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The problem of determining nurse staffing levels in a hospital environment is a complex task due to variable

patient census levels and uncertain service capacity caused by nurse absenteeism. In this paper we combine

an empirical investigation of the factors affecting nurse absenteeism rates with an analytical treatment of

nurse staffing decisions using a novel variant of the newsvendor model. Using data from the emergency

department of a large urban hospital, we find that absenteeism rates are consistent with nurses exhibiting

an aversion to higher levels of anticipated workload. Using our empirical findings we analyze a single-period

nurse staffing problem considering both the case of constant absenteeism rate (exogenous absenteeism) as

well as an absenteeism rate which is a function of the number of scheduled nurses (endogenous absenteeism).

We provide characterizations of the optimal staffing levels in both situations and show that the failure to

incorporate absenteeism as an endogenous effect results in understaffing.

History : February 4, 2012

1. Introduction and Literature Review
In recent years hospitals have been faced with ever-increasing pressure from their major payers -

federal and state governments, managed care organizations, and large employers - to cut costs. Since

nursing personnel accounts for a very large portion of expenses, the response in many instances has

been reductions of the nursing staff. Nurse workloads have been further increased by shorter hospital

lengths-of-stay (LOS) and increasing use of outpatient procedures, resulting in sicker hospitalized

patients who require more nursing care. The adverse impact of these changes has been documented

by a number of studies (Needleman et al. (2002), Aiken et al. (2002), Cho et al. (2003)). These

effects include increases in medical errors, delays for patients waiting for beds in emergency rooms,

and ambulance diversions. In response a number of state legislatures, e.g. Victoria in Australia

(The Victorian Department of Health (2007)) and California in the US (California Department of

Health (2004)), have mandated minimum nurse staffing levels.
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Establishing the right balance between the quality and cost of patient care is a challenging task.

In a hospital environment, nurses are usually scheduled to work 8- or 12-hour shifts, and the choice

of appropriate nurse staffing levels for a particular shift is complicated by the need to make staffing

decisions well in advance (e.g. 6-8 weeks) of that shift when the patient census is unknown. Even

if the patient census could be reliably estimated, nurse staffing decisions are complicated by labor

constraints dealing with the number of consecutive and weekend shifts worked per nurse, vacation

schedules, personal days, and preferences (see, e.g. Pierskalla et al. (1976)).

It has been increasingly recognized that, in addition to the factors mentioned above, nurse

absenteeism is an important consideration in making staffing decisions. According to the US Bureau

of Labor Statistics (2008), in 2008 US nurses exhibited 12.5 incidents of illness or occupational

injury per 100 Full Time Employees (FTEs), second only to construction workers, as well as

the highest number of cases involving days away from work, 7.8 per 100 FTEs. These figures

are substantially higher than the national average of 4.2 incidents per 100 FTEs, with only half

involving time away from work. Similarly, in Canada nurses have one of the highest absenteeism

rates (12.2%) of all workers, and this absenteeism rate has been increasing over the last 10 years

(Statistics Canada (2008)).

The goal of this paper is to construct a model for nurse staffing that includes the impact of

absenteeism. In order to do this, we must first understand whether and how absenteeism is affected

by staffing levels themselves. Since there is no literature that adequately addresses this linkage, we

first conduct an empirical hospital-based study to understand how to incorporate absenteeism into

an analytical model.

Structural linkages between absenteeism and work environment factors, such as workload, have

long been the focus of applied psychology research. In particular, a weak association between work-

load and absenteeism (see Darr and Johns (2008) for an overview) has been discovered by numerous

studies which compare long-run average absenteeism rates across either different industries, dif-

ferent firms, or different employee roles. Most studies find that employees exhibit higher long-run

average absenteeism rates when they perform jobs with higher workloads (e.g. Kristensen (1991),

Dwyer and Ganster (1991)). This is consistent with theoretical accounts of absenteeism as a man-

ifestation of withdrawal from adverse conditions (Hill and Trist (1955)) or as a coping mechanism

that allows employees to replenish their depleted physical and mental resources (Hobfoll (1989)).

At the other end of the spectrum there are studies that identify environments where absenteeism is

negatively correlated with workload demands (Parkes (1982), Smulders and Nijhuis (1999)). Such

behavior is consistent with workload becoming a “pressure-to-attend” (Steers and Rhodes (1978)).

The evidence of these opposing effects is also present in a separate literature stream focusing on
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the causes of nurse absenteeism. Most studies in this area find that nurse absenteeism is posi-

tively related to levels of work-related stress (Shamian et al. (2003)) and nurse workload (Bryant

et al. (2000), Tummers et al. (2001), McVicar (2003), Unruh et al. (2007)). However, at least

one study examining absenteeism among trainee nurses finds a negative correlation between nurse

absenteeism and workload (Parkes (1982)).

Nearly all of the existing studies of nurse absenteeism employ cross-sectional analysis of this

phenomenon (see Rauhala et al. (2007) for an exception). In particular, they compare the long-run

absenteeism behavior of nurses across different clinical units, rather than tracking the same set of

nurses over time. As such, these studies are of limited value to managers responsible for day-to-

day staffing decisions. The first part of our paper presents a longitudinal investigation of the link

between nurse absenteeism and workload using data from the Emergency Department (ED) of a

large New York City hospital. Rather than relying on subjective self-reported workload measures,

we use patient census values to calculate nurse-to-patient ratios which are treated as proxies for the

workload experienced by nurses working a particular shift. Nurse shortages and other organizational

limitations (such as union rules) provide the necessary exogenous variation in staffing decisions

that we exploit in order to identify the impact of workload on absenteeism. We hypothesize that

fluctuations in nurse workload due to irregularities in scheduling and/or unpredictable demand,

have a direct impact on absenteeism. An anticipated increase in workload could result in an increase

in nurses’ motivation to help their fellow nurses and, therefore, in decreased absenteeism, or, given

generally high workloads and adverse working conditions, in increased absenteeism. In either case,

the resulting behavior may very well result in optimal nurse staffing levels that are different from

those predicated by models that do not consider this workload-induced behavior. Therefore, our

empirical investigation aims to provide support for one of these specific hypotheses so that we can

incorporate the appropriate assumption into our analytical modeling. Our main finding is that

absenteeism increases when there is a higher anticipated workload. Specifically, we find that for

our data set with an average absenteeism rate of 7.3%, an extra scheduled nurse is associated with

an average reduction in the absenteeism rate of 0.6%. As such, our paper is related to the growing

body of literature (KC and Terwiesch (2009), Powell and Schultz (2004), Schultz et al. (1998), and

Schultz et al. (1999)) on the effects of workload on system productivity.

The second goal of our paper is to develop a model of optimal staffing in service environments

with workload-dependent absenteeism. Extant literature either ignores absenteeism or treats it as

an exogenous phenomenon (Bassamboo et al. (2010), Easton and Goodale (2005), Harrison and

Zeevi (2005) and Whitt (2006) provide examples of call-center staffing while Fry et al. (2006)

provide an example of firefighter staffing). The uncertain supply of service capacity created by

nurse absenteeism connects our work with a stream of literature focused on inventory planning
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in the presence of unreliable supply/stochastic production yield (Yano and Lee (1995)) with two

important distinctions. First, the overwhelming majority of papers which deal with stochastic

supply yields model them as being either additive or multiplicative (Ciarallo et al. (1994), Bol-

lapragada and Morton (1999), Gupta and Cooper (2005), Yang et al. (2007)), a justifiable approach

in manufacturing settings. The supply uncertainty in our model has a binomial structure, a more

appropriate choice in personnel staffing settings. Binomial yield models are a relative rarity in the

stochastic yield literature, perhaps due to their limited analytical tractability (Gerchak and Henig

(1994), Grosfeld-Nir and Gerchak (2004), Fadiloglu et al. (2008)). Most importantly, our analysis

is the first one to introduce and analyze endogenous stochastic yields.

Using our model we characterize the optimal staffing levels under exogenous and endogenous

absenteeism. We show that the failure to incorporate absenteeism as an endogenous effect results in

understaffing, which leads to a higher-than-optimal absenteeism rate and staffing costs. Specifically,

for model parameters that closely match the hospital we study, we find that ignoring the endogenous

nature of absenteeism can lead to a staffing cost increase of 2−3%. In addition to the cost impact,

the understaffing associated with ignoring absenteeism may result in an increase in medical errors,

particularly in the pressured and sensitive environment of an ED. Considering that nursing costs is

one of the biggest components of overall hospital operating costs, more accurate nurse staffing based

on endogenous absenteeism constitutes a substantial opportunity for hospitals to simultaneously

reduce costs and improve quality of care.

Finally, we show that despite understaffing, the exogenous-absenteeism model will appear to

be self-consistent in the sense that the assumed exogenous absenteeism rate will be equal to the

observed (endogenous) absenteeism rate. This is particularly worrisome for staffing managers as

it implies that it is impossible to tell whether the model is well specified just by examining the

observed absenteeism rate. In this regard our paper contributes to the literature on model spec-

ification errors (e.g. Cachon and Kök (2007) and Cooper et al. (2004)). Cachon and Kök (2007)

examine the assumption that the salvage value of the newsvendor model is independent of order

quantity, while Cooper et al. (2004) examine the assumption that the the demand estimate for

a particular ticket class of a revenue management model is independent of the chosen protection

level. In both papers, as in ours, the model specification error cannot be detected by studying data

as the misspecified model will produce consistent outcomes. Our paper is the first to study model

specification error in the context of staffing, and the first in the model specification literature to

start from an empirical observation.

