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We take a novel perspective on real-life decision making problems involving bi-

nary activity-selection decisions that compete for scarce resources. The current

literature in operations research approaches these problems by forming an op-

timal portfolio of activities that meets the specified resource constraints. How-

ever, often practitioners in industry and government do not take the optimal-

portfolio approach. Instead, they form a rank-ordered list of activities and

select those that have the highest priority.

The academic literature tends to discredit such ranking schemes be-

cause they ignore dependencies among the activities. Practitioners, on the

other hand, sometimes discredit the optimal-portfolio approach because if the

problem parameters change, the set of activities that was once optimal no

longer remains optimal. Even worse, the new optimal set of activities may ex-

clude some of the previously optimal activities, which they may have already

selected. Our approach takes both viewpoints into account. We rank activities
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considering both the uncertainty in the problem parameters and the optimal

portfolio that will be obtained once the uncertainty is revealed.

We use stochastic integer programming as a modeling framework. We

develop several mathematical formulations and discuss their relative merits,

comparing them theoretically and computationally. We also develop cutting

planes for these formulations to improve computation times. To be able to

handle larger real-life problem instances, we develop parallel branch-and-price

algorithms for a capital budgeting application. Specifically, we construct a

column-based reformulation, develop two branching strategies and a tabu-

search-based primal heuristic, propose two parallelization schemes, and com-

pare these schemes on parallel computing environments using commercial and

open-source software.

We give applications of prioritization in facility location and capital

budgeting problems. In the latter application, we rank maintenance and

capital-improvement projects at the South Texas Project Nuclear Operating

Company, a two-unit nuclear power plant in Wadsworth, Texas. We compare

our approach with several ad hoc ranking schemes similar to those used in

practice.
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Chapter 1

Introduction

1.1 Motivation

Resource-constrained activity selection problems (RCASPs) involve bi-

nary activity-selection decisions that compete for scarce resources. Much of

the current literature in operations research approaches RCASPs by forming

an optimal portfolio of activities that meets the resource constraints. However,

practitioners in industry and government often avoid the optimal-portfolio ap-

proach, instead forming a rank-ordered list of activities and funding those

that have the highest priority. We propose a novel prioritization approach

that takes both viewpoints into account.

Capital budgeting practice at South Texas Project Nuclear Operating

Company (STPNOC) [43] illustrates an approach typical in industry. As the

operator of a large commercial nuclear power-generation station, STPNOC

annually develops a rank-ordered list that specifies the highest priority project,

the second highest priority project, and so forth. The current budget and

project-cost forecasts yield what STPNOC calls the “blue line.” Projects

above the blue line are to be funded and those below it are not. Over the

course of the year, the blue line can shift if the available budget changes, cost

overruns materialize, etc.
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In government, practitioners often approach such problems similarly.

The following quote from Brown et al. [5] characterizes how the military

would approach a problem of selecting projects to harden critical infrastructure

against terrorist attack, and how the operations research community would

view that approach:

First, it would assume that our infrastructure will be attacked and

would take steps to protect it, i.e., harden the infrastructure. . . The

budget for this purpose will always be limited, but often not pre-

specified. The military typically draws up a prioritized list of “de-

fended assets” in need of protection, along with a list of potential

protective measures, and presents these to policy makers. The lat-

ter parties make the final decisions after balancing costs, effective-

ness, and intangibles, and after determining the budget. . . However,

a prioritized list of defended assets has a serious flaw for our ap-

plications. Such a list creates a “preferred set” of n + 1 assets by

adding one asset to the preferred set of size n. But, we know that

an optimal set of size n and an optimal set of size n+ 1 may have

nothing in common.

In discussing typical approaches used in industry to select projects in

the context of capital budgeting, Savage et al. [39] say the following:

It is common when choosing a portfolio of capital investment projects

to rank them from best to worst, then start at the top of the list and

go down until the budget has been exhausted. This flies in the face
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of modern portfolio theory, which is based on the interdependence

of investments.

We agree with Brown et al. [5] and Savage et al. [39] that simplistic

ranking schemes that form a priority list by individually scoring each candidate

activity can be inferior. For example, in a capital budgeting problem, ranking

candidate projects based on their profit or benefit-investment ratio ignores

structural and stochastic dependencies that may exist among the projects. On

the other hand, forming an optimal portfolio assuming problem parameters are

known may yield a portfolio that is fragile with respect to changes in these

parameters. That is, if the problem’s parameters—the resource availability, the

activities’ resource consumption, or the activities’ contribution to the objective

function—change, the set of activities that was once optimal may no longer

remain optimal.

We take both viewpoints into account. Our approach prioritizes the

activities recognizing structural and stochastic dependencies among them and

recognizing that the activities ultimately implemented, after the stochastic

data are realized, will act as a portfolio. Prioritization is of interest when

some problem parameters are random and we must commit to a ranking of

the activities before these parameters are realized. Prioritization involves op-

timally placing activities into a priority list before the uncertainty is revealed,

and after realizing the uncertainty, making an optimal prioritized activity se-

lection observing resource constraints.

3



Figure 1.1 gives an illustrative example of our approach to prioritizing

using the k-median problem [e.g., 30]. Customers are at the corners of the

grids, and facilities may be located at the centers, amounting to 64 customers

and 49 potential facility locations. The objective is to choose k locations that

minimize the sum of Euclidean distances that the customers must travel in

order to reach their closest facility. Figure 1.1(a) gives optimal solutions for

deterministic values of k = 1, 2, 3, and 4.

Figures 1.1(b)–(d) concern a version in which k is stochastic, and we

incrementally install facilities until we learn that k has been exhausted. Sup-

pose k takes values 1 or 2 with equal probability. Imagine that we first solve

this problem for k = 1 and greedily locate a facility at the center grid, as

indicated by the “O” in Figure 1.1(a). Under the realization of k = 2, we

find ourselves in an awkward position given that we cannot relocate the initial

facility. Figure 1.1(b) shows an optimal solution to the problem where there

is 50% chance we will locate an additional facility, after locating this initial

facility. Hence, we locate the first facility at the location indicated by the first

“X” in Figure 1.1(b). If k = 1 is realized, we are close to the optimal solution

of the 1-median problem. If k = 2 we install the facility at the second “X”,

obtaining a solution close to that of the 2-median problem. Figures 1.1(c) and

(d) illustrate the same idea when k is equally likely to be 1, 2, 3 and 1, 2, 3, 4,

respectively.
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Figure 1.1: Part (a) shows optimal solutions to four k-median problems with
k = 1-4. In parts (b)-(d), k is uncertain and we prioritize. In part (b), we
have a 50% chance of having either one or two facilities. In parts (c) and
(d), we are equally likely to have k = 1-3 and k = 1-4, respectively. Of
course, symmetry allows multiple optimal solutions. For example, in part (a)
the vertical locations of the k = 2 solution could instead be the symmetric
horizontal locations.

1.2 Literature Survey

In spite of its common use in practice, prioritization has received little

attention in the academic literature. Mettu and Plaxton [29] and Plaxton [33]

develop constant factor approximation algorithms for a variant of the k-median

problem that we sketched above. Instead of assuming a known probability
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distribution that governs k, the goal is to form a priority list that minimizes

the competitive ratio, i.e., the worst-case ratio, over all k, of the cost of the

priority list’s solution to the optimal cost when k is known. See Lin et al.

[25] for further work that includes the k-median, k-minimum spanning tree,

k-vertex cover, k-set cover and hierarchical clustering problems, again from

the perspective of developing constant-factor approximation algorithms.

Dean et al. [10] consider a prioritized knapsack problem in which the

items’ values and the knapsack size are deterministic but the items’ sizes are

independent random variables. An item’s size is realized only when it is to be

placed in the knapsack, and Dean et al. seek a priority list that maximizes the

expected value of items successfully inserted. They develop constant-factor

approximation algorithms, and further study the benefit of adaptivity, i.e.,

the benefit from being able to revise the remaining priority list based on the

residual knapsack capacity. Dean et al. [9] analyze the benefit of adaptivity in

a more general class of stochastic packing problems.

Hochbaum [16] considers a knapsack-constrained version of the so-

called selection problem of Balinski [1] and Rhys [36]. Constructing the entire

efficient frontier that trades off benefit and cost for this problem is NP-hard.

However, Hochbaum shows that the concave envelope of the efficient frontier

can be formed in strongly polynomial time. And, from the perspective of pri-

oritization, she shows that solutions at kink points of that concave envelope

are nested, as the budget grows. See Nehme and Morton [31] for related work.

6



1.3 Outline

The dissertation is organized as follows: In Chapter 2, we formalize

our prioritization approach and give several mathematical formulations. We

compare these formulations theoretically and computationally on a set of mul-

tidimensional knapsack problem instances. To improve computational perfor-

mance of the formulations, we develop two sets of cutting planes and test them

on the same problem instances.

In Chapter 3, we develop two parallel branch-and-price algorithms for

an application of prioritization to the multidimensional knapsack problem.

Specifically, we construct a column-based reformulation, develop two branch-

ing strategies, and propose a tabu-search-based primal heuristic. We also

propose two parallelization schemes for our branch-and-price algorithm, and

compare these schemes on parallel computing environments using commercial

and open-source software.

In Chapter 4, we give a real-life application of prioritization in a capital

budgeting problem faced by STPNOC. We rank STPNOC’s nuclear-maintenance

and capital-improvement projects, considering uncertainties in their profits

and cost flows and in the annual budgets. We compare our approach with

several heuristic ranking schemes. Finally, we summarize our contribution in

Chapter 5, and discuss further research directions.

7



Chapter 2

Prioritization: Mathematical Modeling

Although we allude to the notion of prioritization in Chapter 1, we

did not give a formal definition. In this chapter, we formalize the approach,

illustrate it by furthering the discussion surrounding Figure 1.1, give several

mathematical formulations, and compare the formulations theoretically and

computationally. To improve computational performance of the formulations,

we develop two sets of cutting planes and show their computational use on a

set of problem instances.

