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A central push in operations models over the last decade has been the incorporation of models of customer
choice. Real world implementations of many of these models face the formidable stumbling block of simply
identifying the ‘right’ model of choice to use. Thus motivated, we visit the following problem: For a ‘generic’
model of consumer choice (namely, distributions over preference lists) and a limited amount of data on how
consumers actually make decisions (such as marginal information about these distributions), how may one
predict revenues from offering a particular assortment of choices? We present a framework to answer such
questions and design a number of tractable algorithms from a data and computational standpoint for the
same. This paper thus takes a significant step towards ‘automating’ the crucial task of choice model selection
in the context of operational decision problems.

1. Introduction
A problem of central interest to operations managers is the use of historical sales data in the prediction

of revenues or sales from offering a particular assortment of products to customers. As one can

imagine, such predictions form crucial inputs to several important business decisions, both operational

and otherwise. A classical example of such a decision problem is that of assortment planning: deciding

the “optimal” assortment of products to offer customers with a view to maximizing expected revenues

(or some related objective) subject to various constraints (e.g. limited display or shelf space). A

number of variants of this problem, both static and dynamic, arise in essentially every facet of

revenue management. Such problems are seen as crucial revenue management tasks and needless to

say, accurate revenue or sales predictions fundamentally impact how well we can perform such tasks.

Why might these crucial predictions be difficult to make? Consider the task of predicting expected

sales rates from offering a particular set of products to customers. In industry jargon, this is referred

to as ‘conversion-rate’, and is defined as the probability of converting an arriving customer into a

purchasing customer. Predicting the conversion-rate for an offer set is difficult because the probability

of purchase of each product depends on all the products on offer. This is due to substitution behavior,

where an arriving customer potentially substitutes an unavailable product with an available one. Due

to substitution, the sales observed for a product may be viewed as a combination of its ‘primary’
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demand and additional demand due to substitution. Customer Choice Models have been used to
model this behavior with success. At an abstract level, a choice model can be thought of as a
conditional probability distribution that for any offer set yields the probability that an arriving
customer purchases a given product in that set.

There is vast literature spanning marketing, economics, and psychology devoted to the construction
of parametric choice models and their estimation from data. In the literature that studies the sorts
of revenue management decision problems we alluded to above, such models are typically assumed
given. The implicit understanding is that a complete prescription for these decision problems will
require fitting the “right” parametric choice model to data, so as to make accurate revenue or sales
predictions. This is a complex task. Apart from the fact that one can never be sure that the chosen
parametric structure is a “good” representation of the underlying ground truth, parametric models
are prone to over-fitting and under-fitting issues. Once a structure is fixed, one does not glean new
structural information from data. This is a serious issue in practice because although a simple model
(such as the multinomial logit (MNL) model) may make practically unreasonable assumptions (such
as the so-called “IIA” assumption), fitting a more complex model can lead to worse performance due
to over-fitting – and one can never be sure.

In this paper, we propose a non-parametric, data-driven approach to making revenue or sales
predictions that affords the revenue manager the opportunity to avoid the challenging task of fit-
ting an appropriate parametric choice model to historical data. Our approach views choice models
generically, namely as distributions over rankings (or preference lists) of products. As shall be seen
subsequently, this view subsumes essentially all extant choice models. Further, this view yields a
nonparametric approach to choice modeling where the revenue manager does not need to think about
the appropriate parametric structure for his problem, or the tradeoff between model parsimony and
the risk of over-fitting. Rather, through the use of a nonparametric approach, our goal is to offload
as much of this burden as possible to the data itself.

1.1. Contributions

As mentioned above, we consider entirely generic models of choice, specified as a distribution over
all possible rankings (or preference lists) of products. Our view of data is aligned with what one
typically has available in reality – namely, sales rates of products in an assortment, for some set of
product assortments. This is a general view of choice modeling. Our main contribution is to make this
view operational, yielding a data-driven, nonparametric approach. Specifically, we make the following
contributions in the context of this general setup:

• Revenue Predictions: As mentioned above, accurate revenue or sales predictions form core
inputs for a number of important revenue/ inventory management problems. Available sales data
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will typically be insufficient to fully specify a generic model of choice of the type we consider. We

therefore seek to identify the set of generic choice models consistent with available sales data. Given

the need to make a revenue or sales prediction on a heretofore unseen assortment, we then offer

the worst-case expected revenue possible for that assortment assuming that the true model lies in

the set of models found to be consistent with observed sales data. Such an approach makes no a-

priori structural assumptions on the choice model, and has the appealing feature that as more data

becomes available, the predictions will improve, by narrowing down the set of consistent models. This

simple philosophy dictates challenging computational problems; for instance, the sets we compute

are computationally unwieldy and, at first glance, highly intractable. Nonetheless, we successfully

develop several simple algorithms of increasing sophistication to address these problems.

• Empirical Evaluation: We conducted an empirical study to gauge the practical value of our

approach, both in terms of the absolute quality of the predictions produced, and also relative to using

alternative parametric approaches. We describe the results of two such studies:

(i) Simulation Study: The purpose of our simulation study is to demonstrate that the robust

approach can effectively capture model structure consistent with a number of different parametric

models and produce good revenue predictions. The general setup in this study was as follows: We

use a parametric model to generate synthetic transaction data. We then use this data in conjunction

with our revenue prediction procedure to predict expected revenues over a swathe of offer sets. Our

experimental design permits us to compare these predictions to the corresponding ‘ground truth’.

The parametric families we considered included the multinomial logit (MNL), nested logit (NL), and

mixture of multinomial logit (MMNL) models. In order to ‘stress-test’ our approach, we conducted

experiments over a wide range of parameter regimes for these generative parametric choice models,

including some that were fit to DVD sales data from Amazon.com. The predictions produced are

remarkably accurate.

(ii) Empirical Study with Sales Data from a Major US Automaker: The purpose of our empirical

study is two-fold: (1) to demonstrate how our setup can be applied with real-world data, and (2)

to pit the robust method in a “horse-race” against the MNL and MMNL parametric families of

models. For the case study, we used sales data collected daily at the dealership level over 2009 to 2010

for a range of small SUVs offered by a major US automaker for a dealership zone in the Midwest.

We used a portion of this sales data as ‘training’ data. We made this data available to our robust

approach, as well as in the fitting of an MNL model and an MMNL model. We tested the quality of

‘conversion-rate’ predictions (i.e. a prediction of the sales rate given the assortment of models on the

lot) using the robust approach and the incumbent parametric approaches on the remainder of the

data. We conducted a series of experiments by varying the amount of training data made available
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to the approaches. We conclude that (a) the robust method improves on the accuracy of either of the
parametric methods by about 20% (this is large) in all cases and (b) unlike the parametric models,
the robust method is apparently not susceptible to under-fitting and over-fitting issues. In fact, we
see that the performance of the MMNL model relative to the MNL model deteriorates as the amount
of training data available decreases due to over-fitting.

• Descriptive Analysis: In making revenue predictions, we did not need to concern ourselves
with the choice model implicitly assumed by our prediction procedure. This fact notwithstanding,
it is natural to consider criteria for selecting choice models consistent with the observed data that
are independent of any decision context. Thus motivated, we consider the natural task of finding
the simplest choice model consistent with the observed data. As in much of contemporary high
dimensional statistics, we employ sparsity1 as our measure of simplicity. To begin, we use the sparsest
fit criterion to obtain a characterization of the choice models implicitly used by the robust revenue
prediction approach. Loosely speaking, we show that the choice model implicitly used by the robust
approach is essentially the sparsest model (Theorem 1) and the complexity of the model (as measured
by its sparsity) scales with the “amount” of data. This provides an explanation for the immunity of
the robust approach to over/under fitting as observed in our case study. Second, we characterize the
family of choice models that can be identified only from observed marginal data via the sparsest fit
criterion (Theorems 2 and 3). Our characterization formalizes the notion that the complexity of the
models that can be identified via the sparsest fit criterion scales with the “amount” of data at hand.

1.2. Relevant Literature

The study of choice models and their applications spans a vast literature across multiple fields
including at least Marketing, Operations and Economics. In disciplines such as marketing learning
a choice model is an interesting goal unto itself given that it is frequently the case that a researcher
wishes to uncover “why” a particular decision was made. Within operations, the goal is frequently
more application oriented with the choice model being explicitly used as a predictive tool within
some larger decision model. Since our goals are aligned with the latter direction, our literature
review focuses predominantly on OM; we briefly touch on key work in Marketing. We note that
our consideration of ‘sparsity’ as an appropriate non-parametric model selection criterion is closely
related to the burgeoning statistical area of compressive sensing; we discuss those connections in a
later Section.

The vast majority of decision models encountered in operations have traditionally ignored substi-
tution behavior (and thereby choice modeling) altogether. Within airline RM, this is referred to as

1 By sparsity we refer to the number of rank lists or, in effect, customer types, assumed to occur with positive
probability in the population.
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the “independent demand” model (see Talluri and van Ryzin (2004b)). Over the years, several studies

have demonstrated the improvements that could be obtained by incorporating choice behavior into

operations models. For example, within airline RM, the simulation studies conducted by Belobaba

and Hopperstad (1999) on the well known passenger origin and destination simulator (PODS) sug-

gested the value of corrections to the independent demand model; more recently, Ratliff et al. (2008)

and Vulcano et al. (2010) have demonstrated valuable average revenue improvements from using

MNL choice-based RM approaches using real airline market data. Following such studies, there has

been a significant amount of research in the areas of inventory management and RM attempting to

incorporate choice behavior into operations models.

The bulk of the research on choice modeling in both the areas has been optimization related. That

is to say, most of the work has focused on devising optimal decisions given a choice model. Talluri

and van Ryzin (2004a), Gallego et al. (2006), van Ryzin and Vulcano (2008), Mahajan and van

Ryzin (1999), Goyal et al. (2009) are all papers in this vein. Kök et al. (2008) provides an excellent

overview of the state-of-the-art in assortment optimization. Rusmevichientong et al. (2008) consider

the multinomial logit (MNL) model and provide an efficient algorithm for the static assortment

optimization problem and propose an efficient policy for the dynamic optimization problem. A follow

on paper, Rusmevichientong and Topaloglu (2009), considers the same optimization problem but

where the mean utilities in the MNL model are allowed to lie in some arbitrary uncertainty set. Saure

and Zeevi (2009) propose an alternative approach for the dynamic assortment optimization problem

under a general random utility model.

The majority of the work above focuses on optimization issues given a choice model. Paper such

as Talluri and van Ryzin (2004a) discuss optimization problems with general choice models, and

as such our revenue estimation procedure fits in perfectly there. In most cases, however, the choice

model is assumed to be given and of the MNL type. Papers such as Saure and Zeevi (2009) and Rus-

mevichientong and Topaloglu (2009) loosen this requirement by allowing some amount of parametric

uncertainty. In particular, Saure and Zeevi (2009) assume unknown mean utilities and learn these

utilities, while the optimization schemes in Rusmevichientong and Topaloglu (2009) require knowl-

edge of mean utilities only within an interval. In both cases, the structure of the model (effectively,

MNL) is fixed up front.

The MNL model is by far the most popular choice model studied and applied in OM. The origins

of the MNL model date all the way back to the Plackett-Luce model, proposed independently by

Luce (1959) and Plackett (1975). Before becoming popular in the area of OM, the MNL model found

widespread use in the areas of transportation (see seminal works of McFadden (1980), Ben-Akiva and

Lerman (1985)) and marketing (starting with the seminal work of Guadagni and Little (1983), which
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paved the way for choice modeling using scanner panel data). See Wierenga (2008), Chandukala

et al. (2008) for a detailed overview of choice modeling in the area of Marketing. The MNL model is

popular because its structure makes it tractable both in terms of estimating its parameters and solving

decision problems. However, the tractability of the MNL model comes at a cost: it is incapable of

capturing any heterogeneity in substitution patterns across products (see Debreu (1960)) and suffers

from Independent of Irrelevant Alternatives (IIA) property (see Ben-Akiva and Lerman (1985)), both

of which limit its practical applicability.

Of course, these issues with the MNL model are well recognized, and far more sophisticated models

of choice have been suggested in the literature (see, for instance, Ben-Akiva and Lerman (1985),

Anderson et al. (1992)); the price one pays is that the more sophisticated models may not be easily

identified from sales data and are prone to over-fitting. It must be noted that an exception to the above

state of affairs is the paper by Rusmevichientong et al. (2006) that considers a general nonparametric

model of choice similar to the one considered here in the context of an assortment pricing problem.

The caveat is that the approach considered requires access to samples of entire customer preference

lists which are unlikely to be available in many practical applications.

Our goal relative to all of the above work is to eliminate the need for structural assumptions and

thereby, the associated risks as well. We provide a means of going directly from raw sales transaction

data to revenue or sales estimates for a given offer set. While this does not represent the entirety

of what can be done with a choice model, it represent a valuable application, at least within the

operational problems discussed.

2. The Choice Model and Problem Formulations
We consider a universe of N products, N = {0,1,2, . . . ,N − 1}. We assume that the 0th product in

N corresponds to the ‘outside’ or ‘no-purchase’ option. A customer is associated with a permutation

(or ranking) σ of the products in N ; the customer prefers product i to product j if and only if

σ(i)< σ(j). A customer will be presented with a set of alternatives M⊂N ; any set of alternatives

will, by convention, be understood to include the no-purchase alternative i.e. the 0th product. The

customer will subsequently choose to purchase her single most preferred product among those inM.

In particular, she purchases

arg min
i∈M

σ(i). (1)

It is quickly seen that the above structural assumption is consistent with structural assumptions made

in commonly encountered choice models including the multinomial logit, nested multinomial logit,

or more general random utility models. Those models make many additional structural assumptions

which may or may not be reasonable for the application at hand. Viewed in a different light, basic
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results from the theory of social preferences dictate that the structural assumptions implicit in our
model are no more restrictive than assuming that the customer in question is endowed with a utility
function over alternatives and chooses an alternative that maximizes her utility from among those
available. Our model of the customer is thus general 2.