2. Endogeneity in Nurse Absenteeism Rates: An Empirical Study
Our study is based on nurse absenteeism and patient census data from the ED of a large New York

City hospital. Nurses employed in this unit are full-time employees, each working on average 3.25
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Measure Mean Standard Deviation Minimum Maximum
Day Shift
Nurses Scheduled 11.4 1.07 8 16
Absenteeism rate 0.0762 0.0799 0 0.4
Patient visits 141 20.1 77 188
Average Census 116 17.1 56.5 158
Maximum Census 136 20.8 64 182
Night Shift
Nurses Scheduled 10.5 0.849 9 14
Absenteeism rate 0.0707 0.0829 0 0.4
Patient Visits 66.0 9.45 40 95
Average Census 102 14.2 54.3 142
Maximum Census 127 20.4 57 174
Evening Shift
Nurses Scheduled 3.63 0.756 2 5
Absenteeism rate 0.0589 0.119 0 0.5
Patient visits 137 16.2 75 196
Average Census 125 18.6 58.2 164
Maximum Census 137 20.7 64 182

Table 1 : Descriptive statistics for nurse and patient data.

shifts per week. The unit uses two primary nursing shifts; the “day” shift starts at 8:00am and ends

at 8:00pm, while the “night” shift starts at 8:00pm and ends at 8:00am. Another (“evening”) shift

is also operated from 12:00pm to 12:00am. The evening shift is fundamentally different from the

other two shifts. First, the nurses working on this shift are dedicated to this shift and, unlike the

other nurses, do not work on the other two shifts. Thus, it is less likely that they are informed about

the nurse staffing schedules for the day/night shifts. Second, this shift consists of fewer nurses who

are more experienced, exhibit less absenteeism than the other two shifts, as shown in Table 1.

In our analysis of absenteeism we limit our attention to the nurses on the day and night shifts.

However, we do take into account the evening shift when measuring workload since the evening

shift overlaps with both the day shift and the night shift. For each shift, for a period of 10 months

starting on July 1, 2008 (304 day shifts, 304 evening shifts and 303 night shifts), we collected

the following data: the number of nurses scheduled, the number of nurses absent, and the patient

census data recorded every two hours.

The nurse scheduling process starts several weeks before the actual work shift when the initial

schedule is established. This initial schedule often undergoes a number of changes and corrections

due to e.g. family illnesses, medical appointments and jury duty obligations, which may continue

until the day before the actual shift. In our study we have used the final schedules, i.e. the last

schedules in effect before any “last minute” absenteeism is reported for the shift. We record as

absenteeism any event where a nurse does not show up for work without giving sufficiently advance

notice for the schedule to be revised. In the clinical unit we study, nurses are allowed to use up

to ten “personal” days per year which do not require any significant advance notice. The resulting

descriptive statistics for three shifts are presented in Table 1.

The average patient census during a shift varies substantially from day to day. Some of this

variation (52.2% for day shifts and 32.6% for night shifts) can be explained by day-of-the-week and
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week fixed effects. Further, the patient census exhibits significant serial autocorrelation (ρ = 30.6%)

with the values recorded during the previous shift. The number of nurses scheduled for a particular

type of shift, e.g. day shift on a Wednesday, is highly variable. Approximately 25% of the variation

in the number of nurses scheduled can be explained by day-of-the-week and week fixed effects

(adjusted R2 = 27.5% for the day shift and adjusted R2 = 24.1% for the night shift). Also, after

controlling for fixed effects the number of nurses scheduled for a shift shows little dependence

on either the average patient census during that shift or on the average census values for the 14

previous shifts, which correspond to one calendar week. This indicates that the unit’s nurse staffing

policy does not seem to be affected in any significant way by actual patient census.

Our discussions with nurse manager indicated that there are two main factors driving the sig-

nificant variations in the number of scheduled nurses. First, personnel scheduling is subject to

numerous constraints (e.g. union rules) that often prevent manager from assigning the number of

nurses desired for a particular shift. Second, as mentioned earlier, initial schedules often undergo a

series of changes before they are finalized. While such scheduling variations are not desirable from

the point of view of managing the match between the demand for nursing services and the supply

of nursing capacity, they provide an opportunity to examine how absenteeism rates are related to

the numbers of scheduled nurses.

2.1. Nurse Workload and Absenteeism: Empirical Results

We model the phenomenon of nurse absenteeism as follows. We treat all nurses as being identical

and independent decision makers and focus on a group of yt nurses scheduled to work during a

particular shift t (t = 1 for the first shift in the data set, t = 2 for the second shift, etc., up to

t = 607). For nurse n, n = 1, ..., yt, the binary variable Yn,t denotes her decision to be absent from

work (Yn,t = 1), or to be present (Yn,t = 0). We assume that this absenteeism decision is influenced

by a number of factors expressed by the vector xt which include parameters related to workload

as well as fixed effects such as the day of the week or the shift. Each nurse compares the utility

she receives from being absent from work to the utility she receives from going to work. The

difference in these utility values is given by U∗
n,t = x′tβ + εn,t, where εn,t are, for each n and t, i.i.d.

random variables with mean zero. While the utility difference U∗
n,t is an unobservable quantity,

we can potentially observe each nurse’s decision to show up for work. The decision is such that

Yn,t = 1 if U∗
n,t > 0, and Yn,t = 0 otherwise. Assuming that εn,t follow the standardized logistic

distribution (the standard normal distribution) we obtain the logit (probit) model (Greene (2005)).

It is important to keep in mind that our empirical data do not record the attendance decisions of

individual nurses. Rather, we measured the aggregate absenteeism behavior of a group of nurses

scheduled for a particular shift. Consequently, we treat all nurses scheduled for a given shift as
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a homogenous group and build the model for the corresponding group behavior. We examine the

impact of relaxing this assumption in Section 2.2. We focus on the maximum-likelihood-based logit

estimation of the probability of absenteeism γt during shift t. We estimate the model using the

maximum likelihood approach for grouped data (see Greene (2005), Chapter 21.4.6). Under this

approach the dependent variable is the proportion of nurses that are absent given the number of

nurses scheduled for a particular shift yt.

Since our goal is to study how the nurse absenteeism rate is affected by workload, we need to

measure and quantify nurse workload for each shift. We use the nurse-to-patient ratio as a proxy

for the workload nurses experience during a particular shift. For shift t, we define the nurse-to-

patient ratio variable, denoted as NPRt, as the ratio of the number of nurses working during a

particular shift and the patient census averaged over the duration of that shift. To estimate the

number of nurses present we assume that the number of nurses scheduled in a particular shift is

the number of nurses actually present. This assumption is consistent with the practice in the ED

we studied, which uses either an agency nurse or a nurse from the previous shift to work overtime

to substitute for an absent nurse. With this assumption, the number of nurses present during each

24-hour period varies as follows: between 8:00am and 12:00pm it is equal to the number of nurses

scheduled for the day shift (yt), between 12:00pm and 8:00pm it is equal to the number of nurses

scheduled for the day shift (yt) plus the number of nurses scheduled for the evening shift (et),

between 8:00pm and 12:00am it is equal to the number of nurses scheduled for the evening shift

(et) plus the number of nurses scheduled for the night shift, while between 12:00am and 8:00am

it is equal to the number of nurses scheduled for the night shift (yt). Thus we estimate NPRt as

follows

NPRt =
yt + 2

3
et

Ct

for the day shift, NPRt =
y + 1

3
et

Ct

for the night shift, (1)

where Ct is the patient census averaged over the duration of shift t.

In making their attendance decisions for shift t nurses may be influenced by the anticipated

workload for shift t. The impact of anticipated workload arises because nurses are informed in

advance of their schedule and they are aware of how many (and which) other nurses are scheduled

to work on the same shift as them. Since nurses anticipate a certain patient census E [Ct], consistent

with their past experience of working in the ED, nurses form an expectation about the anticipated

workload for that shift. Naturally, if fewer (more) nurses are scheduled on that particular shift

than the nurses deem appropriate, they will anticipate a higher (lower) workload than normal. The

group attendance data do not present a measurement challenge, since the nurses scheduled for the

same shift are subjected to the same anticipated workload value.
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The anticipated workload can have a dampening effect on absenteeism through the “pressure-

to-attend” mechanism (Steers and Rhodes (1978)) or can enhance absenteeism by encouraging

“withdrawal behavior” (Hill and Trist (1955), Hobfoll (1989)). To the best of our knowledge, the

impact of anticipated workload on absenteeism has not been previously studied. We test this

potential impact in our setting by including in the vector of covariates xt the anticipated value of

nurse-to-patient ratio

ENPR1
t =

yt + 2
3
et

E [Ct]
for the day shift, ENPR1

t =
yt + 1

3
et

E [Ct]
for the night shift, (2)

where et is the number of nurses scheduled in the evening shift which overlaps with 2
3

( 1
3
) of the

duration of the day (night) shift in question. While day and night shift nurses are fully informed

about the schedule for their shifts, it is not clear that they would be as familiar with the schedule

of the evening shift staffed by a different pool of nurses. Motivated by this observation, we estimate

two models based on alternative definitions of the expected nurse-to-patient ratio. In the first

definition (ENPR1
t of equation (2)) we use the exact number of evening nurses scheduled (et), while

in the second definition (ENPR2
t ) we use the average value of et (averaged over all evening shifts in

our sample). The latter formulation reflects the situation where day- and night-shift nurses do not

know precisely how many evening nurses will be present but form a rational expectation about this

value. In other words, in the second model day- and night-shift nurses behave as if they ignore any

variation in the number of nurses scheduled for the evening shift that overlaps with their own shift.

E [Ct] is set to the expectation of patient census values computed over all shifts in our sample.

This formulation reflects an assumption that nurses, when making their attendance decisions, use

a mental model which captures any potential difference occurring on different days/shifts with

a fixed effect and, therefore, focus on expected patient census value. We also assume that the

nurses form rational expectations about the patient census which are consistent with empirically

observed patient census data. In addition to the models based on (2), we have also estimated

several alternative variants which we discuss in 2.2.

