence and machine learning (Kaelbling et al. 1998, Littman 2009).
Although the optimality of the POMDP is proved asymptotically over an infinite time
horizon, it is not necessarily achieved in practice, due to a finite number of samples being
observed. An implication is that ADO may not work well if there is too much noise in the
data or the models being discriminated are similar enough to be indistinguishable for all
practice purposes. In such situations, ADO may not be nearly as robust and useful as one
would like, unless the algorithm is run over an impractically long period of time.

A necessary requirement for the seamless integration of ADO into experiments with human
participants is ensuring that computation time does not prolong an experiment. Inordinate
delays between stages of an experiment, which is when ADO computation occurs, would not
only disrupt the experiment but work against the gains in efficiency that ADO provides. The
ADO algorithm, currently implemented in C++, takes only a few seconds on a personal
computer to generate an optimal gamble pair for each trial. The computation time can
significantly go up as the size of the ADO problem grows. For example, if the design space
is extended to include gambles with more than three outcomes, and if the outcomes are
allowed to vary as well as the outcome-probabilities, the search problem becomes much
more computationally intensive. To addresses this challenge, we should explore general-
purpose ways of speeding up the computation of ADO by taking advantage of more
powerful hardware and by improving the efficiency of software. For instance, using a
computer cluster or a graphic processing unit (GPU) processor would permit parallelization
of the code (Matlab, C++) responsible for the MCMC chains, which is the source of the
most time-consuming operations. Fortunately, the computational algorithm lends itself
naturally to parallelization.

The abundance of models of decision making is one sign of a productive field of inquiry.
This productivity can also be a curse if the models are such close competitors that they
cannot be distinguished. To the extent that models can be distinguished, ADO is a new tool
that has the ability to overcome such an impasse. It does so by essentially finding
vulnerabilities in their data-fitting abilities and exploiting these until one of the models is
shown to be inferior. The adaptive nature of the methodology makes its discrimination
process efficient, and although much more development is still needed, the current
simulations demonstrate it holds considerable potential.
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Figure 1.
Standard representation for decision stimuli (gamble pairs, red line segments) and
indifference curves (black line segments) in the probability triangle. Each stimulus includes
a “safe” gamble (lower-left endpoint in a line segment) and a “risky” gamble (upper-right
endpoint on a line segment). The stimuli are overlaid with the indifference curves implied by
two different models, expected utility (parallel indifference curves, left) and weighted
expected utility (fanning out indifference curves, right). In each triangle, preference
increases from lower-right to upper-left, so a decision maker who chooses according to one
of these models prefers whichever gamble is on an indifference curve closer to the top-left
of the triangle.
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Figure 2.
Schematic illustration of ADO. The experiment begins with an optimal design (d1), which is
then used in the first mini experiment. The results of this experiment (yobs(d1)) inform the
creation of a new optimal design (d2), which in turn is used in the second mini experiment.
This iterative process continues until a stopping criterion is reached. Shown in parentheses
for each optimal design are examples of designs used in the simulations described in the
present paper (i.e., pairs of monetary gambles). The parameter and model priors that are
updated via Bayes rule at each stage of experimentation are denoted by ps(θm) and ps(m);
(s=0, 1, …), respectively, and are described in detail in the Method section.
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Figure 3.
Qualitative pattern of indifference curves implied by two models of choice (Left: Expected
Utility is characterized by parallel indifference curves. Right: Weighted Expected Utility is
characterized by indifference curves that fan out.
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Figure 4.
Left: indifference curves for an EU model with a fixed parameter. Right: indifference curves
for a Weighted EU model with fixed parameters. Bottom: Overlaid indifference curves from
an EU model and a Weighted EU model, highlighting the region of the triangle that is
optimal for discriminating these two models for these parameters. The models make
identical predictions for gamble pairs (A1;B1) through (A4;B4), but opposing predictions for
pair (A5;B5).
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Figure 5.
Discrete space of possible gamble-pairs in a binary choice experiment. Each line segment
corresponds to a pair of gambles, indicated by the endpoints of the segment. For example,
the line segment connecting (0.0, 0:8) with (0.1, 0.9) represents the pair of gambles (0.0,xL;,
0.2,xM; 0.8,xH) and (0.1,xL;, 0.0,xM; 0.9,xH).
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Figure 6.
Indifference curves of the Weighted Expected Utility (WEU) model from which data were
generated in the first set of simulations. The indifference curves intersect at (−7.0,−1.5)
relative to the lower-left corner of the Triangle.
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Figure 7.
Bayes factor curves from the first set of simulated experiments in which data were generated
from Weighted Expected Utility (WEU). As suggested by the theory, evidence in favor of
the data-generating model accumulates much faster when the gamble-pairs to be presented
are selected by ADO at each stage.
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Figure 8.
Two gamble-pairs that were presented most frequently in the ADO simulation (dashed red
lines), along with indifference curves of the data-generating model (solid red lines). The
dashed red lines are parallel but the indifference curves fan out, decreasing in slope from left
to right. The dashed red lines are specially positioned (automatically, by ADO) to highlight
the fact that the indifference curves fan out, since the one in the upper left is shallower than
the indifference curves in that region, while the one in the lower right is steeper than the
indifference curves in that region. The observed data, which indicate a preference for the
safer gamble in one pair and the riskier gamble in the other, can not be replicated by any
Expected Utility model. That is because any Expected Utility model must have parallel
indifference curves that would either be steeper than both dashed red lines or shallower than
both dashed red lines.
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Figure 9.
Gamble pairs that correctly identified WEU as the generating model in the previous
simulation (dashed blue lines), along with indifference curves for an Expected Utility model
(black lines). If these pairs were presented in an experiment and the data were generated by
this EU model, the data would reveal that the safe gamble is preferred in both pairs (since
the indifference curves are steeper than the dashed blue lines). This would not discriminate
the models, however, because a WEU model with sufficiently steep indifference curves
could also produce this data pattern.
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Figure 10.
Bayes factor curves from the second set of simulated experiments, in which data were
generated from Expected Utility (EU). Again, evidence in favor of the data-generating
model accumulates much faster when the gamble-pairs to be presented are selected by ADO
at each state.