2.1 Activity Prioritization

We begin with the statement of the RCASP and proceed with its

stochastic version and our prioritization approach, what we call “the prior-

itized RCASP.” We then give an integer programming (IP) formulation for

the prioritized RCASP. Consider the following notation and the associated IP

formulation:

8



Indices and sets:

i ∈ I activities

Data:

A matrix of resource-consumption coefficients

b vector of resources

cx = (cxi)i∈I cost coefficients for binary activity-selection variables

cy cost coefficients for remaining variables

C
constraint set that links the activity-selection decisions with
the remaining decisions

Decision variables:

x = (xi)i∈I 1 if activity i is selected; 0 otherwise

y remaining decision variables

Formulation:

min
x,y

cxx + cyy (2.1a)

s.t. Ax ≤ b, (2.1b)

x ∈ {0, 1}|I|, (2.1c)

(x,y) ∈ C. (2.1d)

The goal is to minimize the objective function in (2.1a), consisting of the

costs associated with decisions x and y. Constraint (2.1b) models resource

constraints, where we assume all entries of the resource-consumption matrix

A and the resource vector b are nonnegative. Constraint (2.1c) restricts x

to be a binary vector. The set C is an arbitrary constraint linking decisions

9



x and y. The problem data as given in the RCASP model (2.1) is deter-

ministic. Its optimal solution, in terms of the x variables, is a portfolio of

activities. For reasons we have motivated in the introduction and motivate

further in this chapter, our prioritization approach is of interest when the

data (A,b, cx, cy, C) are random and we must commit to a ranking of the

binary activity-selection decisions before the data realizations are known.

Let (Aω,bω, cωx , c
ω
y , C

ω), ω ∈ Ω, denote the data realizations with the

probability mass function qω, where we assume |Ω| is finite. A priority list is a

many-to-one assignment of activities to priority levels such that each priority

level is assigned at least one activity. Prioritized activity selection has two

requirements: Under any scenario ω ∈ Ω, a lower-priority activity cannot

be selected unless all higher-priority activities are selected, and either all or

none of the activities on the same priority level are selected. In view of these

definitions, the prioritized RCASP optimally places activities into a priority list

before the uncertainty is revealed, and, after realizing the uncertainty, makes

an optimal prioritized activity selection observing the RCASP’s constraints.

In model (2.1), we have formulated the deterministic RCASP to min-

imize the cost of the portfolio of activities we select. In formulating the pri-

oritized RCASP, we form a priority list and that priority list determines the

portfolio of activities selected under each scenario ω ∈ Ω. In the prioritized

RCASP, the goal is to minimize the expected value of the cost we incur, i.e.,

the cost we incur under each scenario ω ∈ Ω is weighted by its probability

mass, qω. The model we formulate is a two-stage stochastic integer program.

10



The first stage decision forms the priority list and the second stage decision

uses that list to form a portfolio of activities, and determines other decision

variables, under each scenario ω ∈ Ω.

We now formalize this verbal description of the prioritized RCASP. Let

Ll ⊆ I, l = 1, . . . , L, denote the priority levels, where Ll 6= ∅, l = 1, . . . , L,⋃L
l=1 Ll = I, and Ll ∩Ll′ = ∅, l 6= l′, l, l′ = 1, . . . , L. A priority list is denoted

as L = [L1, L2, . . . ,LL], where activities in L1 have higher priority than those

in L2, activities in L2 have higher priority than those in L3, and so forth. Let

F ω(L) denote the optimal value of the RCASP under scenario ω ∈ Ω, subject

to the prioritized activity–selection restrictions imposed by L. That is,

F ω(L) = min
xω ,yω

cωxx
ω + cωyy

ω (2.2a)

s.t. Aωxω ≤ bω, (2.2b)

xω ∈ {0, 1}|I|, (2.2c)

(xω,yω) ∈ Cω, (2.2d)

xωi ≥ xωi′ , i ∈ Ll, i
′ ∈ Ll′ , l < l′, l, l′ = 1, . . . , L, (2.2e)

xωi = xωi′ , i, i′ ∈ Ll, l = 1, . . . , L. (2.2f)

The objective function in (2.2a) and constraints (2.2b)–(2.2d) are the same as

those in (2.1a)–(2.1d), except they now depend on ω ∈ Ω. The last two con-

straints enforce the two requirements of the prioritized activity selection. Con-

straint (2.2e) requires that under any scenario, a lower-priority activity cannot

11



be selected unless all higher-priority activities are selected; constraint (2.2f)

requires that either all or none of the activities on the same priority level are

selected. Based on the function F ω(L) defined by model (2.2), we define the

prioritized RCASP as,

min
L, L

[
F (L) ≡

∑
ω∈Ω

qωF ω(L)

]
(2.3a)

s.t. L = [L1, . . . ,LL], (2.3b)

Ll ⊆ I, l = 1, . . . , L, (2.3c)

Ll 6= ∅, l = 1, . . . , L, (2.3d)

Ll ∩ Ll′ = ∅, l 6= l′, l, l′ = 1, . . . , L, (2.3e)⋃
l=1,...,L

Ll = I. (2.3f)

Model (2.3) minimizes the expected cost of prioritized activity selection, i.e.,

the sum of weighted costs of RCASP across scenarios ω ∈ Ω. The solution

to model (2.3) is an optimal priority list, and the corresponding solution to

model (2.2) is the prioritized selection of activities under scenario ω ∈ Ω. The

timing of decisions and observations of uncertainty is key to understanding

the prioritization model (2.3). First, the priority list is formed via L. Next,

the values of the problem parameters, (Aω, bω, cωx , cωy , C
ω), ω ∈ Ω, are real-

ized. We then effectively work down the priority list selecting the activities

via xω, until a point where either the budget is exhausted or the cost no

longer decreases by selecting more activities. These dynamics are illustrated

12



in Figure 2.1.
 

 

data uncertainty 

revealed 

activities i priorities p 

Figure 2.1: Illustration of prioritization.

The minimization in model (2.3) is taken over both the priority list,

L, and the number of priority levels, L. In what follows, we use L, but

occasionally omit L, in referring to a priority list. Also, it is convenient to

have the set of activities, I, to be an ordered set so that it makes sense to write

restrictions on it, such as i < i′ ∈ I. With an eye towards computation, we

next give an IP formulation for the prioritized RCASP of model (2.3). Consider

the additional and extended notation over model (2.1), and the associated IP

formulation:
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Indices and sets:

i, i′ ∈ I activities

ω ∈ Ω scenarios

Data:

(Aω,bω, cωx , c
ω
y , C

ω) the problem parameters under scenario ω

qω probability of scenario ω

Decision variables:

sii′ 1 if activity i has no lower priority than i′; 0 otherwise

xω, yω the decision vectors under scenario ω

Formulation:

min
s,x,y

∑
ω∈Ω

qω(cωxx
ω + cωyy

ω) (2.4a)

s.t. sii′ + si′i ≥ 1, i < i′, i, i′ ∈ I, (2.4b)

sii′ ∈ {0, 1}, i 6= i′, i, i′ ∈ I, (2.4c)

xωi ≥ xωi′ + sii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω, (2.4d)

Aωxω ≤ bω, ω ∈ Ω, (2.4e)

xω ∈ {0, 1}|I|, ω ∈ Ω, (2.4f)

(xω,yω) ∈ Cω, ω ∈ Ω. (2.4g)

Model (2.4) is a two-stage stochastic integer program. Its first stage variables

s form the priority list, its second stage variables xω select the portfolio of ac-

tivities to implement under each scenario ω ∈ Ω, and its second stage variables

yω handle the remaining decisions.
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The objective function in (2.4a) captures expected cost, formed as the

weighted sum over all scenarios. Constraints (2.4b) and (2.4c) formulate the

priority list defined by (2.3b)–(2.3f). Given a pair of activities i, i′ ∈ I, con-

straints (2.4b) and (2.4c) make sure that at least one of the activities has no

lower priority than the other. In other words, either they have the same prior-

ity, i.e., sii′ = si′i = 1, or one has higher priority than the other, e.g., sii′ = 1

and si′i = 0. Constraint (2.4d) formulates the two requirements of the priori-

tized activity selection, i.e., constraints (2.2e) and (2.2f) of model (2.2). Given

a pair of activities i, i′ ∈ I, if i has higher priority than i′, we have sii′ = 1 and

si′i = 0. Constraint (2.4d) for pair (i, i′) then reads xωi ≥ xωi′ and xωi′ ≥ xωi − 1.

Since the latter one is redundant, this amounts to constraint (2.2e). If i and

i′ have the same priority, we have sii′ = si′i = 1. Constraint (2.4d) then reads

xωi ≥ xωi′ and xωi′ ≥ xωi . This amounts to xωi = xωi′ , same as constraint (2.2f).

The last three sets of constraints replicate (2.2b), (2.2c) and (2.2d).

2.2 An Application to Facility Location

We describe facility prioritization briefly in the discussion surrounding

Figure 1.1. In this section we elaborate and present some variations. Recalling

Figure 1.1, we have a square area consisting of nG grids on each side. Cus-

tomers are located at the corners of the grids, and facilities may be located at

the centers, which amounts to a total of n2
G locations and (nG + 1)(nG + 1)

customers. There is no limit on the number of customers a facility can handle,

nor is there a cost for opening a facility. The only restriction is the budget,
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k, i.e., the total number of facilities that may be located. The objective is

to locate k facilities such that the sum of Euclidean distances of customers

to their closest facility is minimized. Consider the following notation and the

corresponding formulation.