In addition to the anticipated nurse-to-patient ratio (ENPRi
t, i = 1,2), the vector of covariates

xt includes a number of controls. In particular, we include a day-of-the-week dummy variable to

capture any systematic variation in absenteeism across days, a day/night-shift fixed effect to cap-

ture variations between day and night shifts, and a week fixed effect to capture any systematic

variations which remain constant over a period of one week and affect absenteeism but are other-

wise unobservable. Also, we include a holiday fixed effect which takes the value of 1 on national

public holidays and zero on any other day. This last variable is designed to deal with a potential

endogeneity problem since nurses may be inherently reluctant to work on some select days, such as
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public holidays. These days are known to the management of the clinical unit which tries to accom-

modate the nurses’ aversion by staffing fewer nurses on such days. Nevertheless, the nurses that

are scheduled to work on these “undesirable” days are still more likely to be absent, irrespective of

the chosen staffing levels. By including the holiday variable we are trying to explicitly account for

this effect. It is possible that there exist other correlated variables that we omit, but to the extent

that they do not vary drastically over a period of one week, the week fixed effect should be able

to capture the influence of those variables. Finally, to account for the possibility that absenteeism

might be a delayed response to past workloads, we include the values of 14 lagged nurse-to-patient

ratios NPRt−j, j = 1, . . . ,14, which correspond to one calendar week. As the number of past shifts

we use is rather arbitrary, we conducted our statistical analysis for several different values to make

sure the results are not sensitive to the number we choose as long as it is sufficiently large.

Specifically, the models we estimate are

logit(γt) = βi
0 +βi

ENPR×ENPRi
t +

14∑
j=1

βi
NPR,j ×NPRt−j +

7∑
d=2

βi
DAY,d×DAYd,t

+
44∑

f=2

βi
W,f ×Wf,t +βi

DAYSHIFT×DAYSHIFTt +βi
HOLIDAY×HOLIDAYt, (3)

where γt is the probability that a nurse is absent in shift t, i = 1,2 refers to the definition of ENPRi

used, DAYd,t and Wf,t are the day and week fixed effects, DAYSHIFTt and HOLIDAYt are the

shift and holiday fixed effects. The estimation results for equation (3) are presented in Table 1.

Model I uses the first definition of the anticipated nurse-to-patient ratio (ENPR1
t ), while Model

III uses the second definition (ENPR2
t ). In order to test whether the observed effect of anticipated

nurse-to-patient ratio on absenteeism is robust we also estimated the restricted versions of Models

I and III (which we denote as Models II and IV), where we omit the 14 lagged nurse-to-patient

ratio variables. If the lagged nurse-to-patient ratios are not related to absenteeism (i.e. if βi
NPR,j = 0

for all j = 1, ...,14) omitting these variables will not introduce any bias even if the lagged nurse-

to-patient variables are correlated with the variables included in the model. Model II uses the

first definition of the anticipated nurse-to-patient ratio (ENPR1
t ) while Model IV uses the second

definition (ENPR2
t ).

As can be seen from Table 1, the anticipated nurse-to-patient ratio has a significant effect (at

the 5% or 10% level) on absenteeism rates in Models I, III and IV. In Model II the p-value of the

anticipated nurse-to-patient ratio is 10.7%. The more nurses scheduled for a particular shift, the

less likely each nurse is to be absent. In particular, according to the first model we estimate the

marginal effect of staffing an extra nurse (calculated at the mean values of all remaining independent

variables and using the expected patient census value of 109) on the individual absenteeism rate is
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Figure 1: Estimation results for logit models.

around 0.575% = 0.626/109. In other words, the absenteeism rate would decrease from its average

value of 7.34% to about 6.78% when an extra nurse is added to the schedule. The coefficient of

the anticipated nurse-to-patient ratio is statistically more significant in Models III and IV, where

the variation in the number of scheduled evening nurses is ignored. This might suggest that when

nurses decide whether to show up for work they place greater emphasis on the number of nurses

working in their shift rather than the number of nurses working in the evening shift that overlaps

with their own. As with any empirical finding, one might argue the relationship we find between

absenteeism and anticipated workload is due to reverse causality (i.e. it is not absenteeism that

reacts to anticipated workload but instead staffing, and thus workload, that reacts to absenteeism).

However, in the ED study site, we know that absenteeism was not considered by the nurse manager

making staffing decisions. More generally, in discussions with managers responsible for nurse staffing

in other hospitals, absenteeism patterns were not tracked or used in staffing decisions.

It is interesting to note that the lag 6, lag 10 and lag 14 (lag 6 and lag 10) of the nurse-to-patient

ratio variables have positive coefficients in Model I (Model III) which are individually significant at
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the 10% level. This seems to imply that the probability of a nurse being absent on any shift would

increase if the shift occurring 3, 5 or 7 days ago had a higher nurse-to-patient ratio. Although these

lags are individually significant, the Wald test statistic and the Likelihood Ratio test statistic for

joint significance of all 14 lagged workload variables in Model I as well as Model III reject the

hypothesis (even at the 10% level) that lagged nurse-to-patient ratios have any joint explanatory

power. In the absence of any plausible explanation as to why a lighter workload on a similar

shift occuring 3, 5 or 7 days ago might increase absenteeism, and in light of the weakness of this

statistical relationship, we are inclined to treat this result as spurious.

Interestingly, the holiday variable’s effect is significant (at 10% confidence level) and negative,

thus suggesting that nurses are about 3.8% less likely to be absent on public holidays. Week

fixed effects are jointly significant (at the 1% level) in all four models. One of the effects that

week dummies seem to pick up reasonably well is the impact of weather (in particular, heavy

snow conditions) on absenteeism. For example, week 35 of our data set includes March 2-4, 2009.

During six day and night shifts corresponding to these dates snow on the ground in New York

City was recorded to be more than 5 inches,1 the level identified by the New York Metropolitan

Transportation Authority as the one at which the public transportation disruptions are likely to set

in.2 The week-35 fixed effect is positive and significant (at the 5% level) in Models II and IV with a

marginal effect equal to 8.75% in Model I and 9.80% in Model IV. Only 3 other days in our dataset

had as much snow on the ground (December 3, December 21 and January 20). Turning to the

impact of day-of-the week fixed effect, there is some (weak) evidence that nurses are more likely to

be absent on weekends. They are also more likely to be absent during a day shift, when conflicting

family obligations often cited as an important reason behind nurse absenteeism (Erickson et al.

(2000), Nevidjon and Erickson (2001)) are likely to be more prevalent.

2.2. Verification Tests

In order to check the validity of our model estimation procedure we have also conducted several

verification tests as described below. (The estimation details are available from the authors).

2.2.1. Alternative Specifications To ensure the robustness of our results we estimated a

number of alternative modeling specifications. Namely, we estimated the models of equation (3)

under the probit specification. We also estimated variants of our models which use month fixed

effect variables instead of week fixed effect variables. The results were almost identical in terms of

variable significance, model significance and magnitude of marginal effects. The model of equation

(3) assumes that any difference between the night and the day shifts is completely captured by

1 www.accuweather.com

2 http://www.mta.info/news/stories/?story=173, last accessed on January 23, 2011
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the dummy variable “Dayshift”. However, it is possible that the two shifts are inherently different,

and so are their best-fit coefficients. To test the hypothesis that the coefficients for two shifts differ

we fitted an unrestricted binary choice model to the data for each of the two shifts separately

and compared the fit with the restricted model by constructing a Likelihood Ratio test. The test

does not reject the hypothesis that the coefficients are the same at the 5% confidence level in all

models. Finally, we estimated models with alternative definitions of the expected nurse-to-patient

ratio. More specifically, when estimating the expected patient census during the upcoming shift

in equation (2), nurses a) distinguish between day and night shifts, but not between days of the

week, b) distinguish between days of the week, but not between day shifts or night shifts, and c)

distinguish between both the shift type and the day of the week. Our main finding that higher

(lower) anticipated nurse-to-patient ratios decrease (increase) nurse absenteeism is robust to these

alternative modeling specifications.

2.2.2. Nurse Heterogeneity and Aggregation Bias The aggregate nature of our data

does not permit an exact characterization of how workload impacts the absenteeism behavior of

each individual nurse. Indeed it would be interesting to measure whether aversion to anticipated

increased workloads is a commonly occurring nurse characteristic or limited to a relatively small

subset of nurses. However our aggregate results are not invalidated by the lack of such a charac-

terization. Through a simulation study we find that estimating a homogeneous logit model when

nurses are in fact heterogeneous does produce biased estimation coefficients. However we find that

the bias on the ENPR coefficient is positive, i.e. it would bias our (negative) coefficient towards zero

and not away from it. Therefore, our estimate should be treated as a lower bound on how workload

affects nurse absenteeism. Furthermore, we also find that for most reasonable assumptions about

nurse heterogeneity the magnitude of the bias is small compared to the estimated value of the

coefficient. This result is similar to Allenby and Rossi (1991) whose analysis of marketing data lead

the authors to conclude that in most realistic settings there exists no significant aggregation bias

in logit models.

2.2.3. Within-Shift Correlation One of the assumptions we have made when estimating

our models is that conditional on the vector of covariates xt, the nurses are independent decision

makers. In this section we relax this assumption and assume that nurses can exhibit within-shift

correlation. We estimate a model within the Generalized Estimating Equations (GEE) framework

which allows the individual nurse decisions Yn,t to exhibit within shift correlation. The correlation

structure estimated is of the “exchangeable form”, i.e., Corr(Yn,t, Ym,l) = ρ for t = l, and is 0

otherwise. The least-square estimation of these models yields very similar results to the ones

presented in Table 1, and the estimated correlation ρ is around negative 1%.
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3. Endogenous Nurse Absenteeism: Implications for Nurse Staffing
To study the implications of absenteeism and, in particular, of its endogenous nature on staffing

level decisions, we construct a stylized model of nurse staffing. The aim of such a model is not to

produce a decision support tool for the clinical unit in question, but rather to generate managerial

insights regarding the impact of nurse absenteeism, in general, and the endogenous nature of absen-

teeism, in particular, on a decision of how many nurses to staff. While our model is parsimonious,

we believe that an appropriately calibrated version of it can be used by nursing management in

making tactical staffing decisions. In particular, by periodically running the model for all types of

shifts (which differ in the distribution of patient census and in nurse absenteeism propensity), the

nurse manager can decide how many nurses the unit will need for each shift. Thus, coupled with

rostering considerations, the model can help the manager decide what the appropriate aggregate

staffing level for the unit is.