Cavagnaro et al. Page 30

Manage Sci. Author manuscript; available in PMC 2014 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Two gamble-pairs that were presented the most frequently in the second ADO simulation
(dashed red lines), along with indifference curves of the data-generating model (EU, solid
red lines). The slopes of the dashed red lines (1/3 and 2/7, respectively), and their positions
essentially “trap” the possible slopes of the indifference curves of the generating model
between 1/3 and 2/7. This restriction is sufficient for the Bayes factor to correctly favor EU
as the generating model.
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Figure 12.
Left: discrete space of 485 possible gamble pairs from which ADO selects stimuli in the
second set of simulations. The space was constructed by first considering all possible pairs
of gambles on three outcomes, then rounding each probability to the nearest 0.2, and finally
eliminating pairs for which one gamble stochastically dominates the other. Right: 14 gamble
pairs composing the design from Camerer’s (1989) experiment. In the Fixed-design
simulations, stimuli were drawn sequentially from this set. The numbers next to the stimuli
indicate the order in which they were selected in the Fixed-design. To disambiguate the
endpoints of each stimulus, all of the stimuli except for 3, 4, 10, and 11 are “short,” in that
they extend just one diagonal unit, whereas stimuli 3, 4, 10, and 11 are “long,” extending
two diagonal units.
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Figure 13.
Results of simulated experiments when OPT was the data-generating model. The graph on
the left shows how the posterior probability of each model changed across stages of the
simulated experiment when the Fixed design used to select stimuli. Since not all of the
stimuli in that design are informative, the probabilities do not change at every stage. The
graph on the right shows how the posterior probabilities changed when ADO was used to
select stimuli. Since each stimulus in the ADO simulation was optimized to be maximally
informative, the posterior probabilities are much more volatile than when the Fixed design
was used, and the accumulation of evidence in favor of the true data-generating model is
faster. After 84 stages, the ADO simulation reached a Bayes factor over 1,000.00 in favor of
OPT, while the Fixed-design simulation was unable to discriminate between OPT and CPT.
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Figure 14.
Results of simulated experiments when CPT was the data-generating model. The graph on
the left shows how the posterior probability of each model changed across stages of the
experiment when the Fixed design was used to select stimuli, and the graph on the right
shows how the posterior probabilities changed when ADO was used to select stimuli. Just as
when OPT was the data-generating model, the posterior probabilities are much more volatile
when using ADO, and reach conclusive evidence in favor of the true data-generating model
much more quickly than when the Fixed design. While the Fixed-design simulation
discriminated the models fairly well (Bayes factor of 24.25 after 84 stages), only the ADO
simulation conclusively identified CPT as the data generating model, with a Bayes factor
over 1,000 after 84 stages.
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Figure 15.
Left: stimuli selected by ADO when the data-generating model was CPT. Right: stimuli
selected by ADO when CPT was the data-generating model. The fact that the designs do not
share many stimuli in common indicates that there is no single design that is always optimal
for discriminating between OPT and CPT. The best design depends on which model and
parameters truly underlie the data-generating process.
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