2.1. Choice Model

In order to make useful predictions on customer behavior that might, for instance, guide the selection
of a setM to offer for sale, one must specify a choice model. A general choice model is effectively a
conditional probability distribution P(·|·) :N ×2N → [0,1], that yields the probability of purchase of
a particular product in N given the set of alternatives available to the customer.

We will assume essentially the most general model for P(·|·). In particular, we assume that there
exists a distribution λ : SN → [0,1] over the set of all possible permutations SN . Recall here that
SN is effectively the set of all possible customer types since every customer is associated with a
permutation which uniquely determines her choice behavior. The distribution λ defines our choice
model as follows: Define the set

Sj(M) = {σ ∈ SN : σ(j)<σ(i),∀i∈M, i 6= j}.

Sj(M) is simply the set of all customer types that would purchase product j when the offer set is
M. Our choice model is then given by

P(j|M) =
∑

σ∈Sj(M)

λ(σ) , λj(M).

Not surprisingly, as mentioned above, the above model subsumes essentially any model of choice
one might concoct: in particular, all we have assumed is that at a given point in time a customer
possess rational (transitive) (see Mas-Colell et al. (1995)) preferences over all alternatives 3, and that
a particular customer will purchase her most preferred product from the offered set according to these
preferences; a given customer sampled at different times may well have a distinct set of preferences.

2.2. Data

The class of choice models we will work with is quite general and imposes a minimal number of
behavioral assumptions on customers a-priori. That said the data available to calibrate such a model
will typically be limited in the sense that a modeler will have sales rate information for a potentially
small collection of assortments. Ignoring the difficulties of such a calibration problem for now, we

2 As opposed to associating a customer with a fixed σ, one may also associate customers with distributions over
permutations. This latter formalism is superfluous for our purposes.
3 Note however that the customer need not be aware of these preferences; from (1), it is evident that the customer
need only be aware of his preferences for elements of the offer set.
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posit a general notion of what we will mean by observable ‘data’. The abstract notion we posit will

quickly be seen as relevant to data one might obtain from sales information.

We assume that the data observed by the seller is given by an m-dimensional ‘partial information’

vector y = Aλ, where A ∈ {0,1}m×N ! makes precise the relationship between the observed data

and the underlying choice model. Typically we anticipate m�N ! signifying, for example, the fact

that we have sales information for only a limited number of assortments. Before understanding how

transactional data observed in practice relates to this formalism, we consider, for the purposes of

illustration a few simple concrete examples of data vectors y; we subsequently introduce a type of

data relevant to our experiments and transaction data observed in the real world.

• Comparison Data: This data represents the fraction of customers that prefer a given product

i to a product j. The partial information vector y is indexed by i, j with 0 ≤ i, j ≤ N ; i 6= j. For

each i, j, yi,j denotes the fraction of customers that prefer product i to j. The matrix A is thus in

{0,1}N(N−1)×N !. A column of A, A(σ), will thus have A(σ)ij = 1 if and only if σ(i)<σ(j).

• Ranking Data: This data represents the fraction of customers that rank a given product i as

their rth choice. Here the partial information vector y is indexed by i, r with 0≤ i, r ≤N . For each

i, r, yri is thus the fraction of customers that rank product i at position r. The matrix A is then

in {0,1}N2×N !. For a column of A corresponding to the permutation σ, A(σ), we will thus have

A(σ)ri = 1 iff σ(i) = r.

• Top Set Data: This data refers to a concatenation of the “Comparison Data” above and infor-

mation on the fraction of customers who have a given product i as their topmost choice for each i.

Thus A> = [A>1 A>2 ] where A1 is simply the A matrix for comparison data, and A2 ∈ {0,1}N×N ! has

A2(σ)i = 1 if and only if σ(i) = 1.

Transaction Data: More generally, in the retail context, historical sales records corresponding to

displayed assortments might be used to estimate the fraction of purchasing customers who purchased

a given product i when the displayed assortment wasM. We might have such data for some sequence

of test assortments sayM1,M2, . . . ,MM . This type of data is consistent with our definition (i.e. it

may be interpreted as a linear transformation of λ) and is, in fact, closely related to the comparison

data above. In particular, denoting by yim, the fraction of customers purchasing product i when

assortmentMm is on offer, our partial information vector, y ∈ [0,1]N.M , may thus be indexed by i,m

with 0≤ i≤N,1≤m≤M . The matrix A is then in {0,1}N.M×N !. For a column of A corresponding

to the permutation σ, A(σ), we will then have A(σ)im = 1 iff i∈Mm and σ(i)<σ(j) for all products

j in assortmentMm.
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2.3. Incorporating Choice In Decision Models: A Revenue Estimation Black-Box

While modeling choice is useful for a variety of reasons, we are largely motivated by decision models
for OM problems that benefit from the incorporation of a choice model. In many of these models,
the fundamental feature impacted by the choice model is a ‘revenue function’ that measures revenue
rates corresponding to a particular assortment of products offered to customers. Concrete examples
include static assortment management, network revenue management under choice and inventory
management assuming substitution.

We formalize this revenue function. We associate every product in N with a retail price pj . Of
course, p0 = 0. The revenue function, R(M), determines expected revenues to a retailer from offering
a set of productsM to his customers. Under our choice model this is given by:

R(M) =
∑
j∈M

pjλ
j(M).

The function R(·) is a fundamental building block for all of the OM problems described above, so that
we view the problem of estimating R(·) as our central motivating problem. The above specification is
general, and we will refer to any linear functional of the type above as a revenue function. As another
useful example of such a functional, consider setting pj = 1 for all j > 0 (i.e. all products other than
the no-purchase option). In this case, the revenue function, R(M) yields the probability an arriving
customer will purchase some product inM; i.e. the ‘conversion rate’ under assortmentM.

Given a ‘black-box’ that is capable of producing estimates of R(·) using some limited corpus of
data, one may then hope to use such a black box for making assortment decisions over time in the
context of the OM problems of the type discussed in the introduction.

2.4. Problem Formulations

Imagine we have a corpus of transaction data, summarized by an appropriate data vector y as
described in Section 2.2. Our goal is to use just this data to make predictions about the revenue
rate (i.e the expected revenues garnered from a random customer) for some given assortment, say
M, that has never been encountered in past data. We propose accomplishing this by solving the
following program:

minimize
λ

R(M)
subject to Aλ= y,

1>λ= 1,
λ≥ 0.

(2)

In particular, the optimal value of this program will constitute our prediction for the revenue rate.
In words, the feasible region of this program describes the set of all choice models consistent with
the observed data y. The optimal objective value consequently corresponds to the minimum revenues
possible for the assortmentM under any choice model consistent with the observed data. Since the
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family of choice models we considered was generic this prediction relies on simply the data and basic

economic assumptions on the customer that are tacitly assumed in essentially any choice model.

The philosophy underlying the above program can be put to other uses. For instance, one might

seek to recover a choice model itself from the available data. In a parametric world, one would

consider a suitably small, fixed family of models within which a unique model would best explain

(but not necessarily be consistent with) the available data. It is highly unlikely that available data

will determine a unique model in the general family of models we consider here. Our non-parametric

setting thus requires an appropriate selection criterion. A natural criterion is to seek the ‘simplest’

choice model that is consistent with the observed data. There are many notions of what one might

consider simple. One criterion that enjoys widespread use in high-dimensional statistics is sparsity.

In particular, we may consider finding a choice model λ consistent with the observed data, that has

minimal support, ‖λ‖0
4= |{λ(σ) : λ(σ) 6= 0}|. In other words, we might seek to explain observed

purchasing behavior by presuming as small a number of modes of customer choice behavior as possible

(where we associate a ‘mode’ of choice with a ranking of products). More formally, we might seek to

solve:
minimize

λ
‖λ‖0

subject to Aλ= y,
1>λ= 1,
λ≥ 0.

(3)

Sections 3, 4 and 5 are focused on providing procedures to solve the program (2), and on examining

the quality of the predictions produced on simulated data and actual transaction data respectively.

Section 6 will discuss algorithmic and interesting descriptive issues pertaining to (3).

3. Revenue Estimates: Computation
In the previous section we formulated the task of computing revenue estimates via a non-parametric

model of choice and any available data as the mathematical program (2), which we repeat below, in

a slightly different form for clarity:

minimize
λ

∑
j∈M

pjλj(M)

subject to Aλ= y,
1>λ= 1,
λ≥ 0.

The above mathematical program is a linear program in the variables λ. Interpreting the program in

words, the constraints Aλ= y ensure that any λ assumed in making a revenue estimate is consistent

with the observed data. Other than this consistency requirement, writing the probability that a

customer purchases j ∈M,P(j|M), as the quantity λj(M) ,
∑
σ∈Sj(M) λ(σ) assumes that the choice

model satisfies the basic structure laid out in Section 2.1. We make no other assumptions outside of
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these, and ask for the lowest expected revenues possible for M under any choice model satisfying
these requirements.

Thus, while the assumptions implicit in making a revenue estimate are something that the user
need not think about, the two natural questions that arise are:

1. How does one solve this conceptually simple program in practice given that the program involves
an intractable number of variables?

2. Even if one did succeed in solving such a program are the revenue predictions produced useful
or are they too loose to be of practical value?

This section will focus on the first question. In practical applications such a procedure would need
to be integrated into a larger decision problem and so it is useful to understand the computational
details which we present at a high level in this section. The second, ‘so what’ question will be the
subject of the next two sections where we will examine the performance of the scheme on simulated
transaction data, and finally on a real world sales prediction problem using real data. Finally, we
will examine an interesting property enjoyed by the choice models implicitly assumed in making the
predictions in this scheme in Section 6.

3.1. The Dual to the Robust Problem

At a high level our approach to solving (2) will be to consider the dual of that program and then
derive efficient exact or approximate descriptions to the feasible regions of these programs. We begin
by considering the dual program to (2). In preparation for taking the dual, let us define

Aj(M) , {A(σ) : σ ∈ Sj(M)},

where recall that Sj(M) = {σ ∈ SN : σ(j)< σ(i),∀i ∈M, i 6= j} denotes the set of all permutations
that result in the purchase of j ∈M when the offered assortment isM. Since SN =∪j∈MSj(M) and
Sj(M)∩ Si(M) = ∅ for i 6= j, we have implicitly specified a partition of the columns of the matrix
A. Armed with this notation, the dual of (2) is:

maximize
α,ν

α>y+ ν

subject to max
xj∈Aj(M)

(α>xj + ν)≤ pj , for each j ∈M. (4)

where α and ν are dual variables corresponding respectively to the data consistency constraints
Aλ= y and the requirement that λ is a probability distribution (i.e. 1>λ= 1) respectively. Of course,
this program has a potentially intractable number of constraints. We explore two approaches to
solving the dual:

1. An extremely simple to implement approach that relies on sampling constraints in the dual that
will, in general produce approximate solutions that are upper bounds to the optimal solution of
our robust estimation problem.
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2. An approach that relies on producing effective representations of the sets Aj(M), so that each
of the constraints max

xj∈Aj(M)
(α>xj + ν)≤ pj , can be expressed efficiently.This approach is slightly

more complex to implement but in return can be used to sequentially produce tighter approx-
imations to the robust estimation problem. In certain special cases, this approach is provably
efficient and optimal.

3.2. The First Approach: Constraint Sampling

The following is an extremely simple to implement approach to approximately solve the problem (4):
1. Select a distribution over permutations, ψ.
2. Sample n permutations according to the distribution. Call this set of permutation Ŝ.
3. Solve the program:

maximize
α,ν

α>y+ ν

subject to α>A(σ) + ν ≤ pj , for each j ∈M, σ ∈ Ŝ
(5)

Observe that (5) is essentially a ‘sampled’ version of the problem (4), wherein constraints of that
problem have been sampled according to the distribution ψ and is consequently a relaxation of that
problem. A solution to (5) is consequently an upper bound to the optimal solution to (4).

The question of whether the solutions thus obtained provide meaningful approximations to (4) is
partially addressed by recent theory developed by Calafiore and Campi (2005). In particular, it has
been shown that for a problem with m variables and given n=O((1/ε)(m ln(1/ε)+ ln(1/δ)) samples,
we must have that with probability at least 1− δ the following holds: An optimal solution to (5)
violates at most an ε fraction of constraints of the problem (4) under the measure ψ. Hence, given a
number of samples that scales only with the number of variables (and is independent of the number
of constraints in (4), one can produce an solution to (4) that satisfies all but a small fraction of
constraints. The theory does not provide any guarantees on how far the optimal cost of the relaxed
problem is from the optimal cost of the original problem.

The heuristic nature of this approach notwithstanding, it is extremely simple to implement, and
in the experiments conducted in the next section, provided close to optimal solutions.

3.3. The Second Approach: Efficient Representations of Aj(M)
We describe here one notion of an efficient representation of the sets Aj(M), and assuming we have
such a representation, we describe how one may solve (4) efficiently. We will deal with the issue of
actually coming up with these efficient representations in Appendix B, where we will develop an
efficient representation for ranking data and demonstrate a generic procedure to sequentially produce
such representations.

Let us assume that every set Sj(M) can be expressed as a disjoint union of Dj sets. We denote the
dth such set by Sjd(M) and letAjd(M) be the corresponding set of columns of A. Consider the convex
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hull of the set Ajd(M), conv{Ajd(M)}, Ājd(M). Recalling that A∈ {0,1}m×N, Ajd(M)⊂ {0,1}m.