We assume that a clinical unit uses the primary nursing care (PNC) mode of nursing care delivery

(Seago (2001)) which was employed in the ED we studied. Under the PNC mode, the nursing

staff includes only registered nurses (as opposed to licensed practical nurses or unlicensed nursing

personnel) who provide all direct patient care throughout the patient’s stay in the clinical unit.

The nurse staffing process starts several weeks in advance of the actual shift for which planning

is performed, and it is then that a hospital staff planner needs to decide how many nurses (y) to

schedule for that particular shift. Due to the phenomenon of absenteeism the actual number of

nurses who show up for work on that shift, N , is uncertain. We model N as a binomial random

variable B(y,1−γ(y)), where γ(y) is the probability that any scheduled nurse will be absent from

work:

Prob(N = k|y, γ(y)) = p(k;y, γ(y)) =
{

y!
k!(y−k)!

(γ(y))(y−k)(1− γ(y))k, for 0≤ k≤ y,

0, otherwise.
(4)

We assume that the clinical unit follows a policy of specifying, for each value of the average patient

census during a shift, C, a target integer number of nurses T = R(C) required to provide adequate

patient care during a particular shift. We assume that C takes on discrete values and that R(C) is

a monotone increasing function with R(0) = 0. A simple example of R(C) is provided by a “ratio”

approach, under which R(C) = dαCe, with α ∈ [0,1] representing a mandated nurse-to-patient

ratio. Alternately, if a clinical unit is modeled as a queueing system in which patients generate

service requests and nurses play the role of servers, as was done in Yankovic and Green (2011),

R(C) can take a more complex form to ensure that certain patient service performance measures,

such as the expected time patients wait to be served, conform to pre-specified constraints. At the

time of the nurse staffing decision, we assume that the decision maker uses a known probability
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density function of the average patient census C during the shift for which the personnel planning

is conducted:

Prob (C = n) = pC(n), n∈N+,
∞∑

n=0

pC(n) = 1. (5)

We treat the uncertain factors in our model (the demand uncertainty expressed by the patient

census C and the supply uncertainty expressed by N) as being independent and assume that the

realized values of C and N become known shortly before the beginning of the shift. Any nursing

shortage (R(C)−N)+ is covered by either hiring agency nurses or asking nurses who have just

completed their shift to stay overtime. We further assume that nurses that do show up are paid

$wr per shift, while nurses that do not show up are paid $wn where wr ≥ wn. Setting wr = wn

represents a clinical unit where nurses are paid the full wage whether they actually show up for

work or not. This setting is consistent with the PNC mode of nursing care delivery where nurses

are salaried employees who can only be scheduled to work on a fixed number of shifts per week.

When a scheduled nurse does not show up for work she can not be rescheduled in-lieu of the shift

she missed. Thus, in effect, nurses are paid for each shift for which they are scheduled and are not

penalized for being absent, as long as their absenteeism does not exceed the annual limit of ten

“personal” days. In contrast, setting wn = 0 represents a setting where nurses are hourly employees

that receive no pay when absent.

In addition, we assume that if more nurses show up for work than required given the number of

patients present (N > R(C)) they all have to be paid and cannot be “sent home”. The per-shift cost

of extra/overtime nurses is $we, which, we assume, is greater than $wr. The goal of the decision

maker is to choose a nurse staffing level y which minimizes the expected cost W (y) of meeting the

target R(C):

W (y) = wny +(wr −wn)EN [N |y] +weEC,N

[
(R(C)−N)+ |y

]
, (6)

where EN denotes expectation taken with respect to the number of of nurses who show up for work

and EC,N denotes expectation taken with respect to both the number of patients and the number

of nurses who show up for work. Note that since there is a one-to-one correspondence in our model

between the patient demand C and the number of required nurses T , we can re-cast the calculation

of the expectation with respect to the demand value in terms of an equivalent calculation over the

distribution of T using the corresponding probability distribution function. In particular, let Sn be

the set of average patient census values, all corresponding to the same number of required nurses

n:

Sn =
(
C ∈N+|R(C) = n

)
. (7)
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Then the probability distribution for T is given by

Prob(T = n) = pT (n), n∈N+, pT (n) =
∑
l∈Sn

pC(l),
∞∑

n=0

pT (n) = 1. (8)

In turn, the cost minimization based on (6) becomes

min
y∈N+

(
wny +(wr −wn) (1− γ(y))y +weET,N

[
(T −N)+ |y

])
. (9)

Note that with no absenteeism (γ(y) = 0) the number of nurses showing up for work N is equal to

the number of scheduled nurses y, and the nurse staffing problem reduces to a standard newsvendor

model with the optimal staffing level given by

y∗0 = min
(

y ∈N+|FT (y)≥ 1− wr

we

)
, (10)

with

FT (y) =
y∑

n=0

pT (n) (11)

being the cumulative density function of the demand function evaluated at y, and the value 1− wr
we

playing the role of the critical newsvendor fractile. Below we present an analysis of the staffing

decision (9) starting with the case of exogenous absenteeism which we will use as a benchmark.

3.1. Optimal Nurse Staffing Under Exogenous Absenteeism Rate

Consider a clinical unit which experiences an endogenous nurses’ absenteeism rate γ(y), but treats

it as exogenous. For example, the schedule planner uses the average value of all previously observed

daily absenteeism rates, γave. The cost function to be minimized under this approach is given by

Wave(y) = y (wr(1− γave)+wnγave)+we

y∑
k=0

∞∑
n=0

(n− k)+pT (n)p(k;y, γave) = wy +we

y∑
k=0

q(k)p(k;y, γave), (12)

where w = wr(1− γave)+wnγave is the effective cost per scheduled nurse, and

q(k) =
∞∑

n=0

(n− k)+pT (n), (13)

represents an expected nursing shortage given that k regular nurses show up for work. The optimal

staffing level in this case is expressed by the following result.

Proposition 1. a) The minimizer of (12) is given by

y∗ave = min

(
y ∈N+|

y∑
k=0

FT (k)p(k;y, γave)≥ 1− wr(1− γave)+wnγave

we(1− γave)

)
, (14)

and is a non-increasing function of wr
we

and wn
we

.

b) Consider two cumulative distribution functions for the required number of nurses T , F 1
T (k)

and F 2
T (k) such that F 1

T (k) ≥ F 2
T (k) for all k ∈ N+, and let y∗,iave be the optimal staffing levels

corresponding to F i
T (k), i = 1,2. Then, y∗,1ave ≤ y∗,2ave.
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We relegate all the proofs to the Appendix. Note that (14) represents a generalization of the

expression for the optimal staffing levels without absenteeism (10). As in the no-absenteeism setting,

it is never optimal to decrease staffing levels when the target nursing level increases or when the

cost advantage associated with earlier staffing becomes more pronounced. While this behavior of

the optimal policy is intuitive, the dependence of the optimal staffing levels on the value of the

absenteeism rate is not as straightforward. In particular, depending on the interplay between the

ratios of the cost parameters wr
we

and wn
we

, the characteristics of the target nursing level distribution

and the absenteeism rate, the increase in the absenteeism rate can increase or decrease the optimal

staffing level. The following result describes the properties of the optimal staffing levels in general

settings.

Proposition 2. a) There exists γu
ave such that the optimal staffing level y∗ave is a non-increasing

function of the absenteeism rate γave for all γave ∈ [γu
ave,1].

b) For

wn ≤we

(⌈
F−1

T

(
1− wr

we

)⌉)
pT

(⌈
F−1

T

(
1− wr

we

)⌉)
(15)

there exists γl
ave such that the optimal staffing level y∗ave is a non-decreasing function of the absen-

teeism rate γave for all γave ∈ [0, γl
ave].

A more detailed characterization of the optimal staffing levels can be obtained for some target

nursing level distributions, for example, for a discrete uniform distribution.

Corollary 1. Let

FT (k) =
{

k+1
Tmax+1

, for 0≤ k≤ Tmax,
1, k≥ Tmax.

(16)

Then, for w
we
≥ 1

4
, the optimal nurse staffing level is given by

y∗ave =
⌈(

Tmax

1− γave

− Tmax +1
(1− γave)2

w

we

)⌉
, (17)

and is a non-decreasing (non-increasing) function of γave for γave ≤ γu
ave (γave > γu

ave), where

γu
ave = max

(
0,1−max

(
0,

2 (Tmax +1)wr

Tmaxwe− (Tmax +1) (wr −wn)

))
. (18)

In order to illustrate the monotonicity properties of the optimal staffing levels formalized in Propo-

sition 2, we use the distribution for the number of required nurses obtained from our empirical data

for the average patient census using 1-to-10 nurse-to-patient ratio. For this distribution, Figure 2

shows the dependence of the optimal staffing level on the absenteeism rate for w = wr = wn. For a

given value of the cost ratio w
we

there exists a critical value of the absenteeism rate γu
ave for which

the optimal response to an increase in absenteeism switches from staffing more nurses to staffing

fewer. Note that irrespective of the distribution for targeted nursing level, for high value of the
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Figure 2: Optimal staffing level as a function of the absenteeism rate for different values of the cost ratio w
we

for

w = wr = wn and the empirical targeted nursing level distribution.

absenteeism rate or high value of the cost ratio w
we

(to be precise, for γave ≥ 1− w
we

), it is more

cost-effective not to staff any nurses in advance and to rely exclusively on the extra/overtime mech-

anisms of supplying the nursing capacity. For low values of the absenteeism rate and low values of

the cost ratio w
we

, higher absenteeism can induce an increase in staffing levels, as it is cheaper to

counter the increased absenteeism by staffing more nurses. However, as the cost ratio w
we

increases it

becomes more cost-effective to staff fewer nurses, relying increasingly on the extra/overtime supply

mechanism.