Indices and sets:

i ∈ I candidate facility locations

j ∈ J customers

Data:

dij Euclidean distance from customer j to facility i

k budget in terms of total number of facilities

Decision variables:

xi 1 if location i is selected; 0 otherwise

yij 1 if customer j is assigned to facility at location i; 0 otherwise

Formulation:

min
x,y

∑
j∈J

∑
i∈I

dijyij (2.5a)

s.t.
∑
i∈I

xi ≤ k, (2.5b)

xi ≥ yij, i ∈ I, j ∈ J, (2.5c)∑
i∈I

yij = 1, j ∈ J, (2.5d)

xi ∈ {0, 1}, i ∈ I, (2.5e)

yij ∈ [0, 1], i ∈ I, j ∈ J. (2.5f)
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Minimizing the objective function in (2.5a) amounts to minimizing the total

Euclidean distance that customers must travel. Constraint (2.5b) makes sure

we locate no more than k facilities. Constraint (2.5c) allows assigning cus-

tomers only to the facilities that are opened. Constraint (2.5d) makes sure

each customer is assigned to a facility. The last two sets of constraints are

binary requirements. We need not force y to be an integer variable, it is au-

tomatically so. Optimal solutions of this problem for nG = 7 and k = 1, 2, 3, 4

are given in Figure 1.1(a). To form the priority lists of Figures 1.1(b)–(d), we

apply the generic prioritization model (2.4) to this k-median problem (2.5).

Consider the following additional and extended notation and the correspond-

ing formulation:

Indices and sets:

i, i′ ∈ I candidate facility locations

j ∈ J customers

ω ∈ Ω scenarios

Data:

dij Euclidean distance from customer j to facility i

kω budget in terms of total number of facilities under scenario ω

qω probability of scenario ω

Decision variables:

sii′ 1 if location i has no lower priority than i′; 0 otherwise

xωi 1 if location i is selected under scenario ω; 0 otherwise

yωij
1 if customer j is assigned to facility at location i under scenario ω;
0 otherwise
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Formulation:

min
s,x,y

∑
ω∈Ω

qω
∑
j∈J

∑
i∈I

dijy
ω
ij (2.6a)

s.t. sii′ + si′i ≥ 1, i < i′, i, i′ ∈ I, (2.6b)

sii′ ∈ {0, 1}, i 6= i′, i, i′ ∈ I, (2.6c)

xωi ≥ xωi′ + sii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω, (2.6d)∑
i∈I

xωi ≤ kω, ω ∈ Ω, (2.6e)

xωi ≥ yωij, i ∈ I, j ∈ J, ω ∈ Ω, (2.6f)∑
i∈I

yωij = 1, j ∈ J, ω ∈ Ω, (2.6g)

xωi ∈ {0, 1}, i ∈ I, ω ∈ Ω, (2.6h)

yωij ∈ [0, 1], i ∈ I, j ∈ J, ω ∈ Ω. (2.6i)

Model (2.6) applies the generic prioritization model (2.4) to the k-median

problem (2.5). The notation, variables, and constraints read similarly, and

hence we do not repeat that discussion here. Optimal solutions for nG = 7

and k = 1, 2, k = 1, 2, 3, and k = 1, 2, 3, 4 with equal probabilities are given

in Figures 1.1(b)–(d). Corresponding optimal values are 178.99, 162.79, and

148.55.

One approach to build a heuristic priority list is to use the following

greedy heuristic. Suppose the budget, k, has realizations 1 and 2 with equal

probability. We may think of this as first realizing a budget to open one facil-

ity, and later realizing, with 50% chance, additional budget to open another
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facility. As soon as we receive a budget of one, we commit to open a facility

at a specific location. The optimal solution of the 1-median problem gives

the location marked by 1 in Figure 2.2(a). If we receive additional budget, we

solve the 2-median problem fixing one of the facilities to the previously selected

location, i.e., the location marked by 1 in Figure 2.2(a). The optimal solution

gives the location marked by 2 as the location of the second facility. If, instead,

k = 1, 2, 3 with equal probability, the heuristic solution gives the same first

two locations since it does not make use of the respective probabilities of each

budget scenario. The third location is marked by 3. By the same argument,

Figure 2.2(a) gives the greedy heuristic’s solution when the budget is proba-

bilistic and takes values k = 1, . . . , h, h ≤ 9, with any nonzero probabilities.

The objective function value of any such solution is the weighted sum of total

Euclidean distances under each budget scenario. If the budget takes equally

likely values of 1–8, the weight for each scenario is 0.125. This gives a solution

value of 0.125 (194.78+167.4+140.01+115.1+90.19+85.62+81.04+76.46) =

118.82 for the solution in Figure 2.2(a). If we instead use model (2.6), we ob-

tain a solution with optimal value 115.47.

Due to symmetry, the greedy heuristic gives alternative solutions: There

are alternative locations for the second facility including the ones marked by

2 in Figures 2.2(a) and (b). This symmetry holds when locating the third

facility as well. Figures 2.2(a) and (b) give two of these solutions for k = 1−8.

For the objective of minimizing the expected total distance, these alternative

solutions happen to have the same objective function value. If we, instead,
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Figure 2.2: Greedy solutions for the stochastic k-median problem. Parts (a)
and (b) show two alternative solutions. Each solution is obtained by first
finding an optimal solution to the 1-median problem; then to the 2-median
problem with one of the locations fixed to the solution obtained from the 1-
median problem; then to the 3-median problem with two of the locations fixed
to the solution obtained from the 2-median problem; and so forth.

consider the problem of minimizing the expected maximum distance, we see

that some alternative solutions have far better objective function values than

others. For reference, model (2.7) gives the deterministic problem that mini-

mizes the maximum cost.

min
x,y

max
j∈J

∑
i∈I

dijyij (2.7a)

s.t. (2.5b), (2.5c), (2.5d), (2.5e), (2.5f). (2.7b)

Figures 2.3(a)–(c) give three different alternative greedy solutions for

the stochastic version of model (2.7). The first location is the same across

all alternative solutions. When it comes to select the second location, the

greedy heuristic does not differentiate among any of the locations marked by
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Figure 2.3: Parts (a)–(c) show three alternative greedy solutions for
model (2.7) where k takes equally-likely values of 1-4. Part (d) gives the
corresponding optimal prioritization solution.

2 in Figures 2.3(a)–(c). In fact, any location in the entire square region is an

optimal solution to model (2.7) with k = 2 and with the first facility fixed

to the location marked by 1. Suppose the heuristic selects the one marked

by 2 in Figure 2.3(a). We proceed with solving model (2.7) sequentially for

k = 3 and then k = 4 with the first two and then three facilities fixed to

the previously selected locations. We can obtain the locations marked by 3

and 4 in Figure 2.3(a), for again any location is optimal. Alternatively, the

heuristic can select the locations marked by 2, 3, and 4 in Figures 2.3(b) and
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Table 2.1: Optimal and greedy solutions for prioritized versions of models (2.5)
and (2.7). Each cell contains two values. The upper value is the optimal value
to model (2.5) or (2.7). The lower one is the optimality gap of a corresponding
greedy solution, in percentage terms. We cannot solve the optimal prioritiza-
tion problem for the instances corresponding to the empty cells; so we leave
them empty.

m
o
d
el

(2
.5

)

hnG
2 3 4 5 6 7 8

3 22.38 20.70 18.79 17.30 16.30 15.59 15.05
0% 0.47% 2.27% 1.97% 1.74% 1.56% 1.41%

5 75.88 68.85 63.08 58.35 54.76 51.73 49.12
0% 1.58% 3.24% 4.13% 4.28% 3.32% 2.81%

7 178.99 162.79 148.55 137.15 128.34 121.28 115.47
1.17% 2.83% 3.88% 3.17% 2.99% 2.97% 2.90%

9 348.03 317.99 290.66 268.10 250.68 236.85 225.26
1.76% 2.86% 3.83% 3.37% 3.31% 3.25% 2.34%

m
o
d
el

(2
.7

) 3 2.12 1.94 1.85 1.80 1.65 1.52 1.41
0% 9.28% 7.29% 6.01% 12.20% 19.63% 26.13%

5 3.54 3.21 3.04 2.94 2.80 2.63 2.50
0% 10.25% 16.20% 13.40% 14.45% 18.47% 21.86%

7 4.95 4.57 4.34 4.18 3.98 3.71 3.45
0% 8.33% 7.56% 8.64% 3.01% 7.63% 11.59%

9 6.36 5.82 5.55 5.35 5.03
0% 0% 0% 0.81% 4.35%

(c). The objective function values of prioritization models for these alternative

solutions are 4.95, 4.66, and 4.38, respectively. It is no surprise that the

unintelligent solution of Figure 2.3(a) has the worst objective function value,

followed by better solutions of Figures 2.3(b) and (c). Figure 2.3(d) gives the

corresponding optimal solution with the optimal value of 4.18. The optimality

gaps of the alternative solutions are 18.42%, 11.48%, and 4.78%.
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Table 2.1 summarizes how this greedy heuristic performs. We consider

prioritization of both models (2.5) and (2.7), which is indicated by the first

column. The table’s second column indicates the problem size in terms of

the number of grids (nG). For each problem size, we consider seven different

instances, represented by columns 3-9. In each instance, all budget scenarios

are equally likely, with the hth instance having k = 1, 2, . . . , h. For each

instance Table 2.1 lists two values: The upper value gives the optimal value of

the corresponding prioritization model. The lower value gives the percentage

optimality gap of a solution from the greedy heuristic. As we indicate above,

the greedy heuristic gives alternative solutions with different solution values.

Table 2.1 selects one such solution randomly.

One prominent pattern in Table 2.1 is the different performance of the

greedy heuristic for priority models (2.5) and (2.7). When minimizing the

expected total distance, the heuristic produces optimality gaps of less then

5% on these instances. But it is not as successful in minimizing the expected

maximum distance. The primary reason for this seems to be the greedy nature

of the heuristic, coupled with the extreme nature of the maximum-distance

objective. After centrally locating the first facility, the objective function

cannot be reduced when placing a single second facility at any of the n2
G − 1

potential facility locations. The optimality gap grows as nG grows because the

suboptimality of the greedy heuristic can be amplified as nG grows.
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2.3 Prioritization with Total Order Restriction

The concept of a priority list gives the impression that there is a one-

to-one matching between priorities and activities with each activity receiving

a unique ranking. The formulation given by constraints (2.3b)–(2.3f), how-

ever, allows many-to-one assignment of activities to priorities. In this section,

we give an equivalent definition and a corresponding IP formulation for the

prioritized RCASP that requires each activity receive a unique ranking. We

also compare the two formulations both theoretically and computationally.