Ājd(M) is thus a polytope contained in the m-dimensional unit cube, [0,1]m. In other words,

Ājd(M) = {xjd :Ajd1 xjd ≥ bjd1 , Ajd2 xjd = bjd2 , Ajd3 xjd ≤ bjd3 , xjd ∈Rm+} (6)

for some matrices Ajd· and vectors bjd· . By a canonical representation of Aj(M), we will thus under-

stand a partition of Sj(M) and a polyhedral representation of the columns corresponding to every

set in the partition as given by (6). If the number of partitions as well as the polyhedral description

of each set of the partition given by (6) is polynomial in the input size, we will regard the canonical

representation as efficient. Of course, there is no guarantee that an efficient representation of this

type exists; clearly, this must rely on the nature of our partial information i.e. the structure of the

matrix A. Even if an efficient representation did exist, it remains unclear whether we can identify

it. Ignoring these issues for now, we will in the remainder of this section demonstrate how given a

representation of the type (6), one may solve (4) in time polynomial in the size of the representation.

For simplicity of notation, in what follows we assume that each polytope Ājd(M) is in standard

form,

Ājd(M) = {xjd :Ajd xjd = bjd, xjd ≥ 0.}.

Now since an affine function is always optimized at the vertices of a polytope, we know:

max
xj∈Aj(M)

(
α>xj + ν

)
= max
d,xjd∈Ājd(M)

(
α>xjd + ν

)
.

We have thus reduced (4) to a ‘robust’ LP. Now, by strong duality we have:

maximize
xjd

α>xjd + ν

subject to Ajd xjd = bjd

xjd ≥ 0.
≡

minimize
γjd

bjd
>
γjd + ν

subject to γjd>Ajd ≥ α
(7)

We have thus established the following useful equality:{
α,ν : max

xj∈Āj(M)

(
α>xj + ν

)
≤ pj

}
=
{
α,ν : bjd>γjd + ν ≤ pj , γjd

>
Ajd ≥ α,d= 1,2, . . . ,Dj

}
.

It follows that solving (2) is equivalent to the following LP whose complexity is polynomial in the

description of our canonical representation:

maximize
α,ν

α>y+ ν

subject to bjd>γjd + ν ≤ pj for all j ∈M, d= 1,2, . . . ,Dj

γjd
>
Ajd ≥ α for all j ∈M, d= 1,2, . . . ,Dj .

(8)

As discussed, our ability to solve (8) relies on our ability to produce an efficient canonical rep-

resentation of Sj(M) of the type (6). In Appendix B, we first consider the case of ranking data,
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where an efficient such representation may be produced. We then illustrate a method that produces a
sequence of ‘outer-approximations’ to (6) for general types of data, and thereby allows us to produce
a sequence of improving lower bounding approximations to our robust revenue estimation problem,
(2). This provides a general procedure to address the task of solving (4), or equivalently, (2).

We end this section with a brief note on noisy observations. In particular, in practice, one may
see a ‘noisy’ version of y =Aλ. Specifically, as opposed to knowing y precisely, one may simply know
that y ∈ E , where E may, for instance, represent an uncertainty ellipsoid, or a ‘box’ derived from
sample averages of the associated quantities and the corresponding confidence intervals. In this case,
one seeks to solve the problem:

minimize
λ,y∈E

∑
j∈M

pjλj(M)

subject to Aλ= y,
1>λ= 1,
λ≥ 0.

Provided E is convex, this program is essentially no harder to solve than the variant of the problem
we have discussed and similar methods to those developed in this section apply.

4. Revenue Estimates: Data Driven Computational Study
In this section, we describe the results of an extensive simulation study, the main purpose of which
is to demonstrate that the robust approach can capture various underlying parametric structures
and produce good revenue predictions. For this study, we pick a range of random utility parametric
structures used extensively in current modeling practice.

The broad experimental procedure we followed is the following:
1. Pick a structural model. This may be a model derived from real-world data or a purely synthetic

model.
2. Use this structural model to simulate sales for a set of test assortments. This simulates a data

set that a practitioner likely has access to.
3. Use this transaction data to estimate marginal information y, and use y to implement the robust

approach.
4. Use the implemented robust approach to predict revenues for a distinct set of assortments,

and compare the predictions to the true revenues computed using the ‘ground-truth’ structural
model chosen for benchmarking in step 1.

Notice that the above experimental procedure lets us isolate the impact of structural errors from
that of finite sample errors. Specifically, our goal is to understand how well the robust approach
captures the underlying choice structure. For this purpose, we ignore any estimation errors in data
by using the ‘ground-truth’ parametric model to compute the exact values of any choice probabilities
and revenues required for comparison. Therefore, if the robust approach has good performance across
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an interesting spectrum of structural models that are believed to be good fits to data observed in

practice, we can conclude that the robust approach is likely to offer accurate revenue predictions with

no additional information about structure across a wide-range of problems encountered in practice.

4.1. Benchmark Models and Nature of Synthetic Data

The above procedure generates data sets using a variety of ‘ground truth’ structural models. We pick

the following ‘random utility’ models as benchmarks. A self-contained and compact exposition on

the foundations of each of the benchmark models below may be found in the appendix.

Multinomial logit family (MNL): For this family, we have:

P(j|M) =wj/
∑
i∈M

wi.

where the wi are the parameters specifying the models. See Appendix C.1 for more details.

Nested logit family (NL): This model is a first attempt at overcoming the ‘independence of

irrelevant alternatives’ effect, a shortcoming of the MNL model. For this family, the universe of

products is partitioned into L mutually exclusive subsets, or ‘nests’, denoted by N1,N2, . . . ,NL such

that

N =
L⋃
`=1
N` and N` ∩Nm = ∅, for m 6= `.

This model takes the form:

P (j|M) = P (N`|M)P (j|N`,M) = (w(`,M))ρ∑L
m=1(w(m,M))ρ

wj
w(`,M) . (9)

where ρ < 1 is a certain scale parameter, and

w(`,M) def= α`w0 +
∑

i∈(N`∩M)\{0}

wi.

Here α` is the parameter capturing the level of membership of the no-purchase option in nest ` and

satisfies,
∑L
`=1α

ρ
` = 1, α` ≥ 0, for `= 1,2, . . . ,L. In cases when α` < 1 for all `, the family is called

the Cross nested logit (CNL) family. For a more detailed description including the corresponding

random utility function and bibliographic details, see Appendix C.2

Mixed multinomial logit family (MMNL): This model accounts specifically for customer

heterogeneity. In its most common form, the model reduces to:

P (j|M) =
∫ exp{βTxj}∑

i∈M exp{βTxi}
G(dβ; θ).

where xj is a vector of observed attributes for the jth product, and G(·, θ) is a distribution param-

eterized by θ selected by the econometrician that describes heterogeneity in taste. For a more
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detailed description including the corresponding random utility function and bibliographic details,

see Appendix C.3.

Transaction Data Generated: Having selected (and specified) a structural model from the above

list, we generated sales transactions as follows:

1. Fix an assortment of two products, i, j.

2. Compute the values of P (i|{i, j,0}), P (j|{i, j,0}) using the chosen parametric model.

3. Repeat the above procedure for all pairs, {i, j}, and single item sets, {i}.

The above data is succinctly summarized as an N2 − N dimensional data vector y, where yi,j =

P (i|{i, j,0}) for 0≤ i, j ≤N − 1, i 6= j. Given the above data, the precise specialization of the robust

estimation problem (2) that we solve may be found in Appendix B.3.

4.2. Experiments Conducted

With the above setup we conducted two broad sets of experiments. In the first set of experiments,

we picked specific models from the MNL, CNL, and MMNL model classes; the MNL model was

constructed using DVD shopping cart data from Amazon.com, and the CNL and MMNL models were

obtained through slight ‘perturbations’ of the MNL model. In order to avoid any artifacts associated

with specific models, in the second set of experiments, we conducted ‘stress tests’ by generating a

number of instances of models from each of the MNL, CNL, and MMNL models classes. We next

present the details of the two sets of experiments.

The Amazon Model: We considered an MNL model fit to Amazon.com DVD sales data collected

between 1 July 2005 to 30 September 2005 4 ,where an individual customer’s utility for a given DVD,

j is given by:

Uj = θ0 + θ1xj,1 + θ2xj,2 + ξj ; 5

here xj,1 is the the price of the package j divided by the number of physical discs it contains, and

xj,2 is the total number of helpful votes received by product j and ξj is a standard Gumbel. The

model fit to the data has θ0 =−4.31, θ1 =−0.038 and θ2 = 3.54× 10−5. See Table 2 for the attribute

values taken by the 15 products we used for our experiments. We will abbreviate this model AMZN

for future reference.

We also considered the following synthetic perturbations of the AMZN model:

1. AMZN-CNL: We derived a CNL model from the original AMZN model by partitioning the

products into 4 nests with the first nest containing products 1 to 5, the second nest containing

products 6 to 9, the third containing products 10 to 13, and the last containing products 14 and

4 The specifics of this model were shared with us by the authors of Rusmevichientong et al. (2008).
5 The corresponding weights wj are given by wj = exp(θ0 + θ1xj,1 + θ3xj,2).
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Figure 1 Robust revenue estimates (MIN) vs. true revenues for the AMZN, AMZN-CNL and AMZN-MMNL
models. Each of the 60 points in a plot corresponds to (true revenue, MIN) for a randomly drawn assortment.

15. We choose ρ= 0.5. We assigned the no-purchase option to every nest with nest membership

parameter α` = (1/4)(1/ρ) = 1/16.

2. AMZN-MMNL: We derived an MMNL model from the original AMZN model by replacing each

θi parameter with the random quantity βi = (1 + ηi,j)θi, for i = 0,1,2 with ηi,j is a customer

specific random variable distributed as a zero mean normal random variable with standard

deviation 0.25.

Figure 1 shows the results of the generic experiment for each of the three models above. Each

experiment queries the robust estimate on sixty randomly drawn assortments of sizes between one

and seven and compares these estimates to those under the respective true model for each case.

Synthetic Model Experiments: The above experiments considered structurally diverse models,

each for a specific set of parameters. Are the conclusions suggested by Figure 1 artifacts of the set

of parameters? To assuage this concern, we performed ‘stress’ tests by considering each structural

model in turn, and for each model generating a number of instances of the model by drawing the



Author: A Non-parametric Approach to Modeling Choice with Limited Data
18 Article submitted to Management Science; manuscript no.

relevant parameters from a generative family. For each structural model, we considered the following

generative families of parameters:

1. MNL Random Family: 20 randomly generated models on 15 products, each generated by drawing

mean utilities, lnwj , uniformly between −5 and 5.

2. CNL Random Family: We maintained the nests, selection of ρ and αj as in the AMZN-CNL

model. We generated 20 distinct CNL models, each generated by drawing lnwj uniformly

between −5 and 5.

3. MMNL Random Family: We preserved the basic nature of the AMZN-MMNL model. We consid-

ered 20 randomly generated MMNL models. Each model differs in the distribution of the param-

eter vector β. The random coefficients βj in each case are defined as follows: βj = (1 + ηi,j)θj
where ηi,j is a N(µj ,0.25) random variable. Each of the 20 models corresponds to a single draw

of µj , j = 0,1,2 form the uniform distribution on [−1,1].

For each of the 60 structural model instances described above, we randomly generated 20 offer sets

of sizes between 1 and 7. For a given offer setM, we queried the robust procedure and compared the

revenue estimate produced to the true revenue for that offer set; we can compute the latter quantity

theoretically. In particular, we measured the relative error, ε(M) def= Rtrue(M)−RMIN(M)
RMIN(M) . The three

histograms in Figure 2 below represent distributions of relative error for the three generative families

described above. Each histogram consists of 400 test points; a given test point corresponds to one of

the 20 randomly generated structural models in the relevant family, and a random assortment.

In the above ‘stress’ tests, we kept the standard deviation of the MMNL models fixed at 0.25.

The standard deviation of the MMNL model can be treated as a measure of the heterogeneity or the

“complexity” of the model. Naturally, if we keep the “amount” of transaction data fixed and increase

the standard deviation – and hence the complexity of the underlying model – we expect the accuracy

of robust estimates to deteriorate. To give a sense of the sensitivity of the accuracy of robust revenue

estimates to changes in the standard deviation, we repeated the above stress tests with the MMNL

model class for three values of standard deviation: 0.1, 0.25, and 0.4. Figure 3 shows the comparison

of the density plots of relative errors for the three cases.

We draw the following broad conclusion from the above experiments:

• Given limited marginal information for distributions over permutations, λ, arising from a num-

ber of commonly used structural models of choice, the robust approach effectively captures diverse

parametric structures and provides close revenue predictions under range of practically relevant para-

metric models.

• With the type of marginal information y fixed, the accuracy of robust revenue predictions dete-

riorates (albeit mildly) as the complexity of the underlying model increases; this is evidenced by the
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Figure 2 Relative error across multiple instances of the MNL, CNL and MMNL structural models.

deterioration of robust performance as we go from the MNL to the MMNL model class, and similarly

as we increase the standard deviation for the MMNL model while keeping the ‘amount’ of data fixed.

• The design of our experiments allows us to conclude that in the event that a given structural

model among the types used in our experiments predicts revenue rates accurately, the robust approach

is likely to be just as good without knowledge of the relevant structure. In the event that the struc-

tural model used is a poor fit, the robust approach will continue to provide meaningful guarantees
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Figure 3 The accuracy of robust revenue estimates deteriorates with increase in model complexity, as
measured here by variance of the MMNL model. The densities were estimated through kernel density estimation.

The density estimates go below zero as a result of smoothing.

on revenues under the mild condition that it is tested in an environment where the distribution
generating sales is no different from the distribution used to collect marginal information.