3.2. Endogenous Absenteeism: Optimal Staffing

In the endogenous absenteeism setting the expected staffing cost (9) becomes

W (y) = ywr − (wr −wn)a(y)+weL(y, γ(y)), (19)

where

a(y) = yγ(y), (20)

is the expected number of absent nurses, and

L(y, γ(y)) =
y∑

k=0

q(k)p(k;y, γ(y)), (21)

with q(k) defined by (13), p(k;y, γ(y)) is the probability mass function of the binomial distribution

where k nurses show up for work when y are scheduled and γ(y) is the (endogenous) probability of

a nurse being absent. Note that for general absenteeism rate function γ(y) the increasing marginal

property of the “exogenous” staffing cost function (12) with respect to the number of scheduled

nurses may not hold. Below we formulate a sufficient condition for this property to be preserved
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under endogenous absenteeism. First, for a given distribution of the targeted nursing level pT (k), k≥
0 we introduce the following quantity:

γT (y) = 1−min


1,

( ∑∞
k=y−2 pT (k)

ypT (y− 1)+ pT (y− 2)

) 1
y−1


 , y ∈N+, y≥ 2. (22)

As shown below, (22) represents one of the bounds on the absenteeism rate function which ensures

the optimality of the greedy-search approach to finding the optimal nurse staffing level.

Proposition 3. Let γ(x)∈C2(0,∞),0≤ γ(x)≤ 1 be a non-increasing, convex function defined

on x≥ 0. Consider an endogenous absenteeism setting characterized by the absenteeism rate γ(y)

for y ∈N+ scheduled nurses. Then, the optimal staffing level is given by

y∗ = min
(

y ∈N+|L(y +1, γ(y +1))−L(y, γ(y))≥−wr

we

(1− γ(y))− wn

we

γ(y)+
wr −wn

we

y(γ(y +1)− γ(y))
)

,

(23)

and is a non-increasing function of wr
we

, provided that

γ(y)≤min
(

2
y
, γT (y)

)
(24)

and
d2a(y)
dy2

≤ 0 (25)

for any y≥ y∗. In addition, consider two cumulative distribution functions for the required number

of nurses T , F 1
T (k) and F 2

T (k) such that F 1
T (k)≥ F 2

T (k) for all k ∈N+, and let y∗,i be the optimal

staffing levels corresponding to F i
T (k), i = 1,2. Then, y∗,1 ≤ y∗,2, provided that (24) holds for any

y≥ y∗,2.

The sufficient condition (24) states, intuitively, that the increasing marginal shape of the staffing

cost function with respect to the number of scheduled nurses is preserved under endogenous absen-

teeism if the absenteeism rate is not too high, so that (19) is not too different from the cost function

in (9). More specifically, this sufficient condition requires that the absenteeism rate function is

limited from above by two separate bounds. The first bound implies that the expected number

of absent nurses does not exceed 2 irrespective of the number of nurses actually scheduled for

work. The sufficient condition (25) requires that the expected number of absent nurses exhibits

non-increasing returns to scale.

To study the endogenous absenteeism case further we use a parametric specification consistent

with our empirical findings, in particular with the logit model specification. We specify

γ(y) =
1

1+ eα+βy
, (26)
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where both α and β are positive constants. The assumption about positive values for these absen-

teeism rate parameters is plausible in a wide range of settings, β > 0 implies that the absenteeism

rate declines with the number of scheduled nurses, while α > 0 ensures that the absenteeism rate

is not too high even when the number of scheduled nurses is low and the anticipated workload is

high. In particular, evaluating the best-fit logit model in (3) using the estimates reported in Table

1 we obtain β = −β1
ENPR
E[Ct]

= 0.092, with β1
ENPR = −10.01, E[Ct] = 109.0. In order for the average

absenteeism rate to match our sample average of 7.34% we set α = 1.533. Note that the endogenous

absenteeism rate γ(y) characterized by the logistic function given by (26) with α≥ 0 and β ≥ 0 is a

monotone decreasing convex function. Thus, the result of Proposition 3 is ensured by the following

restrictions on the values of α and β:

Lemma 1. For γ(y) = 1
1+eα+βy , with α,β ≥ 0, βe1+α+2β ≥ 1

2
implies (24), and β ≤ 2 implies (25).

In the ED we studied the estimated values of α = 1.533 and β = 0.092 satisfy Lemma 1. In par-

ticular, the maximum value of the product of number of scheduled nurses y and the estimated

absenteeism rate calculated using these values is equal to 0.804, well below 2. The second bound on

the right-hand side of (24) takes the form of an effective absenteeism rate function which depends

exclusively on the distribution of the targeted nursing level. Note that γT (y)≥ 0 if and only if

pT (y− 1)∑∞
k=y−1 pT (k)

≥ 1
y
. (27)

The expression of the left-hand side of (27) is the hazard rate function for the distribution of the

targeted nursing level. Thus (27) stipulates that the bound described by (24) is meaningful only

in settings where such a hazard rate evaluated at y exceeds 1
y+1

. For the absenteeism rate function

given by (26), the constraint γ(y)≤ γT (y) implies, in the same spirit as Lemma 1the lower-bound

restriction on the values of α and β:

γ(y)≤ γT (y)⇔ α +βy≥ log
(

1− γT (y)
γT (y)

)
. (28)

Figure 3 compares the absenteeism rate (26) computed for α = 1.533 and β = 0.092 with the effective

absenteeism rate γT (y) from (22) computed using the empirical targeted nursing level distribution.

Note that the sufficient condition of Proposition 3 (γ(y) ≤ γT (y)) is satisfied for virtually any

staffing level above 10 nurses which is approximately equal to the expected number of required

nurses in our setting.

3.3. Endogenous Absenteeism: Implications of Model Misspecification on Staffing
Decisions

In this section we compare the optimal nurse staffing levels with those made by a clinical unit which

incorrectly treats the absenteeism rate as being exogenous and employs a trial-and-error procedure
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Figure 3: Absenteeism rate γ(y) computed for α = 1.533 and β = 0.092 and the effective absenteeism rate γT (y)

computed using the empirical targeted nursing level distribution.

under which the assumed exogenous absenteeism rate is updated every time a new staffing decision

in made. In this latter case which we label “misspecified-with-learning”, the clinical unit selects

staffing level yML such that

yML = min

(
y ∈N+|

y∑
k=0

FT (k)p(k;y, γ(yML))≥ 1− wr(1− γ(yML))+wnγ(yML)
we(1− γ(yML))

)
, (29)

with γ(y) denoting the endogenous absenteeism rate. Note that (29) reflects a self-consistent way

of selecting the staffing level; yML is the best staffing decision in the setting where the absenteeism

rate is exogenous and determined by γ(yML). In other words, a clinical unit assuming that the

absenteeism rate is given by constant value γ(yML) will respond by scheduling yML nurses and, as

a result of this decision, will observe exactly the same value of the absenteeism rate, even if the

true absenteeism process is endogenous and described by γ(y). An intuitive way of rationalizing

the choice of yML is to consider a sequence of “exogenous” staffing levels yn, n∈N+, such that

yn+1 = min

(
y ∈N+|

y∑
k=0

FT (k)p(k;y, γ(yn))≥ 1− wr(1− γ(yn))+wnγ(yn)
we(1− γ(yn))

)
, n∈N+. (30)

Equation (30) reflects a sequence of repeated adjustments of staffing levels, starting with some y0,

each based on the value of the absenteeism rate observed after the previously chosen staffing level

is implemented. In this updating scheme, yML can be thought of as the limit limn→∞ yn, if such a

limit exists. It is important to note that for a general demand distribution FT (k) and a general

absenteeism rate function γ(y), the set of staffing levels E satisfying (29) may be empty or may

contain multiple elements. The analysis of existence and uniqueness of yML is further complicated

by the discrete nature of staffing levels. In the following discussion we by-pass this analysis and

assume that there exists at least one staffing level satisfying (29). As the following result shows, even

if E contains multiple elements, each of them is bounded from above by the optimal “endogenous”

staffing level in settings where the expected number of absentees decreases with the number of

scheduled nurses.
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Proposition 4. Suppose that the conditions of Proposition 3 hold and that the set of staffing

levels satisfying (29), E, is non-empty. Then, yML ≤ y∗, for any yML ∈ E, provided that, at the

optimal staffing level y∗, the expected number of absent nurses decreases with the number of nurses

scheduled, a(y∗+1) < a(y∗).

Proposition 4 implies that ignoring the endogenous nature of absenteeism can lead to under-

staffing in settings where both the endogenous absenteeism rate and the expected number of absent

nurses decline with the number of scheduled nurses. Figure 4 illustrates the results of the numeri-

cal experiment designed to quantify a potential cost impact of using heuristic staffing policies for

realistic values of problem parameters. In our study, we have varied the cost ratio wr
we

from wr
we

= 0.5

to wr
we

= 0.7. The lower limit of this interval, wr
we

= 0.5 corresponds to the setting in which use of

agency nurses carries a 100% cost premium, a realistic upper bound on the values encountered in

practice. The upper limit, wr
we

= 0.7, reflects the use of overtime to compensate for absenteeism,

with we at a 50% premium with respect to wr. In the ED we studied, absent nurses were paid at

the same rate as the nurses who showed up for work (so that wn = wr). In order to investigate

the effect of lower compensation levels for absent nurses, we have included in our study the cost

ratios wn = 0.5wr and wn = 0. As the absenteeism rate function, we have used γ(y) = 1
1+eβy with

the value of β varied to explore different average absenteeism rates calculated as

γave =
ymax∑

y=ymin

pT (y)
1+ eβy

, (31)

where ymin = 6 and ymax = 16 reflect the smallest and largest possible targeted nursing level real-

izations, and pT (y) reflecting the empirical distribution for the required number of nurses. In our

study, we have compared the performance of three staffing policies: the optimal policy described

in Proposition 3, the ML policy described by (29), and the “exogenous” policy which assumes

that the absenteeism rate does not depend on the staffing level and is given by (31). Figure 4

shows the worst-case performance gaps (calculated over the range of cost ratios wr
we
∈ [0.5,0.7] of

the ML and the “exogenous” policies as functions of γave for three ratio levels wr
we

= 1,0.5, and 0.