Given a priority list, L, we define its refinement, L̄, as a priority list

that satisfies the following two conditions:

• Each priority level in L̄ is a subset of some priority level in L; and,

• For any two activities i, i′ ∈ I with i ∈ Ll, i
′ ∈ Ll′ and l < l′, L̄ has the

property that i ∈ L̄l̄, i
′ ∈ L̄l̄′ with l̄ < l̄′.

As an example, [{1, 2}, {3}], [{1}, {2}, {3}], [{2}, {1}, {3}] are all refinements

of [{1, 2}, {3}], whereas [{3}, {2, 1}] and [{3}, {2}, {1}] are not since the lat-

ter two do not satisfy the second condition for activity pairs (1,3) and (2,3).

The following proposition considers the relative objective function values of a

priority list and its refinement.

Proposition 2.3.1. Let L and L̄ be two feasible priority lists for the prioritized

RCASP (2.3), and let L̄ be a refinement of L. Then, F (L̄) ≤ F (L).

24



Proof. It is sufficient to show F ω(L̄) ≤ F ω(L), ω ∈ Ω. Consider the definition

of F ω(·) as the optimal value of model (2.2). For a pair of activities i, i′, we

have either constraint (2.2e) when they are not on the same priority level, or

constraint (2.2f) when they are so. Thus, given a pair of activities i, i′ ∈ I,

we consider two cases:

(i) They are on the same priority level of L̄. This implies the activities being

on the same priority level of L as well, due to the second condition in the

definition of refinement. For these activity pairs we have constraint (2.2f) in

the definitions of both F ω(L) and F ω(L̄).

(ii) They are on different priority levels of L̄, and assume without loss of gener-

ality, i is on a higher priority level than i′. This means we have constraint (2.2e)

in the definition of F ω(L̄). Due to the second condition, we cannot have i on

a lower priority level of L than i′. Hence, either i is on a higher priority level

of L than i′, or they are on the same priority level. In the former case, for

this pair of activities we have constraint (2.2e) in the definition of F ω(L); in

the latter case, we have constraint (2.2f). That is, in the former, we have the

same constraint as in the definition of F ω(L̄); in the latter, we have a more re-

strictive constraint since we replace the greater-than type constraint with the

equal-to type. Considering the two possibilities sketched above, F ω(L) is at

least as large as F ω(L̄), for model (2.2) under L̄ is a relaxation of model (2.2)

under L.

A “total order” [37, chap 6] on a set of activities, I, is a permutation

25



of the elements of I. So, a total order is a priority list, L = [L1, . . . ,LL], with

|Ll| = 1, l = 1, . . . , L. Thus, a total order can be viewed as the “most-refined”

priority list. That is, if L is a total order, and L̄ is a refinement of L, then

L = L̄. This observation, together with Proposition 2.3.1, implies that the

prioritized RCASP with a total order restriction has the same optimal value as

that without this restriction. Consider the next model, the following corollary,

and the corresponding IP formulation:

min
L, L

[
F (L) ≡

∑
ω∈Ω

qωF ω(L)

]
(2.8a)

s.t. (2.3b), (2.3c), (2.3d), (2.3e), (2.3f), (2.8b)

|Ll| = 1, l = 1, . . . , L. (2.8c)

Corollary 2.3.2. Models (2.3) and (2.8) have the same optimal value.

Indices and sets:

i, i′ ∈ I activities

p ∈ P = {1, . . . , |I|} priorities

ω ∈ Ω scenarios

Data:

(Aω,bω, cωx , c
ω
y , C

ω) the problem parameters under scenario ω

qω probability of scenario ω
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Decision variables:

zip 1 if activity i is assigned to priority level p; 0 otherwise

sii′ 1 if activity i has higher priority than i′; 0 otherwise

xω, yω the decision vectors under scenario ω

Formulation:

min
s, z,x,y

∑
ω∈Ω

qω(cωxx
ω + cωyy

ω) (2.9a)

s.t.
∑
p∈P

zip = 1, i ∈ I, (2.9b)∑
i∈I

zip = 1, p ∈ P, (2.9c)

zip ∈ {0, 1}, i ∈ I, p ∈ P, (2.9d)

|P |sii′ ≥
∑
p∈P

(|P | − p)(zip − zi′p), i 6= i′, i, i′ ∈ I, (2.9e)

sii′ + si′i = 1, i < i′, i, i′ ∈ I, (2.9f)

(2.4c), (2.4d), (2.4e), (2.4f), (2.4g). (2.9g)

It is useful to compare model (2.9) with model (2.4). We have additional

z variables in model (2.9) and a modification in the definition of s variables.

Since model (2.9) requires activities be fully-ordered, sii′ is 1 if activity i

has ‘higher’ priority than i′, whereas in model (2.4) this variable indicates

whether activity i has ‘no lower’ priority than i′. Hence, constraint (2.4b)

is of greater-than type, as opposed to constraint (2.9f), which is of equal-to

type. The objective function in (2.9a) is the same as that of model (2.4).

Constraints (2.9b), (2.9c), (2.9d) and (2.9e) are new. The first three of these
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form a one-to-one matching between activities and priorities. The last one

coupled with (2.4c) and (2.9f) defines the s variables based on this matching.

Proposition 2.3.1 allows us to iteratively refine the optimal priority list

of model (2.3), without loss of optimality, until we obtain a total order. Sim-

ilarly, given an optimal total order, L∗, and a corresponding solution vector,

(x∗,y∗) with x∗ = (x∗ωi )i∈I,ω∈Ω, to model (2.8), we can aggregate any two

of its priority levels, l, l′, if there exist two activities, i, i′, such that i ∈ L∗l ,

i′ ∈ L∗l′ and x∗ωi = x∗ωi′ for all ω ∈ Ω. This can be done without loss of opti-

mality since the aggregated priority list, together with (x∗,y∗), still satisfies

constraints (2.2e) and (2.2f) and has the same objective function value. Thus,

a solution to either model (2.3) or model (2.8) can be transformed to a solution

to the other model with the same objective function value.

The above observation allows us to use either of the two IP formula-

tions, i.e., model (2.4) or model (2.9), in solving the prioritized RCASP. A

natural question is then “which one is more efficient?” The first feature to

compare is their sizes in terms of the number of constraints and variables.

Model (2.9) has obviously 2|I| + |I|(|I| − 1) additional structural constraints

and |I|2 additional binary variables. Typically, an IP formulation with more

constraints and variables is tolerated, even preferred, if it has a tighter linear

programming (LP) relaxation. Hence, the next feature to compare is their LP

relaxations. To compare the LP relaxations of two different formulations, we

usually compare the feasible region over which the linear optimization is per-

formed. This comparison does not lead to sufficiently strong results in our case.
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Thus, we follow a different path. We first give two propositions characterizing

the LP relaxations of models (2.4) and (2.9), and then give a corollary compar-

ing their optimal values. The proofs of the propositions are almost identical,

and so we state the second one without proof. Propositions 2.3.3 and 2.3.4

and Corollary 2.3.5 speak of the LP relaxation of models (2.4) and (2.9). In

the former case this amounts to continuous relaxations of constraints (2.4c)

and (2.4f) and in the latter, continuous relaxations of (2.4c), (2.4f) and (2.9d),

i.e., we assume constraints (2.4g) hold as stated.

Proposition 2.3.3. If a solution vector (x̄, ȳ, s̄, z̄) with x̄ = (x̄ωi )i∈I,ω∈Ω, is

feasible to the LP relaxation of model (2.9), then

αii′ + αi′i ≤ 1, i 6= i′, i, i′ ∈ I, (2.10)

holds, where αii′ = max
ω∈Ω
{x̄ωi − x̄ωi′}. Conversely, if a solution vector (x̄, ȳ) with

0 ≤ x̄ωi ≤ 1, i ∈ I, ω ∈ Ω, is feasible to constraints (2.4e) and (2.4g), and

inequality (2.10) holds for the x̄ vector, there exist solution vectors (̄s, z̄) such

that (x̄, ȳ, s̄, z̄) is feasible to the LP relaxation of model (2.9).

Proof. Suppose (x̄, ȳ, s̄, z̄) is feasible to the LP relaxation of model (2.9).

Constraint (2.4d) reads,

x̄ωi ≥ x̄ωi′ + s̄ii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω.

Rearranging and maximizing over the scenarios, we obtain
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max
ω∈Ω
{x̄ωi′ − x̄ωi } ≤ 1− s̄ii′ ⇒ αi′i ≤ 1− s̄ii′ , i 6= i′.

We similarly obtain αii′ ≤ 1−s̄i′i, i′ 6= i. Summing these two inequalities yields

αii′+αi′i ≤ 2−{s̄ii′+s̄i′i} = 1, where the equality follows from constraint (2.9f).

We first show that at least one of αii′ and αi′i is nonnegative: Suppose

αi′i = maxω∈Ω{x̄ωi′ − x̄ωi } < 0, and ω∗ is the maximizing scenario. Then,

xω
∗

i − xω
∗

i′ > 0. This implies αii′ = maxω∈Ω{x̄ωi − x̄ωi′} ≥ xω
∗

i − xω
∗

i′ > 0.