5. Revenue Estimates: Case Study with a Major US Automaker
In this section, we present the results of a case study conducted using sales transaction data from the
dealer network of a major US automaker. Our goal in this study is to use historical transaction data
to predict the sales rate or ‘conversion rate’ for any given offer set of automobiles on a dealer lot. This
conversion-rate is defined as the probability of converting an arriving customer into a purchasing
customer. The purpose of the case study is two-fold: (1) To demonstrate how the prediction methods
developed in this paper can be applied in the real-world and the quality of the predictions they
offer in an absolute sense, and (2) To pit the robust method for revenue predictions in a ‘horse-race’
against parametric approaches based on the MNL and MMNL families of choice models. In order
to test the performance of these approaches in different regimes of calibration data, we carried out
cross-validations with varying ‘amounts’ of training/calibration data. The results of the experiments
conducted as part of the case study provide us with the evidence to draw two main conclusions:
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1. The robust method predicts conversion rates more accurately than either of the parametric
methods. In our case study, the improvement in accuracy was about 20% across all regimes of
calibration data.

2. Unlike the parametric methods we study, the robust approach is apparently not susceptible to
over-fitting and under-fitting.

The 20% improvement in accuracy is substantial. The second conclusion has important implications
as well: In practice, it is often difficult to ascertain whether the data available is “sufficient” to fit
the model at hand. As a result, parametric structures are prone to over-fitting or under-fitting. The
robust approach, on the other hand, automatically scales the complexity of the underlying model
class with data available, so in principle one should be able to avoid these issues. This is borne out by
the case study. In the remainder of this section we describe the experimental setup and then present
the evidence to support the above conclusions.

5.1. Setup

Appendix D provides a detailed description of our setup; here we provide a higher level discussion for
ease of exposition. We collect data comprising purchase transactions of a specific range of small SUVs
offered by a major US automaker over 16 months. The data is collected at the dealership level (i.e the
finest level possible) for a network of dealers in the Midwest. Each transaction contains information
about the date of sale, the identity of the SUV sold, and the identity of the other cars on the dealership
lot at the time of sale. Here by ‘identity’ we mean a unique model identifier that collectively identifies
a package of features, color and invoice price point. We make the assumption that purchase behavior
within the zone can be described by a single choice model. To ensure the validity of this assumption,
we restrict attention to a specific dealership zone, defined as the collection of dealerships within an
appropriately defined geographical area with relatively homogeneous demographic features.

Our data consisted of sales information on 14 distinct SUV identities (as described above). We
observed a total of M = 203 distinct assortments (or subsets) of the 14 products in the dataset, where
each assortmentMi, i= 1,2, . . . ,M , was on offer at some point at some dealership in the dealership
zone. We then converted the transaction data into sales rate information for each of the assortments
as follows:

yjMi
= num of sales of product j whenMi was on offer

num of customer arrivals whenMi was on offer , for j ∈Mi, i= 1,2, . . . ,M.

Note that the information to compute the denominator in the expression for yjMi
is not available

because the number of arriving customers who purchase nothing is not known. Such data ‘censoring’
is common in practice and impacts both parametric methods as well as our approach. A common
approximation here is based on demographic information relative to the location of the dealership.
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Given the data at our disposal, we are able to make a somewhat better approximation to overcome

this issue. In particular, we assume a daily arrival rate of αd for dealership d and measure the number

of arrivals of assortmentM as

num of customer arrivals whenM was on offer =
∑
d

αd daysd(M),

where daysd(M) denotes the number of days for which M was on offer at dealership d. The arrival

rate to each dealership clearly depends on the size of the market to which the dealership caters.

Therefore, we assume that αd = f × sized, where sized denotes the “market size” for dealership d and

f is a “fudge” factor. We use previous year total sales at dealership d for the particular model class as

the proxy for sized and tune the parameter f using cross-validation (more details in the appendix).

5.2. Experiments and results

We now describe the experiments we conducted and the present the results we obtained. In order

to test the predictive performance of the robust, the MNL, and the MMNL methods, we carried out

k-fold cross-validations with k = 2,5,10. In k-fold cross-validation (see Mosteller and Tukey (1987)),

we arbitrarily partition the collection of assortments M1,M2, . . . ,MM into k partitions of about

equal size, except may be the last partition. Then, using k−1 partitions as training data to calibrate

the methods, we test their performance on the kth partition. We repeat this process k times with each

of the k partitions used as test data exactly once. This repetition ensures that each assortment is

tested at least once. Note that as k decreases, the number of training assortments decreases resulting

in more limited data scenarios. Such limited data scenarios are of course of great practical interest.

We measure the prediction accuracy of the methods using the relative error metric. In particular,

letting ŷ(M) denote the conversion-rate prediction for test assortmentM, the incurred relative error

is defined as |ŷ(M)− y(M)|/y(M), where

y(M) := num of customers who purchase a product whenM is on offer
num of customer arrivals whenMi was on offer .

In the case of the parametric approaches, ŷ(M) is computed using the choice model fit to the training

data. In the case of the robust approach, we solve an appropriate mathematical program. A detailed

description of how ŷ(M) is determined by each method is given in the appendix.

We now present the results of the experiments. Figure 4 shows the comparison of the relative

errors of the three methods from k-fold cross-validations for k = 10,5,2. Table 1 shows the mean

relative error percentages of the three methods and the percent improvement in mean relative error

achieved by the robust method over the MNL and MMNL methods for the three calibration data

regimes of k = 10,5,2. It is clear from the definition of k-fold cross-validation that as k decreases,
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Figure 4 Robust method outperforms both MNL and MMNL methods in conversion-rate predictions across
various calibration data regimes. The figure compares relative errors of the three methods in k-fold

cross-validations for k= 10,5,2. Each point corresponds to the relative error for a particular test assortment.

Table 1 Mean relative errors in percentages of different methods

k MNL MMNL Robust Percent Improvement over
MNL MMNL

10 43.43 43.39 34.79 19.89% 19.80%
5 43.25 45.73 35.79 17.23% 21.62%
2 45.65 46.61 36.83 19.33% 20.99%

the “amount” of calibration data decreases, or equivalently calibration data sparsity increases. Such

sparse calibration data regimes are of course of great practical interest.

The immediate conclusion we draw from the results is that the prediction accuracy of the robust

method is better than those of both MNL and MMNL methods in all calibration data regimes. In

particular, using the robust method results in close to 20% improvement in prediction accuracy over

the MNL and MMNL methods. We also note that while the prediction accuracy of the more complex

MMNL method is marginally better than that of the MNL method in the high calibration-data

regime of k = 10, it quickly becomes worse as the amount of calibration data available decreases. This
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behavior is a consequence of over-fitting caused due to the complexity of the MMNL model. The
performance of the robust method, on the other hand, remains stable across the different regimes of
calibration-data.

6. The Sparsest Choice Model Consistent with Data
In making revenue predictions, we did not need to concern ourselves with the choice model implicitly
assumed by our prediction procedure. This fact notwithstanding, it is natural to consider criteria
for selecting choice models consistent with the observed data that are independent of any decision
context. Thus motivated, we consider the natural task of finding the simplest choice model consistent
with the observed data. As in much of contemporary high dimensional statistics (see for exam-
ple, Candes et al. (2006), Cormode and Muthukrishnan (2006)), we employ sparsity as our measure
of simplicity. In addition to the appealing notion of explaining observed substitution behavior by as
small a number of customer preference lists as possible, such a description also provides a great deal
of tractability in multiple applications (see, for example van Ryzin and Vulcano (2008)). Our goal
in this section is to first understand the choice models implicitly assumed by the robust procedure
through the lens of the sparsity criterion, and second, to understand the discriminative power of this
criterion.

Towards the above goal, we begin by characterizing choice models implicitly used by the robust
approach in terms of their sparsity. Loosely speaking, we establish that the choice model implicitly
used by the robust approach is indeed simple or sparse. In particular, such choice models have sparsity
within at most one of the sparsity of the sparsest model consistent with the data. As such, we see
that the choice model implicitly selected by our robust revenue prediction procedure is, in essence,
the sparsest choice model consistent with the data. From a descriptive perspective, this establishes
the appealing fact that simplicity or sparsity is a natural property possessed by all choice models
used in making robust revenue predictions. We also establish that the sparsity of the choice model
used by the robust approach scales with the dimension of the data vector y thereby establishing that
the complexity of the model used by the robust approach scales with the “amount” of data available.
This provides a potential explanation for the immunity of the robust approach to over/under fitting
issues, as evidenced in our case study.

Next, we turn to understanding the discriminative power of the sparsest fit criterion. Towards this
end, we describe a family of choice models that can be uniquely identified from the given marginal
data using the sparsest fit criterion. We intuitively expect the complexity of identifiable models to
scale with the “amount” of data that is available. We formalize this intuition by presenting for various
types of data, conditions on the model generating the data under which identification is possible.
These conditions characterize families of choice models that can be identified in terms of their sparsity
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and formalize the scaling between the complexity of a model class and the “amount” of data needed

to identify it.

6.1. Revenue Prediction and Sparse Models

We now provide a characterization of the choice models implicitly used by the robust procedure

through the lens of model sparsity. As mentioned above, loosely speaking, we can establish that the

choice models selected implicitly via our revenue estimation procedure are, in essence, close to the

sparsest model consistent with the observed data. In other words, the robust approach implicitly uses

the simplest models consistent with observed data to predict revenues.

To state our result formally, let us define the set Y as the set of all possible data vectors, namely

the convex hull of the columns of the matrix A. For some y ∈ Y and an arbitrary offer set, M, let

λmin(y) be an optimal basic feasible solution to the program used in our revenue estimation procedure,

namely, (2). Moreover, let, λsparse(y) be the sparsest choice model consistent with the data vector y;

i.e. λsparse(y) is an optimal solution to (3). We then have that with probability one, the sparsity (i.e.

the number of rank lists with positive mass) under λmin(y) is close to that of λsparse(y). In particular,

we have:

Theorem 1. For any distribution over Y that is absolutely continuous with respect to Lebesgue

measure on Y, we have with probability 1, that:

0≤ ‖λmin(y)‖0−‖λsparse(y)‖0 ≤ 1

Theorem 1 establishes that if K were the support size of the sparsest distribution consistent with y,

the sparsity of the choice model used by our revenue estimation procedure is either K or K + 1 for

“almost all” data vectors y. As such, this establishes that the choice model implicitly employed by

the robust procedure is essentially also the sparsest model consistent with the observed data.

In addition the proof of the theorem reveals that the sparsity of the robust choice model consistent

with the observed data is either6 m or m+ 1 for almost all data vectors y of dimension m. This

yields yet another valuable insight into the choice models implicit in our revenue predictions – the

complexity of these models, as measured by their sparsity, grows with the amount of observed data.

As such, we see that the complexity of the choice model implicitly employed by the robust procedure

scales automatically with the amount of available data, as one would desire from a non-parametric

scheme. This provides a potential explanation for the robust procedures’ lack of susceptibility to the

over-fitting observed for the MMNL model in our empirical study.

6 Here, we assume that matrix A has full row rank.
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6.2. Identifiable Families of Choice Models

We now consider the family of choice models that can be identified via the sparsest fit criterion. For
that, we present two abstract conditions that, if satisfied by the choice model generating the data y,
guarantee that the optimal solution to (3) is unique, and in fact, equal to the choice model generating
the data.

Before we describe the conditions, we introduce some notation. As before, let λ denote the true
underlying distribution, and let K denote the support size, ‖λ‖0. Let σ1, σ2, . . . , σK denote the per-
mutations in the support, i.e, λ(σi) 6= 0 for 1≤ i≤K, and λ(σ) = 0 for all σ 6= σi,1≤ i≤K. Recall
that y is of dimension m and we index its elements by d. The two conditions are:

Signature Condition: For every permutation σi in the support, there exists a d(i) ∈ {1,2, . . . ,m}
such that A(σi)d(i) = 1 and A(σj)d(i) = 0, for every j 6= i and 1≤ i, j ≤K. In other words, for each
permutation σi in the support, yd(i) serves as its ‘signature’.

Linear Independence Condition:
∑K
i=1 ciλ(σi) 6= 0, for any ci ∈ Z and |ci| ≤ C, where Z denotes the

set of integers and C is a sufficiently large number ≥K. This condition is satisfied with probability
1 if [λ1λ2 . . . λK ]> is drawn uniformly from the K-dim simplex, or for that matter, any distribution
on the K-dim simplex with a density.

When the two conditions above are satisfied by a choice model, this choice model can be recovered
from observed data as the solution to problem (3). Specifically, we have:

Theorem 2. Suppose we are given y =Aλ and λ satisfies the signature and linear independence
conditions. Then, λ is the unique solution to the program in (3).

The proof of Theorem 2 is given in Appendix A.2. The proof is constructive in that it describes
an efficient scheme to determine the underlying choice model. Thus, the theorem establishes that
whenever the underlying choice model satisfies the signature and linear independence conditions,
it can identified using an efficient scheme as the optimal solution to the program in (3). We next
characterize a family of choice models that satisfy the signature and linear independence conditions.
Specifically, we show that essentially all choice model with sparsity K(N) satisfy these two conditions
as long as K(N) scales as logN,

√
N , and N for comparison, top-set, and ranking data respectively.

To capture this notion of ‘essentially’ all choice models, we introduce a natural generative model. It
then remains to understand how restrictive these values of K(N) are, which we discuss subsequently.

A Generative Model: Given K and an interval [a, b] on the positive real line, we generate a choice
model λ as follows: choose K permutations, σ1, σ2, . . . , σK , uniformly at random with replacement7,
7 Though repetitions are likely due to replacement, for large N and K�

√
N !, they happen with a vanishing proba-

bility.
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choose K numbers uniformly at random from the interval [a, b], normalize the numbers so that they
sum to 18, and assign them to the permutations σi, 1 ≤ i ≤K. For all other permutations σ 6= σi,
λ(σ) = 0.