Our numerical results indicate that in the settings where the average absenteeism rate γave is small,

ML and “exogenous” policies represent good approximations for the optimal staffing policies. For

example, in the ED we studied the average absenteeism rate was 7.3%, and the corresponding

worst-case performances for these two policies were between 2% and 3% for wn = wr. However, as

γave increases, so does the worst-case performance gap for both policies: in particular, in the same

setting, the worst case performance gaps approximately double to 4% (6%) for the “exogenous”

(ML) policy when the average absenteeism rate reaches 15%. As it turns out, a reduction in the

amount of hourly compensation paid to absent nurses significantly closes these performance gaps

for both policies: for wn = 0 the maximum performance gaps drop below 1%.
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Figure 4: Worst-case performance gaps between the optimal staffing policy and the “misspecified-with-learning”

(ML) and “exogenous” policies as functions of the average absenteeism rate γave under the empirical

targeted nursing level distribution for wn
wr

= 1,0.5,0.

4. Discussion
In our empirical study we use observations from a large urban hospital ED to study nurse absen-

teeism behavior at the shift level. We find that nurse absenteeism is exacerbated when fewer nurses

are scheduled for a particular shift. This is consistent with nurses exhibiting an aversion to higher

levels of anticipated workload. Our study relies on aggregate data from a single department and

thus does not permit a detailed investigation of the impact of workload at the individual nurse

level. We leave such an extension to further research. It is nevertheless the first study to demon-

strate that staffing decisions have an impact on shift-level worker absenteeism. This is a fact that

seems not to have been examined by extant staffing literature.

On the analytical front we examine the implications of absenteeism, both exogenous and endoge-

nous, on optimal staffing policies. To do so we develop an extension to the single-period newsvendor

model which explicitly accounts for uncertainty in patient census and in the number of nurses that

show up for work. We use the model to derive structural properties and to demonstrate that the

failure to properly account for the endogenous nature of nurse absenteeism can lead to deviations

from optimal staffing decisions. In particular, in settings where higher numbers of scheduled nurses

result in lower absenteeism rates and lower expected absentee numbers, a clinical unit which treats

absenteeism as an exogenous phenomenon will often under-supply nursing staff capacity even if

allowed to repeatedly adjust its staffing decisions in response to observed absenteeism rates. As

such, our paper can be viewed as a contribution to the emerging literature on model misspecifica-

tion error and as the first paper to show the potential impact of model specification error in the

context of staffing.

We believe that the presence of endogenous absenteeism gives rise to systematic understaffing,

which, in turn, has important practical consequences for hospitals. First, as our model demon-

strates, endogenous absenteeism gives rise to noticeable cost increases even in settings with low

absenteeism rates, as long as absenteeism exhibits a substantial degree of endogeneity and as long
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as monetary compensation for absent nurses is comparable to that of nurses who show up for work.

For model parameters that are representative of the hospital we study, we find that the cost of

ignoring the endogenous nature of absenteeism can be about 2− 3%. Second, such chronic under-

staffing harms patients, especially in the life-and-death setting of an ED. Third, it is likely to be

a contributing factor to the widely reported nurse job dissatisfaction (Aiken et al. (2002)). Our

research points to an important opportunity for the cash-constrained hospitals to improve quality

of patient care as well as nurse working conditions, while reducing operating costs.

Turning to the specific context of our analysis, it is important to note that our assumption

about the unlimited availability of extra/overtime nursing capacity may not be valid in some

clinical environments. In such environments it may be impossible to replace absent nurses at a

reasonable cost or in reasonable time, and the endogeneity of absenteeism can lead to significant

understaffing with the possibility of serious deterioration of service quality and longer ED delays.

In other clinical units the use of agency nurses who may be less familiar with the unit can lead to

similar declines in quality of patient care and in an increase in the rate of medical errors. Thus, an

accurate understanding of the nature of nurse absenteeism and the use of a model that accurately

incorporates this phenomenon in determining appropriate staffing levels is imperative to assuring

high quality patient care.

5. Appendix
Below we present outlines of the proofs of the analytical results. Detailed proofs are available from

the authors.

Proof of Proposition 1. Note that Wave(y+1)−Wave(y) = w+we (L(y +1, γave)−L(y, γave)) =

w + we∆L(y, γave). We will establish the result of the proposition by showing that ∆L(y, γave)≤ 0

and

∆2L(y, γave) = L(y + 2, γave) − 2L(y + 1, γave) + L(y, γave) ≥ 0. First, note that q(k + 1) − q(k) =

−∑∞
n=k+1 pT (n) ≤ 0 and q(k + 2) − 2q(k + 1) + q(k) = pT (k + 1) ≥ 0. Then, ∆L(y, γave) =

∑y+1

k=0 q(k)(p(k;y +1, γave)− p(k;y, γave)), where we have used p(y +1;y, γave))≡ 0. Next, using

p(k;y +1, γave) = (1− γave)p(k− 1;y, γave)+ γavep(k;y, γave), k = 0, . . . , y (32)

we get
y+1∑
k=0

q(k)(p(k;y +1, γave)− p(k;y, γave)) = (1− γave)
y∑

k=0

(q(k +1)− q(k))p(k;y, γave)≤ 0, (33)

where we have used
∑y+1

k=0 q(k)p(k − 1;y, γave) =
∑y+1

k=0 q(k + 1)p(k;y, γave). Note that p(k −
1;y, γave)≡ 0. From p(y +2;y, γave)≡ 0 and (32), we get

∆2L(y, γave) = (1− γave)2

(
y+2∑
k=0

(q(k +1)− q(k)) (p(k− 1;y, γave)− p(k;y, γave))

)
. (34)
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Note that
∑y+2

k=0 (q(k +1)− q(k))p(k− 1;y, γave) =
∑y+2

k=0 (q(k +2)− q(k +1))p(k;y, γave) where we

have used p(−1;y, γave)≡ p(y + 1;y, γave)≡ p(y + 2;y, γave)≡ 0. Thus, we obtain for ∆2L(y, γave) =

(1 − γave)2 (
∑y

k=0 (q(k +2)− 2q(k +1)+ q(k))p(k;y, γave)) ≥ 0. Further, note that ∆L(y, γave) ≥
− w

we
is equivalent to

∑y

k=0 FT (k)p(k;y, γave)≥ 1− w
we(1−γave)

. Now, consider F 1
T (k) and F 2

T (k) such

that F 1
T (k)≥F 2

T (k) for any k ∈N+. Then, ∆L1(y, γave)≥∆L2(y, γave) for any y ∈N+ and, respec-

tively, y∗,1ave = min
(
y ∈N+|∆L1(y, γave)≥− w

we

)
≤min

(
y ∈N+|∆L2(y, γave)≥− w

we

)
= y∗,2ave. ¤

Proof of Proposition 2. First, we introduce G(y, γ) =
∑y

k=0 (1−FT (k))p(k;y, γ) and note that

G(y +1, γ) = (1− γ)
y+1∑
k=1

(1−FT (k))p(k− 1;y, γ)+ γ

y∑
k=0

(1−FT (k))p(k;y, γ), (35)

where we have used (32). Then,

G(y +1, γ) ≤ (1− γ)
y∑

k=0

(1−FT (k))p(k;y, γ)+ γ

y∑
k=0

(1−FT (k))p(k;y, γ) = G(y, γ). (36)

Further,

∂G

∂γ
= y

(
y−1∑
k=0

(1−FT (k))
(y− 1)!

k!(y− 1− k)!
(
γy−1−k(1− γ)k

)
)

− y

(
y−1∑

k−1=0

(1−FT (k))
y!

(k− 1)!(y− 1− (k− 1))!
(
γy−1−(k−1)(1− γ)k−1

)
)

= y

(
y−1∑
k=0

(FT (k +1)−FT (k))p(k;y− 1, γ)

)
≥ 0. (37)

The optimality condition (14) can be re-written as y∗ave =

min
(
y ∈N+|G(y, γave)≤ wr−wn

we
+ wn

we(1−γave)

)
. Since y is a discrete variable and γave is a continuous

parameter, there exist a set of values γi
ave ∈ [0,1], i = 1, ..., Imax, with γ1

ave = 0 and γImax
ave = 1,

with the optimal y∗ave(γave) remaining constant in each interval (γi
ave, γ

i+1
ave ), i = 1, ..., Imax − 1, and

exhibiting finite jumps at γi
ave, i.e., y∗ave(γi

ave − 0) 6= y∗ave(γi
ave + 0), i = 2, ..., Imax − 1. Note that the

sign of the difference y∗ave(γi
ave +0)− y∗ave(γi

ave− 0) is completely determined by the sign of

H(γi
ave) =

∂G (min (y∗ave(γi
ave− 0), y∗ave(γi

ave +0)) , γi
ave)

∂γi
ave

− wn

we(1− γi
ave)2

. (38)

Indeed, suppose that y∗ave(γi
ave +0) > y∗ave(γi

ave−0). Then, we should have G(y∗ave(γi
ave−0), γi

ave−0)≤
wr−wn

we
+ wn

we(1−(γi
ave−0))

and G(y∗ave(γi
ave− 0), γi

ave + 0) > wr−wn
we

+ wn
we(1−(γi

ave+0))
. Combining these two

expressions, we get

G(y∗ave(γ
i
ave− 0), γi

ave +0)−G(y∗ave(γ
i
ave− 0), γi

ave− 0) >
wn

we(1− (γi
ave +0))

− wn

we(1− (γi
ave− 0))

, (39)

or ∂G(y∗ave(γi
ave−0),γi

ave−0)

∂γave
> wn

we(1−(γi
ave−0))2

. Similarly, y∗ave(γi
ave + 0) < y∗ave(γi

ave − 0) implies

that ∂G(y∗ave(γi
ave+0),γi

ave−0)

∂γave
< wn

we(1−(γi
ave−0))2

. Note that according to (37) ∂G(y∗,γi
ave)

∂γi
ave

=
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y∗
(∑y∗−1

k=0 pT (k +1)p(k;y∗− 1, γi
ave)

)
, so that (38) can be expressed as H(γi

ave) =

ŷ
(∑ŷ−1

k=0 pT (k +1)p(k; ŷ− 1, γi
ave)

)
− wn

we(1−γi
ave)

2 , where ŷ = min(y∗ave(γi
ave− 0), y∗ave(γi

ave +0)).