Having shown at least one of αii′ and αi′i is nonnegative, we assume,

without loss of generality, αii′ ≥ 0. We construct the s̄ vector as follows:

Set s̄ii′ = αii′ , s̄i′i = 1 − αii′ , i 6= i′, i, i′ ∈ I. Then, by inequality (2.10)

s̄ii′ ≤ 1 − αi′i = 1 − maxω∈Ω{x̄ωi′ − x̄ωi } ≤ 1 − {x̄ωi′ − x̄ωi }, ω ∈ Ω ⇒ x̄ωi ≥

x̄ωi′ + s̄ii′ − 1, ω ∈ Ω. Similarly, s̄i′i = 1 − αii′ = 1 − maxω∈Ω{x̄ωi − x̄ωi′} ≤

1−{x̄ωi −x̄ωi′}, ω ∈ Ω⇒ x̄ωi′ ≥ x̄ωi + s̄i′i−1, ω ∈ Ω. Therefore, constraint (2.4d)

is satisfied. By construction, we have 0 ≤ s̄ii′ ≤ 1, and s̄ii′ + s̄i′i = 1. Thus,

constraint (2.9f) and the LP relaxation of constraint (2.4c) are satisfied.

We construct the z̄ vector as follows: Set z̄ip = 1/|I|, i ∈ I, p ∈ P . It is

clear that constraints (2.9b), (2.9c) and the LP relaxation of constraint (2.9d)

are satisfied. Constraint (2.9e) places no restriction on s̄ variable and hence

is satisfied. Also, by hypothesis constraints (2.4e) and (2.4g) and the LP

relaxation of constraint (2.4f) are satisfied.

Proposition 2.3.4. If a solution vector (x̄, ȳ, s̄) with x̄ = (x̄ωi )i∈I,ω∈Ω is fea-

sible to the LP relaxation of model (2.4), then inequality (2.10) holds. Con-
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versely, if a solution vector (x̄, ȳ) with 0 ≤ x̄ωi ≤ 1, i ∈ I, ω ∈ Ω, is feasible

to constraints (2.4e) and (2.4g), and inequality (2.10) holds for the x̄ vec-

tor, there exists a solution vector s̄ such that (x̄, ȳ, s̄) is feasible to the LP

relaxation of model (2.4).

Corollary 2.3.5. The LP relaxations of models (2.4) and (2.9) have the same

optimal value.

Proof. Suppose (x∗,y∗, s∗, z∗) is an optimal solution to the LP relaxation of

model (2.9). Then, (x∗,y∗) is feasible to constraints (2.4e) and (2.4g), and we

have 0 ≤ x∗ωi ≤ 1, i ∈ I, ω ∈ Ω. By the first part of Proposition 2.3.3, x∗

satisfies inequality (2.10). But, by the second part of Proposition 2.3.4, we can

find a solution vector ŝ∗ such that (x∗,y∗, ŝ∗) is feasible to the LP relaxation

of model (2.4). Thus, the optimal value of LP relaxation of model (2.4) is no

worse than that of model (2.9). We can carry out the same argument in the

opposite direction, proving the corollary.

Now that we have shown that the optimal values of the LP relaxations

of models (2.4) and (2.9) are equal, we expect model (2.4) to be more efficient

since it is smaller in size. It is natural to ask whether this theoretical result

holds in practice. To this end, we compare models (2.4) and (2.9) on a set of

multidimensional knapsack problem instances. The notation and formulation

of the multidimensional knapsack model follow:
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Indices and sets:

i ∈ I items

t ∈ T knapsack dimensions

Data:

ai profit of item i

bt capacity of dimension t

cit resource consumption of item i for dimension t

Decision variables:

xi 1 if item i is selected; 0 otherwise

Formulation:

max
x

∑
i∈I

aixi (2.11a)

s.t.
∑
i∈I

citxi ≤ bt, t ∈ T, (2.11b)

xi ∈ {0, 1}, i ∈ I. (2.11c)

The objective function in (2.11a) sums the profit contributions of the selected

items. Constraint (2.11b) ensures that the selected items fit within the ca-

pacity of the knapsack’s dimension, bt, t ∈ T . Constraint (2.11c) handles the

binary restrictions. The optimal solution to the multidimensional knapsack

model (2.11) gives the set of items which maximizes total profit and meets the

knapsack’s capacities.

We give the mathematical formulation for the application of model (2.4)

to the multidimensional knapsack problem. Application of model (2.9) can be
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performed similarly. The notation and formulation of the prioritization model

follow:

Indices and sets:

i, i′ ∈ I items

t ∈ T knapsack dimensions

ω ∈ Ω scenarios

Data:

aωi profit of item i under scenario ω

bωt capacity of dimension t under scenario ω

cωit resource consumption of item i for dimension t under scenario ω

qω probability of scenario ω

Decision variables:

sii′ 1 if item i has no lower priority than i′; 0 otherwise

xωi 1 if item i is selected under scenario ω; 0 otherwise

Formulation:

max
s,x

∑
ω∈Ω

qω
∑
i∈I

aωi x
ω
i (2.12a)

s.t. sii′ + si′i ≥ 1, i < i′, i, i′ ∈ I, (2.12b)

sii′ ∈ {0, 1}, i 6= i′, i, i′ ∈ I, (2.12c)

xωi ≥ xωi′ + sii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω, (2.12d)∑
i∈I

cωitx
ω
i ≤ bωt , t ∈ T, ω ∈ Ω, (2.12e)

xωi ∈ {0, 1}, i ∈ I, ω ∈ Ω. (2.12f)
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The test problems we use for the underlying model (2.11) are taken

from the OR Library [3], which hosts instances of the multidimensional knap-

sack problem. We use the two collections of instances, labeled “mknap1” and

“mknap2.” We use problem instances (10,10), (15,10), (20,10), (28,10), (39,5)

and (50,5) from “mknap1” and instances (60,5), (70,5), (80,5), (90,5) from

“mknap2” where the first number represents the number of items and the

second represents the number of knapsack dimensions.

In the prioritization setting, there is a third parameter: number of sce-

narios. One application of the multidimensional knapsack model is in capital

budgeting. There, the items are projects, and the dimensions of the knapsack

are time periods, e.g., years. So, bt is the available budget in year t, cit is the

cost in year t of selecting item i, and ai is the net present value of item i, i.e.,

its profit. We use this terminology in describing how we model the uncertainty

in cost, profit, and budget, which determines the number of scenarios. In our

case, there are three equally-likely scenarios for the cost of an item: optimistic,

pessimistic, and most likely. In the optimistic scenario, we multiply the cost

of each item in each year by 0.8; in the pessimistic, by 1.2; and in the most

likely, by 1. Budget uncertainty is similar to the cost uncertainty, except it

has two scenarios with equal probabilities. In the first scenario, we multiply

each year’s budget by 0.8; in the second, by 1.2. We have 7 different settings

for the number of scenarios: 1, 3, 9, 18 27, 54, and 81. We now describe how

we generate the scenarios in all these settings.

• If the number of scenarios is 1, there is no uncertainty. We solve the
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deterministic multidimensional knapsack problem.

• If the number of scenarios is 3, there is only cost uncertainty. All items

move together. That is, all items realize one of the pessimistic, most-

likely, and optimistic scenarios.

• If the number of scenarios is 9, again there is only cost uncertainty.

The items fall into two groups. Each group moves independent of the

other. In the first scenario, items in groups 1 and 2 realize pessimistic

forecast; in scenario 2, group 1 realizes pessimistic and group 2 realizes

optimistic; in scenario 3, group 1 realizes pessimistic and group 2 realizes

most likely, and so on. We put items 1, . . . , dn
2
e into the first group, and

items dn
2
e + 1, . . . , n into the second, where n = |I| is the number of

items.

• In general, if the number of scenarios is not 1, 18 or 54, we have only

cost uncertainty and items fall into β = log3(|Ω|) groups, where |Ω|

is the number of scenarios. Items in the same group move together,

and the ones in different groups move independently, which yields 3β =

|Ω| scenarios. Items 1, . . . , dn
β
e fall into the first group, items dn

β
e +

1, . . . , d n
β/2
e fall into the second, items d n

β/2
e + 1, . . . , d n

β/3
e fall into the

third, and so on, until items d n
β/(β−1)

e+ 1, . . . , n fall into the last group.

• If the number of items is 18, the cost uncertainty is the same as the 9-

scenario case. We additionally include budget uncertainty. Budget and

cost uncertainty are independent, which yields 9× 2 = 18 scenarios.
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• If the number of items is 54, it is similar to the 18-scenario case, except

we add two budget scenarios on top of the 27-scenario cost uncertainty.

• Finally, in order to have two problem instances for each scenario, we

introduce another budget-cost multiplier. In this setting, we have a

multiplier pair of (0.4,1.6) instead of (0.8,1.2). That is, we multiply the

costs by 0.4 in the optimistic case and by 1.6 in the pessimistic case.

Similarly, the budget is either multiplied by 0.4 or by 1.6.

We label a problem instance with multiplier pair (0.8,1.2) with a 0,

and an instance with pair (0.4,1.6) with a 1. So, “20-10-9-0” means the mul-

tidimensional knapsack problem (20,10) from “mknap1” with 9 scenarios and

multiplier pair (0.8,1.2). We use Cplex version 11.1 on a Dell Poweredge 2950

computer with Intel (Xenon) 3.73 GHz processor and with 8 GB of RAM, and

we report the results in Table 2.2.

The first column in Table 2.2 gives the number of scenarios; the first

row gives the number of items-dimensions. In each cell there are two values.

The upper value corresponds to model (2.4); the lower one, to model (2.9).

Each value is the average over two problem instances. The values with the

percentage sign give the remaining optimality gaps after we spend an hour

on the problem. These percentage values are the geometric averages over the

two instances. The values without the percentage sign give the running times

in terms of CPU seconds to solve the instances to 0.01% optimality. These

values are the arithmetic averages over the two instances. Some of the cells
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are empty. It means after spending an hour the corresponding model cannot

obtain an optimality gap for at least one of the instances. We mostly solve the

smaller instances to 0.01% optimality, and spend only an hour on the larger

ones. This is not quite strict, however. Some of the instances we can solve to

0.01% optimality in a couple of hours using one model, but cannot solve using

the other. For these instances we report only one-hour-optimality-gaps under

both models, for a fair comparison of the two models.