Depending on the observed data, we characterize values of sparsityK =K(N) up to which distribu-
tions generated by the above generative model can be recovered with a high probability. Specifically,
the following theorem is for the three examples of observed data mentioned in Section 2.

Theorem 3. Suppose λ is a choice model of support size K drawn from the generative model.

Then, λ satisfies the signature’ and linear independence conditions with probability 1−o(1) as N→∞

provided K = o(logN) for comparison data, K = o(
√
N) for the top set data, and K = O(N) for

ranking data.

Theorem 3 above implies that essentially all choice models of sparsity logN (and higher) can be
recovered from the types of observed data discussed in the theorem. A natural question that arises
at this juncture is what a reasonable value of K(N) might be. To give a sense of this, we provide the
following approximation result: a good approximation to any choice model for the purposes of revenue
estimation is obtained by a sparse choice model with support scaling as logN . Specifically, let us
restrict ourselves to offer sets that are ‘small’, i.e. bounded by a constant |M| ≤C; this is legitimate
from an operational perspective and in line with many of the applications we have described. We
now show that any customer choice model can be well-approximated by a choice model with sparse

support for the purpose of evaluating revenue of any offer set M of size upto C. In particular, we
have:

Theorem 4. Let λ be an arbitrary given choice model. Then, there exists a choice model λ̂ with

support O
(

2C2p2
max

ε2 (log 2C +C logN)
)

such that

max
M:|M|≤C

∣∣∣∣∣∣R(M)−
∑
j∈M

pjλ̂j(M)

∣∣∣∣∣∣≤ ε
The proof is provided in Appendix A.3. Along with Theorem 3, the above result establishes the
potential generality of the signature and linear independence conditions.

In summary, this section visited the issues of explicitly selecting a choice model consistent with
the observed data. This is in contrast to our work thus far, which has been simply making revenue
predictions. We showed that the robust procedure we used in making revenue predictions may also be
seen to yield what is essentially the sparsest choice model consistent with the observed data. Finally,
by presenting a family of models for which the sparsest fit to the observed data was unique, and

8 We may pick any distribution on the K-dim simplex with a density; here we pick the uniform distribution for
concreteness.
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studying the properties of this unique solution, we were able to delineate a data-dependent family
of choice models for which the sparsest fit criterion actually yields identification. This formalized
the intuitive notion that the complexity of the choice model that can be recovered scales with the
“amount” of data that is available.

7. Conclusion and Potential Future Directions
This paper presented a new approach to the problem of using historical sales data to predict expected
sales / revenues from offering a particular assortment of products. We depart from traditional para-
metric approaches to choice modeling in that we assume little more than a weak form of customer
rationality; the family of choice models we focus on is essentially the most general family of choice
models one may consider. In spite of this generality, we have presented schemes that succeed in pro-
ducing accurate sales / revenue predictions. We complemented those schemes with extensive empirical
studies using both simulated and real-world data, which demonstrated the power of our approach in
producing accurate revenue predictions without being prone to over and under fitting. We believe
that these schemes are particularly valuable from the standpoint of incorporating models of choice
in decision models frequently encountered in operations management. Our schemes are efficient from
a computational standpoint and raise the possibility of an entirely ‘data-driven’ approach to the
modeling of choice for use in those applications. We also discussed some ideas on the problem of
identifying sparse or simple models that are consistent with the available marginal information.

With that said, this work cannot be expected to present a panacea for choice modeling problems.
In particular, one merit of a structural/ parametric modeling approach to modeling choice is the
ability to extrapolate. That is to say, a non-parametric approach such as ours can start making
useful predictions about the interactions of a particular product with other products only once some

data related to that product is observed. With a structural model, one can hope to say useful things
about products never seen before. The decision of whether a structural modeling approach is relevant
to the problem at hand or whether the approach we offer is a viable alternative thus merits a
careful consideration of the context. Of course, as we have discussed earlier, resorting to a parametric
approach will typically require expert input on underlying product features that ‘matter’, and is thus
difficult to automate on a large scale.

We believe that this paper presents a starting point for a number of research directions. These
include, from an applications perspective:

1. The focus of this paper has been the estimation of the revenue function R(M). The rationale
here is that this forms a core subroutine in essentially any revenue optimization problem that
seeks to optimize revenues in the face of customer choice. A number of generic algorithms
(such as local search) can potentially be used in conjunction with the subroutine we provide
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to solve such optimization problems. It would be interesting to study such a procedure in the
context of problems such as network revenue optimization in the presence of customer choice,
and assortment optimization.

2. Having learned a choice model that consists of a distribution over a small number of rank lists,
there are a number of qualitative insights one might hope to draw. For instance, using fairly stan-
dard statistical machinery, one might hope to ask for the product features that most influence
choice from among thousands of potential features by understanding which of these features best
rationalize the rank lists learned. In a different direction, one may use the distribution learned
as a ‘prior’, and given further interactions with a given customer infer a distribution special-
ized to that customer via Bayes rule. This is effectively a means to accomplishing ‘collaborative
filtering’.

There are also interesting directions to pursue from a theoretical perspective: First, extending our
understanding of the limits of identification. In particular, it would be useful to characterize the
limits of recoverability for additional families of observable data beyond those discussed in Theorem
3. Second, Theorem 4 points to the existence of sparse approximations to generic choice models. Can
we compute such approximations for any choice model but with limited data? Finally, the robust
approach in Section 3 presents us with a family of difficult optimization problems for which the present
work has presented a generic optimization scheme that is in the spirit of cutting plane approaches.
An alternative to this is the development of strong relaxations that yield uniform approximation
guarantees (in the spirit of the approximation algorithms literature).
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Appendix

A. Proofs for Section 6
A.1. Proof of Theorem 1
The result of Theorem 1 follows immediately from the following lemma, which we prove below.

Lemma 1. Let d denote the column rank of matrix A and Y denote the convex hull of the columns of A.
Then, it must be that y belongs to a d− 1 dimensional subspace, ‖λmin(y)‖0 ≤ d+ 1, and

vold−1(Ysparse) = vold−1(Y),

where Ysparse ⊂Y denotes the set of all data vectors such that

‖λmin(y)‖0 ≤ d+ 1 and ‖λsparse(y)‖0 ≥ d

and vold−1(S) denotes the d− 1 dimensional volume of a set S of points.

Proof of Lemma 1 We prove this lemma in two parts: (1) Y belongs to a d− 1 dimensional subspace and
‖λmin(y)‖0 ≤ d+ 1 for all y ∈Y, and (2) vold−1(Y \Ysparse) = 0.

To prove the first part, note that any data vector y ∈Y belongs to d− 1 dimensional subspace because A
has a d dimensional range space and y belongs to the intersection of the range space of A and the hyperplane∑

σ λσ = 1. Let Ã denote the augmented matrix, which is obtained by augmenting the last row of matrix A
with a row of all 1s. Similarly, let ỹ denote the vector obtained by augmenting vector y with 1. The equality
constraints of (2) can now be written as ỹ = Ãλ, λ≥ 0. Since A has rank d, the rank of Ã will be at most
d+ 1. Therefore, for any data vector y ∈Y, an optimal BFS solution to (2) must be such that

‖λmin(y)‖0 ≤ d+ 1, ∀ y ∈Y. (10)

Coming to the second part of the proof, for any r≤ d−1, let Yr denote the set of all data vectors that can
be written as a convex combination of at most r columns of matrix A. Let L denote the number of columns
of A of size at most r, and let S1, S2, . . . , SL denote the corresponding subsets of columns of A of size at
most r. Then, it is easy to see that Yr can be written as the union of disjoint subsets Yr = ∪Li=1Yri, where
for each i, Yri denotes the set of data vectors that can be written as the convex combination of the columns
in subset Si. For each i, since Yri is a polytope residing in r− 1≤ d− 2 dimensional space, it must follow
that vold−1(Yri) = 0. Since L is finite, it follows that vold−1(Yr) = 0. Therefore, we can conclude that

vold−1 (y ∈Y : ‖λsparse(y)‖0 ≤ d− 1) = 0 (11)

The result of the lemma now follows from (10) and (11).
A.2. Proof of Theorem 2
Before we prove Theorem 2, we propose a simple combinatorial algorithm that recovers the model λ whenever
λ satisfies the signature and linear independence conditions; we make use of this algorithm in the proof of
the theorem.

The algorithm recovers λ when the signature and linear independence conditions are satisfied. If the
conditions are not satisfied, the algorithm provides a certificate to that effect. The algorithm takes y as an
explicit input with the prior knowledge of the structure of A as an auxiliary input. It’s aim is to produce λ.
In particular, the algorithm outputs the sparsity of λ, K = ‖λ‖0, permutations σ1, . . . , σK so that λ(σi) 6= 0,
1≤ i≤K and the values λ(σi), 1≤ i≤K. Without loss of generality, assume that the values y1, . . . , ym are
sorted with y1 ≤ · · · ≤ ym and further that λ(σ1)≤ λ(σ2)≤ . . . λ(σK).

Before we describe the algorithm, we observe the implication of the two conditions. The Linear Indepen-
dence condition says that for any two non-empty distinct subsets S,S′ ⊂ {1, . . . ,K}, S 6= S′,∑

i∈S

λ(σi) 6=
∑
j∈S′

λ(σj).

This means that if we know all λ(σi), 1 ≤ i ≤ K and since we know yd,1 ≤ d ≤m, then we can recover
A(σi)d, i= 1,2, . . . ,K as the unique solution to yd =

∑K

i=1A(σi)dλ(σi) in {0,1}K .
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Therefore, the non-triviality lies in finding K and λ(σi), 1≤ i≤K. This issue is resolved by use of the
Signature condition in conjunction with the above described properties in an appropriate recursive manner.
Specifically, recall that the Signature condition implies that for each σi for which λ(σi) 6= 0, there exists
d such that yd = λ(σi). By Linear Independence, it follows that all λ(σi)s are distinct and hence by our
assumption

λ(σ1)<λ(σ2)< · · ·<λ(σK).

Therefore, it must be that the smallest value, y1 equals λ(σ1). Moreover, A(σ1)1 = 1 and A(σi)1 = 0 for all
i 6= 1. Next, if y2 = y1 then it must be that A(σ1)2 = 1 and A(σi)2 = 0 for all i 6= 1. We continue in this
fashion until we reach a d′ such that yd′−1 = y1 but yd′ > y1. Using similar reasoning it can be argued that
yd′ = λ(σ2), A(σ2)d′ = 1 and A(σi)d′ = 0 for all i 6= 2. Continuing in this fashion and repeating essentially the
above argument with appropriate modifications leads to recovery of the sparsity K, the corresponding λ(σi)
and A(σi) for 1≤ i≤K. The complete procedural description of the algorithm is given below.

Sparsest Fit Algorithm:

Initialization: k(1) = 1, d= 1, λ(σ1) = y1 and A(σ1)1 = 1, A(σ1)` = 0, 2≤ `≤m.
for d= 2 to m

if yd =
∑

i∈T λ(σi) for some T ⊆ {1, . . . , k(d− 1)}
k(d) = k(d− 1)
A(σi)d = 1 ∀ i∈ T

else
k(d) = k(d− 1) + 1
λ(σk(d)) = yd
A(σk(d))d = 1 and A(σk(d))` = 0, for 1≤ `≤m,` 6= d

end if
end for
Output K = k(m) and (λ(σi),A(σi)),1≤ i≤K.

Now, we have the following theorem justifying the correctness of the above algorithm:

Theorem 5. Suppose we are given y=Aλ and λ satisfies the “Signature” and the “Linear Independence”
conditions. Then, the Sparsest Fit algorithm recovers λ.

We present the proof of Theorem 2 followed by the proof of Theorem 5.
Proof of Theorem 2 Suppose, to arrive at a contradiction, assume that there exists a distribution µ over
the permutations such that y =Aµ and ‖µ‖0 ≤ ‖λ‖0. Let v1, v2, . . . , vK and u1, u2, . . . , uL denote the values
that λ and µ take on their respective supports. It follows from our assumption that L≤K. In addition, since
λ satisfies the “signature” condition, there exist 1 ≤ d(i) ≤m such that yd(i) = vi, for all 1 ≤ i ≤K. Thus,
since y=Aµ, for each 1≤ i≤K, we can write vi =

∑
j∈T (i) uj , for some T (i)⊆ {1,2, . . . ,L}. Equivalently, we

can write v=Bu, where B is a 0−1 matrix of dimensions K×L. Consequently, we can also write
∑k

i=1 vi =∑L

j=1 ζjuj , where ζj are integers. This now implies that
∑L

j=1 uj =
∑L

j=1 ζjuj since
∑K

i=1 vi =
∑L

j=1 uj = 1.
Now, there are two possibilities: either all the ζjs are > 0 or some of them are equal to zero. In the first

case, we prove that µ and λ are identical, and in the second case we arrive at a contradiction. In the case
when ζj > 0 for all 1≤ j ≤L, since

∑
j uj =

∑
j ζjuj , it should follow that ζj = 1 for all 1≤ j ≤L. Thus, since

L ≤K, it should be that L = K and (u1, u2, . . . , uL) is some permutation of (v1, v2, . . . , vK). By relabeling
the ujs, if required, without loss of generality, we can say that vi = ui, for 1≤ i≤K. We have now proved
that the values of λ and µ are identical. In order to prove that they have identical supports, note that since
vi = ui and y = Aλ = Aµ, µ must satisfy the “signature” and the “linear independence” conditions. Thus,
the algorithm we proposed accurately recovers µ and λ from y. Since the input to the algorithm is only y,
it follows that λ= µ.