Note that for γi
ave → 0, y∗ave(γi

ave) → y∗0 , as expressed in (10), so that y∗0 =⌈
F−1

T

(
1− wr

we

)⌉
. Then, H(γi

ave → 0) =
(⌈

F−1
T

(
1− wr

we

)⌉)
pT

(⌈
F−1

T

(
1− wr

we

)⌉)
− wn

we
. Thus,(⌈

F−1
T

(
1− wr

we

)⌉)
pT

(⌈
F−1

T

(
1− wr

we

)⌉)
≥ wn

we
implies that there exist γl

ave such that y∗ave is a

non-decreasing function of γave for γave ≤ γl
ave. On the other hand, γi

ave ≥ we−wr
wn+we−wr

implies that

y∗ave(γi
ave) = 0, and for γi

ave → we−wr
wn+we−wr

, y∗ave(γi
ave)→ 0, and H

(
γi

ave → we−wr
wn+we−wr

)
=− (wn+we−wr)2

wewn
<

0. Thus, there exist γu
ave such that y∗ave is a non-increasing function of γave for γave ≥ γu

ave. ¤
Proof of Corollary 1. Under the discrete uniform demand distribution specified by (16), the

sum in the expression for the optimal staffing level (14) becomes

y∑
k=0

FT (k)p(k;y, γave) =

{
y(1−γave)+1

Tmax+1
, for y≤ Tmax,

1
Tmax+1

∑Tmax

k=0 (k +1)p(k;y, γave)+
∑y

k=Tmax+1 p(k;y, γave), y≥ Tmax +1.
(40)

Note that for y = Tmax, (40) becomes Tmax(1−γave)+1

Tmax+1
= 1 − γaveTmax

Tmax+1
≥ 1 − w

we(1−γave)
, as long

as w
we
≥ γave(1 − γave) Tmax

Tmax+1
. The supremum of the right-hand side of this expression is 1

4

(for γave = 0.5 and Tmax → ∞), so that this expression is implied by w
we
≥ 1

4
. Thus, under

this condition, the optimal staffing level does not exceed Tmax and, consequently, y∗ave =

min
(
y ∈N+ | y(1−γave)+1

Tmax+1
≥ 1− w

we(1−γave)

)
=

⌈(
Tmax

1−γave
− Tmax+1

(1−γave)2
w
we

)⌉
. Further, differentiating the

expression under the “ceiling” function on the right-hand side with respect to γave, we get
1

(1−γave)3

((
Tmax− (Tmax +1)

(
wr−wn

we

))
(1− γave)− 2 (Tmax +1) wr

we

)
, which is non-negative (non-

positive) if and only if γave ≤ γu
ave (γave ≥ γu

ave). ¤
Proof of Proposition 3. Using L(y, γ(y)) =

∑y

k=0 q(k)p(k;y, γ(y)), we have W (y + 1) −
W (y) = wr − (wr − wn)∆a(y) + we∆L(y, γ(y)), where ∆L(y, γ(y)) = L(y + 1, γ(y + 1)) −
L(y, γ(y)), and ∆a(y) = a(y + 1) − a(y). We proceed by identifying sufficient conditions for

∆L(y, γ(y)) ≤ 0, ∆2L(y, γ(y)) = ∆L(y + 1, γ(y + 1)) −∆L(y, γ(y)) ≥ 0, and (wr − wn)∆2a(y) =

(wr − wn) (∆a(y +1)−∆a(y)) ≤ 0. Since γ(y) is continuous and twice differentiable, it follows

immediately that a(y) is also continuous and twice differentiable therefore a sufficient condition

for (wr −wn) (∆a(y +1)−∆a(y))≤ 0 is given by (wr −wn) d2

dy2 a(y) ≤ 0. Now, ∆L(y, γ(y) can be

written as

y+1∑
k=0

q(k)p(k;y +1, γ(y +1))−
y∑

k=0

q(k)p(k;y, γ(y +1))+
y∑

k=0

q(k)p(k;y, γ(y +1))−
y∑

k=0

q(k)p(k;y, γ(y)). (41)

We are now going to consider separately the first two and the last two terms in equation (41)

and show that both are non-positive. The first two terms can be expressed as −(1 − γ(y +
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1))
∑y

k=0 (1−FT (k))p(k;y, γ(y +1)) which is non-positive. Next we examine the second two terms,

which can be expressed as
y∑

k=0

q(k)
∫ y+1

y

∂p(k;y, γ(s))
∂s

ds =
∫ y+1

y

ds
dγ(s)

ds

y∑
k=0

q(k)
∂p(k;y, γ(s))

∂γ(s)
. (42)

Note that
y∑

k=0

q(k)
∂p(k;y, γ(s))

∂γ(s)
=

y∑
k=0

q(k)
((

y!
k!(y− k)!

)
(y− k)γ(s)y−k−1(1− γ(s))k− kγ(s)y−k(1− γ(s))k−1

)

=
y−1∑
k=0

q(k)
(

y!
k!(y− k− 1)!

)
γ(s)y−k−1(1− γ(s))k−

y∑
k=1

q(k)
(

y!
(k− 1)!(y− k)!

)
γ(s)y−k(1− γ(s))k−1

= y

y−1∑
k=0

q(k)p(k;y− 1, γ(s))− y

y∑
k=1

q(k)p(k− 1;y− 1, γ(s)) = y

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s)), (43)

so that (42) becomes
∑y

k=0 q(k)(p(k;y, γ(y + 1)) − p(k;y, γ(y))) =

y
∫ y+1

y
dsdγ(s)

ds

∑y−1

k=0 (1−FT (k))p(k;y− 1, γ(s)). A sufficient condition for this last expression to be

negative is dγ(s)

ds
≤ 0. Thus, ∆L(y, γ(y))≤ 0. Further, consider ∆2L(y, γ(y)) expressed as

−(1− γ(y +2))
y+1∑
k=0

(1−FT (k))p(k;y +1, γ(y +2))+ (1− γ(y +1))
y∑

k=0

(1−FT (k))p(k;y, γ(y +1))

+ (y +1)
∫ y+2

y+1

ds
dγ(s)

ds

y∑
k=0

(1−FT (k))p(k;y, γ(s))− y

∫ y+1

y

ds
dγ(s)

ds

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s)). (44)

Focusing on the first line in (44), we get

−(1− γ(y +2))
y+1∑
k=0

(1−FT (k))p(k;y +1, γ(y +2))+ (1− γ(y +1))
y∑

k=0

(1−FT (k))p(k;y, γ(y +1))

= (1− γ(y +2))

(
y∑

k=0

(1−FT (k))p(k;y, γ(y +2))−
y+1∑
k=0

(1−FT (k))p(k;y +1, γ(y +2))

)

+
y∑

k=0

(1−FT (k)) ((1− γ(y +1))p(k;y, γ(y +1))− (1− γ(y +2))p(k;y, γ(y +2))) . (45)

The second line above is equivalent to (1 − γ(y + 2))2 (
∑y

k=0 pT (k +1)p(k;y, γ(y +2))) and is

non-negative. the last line in (45) is equal to −∑y

k=0 (1−FT (k))
∫ y+2

y+1

∂((1−γ(s))p(k;y,γ(s)))

∂s
ds or

−∑y

k=0 (1−FT (k))
∫ y+2

y+1

∂((1−γ(s))p(k;y,γ(s)))

∂γ(s)

dγ(s)

ds
ds. Focusing on the second line in (44), we obtain

(y +1)
∫ y+2

y+1

ds
dγ(s)

ds

y∑
k=0

(1−FT (k))p(k;y, γ(s))− y

∫ y+2

y+1

ds
dγ(s)

ds

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s))

+ y

∫ y+2

y+1

ds
dγ(s)

ds

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s))− y

∫ y+1

y

ds
dγ(s)

ds

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s))

= (y +1)
∫ y+2

y+1

ds
dγ(s)

ds

y∑
k=0

(1−FT (k))p(k;y, γ(s))− y

∫ y+2

y+1

ds
dγ(s)

ds

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s))
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+ y

∫ y+2

y+1

ds

y−1∑
k=0

(1−FT (k))
[
dγ(s)

ds
p(k;y− 1, γ(s))− dγ(s− 1)

ds
p(k;y− 1, γ(s− 1))

]

=
∫ y+2

y+1

ds
dγ(s)

ds

y∑
k=0

(1−FT (k)) ((y +1)p(k;y, γ(s))− yp(k;y− 1, γ(s)))

+ y

∫ y+2

y+1

ds

∫ s

s−1

dξ

[
y−1∑
k=0

(1−FT (k))
∂

∂ξ

[
dγ(ξ)

dξ
p(k;y− 1, γ(ξ))

]]
. (46)

Thus,
∫ y+2

y+1

ds
dγ(s)

ds

y∑
k=0

(1−FT (k))
(
−∂(1− γ(s))p(k;y, γ(s))

∂γ(s)
+ (y +1)p(k;y, γ(s))− yp(k;y− 1, γ(s))

)

+ y

∫ y+2

y+1

ds

∫ s

s−1

dξ

[
y−1∑
k=0

(1−FT (k))
∂

∂ξ

[
dγ(ξ)

dξ
p(k;y− 1, γ(ξ))

]]

= −2
∫ y+2

y+1

ds

γ(s)
dγ(s)

ds

y∑
k=0

(1−FT (k))p(k;y, γ(s)) (y(1− γ(s))− k− γ(s))