Interpreting the results in Table 2.2, the problem instances with 20

or fewer items do not strictly favor either of the models. Those with 28 or

more items, however, favor model (2.4) over (2.9). This observation holds

in both the larger-scenario instances and the smaller-scenario instances, i.e.,

those we solve to 0.01% optimality and those we do not reach a solution to

0.01% optimality in one hour. This conclusion gives evidence to what we

have inferred from the LP relaxations and the sizes of the two formulations.

Model (2.4) has 2|I| + |I|(|I| − 1) fewer constraints and |I|2 fewer variables

than model (2.9). Thus, it is expected that the difference become more visible

as the number of activities, i.e., items, increases.

2.4 Scenario Prioritization

In the prioritized RCASP model (2.3), we place activities on a priority

list and let each scenario select its optimal set of activities, making sure that

the activity selection decision is prioritized. We now consider a complementary

formulation, where we place the scenarios on a priority list and let each activity
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select its optimal set of scenarios, making sure that the scenario selection

decision is prioritized. What it means for a scenario selection decision to

be prioritized is similar to the prioritized activity-selection rule: An activity

cannot select a lower-priority scenario unless all higher-priority scenarios are

selected, and that activity must select either all or none of the scenarios on

each priority level.

Let Kk ⊆ Ω, k = 1, . . . , K, denote the priority levels, where Kk 6=

∅, k = 1, . . . , K,
⋃K
k=1 Kk = Ω, and Kk ∩ Kk′ = ∅, k 6= k′, k, k′ = 1, . . . , K.

Then K = [K1, K2, . . . ,KK ] denotes a priority list for scenarios, where scenar-

ios in K1 have higher priority than those in K2, scenarios in K2 have higher

priority than those in K3, and so forth. Let G(K) denote the optimal value

of the expected cost of RCASP, subject to the prioritized scenario selection

restriction imposed by K. That is,

G(K) = min
x,y

∑
ω∈Ω

qω(cωxx
ω + cωyy

ω) (2.13a)

s.t. Aωxω ≤ bω, ω ∈ Ω, (2.13b)

xω ∈ {0, 1}|I|, ω ∈ Ω, (2.13c)

(xω,yω) ∈ Cω, ω ∈ Ω, (2.13d)

xωi ≥ xω
′

i , i ∈ I, ω ∈ Kk, ω
′ ∈ Kk′ ,

k < k′, k, k′ = 1, . . . , K, (2.13e)

xωi = xω
′

i , i ∈ I, ω, ω′ ∈ Kk, k = 1, . . . , K. (2.13f)
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Minimizing the objective function in (2.13a) minimizes the expected cost of

the decisions. Constraints (2.13b), (2.13c) and (2.13d) are the same as those in

(2.1b), (2.1c) and (2.1d), except they now depend on ω ∈ Ω. Constraint (2.13e)

imposes the first condition of the prioritized scenario selection: If an activity is

selected under a lower-priority scenario, it must also be selected under a higher-

priority scenario. Constraint (2.13f) imposes the second condition: An activity

is either selected, or not, under both scenarios on the same priority level. Based

on G(K) defined by model (2.13), we define the scenario prioritization model

as:

min
K,K

G(K) (2.14a)

s.t. K = [K1, . . . ,KK ], (2.14b)

Kk ⊆ Ω, k = 1, . . . , K, (2.14c)

Kk 6= ∅, k = 1, . . . , K, (2.14d)

Kk ∩Kk′ = ∅, k 6= k′, k, k′ = 1, . . . , K, (2.14e)⋃
k=1,...,K

Kk = Ω. (2.14f)

Model (2.14) selects the optimal priority list for scenarios so that the expected

cost of the RCASP subject to the prioritized scenario-selection constraints is

minimized. Similar to the discussion surrounding model (2.3), the minimiza-

tion in model (2.14) is taken over both K and K. But, in referring to a priority

list for the scenarios, we omit K occasionally, when it is not relevant. In these

situations, we assume the number of priority levels is K.
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We now prove a result that models (2.3) and (2.14) are equivalent,

i.e., a solution to one can be transformed to a solution to the other with the

same objective function value. This result enables us to solve either model,

whichever is simpler, and obtain a solution to the other.

Theorem 2.4.1. Consider model (2.3) with F ω(·) defined in (2.2) and model

(2.14) with G(·) defined in (2.13). Let (x̄, ȳ) = (x̄ω, ȳω)ω∈Ω, where (x̄ω, ȳω)

satisfies (2.2b)–(2.2d), ω ∈ Ω. There exists a priority list K̄ for the set of

scenarios, Ω, such that (K̄, x̄) satisfies (2.13e)–(2.13f) and K̄ satisfies (2.14b)–

(2.14f) if and only if there exists a priority list L̄ for the set of activities, I,

such that (L̄, x̄) satisfies (2.2e)–(2.2f), ω ∈ Ω, and L̄ satisfies (2.3b)–(2.3f).

Furthermore, constructing L̄ from (K̄, x̄) and constructing K̄ from (L̄, x̄) can

be performed in O(|I||Ω|) time.

Proof. Suppose the hypothesis for (K̄, x̄, ȳ) holds. It suffices to find a priority

list L̄ for the set of activities, satisfying constraints (2.3b)–(2.3f), such that

(L̄, x̄) is feasible to constraints (2.2e)–(2.2f).

Let K̄ denote the number of priority levels in K̄. Let Sk = {i ∈

I | x̄ωi = 1, for some ω ∈ K̄k}, k = 1, . . . , K̄, and let S0 = I, SK̄+1 = ∅. By

constraints (2.13e) and (2.13f), we have S0 ⊇ S1 ⊇ · · · ⊇ SK̄ ⊇ SK̄+1. Consider

Algorithm 1 to construct L̄. By construction, L̄ satisfies constraints (2.3b)–

(2.3f). Consider two activities i, i′, where i ∈ L̄l, i
′ ∈ L̄l′ . We must show

that if l = l′, constraint (2.2f) is satisfied, and otherwise constraint (2.2e) is

satisfied.

41



Algorithm 1 Construct L̄ from K̄

Input: K̄ = [K̄1, . . . , K̄K ], where K is the number of priority levels.
x̄ = (x̄ωi )i∈I,ω∈Ω.

Output: L̄ = [L̄1, . . . , L̄L], where L is the number of priority levels.

Sk ← {i ∈ I | x̄ωi = 1, for some ω ∈ K̄k}, k = 1, . . . , K̄. S0 ← I. SK̄+1 ← ∅.
t← K̄, j ← 1.
repeat

if St \ St+1 6= ∅ then
L̄j ← St \ St+1.
j ← j + 1.

end if
t← t− 1.

until t = −1
L← j, and L̄← [L̄1, . . . , L̄L].

• If l = l′, by the construction of L̄, ∃ t ∈ {0, . . . , K̄} such that i, i′ ∈ Sk

for k = 0, . . . , t, and i, i′ 6∈ Sk for k = t + 1, . . . , K̄ + 1. That is,

x̄ωi = x̄ωi′ = 1 for ω ∈
⋃t
k=1 K̄k, and x̄ωi = x̄ωi′ = 0 for ω ∈

⋃K̄
k=t+1 K̄k.

Hence, x̄ωi = x̄ωi′ , ∀ω ∈ Ω.

• Suppose, without loss of generality, that l < l′. Then by the construction

of L̄, ∃ t > t′ ∈ {0, . . . , K̄} such that i, i′ ∈ Sk for k = 0, . . . , t′, i ∈ Sk,

i′ 6∈ Sk for k = t′ + 1, . . . , t, and i, i′ 6∈ Sk for k = t+ 1, . . . , K̄ + 1. That

is, x̄ωi = x̄ωi′ = 1 for ω ∈
⋃t′

k=1 K̄k, x̄
ω
i = 1, x̄ωi′ = 0 for ω ∈

⋃
k=t′+1,...,t K̄k,

and x̄ωi = x̄ωi′ = 0 for ω ∈
⋃
k=t+1,...,K̄ K̄k. Hence, x̄ωi ≥ x̄ωi′ , ∀ω ∈ Ω.

Suppose the hypothesis for (L̄, x̄, ȳ) holds. It suffices to find a priority

list K̄ for the set of scenarios, satisfying constraints (2.14b)–(2.14f), such that

(K̄, x̄) is feasible to constraints (2.13e)–(2.13f).
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Let L̄ denote the number of priority levels in L̄. Let Sl = {ω ∈

Ω | x̄ωi = 1, for some i ∈ L̄l}, l = 1, . . . , L̄, and S0 = Ω, SL̄+1 = ∅. By

constraints (2.2e) and (2.2f), we have S0 ⊇ S1 ⊇ · · · ⊇ SL̄ ⊇ SL̄+1. Consider

Algorithm 2 to construct K̄:

Algorithm 2 Construct K̄ from L̄

Input: L̄ = [L̄1, . . . , L̄L], where L is the number of priority levels.
x̄ = (x̄ωi )i∈I,ω∈Ω.

Output: K̄ = [K̄1, . . . , K̄K ], where K is the number of priority levels.

Sl ← {ω ∈ Ω | x̄ωi = 1, for some i ∈ L̄l}, l = 1, . . . , L̄. S0 ← Ω. SL̄+1 ← ∅.
t← L̄, j ← 1.
repeat

if St \ St+1 6= ∅ then
K̄j ← St \ St+1.
j ← j + 1.

end if
t← t− 1.

until t = −1
K ← j, and K̄← [K̄1, . . . , K̄K ].

By construction, K̄ satisfies constraints (2.14b)–(2.14f). Consider two

scenarios ω, ω′, where ω ∈ K̄k, ω
′ ∈ K̄k′ . We must show that if k = k′,

constraint (2.13f) is satisfied, and otherwise, constraint (2.13e) is satisfied.