Now, suppose that ζj = 0 for some j. Then, it follows that some of the columns in the B matrix are zeros.
Removing those columns of B, we can write v = B̃ũ where B̃ is B with the zero columns removed and ũ
is u with ujs such that ζj = 0 removed. Let L̃ be the size of ũ. Since at least one column was removed
L̃ < L≤K. The condition L̃ <K implies that the elements of vector v are not linearly independent i.e., we
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can find integers ci such that
∑K

i=1 civi = 0. This is a contradiction, since this condition violates our “linear
independence” assumption. The result of the theorem now follows.
Proof of Theorem 5 Let σ1, σ2, . . . , σK be the permutations in the support and λ1, λ2, . . . , λK be their
corresponding probabilities. Since we assumed that λ satisfies the “signature” condition, for each 1≤ i≤K,
there exists a d(i) such that yd(i) = λi. In addition, the “linear independence” condition guarantees that the
condition in the “if” statement of the algorithm is not satisfied whenever d= d(i). To see why, suppose the
condition in the “if” statement is true; then, we will have λd(i) −

∑
i∈T λi = 0. Since d(i) /∈ T , this clearly

violates the “linear independence” condition. Therefore, the algorithm correctly assigns values to each of
the λis. We now prove that the A(σ)s that are returned by the algorithm do indeed correspond to the σis.
For that, note that the condition in the “if” statement being true implies that yd is a linear combination
of a subset T of the set {λ1, λ2, . . . , λK}. Again, the “linear independence” condition guarantees that such a
subset T , if exists, is unique. Thus, when the condition in the “if” statement is true, the only permutations
with A(σ)d = 1 are the ones in the set T . Similarly, when the condition in the “if” statement is false, then it
follows from the “signature” and “linear independence” conditions that only for σi, A(σ)d(i) = 1. From this,
we conclude that the algorithm correctly finds the true underlying distribution.
A.3. Proof of Theorem 3
First, we note that, irrespective of the form of observed data, the choice model generated from the “generation
model” satisfies the “linear independence” condition with probability 1. The reason is as follows: the values
λ(σi) obtained from the generation model are i.i.d uniformly distributed over the interval [a, b]. Therefore,
the vector (λ(σ1), λ(σ2), . . . , λ(σK)) corresponds to a point drawn uniformly at random from the hypercube
[a, b]K . In addition, the set of points that satisfy

∑K

i=1 ciλ(σi) = 0 lie in a lower-dimensional space. Since cis
are bounded, there are only finitely many such sets of points. Thus, it follows that with probability 1, the
choice model generated satisfies the “linear independence” condition.

The conditions under which the choice model satisfies the “signature” condition depends on the form of
observed data. We consider each form separately.

1. Ranking Data: The bound of K =O(n) directly follows from Lemma 2 of Jagabathula and Shah (2008).
2. Comparison Data: For each permutation σ, we truncate its corresponding column vectorA(σ) to a vector

of length N/2 by restricting it to only the disjoint unordered pairs: {0,1} ,{2,3} , . . . ,{N − 2,N − 1}.
Denote the truncated binary vector by A′(σ). Let Ã denote the matrix A with each column A(σ)
truncated to A′(σ). Clearly, since Ã is just a truncated form of A, it is sufficient to prove that Ã satisfies
the “signature” condition.
For brevity, let L denote N/2, and, given K permutations, let B denote the L×K matrix formed by
restricting the matrix Ã to the K permutations in the support. Then, it is easy to see that a set of K
permutations satisfies the “signature” condition iff there exist K rows in B such that the K×K matrix
formed by the K rows is a permutation matrix.
Let R1,R2, . . . ,RJ denote all the subsets of {1,2, . . . ,m} with cardinality K; clearly, J =

(
L
K

)
. In addi-

tion, let Bj denote the K ×K matrix formed by the rows of B that are indexed by the elements of
Rj . Now, for each 1≤ j ≤ J , when we generate the matrix B by choosing K permutations uniformly at
random, let Ej denote the event that the K ×K matrix Bj is a permutation matrix and let E denote
the event ∪jEj . We want to prove that P(E)→ 1 as N →∞ as long as K = o(logN). Let Xj denote the
indicator variable of the event Ej , and X denote

∑
jXj . Then, it is easy to see that P(X = 0) = P((E)c).

Thus, we need to prove that P(X = 0)→ 0 as N →∞ whenever K = o(logn). Now, note the following:

Var(X)≥ (0−E [X])2 P(X = 0)

It thus follows that P(X = 0) ≤ Var(X)/(E [X])2. We now evaluate E [X]. Since Xjs are indicator
variables, E [Xj ] = P(Xj = 1) = P(Ej). In order to evaluate P(Ej), we restrict our attention to the K×K
matrix Bj . When we generate the entries of matrix B by choosingK permutations uniformly at random,
all the elements of B will be i.i.d Be(1/2) i.e., uniform Bernoulli random variables. Therefore, there are
2K2 possible configurations of Bj and each of them occurs with a probability 1/2K2 . Moreover, there
are K! possible K ×K permutation matrices. Thus, P(Ej) =K!/2K2 . Thus, we have:

E [X] =
J∑
j=1

E [Xj ] =
J∑
j=1

P(Ej) = JK!
2K2 . (12)
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Since J =
(
L
K

)
, it follows from Stirling’s approximation that J ≥ LK/(eK)K . Similarly, we can write

K!≥KK/eK . It now follows from (12) that

E [X]≥ LK

eKKK

KK

eK
1

2K2 = LK

e2K2K2 . (13)

We now evaluate Var(X). Let ρ denote K!/2K2 . Then, E [Xj ] = ρ for all 1≤ j ≤ J . We can write,

Var(X) = E
[
X2]−E [X]2 =

J∑
i=1

J∑
j=1

P(Xi = 1,Xj = 1)− J2ρ2.

Suppose |Ri ∩Rj |= r. Then, the number of possible configurations of Bi and Bj is 2(2K−r)K because,
since there is an overlap of r rows, there are 2K − r distinct rows and, of course, K columns. Since all
configurations occur with the same probability, it follows that each configuration occurs with a proba-
bility 1/2(2K−r)K , which can also be written as 2rKρ2/(K!)2. Moreover, the number of configurations in
which both Bi and Bj are permutation matrices is equal to K!(K − r)!, since, fixing the configuration
of Bi will leave only K − r rows of Bj to be fixed.
For a fixed Ri, we now count the number of subsets Rj such that |Ri ∩Rj |= r. We construct an Rj by
first choosing r rows from Ri and then choosing the rest from {1,2, . . . , l} \Ri. We can choose r rows
from the subset Ri of K rows in

(
K
r

)
ways, and the remaining K − r rows in

(
L−K
K−r

)
ways. Therefore,

we can now write:
J∑
j=1

P(Xi = 1,Xj = 1) =
K∑
r=0

(
K

r

)(
L−K
K − r

)
K!(K − r)!2

rKρ2

(K!)2

≤ ρ2
K∑
r=0

(
L

K − r

)
2rK

r! , Using
(
L−K
K − r

)
≤
(

L

K − r

)

=
(
L

K

)
ρ2 + ρ2

K∑
r=1

(
L

K − r

)
2rK

r!

≤ Jρ2 + ρ2LK
K∑
r=1

(
e2K

L

)r 1
rr(K − r)K−r

The last inequality follows from Stirling’s approximation:
(

L
K−r

)
≤ (L/(K − r))K−r and r!≥ (r/e)r; in

addition, we have used J =
(
L
K

)
. Now consider

rr(K − r)K−r = exp{r log r+ (K − r) log(K − r)}
= exp{K logK −KH(r/K)}

≥ KK

2K

where H(x) is the Shannon entropy of the random variable distributed as Be(x), defined as H(x) =
−x logx− (1− x) log(1− x) for 0< x < 1. The last inequality follows from the fact that H(x)≤ log 2
for all 0<x< 1. Putting everything together, we get

Var(X) =
J∑
i=1

[
J∑
j=1

P(Xi = 1,Xj = 1)
]
−E [X]2

≤ J

[
Jρ2 + ρ2LK

2K

KK

K∑
r=1

(
e2K

L

)r]
− J2ρ2

= Jρ22KLK

KK

K∑
r=1

(
e2K

L

)r
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We can now write,

P(X = 0) ≤ Var(X)
(E [X])2

≤ 1
J2ρ2

Jρ22KLK

KK

K∑
r=1

(
e2K

L

)r
= 1

J

2KLK

KK

e2K

L

K−1∑
r=0

(
e2K

L

)r
≤ eKKK

LK
2KLK

KK

e2K

L

K−1∑
r=0

(
e2K

L

)r
, Using J =

(
L

K

)
≤
(
L

eK

)K
= e

(4e)K

L

K−1∑
r=0

(
e2K

L

)r
It now follows that for K = o(logL/ log(4e)), P(X = 0)→ 0 as N →∞. Since, by definition, L=N/2,
this completes the proof of the theorem.

3. Top Set Data: For this type of data, note that it is sufficient to prove that A(1) satisfies the “signature”
property with a high probability; therefore, we ignore the comparison data and focus only on the data
corresponding to the fraction of customers that have product i as their top choice, for every product i.
For brevity, we abuse the notation and denote A(1) by A and y(1) by y. Clearly, y is of length N and so
is each column vector A(σ). Every permutation σ ranks only one product in the first position. Hence,
for every permutation σ, exactly one element of the column vector A(σ) is 1 and the rest are zeros.
In order to obtain a bound on the support size, we reduce this problem to a balls-and-bins setup.
For that, imagine K balls being thrown uniformly at random into N bins. In our setup, the K balls
correspond to theK permutations in the support and theN bins correspond to theN products. A ball is
thrown into bin i provided the permutation corresponding to the ball ranks product i to position 1. Our
“generation model” chooses permutations independently; hence, the balls are thrown independently.
In addition, a permutation chosen uniformly at random ranks a given product i to position 1 with
probability 1/N . Therefore, each ball is thrown uniformly at random.
In the balls-and-bins setup, the “signature” condition translates into all K balls falling into differ-
ent bins. By “Birthday Paradox” McKinney (1966), the K balls falls into different bins with a high
probability provided K = o(

√
N).

This finishes the proof of the theorem.
A.4. Proof of Theorem 4
To show existence of a choice model λ̂ with sparse support, that approximates expected revenue of all offer
sets of size at most C with respect to the true model, we shall utilize the probabilistic method. Specifically,
consider M samples chosen as per the true choice model λ : let these be σ1, . . . , σM . Let λ̂ be the empirical
choice model (or distribution on permutations) induced by these M samples. We shall show that for M
large enough (as claimed in the statement of Theorem 4), this empirical distribution λ̂ satisfies the desired
properties with positive probability. That is, there exists a distribution with sparse support that satisfies the
desired property and hence implies Theorem 4.

To this end, consider an offer set M of size at most C. As noted earlier, the expected revenue R(M) is
given by

R(M) =
∑
j∈M

pjλj(M),

where pj is the price of product j ∈M and λj(M) is the probability of customer choosing j to purchase, i.e.
λ(Sj(M)). We wish to show that λ̂j(M) = λ̂(Sj(M)) is good approximation of λj(M), for all j ∈M and for
all M of size at most C. To show this, we shall use a combination of Chernoff/Hoeffding bound and union
bound.

To this end, consider the givenM and a fixed j ∈M. For 1≤ `≤M , define

Xj
` =

{
1 if σ` ∈ Sj(M),
0 otherwise.
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Then, Xj
` , 1≤ `≤M, are independent and identically distributed Bernoulli random variables with P(Xj

` =
1) = λj(M). By definition,

λ̂j(M) = 1
M

M∑
`=1

Xj
` . (14)

Using (14) and Chernoff/Hoeffding bound for
∑M

`=1X
j
` , it follows that for any t > 0,

P
(∣∣∣λ̂j(M)−λj(M)

∣∣∣> t) ≤ 2 exp
(
− t

2M

2

)
. (15)

Let pmax = maxNi=1 pi. By selecting, t= ε
Cpmax

in (15) we have

P
(∣∣∣λ̂j(M)−λj(M)

∣∣∣> ε

Cpmax

)
≤ 2 exp

(
− ε2M

2C2p2
max

)
. (16)

Therefore, for the givenM of size at most C, by union bound we have

P

(∣∣∣∣∣∑
j∈M

pj λ̂
j(M)−

∑
j∈M

pjλ
j(M)

∣∣∣∣∣> ε
)
≤ 2C exp

(
− ε2M

2C2p2
max

)
. (17)

There are at most NC sets of size upto C. Therefore, by union bound and (17) it follows that

P

(
max

M:|M|≤C

∣∣∣∣∣R(M)−
∑
j∈M

pj λ̂j(M)

∣∣∣∣∣> ε
)
≤ 2CNC exp

(
− ε2M

2C2p2
max

)
. (18)

For choice of M such that
M >

2C2p2
max

ε2 (log 2C +C logN) ,

the right hand size of (18) becomes < 1. This establishes the desired result.

B. The Exact Approach to Solving the Robust Problem
Here we provide further details on the second approach described for the solution to the (dual of ) the
robust problem (4). In particular, we first consider the case of ranking data, where an efficient representation
of the constraints in the dual may be produced. We then illustrate a method that produces a sequence
of ‘outer-approximations’ to (6) for general types of data, and thereby allows us to produce a sequence of
improving lower bounding approximations to our robust revenue estimation problem, (2). This provides a
general procedure to address the task of solving (4), or equivalently, (2).
B.1. A Canonical Representation for Ranking Data
Recall the definition of ranking data from Section 2: This data yields the fraction of customers that rank a
given product i as their rth choice. Thus, the partial information vector y is indexed by i, r with 0≤ i, r≤N .
For each i, r, yri denotes the probability that product i is ranked at position r. The matrix A is thus in
{0,1}N2×N ! and for a column of A corresponding to the permutation σ, A(σ), we will thus have A(σ)ri = 1
iff σ(i) = r. We will now construct an efficient representation of the type (6) for this type of data.