+ y

∫ y+2

y+1

ds

∫ s

s−1

dξ

y−1∑
k=0

(1−FT (k))
d2γ(ξ)

dξ2
+ y

∫ y+2

y+1

ds

∫ s

s−1

dξ

×
(

dγ

dξ

)2 1
γ(ξ)(1− γ(ξ))

[
y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(ξ))((y− 1)(1− γ(ξ))− k)

]
. (47)

A sufficient condition for the second line of (47) to be non-negative is d2γ(ξ)

dξ2 ≥ 0. Since dγ(s)

ds
≤ 0, a

sufficient condition for the first line of (47) to be non-negative is that, for given y,

y∑
k=0

(1−FT (k))p(k;y, γ) (y(1− γ)− k− γ)≥ 0, (48)

for any γ ∈ [γ(y +2), γ(y +1)], and for the third line of (47) is that for given y,
∑y−1

k=0 (1−FT (k))p(k;y− 1, γ) ((y− 1)(1− γ)− k)≥ 0, for any γ ∈ [γ(y), γ(y +1)]. This last condi-

tion is equivalent to the condition, for given y,
∑y

k=0 (1−FT (k))p(k;y, γ) (y(1− γ)− k) ≥ 0, for

any γ ∈ [γ(y +1), γ(y +2)]. We will next derive sufficient a condition for (48). Note that

y∑
k=0

(1−FT (k))p(k;y, γ) (y(1− γ)− k− γ) =
y−2∑
k=0

(1−FT (k))p(k;y, γ) (y(1− γ)− k− γ)

+ (1−FT (y− 1))γy(1− γ)y−1 (1− (y +1)γ)+ (1−FT (y)) (1− γ)y(−(y +1)γ), (49)

so that, for (y +1)γ ≤ 2, y(1− γ)− k− γ ≥ 0 for all k = 0, ..., y− 2, and

y−2∑
k=0

(1−FT (k))p(k;y, γ) (y(1− γ)− k− γ)≥ (1−FT (y− 2))
y−2∑
k=0

p(k;y, γ) (y(1− γ)− k− γ)

= (1−FT (y− 2))

(
y∑

k=0

p(k;y, γ) (y(1− γ)− k− γ)− γy(1− γ)y−1 (1− (y +1)γ)− (1− γ)y(−(y +1)γ)

)
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= (1−FT (y− 2))
(−γ− γy(1− γ)y−1 (1− (y +1)γ)− (1− γ)y(−(y +1)γ)

)
. (50)

Thus, the expression in (49) is non-negative if (FT (y)−FT (y− 2)) (1 − γ)y(y + 1) +

(FT (y− 1)−FT (y− 2))y(1−γ)y−1((y +1)γ− 1)≥ 1−FT (y−2). The left-hand side of this expres-

sion can be re-arranged as

(FT (y)−FT (y− 2)) (1− γ)y(y +1)+ (FT (y− 1)−FT (y− 2))y(1− γ)y−1((y +1)γ− 1)

= (pT (y)+ pT (y− 1)) (1− γ)y(y +1)+ pT (y− 1)y(1− γ)y−1((y +1)γ− 1)

= pT (y)(1− γ)y(y +1)+ pT (y− 1)(1− γ)y

(
1+

y2γ

1− γ

)
≥ (1− γ)y (pT (y)(y +1)+ pT (y− 1)) .(51)

Thus, (FT (y)−FT (y− 2)) (1 − γ)y(y + 1) + (FT (y− 1)−FT (y− 2))y(1 − γ)y−1((y + 1)γ − 1) ≥
1 − FT (y − 2) as long as (1 − γ)y (pT (y)(y +1)+ pT (y− 1)) ≥ 1 − FT (y − 2), or γ ≤ 1 −(

1−FT (y−2)

(y+1)pT (y)+pT (y−1)

)1/y

. Combining this expression with (y + 1)γ ≤ 2 and γ ∈ [γ(y +2), γ(y +1)],

and noting that for γ = 0 the monotonicity of ∆L(y, γ(y)) is assured, we obtain the final sufficient

condition

γ(y +1)≤min

(
2

y +1
,1−min

(
1,

(
1−FT (y− 2)

(y +1)pT (y)+ pT (y− 1)

)1/y
))

= min
(

2
y +1

, γT (y +1)
)

.

(52)

Given that ∆L(y, γ(y)) is a monotone function of y if γ(y) is a non-increasing convex function of y

and if (52) is satisfied, we establish the monotonicity of the optimal staffing level y∗ with respect

to changes in wr
we

and FT (k) following the same arguments used in the proof of Proposition 1. ¤
Proof of Lemma 1. Note that for α,β ≥ 0, the function a(x) = xγ(x) = x

1+eα+βx defined on

continuous set x ≥ 0 has a unique global maximum x∗ which satisfies the first-order optimality

condition e−α = eβx∗ (βx∗− 1). Thus, the maximum value for this function can be expressed as

x∗γ(x∗) = 1
β

βx∗
1+eα+βx∗ = βx∗−1

β
. This last expression does not exceed 2 if and only if βx∗ ≤ 2β + 1,

which is equivalent to e−α ≤ 2βe2β+1 ⇔ 2βeα+2β+1 ≥ 1. This condition ensures that the maximum

of yγ(y) cannot exceed 2 for all integer values of y as well. Further, d2a
dy2 = β2γ(y)(1− γ(y))(β(1−

2γ(y))− 2), which is always non-positive for β ≤ 2. ¤
Proof of Proposition 4. Under (24), the optimal staffing level y∗ satisfies (23), which

can be re-expressed as y∗ = min(y ∈N+|wr(1− γ(y))+wnγ(y)− (wr −wn)y (γ(y +1)− γ(y)) +

we∆L(y, γ(y))≥ 0), where the last two terms inside the bracket are

− (wr −wn)y (γ(y +1)− γ(y))−we(1− γ(y +1))
y∑

k=0

(1−FT (k))p(k;y, γ(y +1))

+ wey

∫ y+1

y

ds
dγ(s)

ds

y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s)) =−we(1− γ(y +1))
y∑

k=0

(1−FT (k))p(k;y, γ(y +1))
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+ y

∫ y+1

y

ds
dγ(s)

ds

[
we

(
y−1∑
k=0

(1−FT (k))p(k;y− 1, γ(s))

)
− (wr −wn)

]
. (53)

Thus, wr(1 − γ(y∗)) + wnγ(y∗) − we(1 − γ(y∗ + 1))
∑y∗

k=0 (1−FT (k))p(k;y∗, γ(y∗ + 1)) +

y∗
∫ y∗+1

y∗ dsdγ(s)

ds

[
we

(∑y∗−1

k=0 (1−FT (k))p(k;y∗− 1, γ(s))
)
− (wr −wn)

]
≥ 0 or

y∗∑
k=0

(1−FT (k))p(k;y∗, γ(y∗+1))

≤
wr − (wr −wn)γ(y∗)+ y∗

∫ y∗+1

y∗ dsdγ(s)

ds

[
we

(∑y∗−1

k=0 (1−FT (k))p(k;y∗− 1, γ(s))
)
− (wr −wn)

]

we(1− γ(y∗+1))
, (54)

Now, consider an element of E, yML, which satisfies yML =

min
(

y ∈N+|∑y

k=0 (1−FT (k))p(k;y, γ(yML))≤ wr−(wr−wn)γ(yML)

we(1−γ(yML))

)
, so that

∑yML

k=0 (1−FT (k))p(k;yML, γ(yML))≤ wr−(wr−wn)γ(yML)

we(1−γ(yML)) . Below we will show by contradiction that,

if a(y∗ + 1) < a(y∗), then yML ≤ y∗. Suppose that yML > y∗⇔ yML ≥ y∗ + 1. This, in turn, implies

that γ(yML)≤ γ(y∗+1), and that
y∗∑

k=0

(1−FT (k))p(k;y∗, γ(yML)) >
wr − (wr −wn)γ(yML)

we (1− γ(yML))
. (55)

Now, since for ∀s ∈ [y∗, y∗+1], it follows that s ≤ yML and γ(yML) ≤ γ(s), we can use (36), (37)

and (55) to get
y∗−1∑
k=0

(1−FT (k))p(k;y∗− 1, γ(s))≥
y∗∑

k=0

(1−FT (k))p(k;y∗, γ(s))

≥
y∗∑

k=0

(1−FT (k))p(k;y∗, γ(yML)) >
wr − (wr −wn)γ(yML)

we (1− γ(yML))
. (56)

Further, since dγ(y)

dy
≤ 0, (54) implies that

wr − (wr −wn)γ(yML)
we (1− γ(yML))

<

y∗∑
k=0

(1−FT (k))p(k;y∗, γ(y∗+1))

≤
wr − (wr −wn)γ(y∗)+ y∗

∫ y∗+1

y∗ dsdγ(s)

ds

[
we

(∑y∗−1

k=0 (1−FT (k))p(k;y∗− 1, γ(s))
)
− (wr −wn)

]

we(1− γ(y∗+1))

≤
wr − (wr −wn)γ(y∗)+ y∗ (γ(y∗+1)− γ(y∗))

(
wn

1−γ(yML)

)

we (1− γ(y∗+1))

≤
wr − (wr −wn)γ(y∗+1)+ y∗ (γ(y∗+1)− γ(y∗))

(
wn

1−γ(yML)

)

we (1− γ(y∗+1))
. (57)

(57) is equivalent to γ(yML)

1−γ(yML)
≤ γ(y∗+1)

1−γ(y∗+1)
+

y∗(γ(y∗+1)−γ(y∗))
(

1
1−γ(yML)

)

(1−γ(y∗+1))
, and γ(yML) (1− γ(y∗+1))≤

γ(y∗ + 1) (1− γ(yML)) + y∗ (γ(y∗+1)− γ(y∗)), so that γ(yML)≤ γ(y∗ + 1) + y∗ (γ(y∗+1)− γ(y∗)).

Note that this contradicts γ(yML)≥ 0. ¤
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