• If k = k′, by the construction of K̄, ∃ t ∈ {0, . . . , L̄} such that ω, ω′ ∈ Sl

for l = 0, . . . , t, and ω, ω′ 6∈ Sl for l = t + 1, . . . , L̄ + 1. That is, x̄ωi =

x̄ω
′

i = 1 for i ∈
⋃t
l=1 L̄l, and x̄ωi = x̄ω

′
i = 0 for i ∈

⋃L̄
l=t+1 L̄l. Hence,

x̄ωi = x̄ω
′

i , ∀i ∈ I.
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• Suppose, without loss of generality, that k < k′. Then by the construc-

tion of K̄, ∃ t > t′ ∈ {0, . . . , L̄} such that ω, ω′ ∈ Sl for l = 0, . . . , t′,

ω ∈ Sl, ω′ 6∈ Sl for l = t′+ 1, . . . , t, and ω, ω′ 6∈ Sl for l = t+ 1, . . . , L̄+ 1.

That is, x̄ωi = x̄ω
′

i = 1 for i ∈
⋃t′

l=1 L̄l, x̄
ω
i = 1, x̄ω

′
i = 0 for i ∈

⋃t
l=t′+1 L̄l,

and x̄ωi = x̄ω
′

i = 0 for i ∈
⋃L̄
l=t+1 L̄l. Hence, x̄ωi ≥ x̄ω

′
i , ∀i ∈ I.

Constructing the sets Sk, k = 1, . . . , K̄, at the beginning of Algo-

rithm 1 takes O(|I|K̄) time and so does the rest of the algorithm. Similarly,

Algorithm 2 takes O(|Ω|L̄) time. Since K̄ ≤ |Ω| and L̄ ≤ |I|, both algorithms

can be performed in O(|I||Ω|) time.

We develop an IP formulation for model (2.14), analogous to the de-

velopment of model (2.4) for model (2.3). This model is very similar to

model (2.4), except we now prioritize scenarios instead of activities. The no-

tation and formulation read similarly; hence, we do not give details. For this

formulation it is convenient to have the set of scenarios, Ω, to be an ordered

set so that it makes sense to write restrictions on it, such as ω < ω′ ∈ Ω.

Consider the following notation and the associated formulation:
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Indices and sets:

i ∈ I activities

ω, ω′ ∈ Ω scenarios

Data:

(Aω,bω, cωx , c
ω
y , C

ω) the problem parameters under scenario ω

qω probability of scenario ω

Decision variables:

sωω′ 1 if scenario ω has no lower priority than ω′; 0 otherwise

xω, yω the decision vectors under scenario ω

Formulation:

min
s,x,y

∑
ω∈Ω

qω(cωxx
ω + cωyy

ω) (2.15a)

s.t. sωω′ + sω′ω ≥ 1, ω < ω′, ω, ω′ ∈ Ω, (2.15b)

sωω′ ∈ {0, 1}, ω 6= ω′, ω, ω′ ∈ Ω, (2.15c)

xωi ≥ xω
′

i + sωω′ − 1, i ∈ I, ω 6= ω′, ω, ω′ ∈ Ω, (2.15d)

(2.4e), (2.4f), (2.4g). (2.15e)

It is possible to develop an IP formulation for the scenario-prioritization

models (2.14) and (2.15) with a total order restriction, as we have done for

activity-prioritization models (2.3) and (2.4), by models (2.8) and (2.9). Do-

ing so would lead to corollaries similar to Corollaries 2.3.2 and 2.3.5, stating

that the optimal values of models (2.14) and (2.15) with and without a to-

tal order restriction are equal and the optimal values of the LP relaxation of
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model (2.15) with and without a total order restriction are the same. We do

not pursue this path as the development above already shows that enforcing a

total order restriction only increases the problem size, without tightening the

formulation. We instead compare the optimal values of the LP relaxations of

models (2.4) and (2.15). This is useful as we already have algorithms to trans-

form a solution to one model to a solution to the other model in polynomial

time. Hence, we have the freedom of solving the more efficient formulation

and obtaining solutions to either problem. We first replicate Proposition 2.3.3

for model (2.15) without proof, and then compare the LP relaxations of the

two models.

Proposition 2.4.2. If a solution vector (x̄, ȳ, s̄) with x̄ = (x̄ωi )i∈I,ω∈Ω is fea-

sible to the LP relaxation of model (2.15), then

αωω′ + αω′ω ≤ 1, ω 6= ω′, ω, ω′ ∈ Ω, (2.16)

holds, where αωω′ = max
i∈I
{x̄ωi − x̄ω

′

i }. Conversely, if a solution vector (x̄, ȳ)

with 0 ≤ x̄ωi ≤ 1, i ∈ I, ω ∈ Ω, is feasible to constraints (2.4e) and (2.4g),

and inequality (2.16) holds for the x̄ vector, there exists a vector s̄ such that

(x̄, ȳ, s̄) is feasible to the LP relaxation of model (2.15).

Theorem 2.4.3. The LP relaxations of models (2.4) and (2.15) have the same

optimal value.

Proof. Suppose (x∗,y∗, s∗) is an optimal solution to the LP relaxation of

model (2.4). Then, (x∗,y∗) is feasible to constraints (2.4e) and (2.4g), and
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0 ≤ x∗ωi ≤ 1, i ∈ I, ω ∈ Ω. And, by the first part of Proposition 2.3.4, x∗

satisfies inequality (2.10). That is,

αii′ + αi′i ≤ 1, i 6= i′, i, i′ ∈ I

⇔ max
ω∈Ω
{x∗ωi − x∗ωi′ }+ max

ω∈Ω
{x∗ωi′ − x∗ωi } ≤ 1, i 6= i′, i, i′ ∈ I

⇔ x∗ωi − x∗ωi′ + x∗ω
′

i′ − x∗ω
′

i ≤ 1, ω, ω′ ∈ Ω, i 6= i′, i, i′ ∈ I

⇔ x∗ωi − x∗ωi′ + x∗ω
′

i′ − x∗ω
′

i ≤ 1, ω 6= ω′, ω, ω′ ∈ Ω, i, i′ ∈ I

⇔ x∗ωi − x∗ω
′

i + x∗ω
′

i′ − x∗ωi′ ≤ 1, ω 6= ω′, ω, ω′ ∈ Ω, i, i′ ∈ I

⇔ max
i∈I
{x∗ωi − x∗ω

′

i }+ max
i∈I
{x∗ω′i − x∗ωi } ≤ 1, ω 6= ω′, ω, ω′ ∈ Ω

⇔ αωω′ + αω′ω ≤ 1, ω 6= ω′, ω, ω′ ∈ Ω.

The first equivalence is the definition of αii′ , i 6= i′, i, i′ ∈ I. The second one

comes from the definition of the max operator. In the third one, we exclude

or include the scenario indices such that ω = ω′ and the activity indices such

that i = i′. The exclusion and inclusion can be done with equivalence since

for indices i = i′ or ω = ω′, the left-hand side of the inequality is zero. The

fourth equivalence is just rearranging the terms. The fifth one again comes

from the definition of the max operator. The final equivalence is the definition

of αωω′ , ω 6= ω′, ω, ω′ ∈ Ω. Now, by the second part of Proposition 2.4.2, we

can find a solution vector ŝ∗ such that (x∗,y∗, ŝ∗) is feasible to model (2.4).

Hence, the optimal value of the LP relaxation of model (2.15) is no worse than

that of model (2.4). We can carry out the same argument in the opposite

direction, proving the theorem.
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The constraint sets that links prioritization and activity selection in

models (2.4) and (2.15) are (2.4d) and (2.15d), respectively. The number of

constraints in these sets are |I|(|I| − 1)|Ω| and |Ω|(|Ω| − 1)|I|, respectively.

And, the number of respective s variables in these two models is |I|(|I| − 1)

and |Ω|(|Ω| − 1). For |I| < |Ω| model (2.4) is smaller than model (2.15), and

vice versa. Having also proven that optimal values of their LP relaxations

are equal, we expect the smaller model to be more efficient. To see if this

theoretical conclusion applies in practice, we test both models on the set of

problem instances from Table 2.2. The experimental setting is the same as in

Table 2.2, and we report the results in Table 2.3. The results are interpreted

as in Table 2.2 except now the upper and the lower values in a cell correspond

to models (2.4) and (2.15), respectively. We indeed observe the expected

behavior. For |I| smaller than |Ω|, model (2.4) performs better, while for |Ω|

smaller than |I|, model (2.15) performs better. In Table 2.2 we terminate all

runs after one hour, but here we show some longer running times to illustrate

the relative merits of models (2.4) and (2.15).

2.5 Cutting Planes

To improve solution times further, we develop two sets of cutting planes

for models (2.4) and (2.15). We first set notation and introduce terminol-

ogy, referring to data (Aω,bω, cωx , c
ω
y , C

ω), ω ∈ Ω, used in models (2.4) and

(2.15). Let Y ω = {(x,y) |x ∈ {0, 1}|I|, Aωx ≤ bω, (x,y) ∈ Cω}, and

Xω = {x | ∃y such that (x,y) ∈ Y ω}. For x ∈ Xω, we let
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hω(x) ≡ cωxx + min
y

cωyy (2.17a)

s.t. (x,y) ∈ Cω. (2.17b)

Model (2.17) is feasible by construction since x ∈ Xω, and thus has a min-

imizer, which we denote by yω(x). We note that given a solution, K, to

model (2.14) and a corresponding optimal solution, (xω,yω)ω∈Ω, to model (2.13),

we have G(K) =
∑

ω∈Ω q
ωhω(xω), where G(·) is defined as in model (2.14). Fi-

nally, for x ∈ {0, 1}|I|, we let S(x) denote the set of selected activities, i.e.,

S(x) = {i ∈ I |xi = 1}.