Consider partitioning Sj(M) into Dj =N sets wherein the dth set is given by

Sjd(M) = {σ ∈ Sj(M) : σ(j) = d}.

and define, as usual, Ajd(M) = {A(σ) : σ ∈ Sjd(M)}. Thus, Ajd(M) is the set of columns of A whose
corresponding permutations rank the jth product as the dth most preferred choice.

It is easily seen that the set Ajd(M) is equal to the set of all vectors xjd in {0,1}N2 satisfying:
N−1∑
i=0

xjdri = 1 for 0≤ r≤N − 1
N−1∑
r=0

xjdri = 1 for 0≤ i≤N − 1

xjdri ∈ {0,1} for 0≤ i, r≤N − 1.
xjddj = 1
xjdd′i = 0 for all i∈M, i 6= jand 0≤ d′ <d.

(19)
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The first three constraints in (19) enforce the fact that xjd represents a valid permutation. The penultimate
constraint requires that the permutation encoded by xjd, say σjd, satisfies σjd(j) = d. The last constraint
simply ensures that σjd ∈ Sj(M).

Our goal is, of course, to find a description for Ājd(M) of the type (6). Now consider replacing the third
(integrality) constraint in (19)

xjdri ∈ {0,1} for 0≤ i, r≤N − 1

with simply the non-negativity constraint

xjdri ≥ 0 for 0≤ i, r≤N − 1

We claim that the resulting polytope is precisely the convex hull of Ajd(M), Ājd(M). To see this, we note
that all feasible points for the resulting polytope satisfy the first, second, fourth and fifth constraint of (19).
Further, the polytope is integral, being the projection of a matching polytope with some variables forced to
be integers (Birkhoff (1946), von Neumann (1953)), so that any feasible solution must also satisfy the third
constraint of (19). We consequently have an efficient canonical representation of the type (6), which via (8)
yields, in turn, an efficient solution to our robust revenue estimation problem (2) for ranking data, which we
now describe for completeness.

Let us define for convenience the set V(M) = {(j, d) : j ∈M,0≤ d≤N − 1}, and for each pair (j, d), the
sets B(j, d,M) = {(i, d′) : i∈M, i 6= j,0≤ d′ <d}. Then, specializing (8) to the canonical representation just
proposed, we have that the following simple program in the variables α,ν and γjd ∈R2N is, in fact, equivalent
to (2) for ranking data:

maximize
α,ν

α>y+ ν

subject to γjdi + γjdN+r ≥ αri for all (j, d)∈ V(M), (i, r) /∈B(j, d,M)∑
i6=j γ

jd
i +

∑
r 6=d γ

jd
N+r + ν ≤ pj −αdj for all (j, d)∈ V(M)

(20)

B.2. Computing a Canonical Representation: The General Case
While it is typically quite easy to ‘write down’ a description of the sets Ajd(M) as all integer solutions to
some set of linear inequalities (as we did for the case of ranking data), relaxing this integrality requirement
will typically not yield the convex hull of Ajd(M). In this section we describe a procedure that starting with
the former (easy to obtain) description, solves a sequence of linear programs that yield improving solutions.
More formally, we assume a description of the sets Ajd(M) of the type

Ijd(M) = {xjd :Ajd1 xjd ≥ bjd1 , Ajd2 xjd = bjd2 , Ajd3 xjd ≤ bjd3 , xjd ∈ {0,1}m} (21)

This is similar to (6), with the important exception that we now allow integrality constraints. Given a set
Ijd(M) we let Ī0

jd(M) denote the polytope obtained by relaxing the requirement xjd ∈ {0,1}m to simply
xjd ≥ 0. In the case of ranking data, Īojd(M) = conv(Ijd(M)) = Ājd(M) and we were done; we begin with
an example where this is not the case.

Example 1. Recall the definition of comparison data from Section 2. In particular, this data yields the
fraction of customers that prefer a given product i to a product j. The partial information vector y is thus
indexed by i, j with 0≤ i, j ≤N ; i 6= j and for each i, j, yi,j denotes the probability that product i is preferred
to product j. The matrix A is thus in {0,1}N(N−1)×N !. A column of A, A(σ), will thus have A(σ)ij = 1 if and
only if σ(i)<σ(j).

Consider Sj(M), the set of all permutations that would result in a purchase of j assuming M is the set
of offered products. It is not difficult to see that the corresponding set of columns Aj(M) is equal to the set
of vectors in {0,1}(N−1)N satisfying the following constraints:

xjil ≥ x
j
ik +xjkl− 1 for all i, k, l ∈N , i 6= k 6= l

xjik +xjki = 1 for all i, k ∈N , i 6= k

xjji = 1 for all i∈M, i 6= j

xjik ∈ {0,1} for all i, k ∈N , i 6= k

(22)

Briefly, the second constraint follows since for any i, k, i 6= k, either σ(i)>σ(k) or else σ(i)<σ(k). The first
constraint enforces transitivity: σ(i)<σ(k) and σ(k)<σ(l) together imply σ(i)<σ(l). The third constraint
enforces that all σ ∈ Sj(M) must satisfy σ(j)< σ(i) for all i ∈M. Thus, (22) is a description of the type
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(21) with Dj = 1 for all j. Now consider the polytope Īoj (M) obtained by relaxing the fourth (integrality)
constraint to simply xjik ≥ 0. Of course, we must have Īoj (M)⊇ conv(Ij(M)) = conv(Aj(M)). Unlike the case
of ranking data, however, Īoj (M) can in fact be shown to be non-integral 9, so that Īoj (M) 6= conv(Aj(M))
in general.

We next present a procedure that starting with a description of the form in (21), solves a sequence of
linear programs each of which yield improving solutions to (2) along with bounds on the quality of the
approximation:

1. Solve (8) using Īojd(M) in place of conv(Ijd(M)) = Ājd(M). This yields a lower bound on (2) since
Īojd(M)⊃ Ājd(M). Call the corresponding solution α(1), ν(1).

2. Solve the optimization problem maxα>(1)x
jd subject to xjd ∈ Īojd(M) for each pair (j, d). If the optimal

solution x̂jd is integral for each (j, d), then stop; the solution computed in the first step is in fact
optimal.

3. Otherwise, let x̂jd possess a non-integral component for some (j, d); say x̂jdc ∈ (0,1). Partition Ajd(M)
on this variable - i.e. define

Ajd0(M) = {A(σ) :A(σ)∈Ajd(M),A(σ)c = 0}

and
Ajd1(M) = {A(σ) :A(σ)∈Ajd(M),A(σ)c = 1},

and let Ijd0(M) and Ijd1(M) represent the corresponding sets of linear inequalities with integer con-
straints (i.e. the projections of Ijd(M) obtained by restricting xjdc to be 0 and 1 respectively). Of,
course, these sets remain of the form in (21). Replace Ijd(M) with Ijd0(M) and Ijd1(M) and go to
step 1.

The above procedure is akin to a cutting plane method and is clearly finite, but the size of the LP we
solve increases (by up to a factor of 2) at each iteration. Nonetheless, each iteration produces a lower bound
to (2) whose quality is easily measured (for instance, by solving the maximization version of (2) using the
same procedure, or by sampling constraints in the program (4) and solving the resulting program in order
to produce an upper bound on (2)). Moreover, the quality of our solution improves with each iteration. In
our computational experiments with a related type of data, it sufficed to stop after a single iteration of the
above procedure.
B.3. Explicit LP solved for censored comparison data in Section 4
The LP we want to solve is

minimize
λ

∑
j∈M

pjλj(M)

subject to Aλ= y,
1>λ= 1,
λ≥ 0.

(23)

For the ‘censored’ comparison data, the partial information vector is indexed by i, j with 0≤ i, j ≤N − 1,
i 6= j. For each i, j such that i 6= 0, yij denotes the fraction of customers that prefer product i to both products
j and 0; in other words, yij denotes the fraction of customers that purchase product i when then offer set
is {i, j,0}. Further, for each j 6= 0, y0j denotes the fraction of customers who prefer the ‘no-purchase’ option
to product j; in fact, y0j is the fraction of customers who don’t purchase anything when the set {j,0} is on
offer. The matrix A is then in {0,1}N(N−1), with the column of A corresponding to permutation σ, A(σ),
having A(σ)ij = 1 if σ(i)<σ(j) and σ(i)<σ(0) for each i 6= 0, j, and A(σ)0j = 1 if σ(0)<σ(j) for j 6= 0, and
A(σ)ij = 0 otherwise.

For reasons that will become apparent soon, we modify the LP in (23) by replacing the constraint Aλ= y
with Aλ≥ y. It is now easy to see the following:

minimize
λ

∑
j∈M

pjλj(M)

subject to Aλ≥ y,
1>λ= 1,
λ≥ 0.

≤

minimize
λ

∑
j∈M

pjλj(M)

subject to Aλ= y,
1>λ= 1,
λ≥ 0.

(24)

9 for N ≥ 5; the polytope can be shown to be integral for N ≤ 4
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We now take the dual of the modified LP. In order to do that, recall from section 3 that Sj(M) =
{σ ∈ SN : σ(j)<σ(i),∀i∈M, i 6= j} denotes the set of all permutations that result in the purchase of the
product j ∈M when the offered assortment is M. In addition, Aj(M) denotes the set {A(σ) : σ ∈ Sj(M)}.
Now, the dual of the modified LP is

maximize
α,ν

α>y+ ν

subject to max
zj∈Aj(M)

(
α>zj + ν

)
≤ pj , for each j ∈M

α≥ 0.

(25)

where α and ν are dual variables corresponding respectively to the data consistency constraints Aλ= y and
the requirement that λ is a probability distribution (i.e. 1>λ= 1) respectively.

Now, consider the following representation of the set Aj(M), for a fixed j.

zjik = min
{
xjik, x

j
i0
}

for all i, k ∈N , i 6= k, i 6= 0
zj0k = xj0k for all k ∈N , k 6= 0
zjik ∈ {0,1} for all i, k ∈N , i 6= k

xjil ≥ x
j
ik +xjkl− 1 for all i, k, l ∈N , i 6= k 6= l

xjik +xjki = 1 for all i, k ∈N , i 6= k

xjji = 1 for all i∈M, i 6= j

xjik ∈ {0,1} for all i, k ∈N , i 6= k

(26)

The last four constraints are the same as the set of inequalities in (22), which correspond to the representation
of the set Aj(M) for comparison data; thus, every point satisfying the set of last four constraints in (26)
corresponds to a permutation σ ∈ Sj(M) such that xjik = 1 if and only if σ(i)<σ(k). We now claim that the
set of points zj that satisfy the constraints in (26) is equal to the set of vectors in Aj(M). To see that, note
that zjik = 1 if and only if the corresponding xjik = 1 and xji0 = 1, for i 6= 0. This implies that zjik = 1 if and
only if i is preferred to k and i is preferred to 0. Similarly, zj0k = 1 if and only if xj0k = 1 i.e., 0 is preferred to
k.

Let Īj(M) denote the convex hull of the vectors in Aj(M), equivalently, of the vectors zj satisfying the
set of constraints in (26). Let Īoj (M) be the convex hull of the vectors zj satisfying the constraints in (26)
with the constraint zjik = min

{
xjik, x

j
i0
}

replaced by the constraints zjik ≤ x
j
ik and zjik ≤ x

j
i0, and the constraint

zj0k = xj0k replaced by the constraint zj0k ≤ x
j
0k. Finally, let Ī1

j (M) represent the polytope Ī0
j (M) with the

integrality constraints relaxed to zjik ≥ 0 and xjik ≥ 0. We now have the following relationships:{
α≥ 0, ν : max

zj∈Īj(M)

(
α>zj + ν

)
≤ pj

}
=
{
α≥ 0, ν : max

zj∈Īo
j

(M)

(
α>zj + ν

)
≤ pj

}

⊇

{
α≥ 0, ν : max

zj∈Ī1
j

(M)

(
α>zj + ν

)
≤ pj

} (27)

The first equality follows because α≥ 0 and, hence, at the optimal solution, zjik = 1 if xjik = xji0 = 1, and
zj0k = 1 if xj0k = 1. It should be now clear that in order to establish this equality we considered the modified
LP. The second relationship follows because of the relaxation of constraints. It now follows from (24), (25)
and (27) that

minimize
λ

∑
j∈M

pjλj(M)

subject to Aλ= y,
1>λ= 1,
λ≥ 0.

≥

maximize
α,ν

α>y+ ν

subject to max
zj∈Aj(M)

(
α>zj + ν

)
≤ pj , for each j ∈M

α≥ 0.

≥

maximize
α,ν

α>y+ ν

subject to max
zj∈Ī1

j
(M)

(
α>zj + ν

)
≤ pj , for each j ∈M

α≥ 0.

(28)
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Using the procedure described in Section 3.3, we solve the last LP in (28) by taking the dual of the con-
straint in the LP. For convenience, we write out the program maxzj∈I1

j
(M)

(
α>zj + ν

)
and the corresponding

dual variables we use for each of the constraints.
maximize

zj
α>zj + ν

subject to Dual Variables
zjik−x

j
ik ≤ 0 for all i, k ∈N , i 6= k Ω1jik

zjik−x
j
i0 ≤ 0 for all i, k ∈N , i 6= k, i 6= 0 Ω2jik

xjik +xjkl−x
j
il ≤ 1 for all i, k, l ∈N , i 6= k 6= l Γjikl

xjik +xjki = 1 for all i, k ∈N , i < k ∆j
ik

xjji = 1 for all i∈M, i 6= j Θj
i

xjik, z
j
ik ≥ 0 for all i, k ∈N , i 6= k

(29)

Let P denote the set {(i, k) : i 6= k,0≤ i, k≤N − 1}, and T denote the set
{(i, k, l) : i 6= k 6= l,0≤ i, k, l≤N − 1}. Moreover, let g(a, b, k, j) denote

∑
k∈N ,k 6=a,b Γjabk

+
∑

k∈N ,k 6=a,b Γjkab −
∑

k∈N ,k 6=a,b Γjakb. Then, the LP we solve is

maximize
ν,α

ν+
∑

(i,k)∈P αikyik

subject to

∑
(i,k,l)∈T

Γjikl +
∑

(i,k)∈P,i<k
∆j
ik +

∑
i∈M,i6=j

Θj
i ≤ pj − ν ∀ j ∈M

g(a, b, k, j) + ∆j
ab−Ω1jab ≥ 0 ∀ j ∈M, a, b∈N , a < b; if a= j, b /∈M

g(a, b, k, j) + ∆j
ba−Ω1jab ≥ 0 ∀ j ∈M, a, b∈N , a > b, b 6= 0; if a= j, b /∈M

g(a, b, k, j) + ∆j
ab + Θj

b −Ω1jab ≥ 0 ∀ j ∈M, a= j, b∈M, a < b

g(a, b, k, j) + ∆j
ba + Θj

b −Ω1jab ≥ 0 ∀ j ∈M, a= j, b∈M, a > b, b 6= 0
g(a, b, k, j) + ∆j

ba−
∑

k∈N ,k 6=aΩ2jak ≥ 0 ∀ j ∈M, a∈N , a 6= j, b= 0
g(a, b, k, j) + ∆j

ba + Θj
b −
∑

k∈N ,k 6=aΩ2jak ≥ 0 ∀ j ∈M, a= j, b= 0
Ω1jab + Ω2jab ≥ αab ∀ j ∈M, a, b∈ P,a 6= 0, b 6= 0
Ω2jab ≥ αab ∀ j ∈M, a∈N \{0} , b= 0
Ω1jab ≥ αab ∀ j ∈M, a= 0, b∈N \{0}
α,Γ,Ω1,Ω2≥ 0.

(30)

C. An Overview of Common Structural Models
Here we give a brief overview of each the parametric choice models we compare our approach with. The
descriptions we provide are brief and we refer an interested reader to Ben-Akiva and Lerman (1985) for more
details.
C.1. Multinomial logit (MNL) family
The MNL model is a popular and most commonly used parametric model in economics, marketing and
operations management (see Ben-Akiva and Lerman (1985), Anderson et al. (1992)) and is the canonical
example of a Random Utility Model. In the MNL model, the utility of the customer from product j takes
the form Uj = Vj + ξj , where Vj is the deterministic component and the error terms ξ0, ξ1, . . . , ξN−1 are i.i.d.
random variables having a Gumbel distribution with location parameter 0 and scale parameter 1. Since
only differences of utilities matter, without loss of generality, it is assumed that the mean utility of the
“no-purchase” option, V0 = 0. Let wj denote eµj ; then, according to the MNL model, the probability that
product j is purchased from an assortment M is given by

P(j|M) =wj/
∑
i∈M

wi.

A major advantage of the MNL model is that it is analytically tractable. In particular, it has a closed form
expression for the choice probabilities. However, it has several shortcomings. One of the major limitations
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of the MNL model is that it exhibits Independent of Irrelevant Alternatives (IIA) property i.e., the relative
likelihood of the purchase of any two given product variants is independent of the other products on offer.
This property may be undesirable in contexts where some product are ‘more like’ other products so that the
randomness in a given customers utility is potentially correlated across products. There are other – more
complicated – variants that have been proposed to alleviate the IIA issue – the most popular being the NL
model, which we describe next.
C.2. Nested logit family (NL)
The nested logit (NL) family of models, first derived by Ben-Akiva (1973), was designed to explicitly capture
the presence of shared unobserved attributes among alternatives. In particular, the universe of products is
partitioned into L mutually exclusive subsets called nests denoted by N1,N2, . . . ,NL such that

N =
L⋃
`=1

N` and N` ∩Nm = ∅, for m 6= `.

The partitioning is such that products sharing unobserved attributes lie in the same nest. Each customer has
utility Uj for product j given by Uj = Vj + ξ` + ξj,`; here, ξ` is the error term shared by all the products in
nest N`, and ξj,` is the error term that is product specific and assumed to be i.i.d across different products.
In this logit case, ξj,` are assumed to be i.i.d standard Gumbel distributed with location parameter 0 and
scale parameter 1. The nest specific error terms ξ1, ξ2, . . . , ξL are assumed i.i.d., distributed such that for each
`, j, ξ` + ξj,` is Gumbel distributed with location parameter 0 and scale parameter ρ < 1. The no-purchase
option is assumed to be in a nest of its own. Let wj denote eµj and let

w(`,M) def=
∑

i∈N`∩M

wi.

Then, with the above assumptions on the error terms, it can be shown that (see Ben-Akiva and Lerman
(1985)) the probability that product j is purchased when offered assortmentM is

P (j|M) = P (N`|M)P (j|N`,M) = (w(`,M))ρ∑L

m=1(w(m,M))ρ
wj

w(`,M) . (31)

Nested MNL models alleviate the issue of IIA exhibited by the MNL models. Further, they have a closed
form expression for the choice probabilities, which makes them computationally tractable. However, these
models still exhibit IIA property within a nest. Moreover, it is often a challenging task to partition the
products into different nests. Further, the model is limited because it requires each product to belong to
exactly one nest.

The fact that NL model requires each product to be placed in exactly one nest is a limitation in several
applications where a particular product is correlated with products across nests; for example, the no-purchase
option in our setup is clearly correlated with all the products. In order to overcome this problem the NL
model was extended to a Cross Nested Logit (CNL) model where each product can belong to multiple nests.
The name cross-nested seems to be due to Vovsha (1997) and Vovsha’s model is similar to the Ordered
GEV model proposed by Small (1987). For our experiments, we assume that the no-purchase option has
membership in all the nests and all other products have membership in only one nest. For this formulation,
the probability of purchase of product j is given by (31) (see Ben-Akiva and Lerman (1985)), where w(M, `)
is now defined as

w(`,M) def= α`w0 +
∑

i∈(N`∩M)\{0}

wi.

Here α` is the parameter capturing the level of membership of the no-purchase option in nest `. The following
conditions are imposed on the parameters α`, `= 1,2, . . . ,L

L∑
`=1

αρ` = 1, α` ≥ 0, for `= 1,2, . . . ,L.

The first condition is a normalization condition that is imposed because it is not possible to identify all the
parameters. In our setup, it is only natural to assume that the no-purchase option has equal membership in
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all nests. This assumption translates into assuming that α` = (1/L)1/ρ, for all `. Further, we note that we
assume without loss of generality that V0 = 1 since only differences between utilities matter.

While the CNL model overcomes the limitations of the NL model, it is less tractable and Marzano and
Papola (2008) showed that it cannot capture all possible types of correlations among products. Further, both
the MNL and NL models don’t account for heterogeneity in customer tastes. The MMNL family of models,
described next, explicitly account for heterogeneity in customer tastes.
C.3. Mixed multinomial logit (MMNL)10 family
The Mixed multinomial logit (MMNL) family of models is the most general of the three parametric families
we compare our approach with. In fact, it is considered to be the most widely used and the most promising
of the discrete choice models currently available Hensher and Greene (2003). It was introduced by Boyd
and Mellman (1980) and Cardell and Dunbar (1980). McFadden and Train (2000) show that under mild
regularity conditions, an MMNL model can approximate arbitrarily closely the choice probabilities of any
discrete choice model that belongs to the class of RUM models. This is a strong result showing that MMNL
family of models is very rich and models can be constructed to capture various aspects of consumer choice.
In particular, it also overcomes the IIA limitation of the MNL and nested MNL (within a nest) families
of models. However, MMNL models are far less computationally tractable than both the MNL and nested
MNL models. In particular, there is in general no closed form expression for choice probabilities, and thereby
the estimation of these models requires the more complex simulation methods. In addition – and more
importantly – while the MMNL family can in principle capture highly complex consumer choice behavior,
appropriate choice of features and distributions of parameters is highly application dependent and is often
very challenging Hensher and Greene (2003).

In this model, the utility of customer c from product j is given by Uc,j = βTc xj + εc,j , where xj is the
vector of observed attributes of product j; βc is the vector of regression coefficients that are stochastic and
not fixed11 to account for the unobserved effects that depend on the observed explanatory variables; and εc,j
is the stochastic term to account for the rest of the unobserved effects. In this logit context, it is assumed
that the variables εc,j are i.i.d across customers and products Gumbel distribution of location parameter 0
and scale parameter 1. The distribution chosen for βc depends on the application at hand and the variance of
the components of βc accounts for the heterogeneity in customer tastes. Assuming that β has a distribution
G(β;θ) parameterized by θ, probability that a particular product j is purchased from assortmentM is

P (j|M) =
∫ exp

{
βTxj

}∑
i∈M exp{βTxi}

G(dβ;θ).

D. Case Study: Major US Automaker
In this section, we provide precise details of how each method was used to produce conversion-rate predictions.
We first establish some notation. We let M training and M test respectively denote the set of assortments used
as part of training and test data. Further, for some product i ∈M, let Ci,M denote the number of sales
observed for product i when assortment M was on offer at some dealership; C0,M denotes the number of
customers who purchased nothing whenM was on offer. Finally, let T training (T test) denote the set of tuples
(i,M) such thatM∈M training (M test) and the count Ci,M is available; in our case study, we treated count
Ci,M as unavailable if either no sales were observed for product i whenM was on offer or Ci,M ≤ 6, in which
case we discarded the sales as too low to be significant12.
Robust method. Given M training and an assortment M ∈ M test, the robust approach predicts the
conversion-rate of M by solving the following LP:

minimize
λ

∑
j∈M

Pλ(j|M)

subject to at ≤ Pλ(i|M)≤ bt, ∀t= (i,M)∈ T training

1>λ= 1,
λ≥ 0,

(32)

10 This family of models is also referred to in the literature as Random parameter logit (RPL), Kernel/Hybrid logit.
11 This is unlike in the MNL model where the coefficients are assumed to be fixed, but unknown.
12 In other words, we discard counts that are “too small” in order to avoid noisy sample probability estimates.
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Table 2 Relevant attributes of DVDs from Amazon.com data and mean utilities of MNL model fit by
Rusmevichientong et al. (2008)

Product ID Mean utility Price (dollars) Average price per disc (dollars) Total number of helpful votes
1 -4.513 115.49 5.7747 462
2 -4.600 92.03 7.6694 20
3 -4.790 91.67 13.0955 496
4 -4.514 79.35 13.2256 8424
5 -4.311 77.94 6.4949 6924
6 -4.839 70.12 14.0242 98
7 -4.887 64.97 16.2423 1116
8 -4.757 49.95 12.4880 763
9 -4.552 48.97 6.9962 652
10 -4.594 46.12 7.6863 227
11 -4.552 45.53 6.5037 122
12 -3.589 45.45 11.3637 32541
13 -4.738 45.41 11.3523 69
14 -4.697 44.92 11.2292 1113
15 -4.706 42.94 10.7349 320

where recall that Pλ(i|M) =
∑

σ∈Si(M) λ(σ) with Si(M) denoting the set {σ : σ(i)<σ(j)∀j ∈M, i 6= j} and
[at, bt] denotes the interval to which Pλ(i|M) belongs. The LP in (32) is a slight modification of the LP in (2)
with the prices pi all set of 1 and the equalities yt = Pλ(M) changed to inequalities at ≤ Pλ(M)≤ bt. Setting
all the prices to 1 has the effect of computing conversion-rate for the assortment, and the inequalities account
for the fact that there is uncertainty in the choice probabilities because of finite sample errors. For each tuple
t = (i,M) ∈M training, we computed the left and right end-points as at = ŷt(1− zεt) and bt = ŷt(1 + zεt),
where

ŷt = CiM
C0M+

∑
j∈MCjM

, εt =
√

1− ŷt
CiM

.

Here, ŷt is the sample average, ŷtεt is the standard error, and z is a constant multiplier that determines the
width of the interval. Different values of z give us approximate confidence intervals for Pλ(i|M). If z is very
small, the problem in (32) will be infeasible, and on the other hand if z is very large, the estimate produced
by (32) will be very conservative. For our experiments, we set z to be 3.15, which corresponds to the smallest
value of z for which (32) was feasible; incidentally, this value of z also corresponds to approximate 99.8%
confidence interval for Pλ(i|M).

Note that depending on the values of z, εt, ŷt, it possible that either at < 0, or bt > 1, or both at < 0 and
bt > 1. In cases when one of the end-points lies outside the interval [0,1], effectively only one of the bounds
Pλ(i|M)≥ at and Pλ(i|M)≤ bt is imposed. Likewise, when both the end-points lie outside the interval [0,1],
the entire constraint at ≤ Pλ(i|M)≤ bt becomes redundant. This implies that depending on the estimate ŷt
and its quality εt, the robust approach automatically discards some of “low-quality” data while generating
predictions.
MNL model. We assumed the following specific random utility structure for the MNL model: Ui = Vi +
ξi, i= 0,1,2, . . . ,N , where Vi is the mean utility and ξi are i.i.d. Gumbel distributed with location parameter
0 and scale parameter 1, and N = 14 is the number of products. With this assumption, we used the package
BIOGEME Bierlaire (2003, 2008) to estimate Vi for i= 1,2, . . . ,N (with V0 fixed at 0) from training data
M training.
MMNL model. We assumed the following specific random utility structure for the MMNL model: Ui =
Vi + βxi + ξi, i = 0,1,2, . . . ,14, where as before Vi denotes the mean utility and N = 14 the number of
products, ξi are i.i.d. Gumbel with location parameter 0 and scale parameter 1, xi are dummy features with
x0 = 0 and xi = 1 for i > 0, and β is Gaussian with mean 0 and variance s2. Again, fixing V0 to 0, we used
BIOGEME Bierlaire (2003, 2008) to estimate Vi, i > 0, and s.
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