We say scenario ω is improving if for any two vectors x, x̄ ∈ Xω with

S(x) ⊇ S(x̄), we have hω(x) ≤ hω(x̄). We let ΩI ⊆ Ω denote the set of

improving scenarios. Given two scenarios ω, ω′ ∈ Ω, we say ω dominates ω′

if x ∈ Xω′ implies x ∈ Xω. We let ΩD denote the set of dominating scenario

pairs, i.e., ΩD = {(ω, ω′) ∈ Ω× Ω | ω dominates ω′}.

For a vector x ∈ {0, 1}|I|, we let x(i,i′) denote a new vector x̄ ∈ {0, 1}|I|

which is the same as x, except that its ith element is set to 1, and i′th element

is set to 0, i.e., x̄j = xj for j 6∈ {i, i′}, x̄i = 1, x̄i′ = 0. We say activity i

dominates activity i′ if, for any vector x ∈ Xω with xi′ = 1, xi = 0, we have

x(i,i′) ∈ Xω and hω(x(i,i′)) ≤ hω(x), for all ω ∈ Ω. We let ID denote the set of

dominating activity pairs, i.e., ID = {(i, i′) ∈ I × I | i dominates i′}.

We illustrate this notation on the facility prioritization problem (2.6)

and the prioritized multidimensional knapsack problem (2.12). In the multidi-

50



mensional knapsack problem, given two scenarios, ω, ω′, scenario ω dominates

scenario ω′ if the costs under scenario ω are at most those under scenario ω′,

and if the budgets under scenario ω are at least those under scenario ω′, i.e.,

cωit ≤ cω
′

it , i ∈ I, t ∈ T , and bωt ≥ bω
′

t , t ∈ T . Scenario ω is improving if the

profits under scenario ω are nonnegative, i.e., aωi ≥ 0, i ∈ I. In the facility

prioritization problem, scenarios with larger budgets dominate scenarios with

smaller budgets. That is, given two scenarios, ω, ω′, scenario ω dominates

scenario ω′ if kω ≥ kω
′
. All scenarios in the facility prioritization problem are

improving since opening more facilities does not increase the total distance

of the customers to their closest facilities. In the multidimensional knapsack

prioritization problem, given two activities, i, i′, if the profit of activity i is

at least that of i′ under all scenarios, and the cost of activity i is no more

than that of i′ under all scenarios, then i dominates i′, i.e., aωi ≥ aωi′ , and

cωit ≤ cωi′t, ω ∈ Ω. In the instances of facility prioritization problem that we

describe in Section 2.2, we do not have any dominating activity pairs.

Given a vector x with x = (xω)ω∈Ω and xω ∈ {0, 1}|I|, if there exists an

ordering, ω1, . . . , ω|Ω|, on the set of scenarios such that S(xω1) ⊇ · · · ⊇ S(xω|Ω|),

Algorithm 3 constructs a priority list, K, for the set of scenarios so that K

satisfies constraints (2.14b)–(2.14f) and (K,x) satisfies constraints (2.13e)–

(2.13f). By construction, K satisfies constraints (2.14b)–(2.14f). It remains to

show that (K,x) satisfies constraints (2.13e)–(2.13f). Consider two scenarios

ω, ω′, where ω ∈ Kk, ω
′ ∈ Kk′ , k, k

′ = 1, . . . , K. We must show that if

k = k′, constraint (2.13f) is satisfied, and otherwise, constraint (2.13e) is

51



Algorithm 3 Construct K from the nested sets, S(xω1) ⊇ · · · ⊇ S(xω|Ω|).

Input: S(xω1) ⊇ · · · ⊇ S(xω|Ω|).
Output: K = [K1, . . . ,KK ], where K is the number of priority levels.

Kj ← ∅, j = 1, . . . , |Ω|.
t← 1, j ← 1.
repeat
Kj ← Kj ∪ {ωt}.
if S(xωt) \ S(xωt+1) 6= ∅ then
j ← j + 1.

end if
t← t+ 1.

until t = |Ω|
Kj ← Kj ∪ {ω|Ω|}. K ← j. K← [K1, . . . ,KK ].

satisfied. If k = k′, by construction we must have S(xω) = S(xω
′
) and thus

xωi = xω
′

i , i ∈ I. If, without loss of generality, k < k′, by construction we must

have S(xω) ⊃ S(xω
′
) and thus xωi ≥ xω

′
i , i ∈ I. Consider the following two

propositions.

Proposition 2.5.1. There exists an optimal solution, K̄, to model (2.14) and

a corresponding optimal solution, (x̄, ȳ), to model (2.13) with x̄ = (xωi )i∈I, ω∈Ω

such that x̄ satisfies the set of inequalities

x̄ω
′

i ≥ x̄ω
′′

i , i ∈ I, (2.18)

for all (ω′, ω′′) ∈ ΩD such that ω′ ∈ ΩI .

Proof. Let K∗ be an optimal solution to model (2.14), and (x∗,y∗)= (x∗ω,y∗ω)ω∈Ω

be the corresponding optimal solution to model (2.13). Given two scenarios,

ω′, ω′′ ∈ Ω, having S(x∗ω
′
) ⊇ S(x∗ω

′′
) implies having x∗ω

′
i ≥ x∗ω

′′
i , i ∈ I.
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Hence, if for all (ω′, ω′′) ∈ ΩD with ω′ ∈ ΩI we have S(x∗ω
′
) ⊇ S(x∗ω

′′
), the

proof is complete. Suppose for a pair (ω′, ω′′) ∈ ΩD with ω′ ∈ ΩI we have

S(x∗ω
′
) ⊂ S(x∗ω

′′
). Then, we construct a new solution, K̄, to model (2.14),

and a corresponding solution, (x̄, ȳ) = (x̄ω, ȳω)ω∈Ω, to model (2.13) such that

(i) S(x̄ω) = S(x∗ω), ω ∈ Ω \ {ω′}, and S(x̄ω
′
) = S(x∗ω

′′
),

(ii) (x̄, ȳ) satisfies constraints (2.13b)–(2.13d), (K̄, x̄) satisfies constraints

(2.13e)–(2.13f), and K̄ satisfies constraints (2.14b)–(2.14f), and

(iii) K̄ has no worse objective function value than K∗, i.e., G(K̄) ≤ G(K∗).

Repeating this argument for all (ω′, ω′′) ∈ ΩD with ω′ ∈ ΩI such that S(x∗ω
′
) ⊂

S(x∗ω
′′
) proves the proposition. Consider a new solution (K̄, x̄, ȳ) with (x̄, ȳ) =

(x̄ω, ȳω)ω∈Ω formed as follows. Set (x̄ω, ȳω) = (x∗ω,y∗ω) for ω ∈ Ω \ {ω′}, and

(x̄ω
′
, ȳω

′
) = (x∗ω

′′
,yω

′
(x∗ω

′′
)).

(i) This holds by construction.

(ii) Proving that (x̄, ȳ) satisfies constraints (2.13b)–(2.13d) is the same as

showing that (x̄ω, ȳω) ∈ Y ω, which holds for scenarios ω ∈ Ω\{ω′} since

for these scenarios (x̄ω, ȳω) = (x∗ω,y∗ω). Also, (x̄ω
′
, ȳω

′
) ∈ Y ω′ , where

(x̄ω
′
, ȳω

′
) = (x∗ω

′′
,yω

′
(x∗ω

′′
)), by the following observations:

• x∗ω
′′ ∈ Xω′′ and scenario ω′ dominates scenario ω′′. Thus, x∗ω

′′ ∈

Xω′ .
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• yω
′
(x∗ω

′′
) is the optimizer of model (2.17) for scenario ω′ and for

x = x∗ω
′′
, and thus (xω

′′
,yω

′
(x∗ω

′′
)) ∈ Y ω′′ .

By constraints (2.2e)–(2.2f), there exists an ordering, ω1, . . . , ω|Ω|, on the

set of scenarios so that S(x∗ω1) ⊇ S(x∗ω2) ⊇ · · · ⊇ S(x∗ω|Ω|). And, by

item (i) above we have this nested structure for S(x̄ω)ω∈Ω as well, possibly

after reordering the scenarios. Algorithm 3 constructs K̄ so that (K̄, x̄)

satisfies constraints (2.13e)–(2.13f), and K̄ satisfies constraints (2.14b)–

(2.14f).

(iii) G(K∗) =
∑

ω∈Ω q
ωhω(x∗ω), and G(K̄) =

∑
ω∈Ω q

ωhω(x̄ω). Since (x̄ω, ȳω)

= (x∗ω,y∗ω), ω ∈ Ω \ {ω′}, we have G(K̄) − G(K∗) = qω
′
[hω

′
(x̄ω

′
) −

hω
′
(x∗ω

′
)]= qω

′
[hω

′
(x∗ω

′′
) − hω

′
(x∗ω

′
)]. Hence, it suffices to show that

hω
′
(x∗ω

′′
) ≤ hω

′
(x∗ω

′
). Since x∗ω

′′ ∈ Xω′′ and ω′ dominates ω′′, we have

that x∗ω
′′ ∈ Xω′ . We also have S(x∗ω

′′
) ⊃ S(x∗ω

′
). Finally, since ω′ is

improving, we must have hω
′
(x∗ω

′′
) ≤ hω

′
(x∗ω

′
).

Proposition 2.5.2. There exists an optimal solution, K̄, to model (2.14) and

a corresponding optimal solution, (x̄, ȳ), to model (2.13) with x̄ = (xωi )i∈I, ω∈Ω

such that x̄ satisfies the set of inequalities

x̄ωi ≥ x̄∗ωi′ , ω ∈ Ω, (2.19)

for all (i, i′) ∈ ID.
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Proof. Let K∗ be an optimal solution to model (2.14), and (x∗,y∗) = (x∗ω,y∗ω)ω∈Ω

be the corresponding optimal solution to model (2.13). Suppose there exists

a pair (i, i′) ∈ ID for which x∗ does not satisfy the set of inequalities in (2.19).

Then, we construct a new solution, K̄, to model (2.14), and a corresponding

solution, (x̄, ȳ) = (x̄ω, ȳω)ω∈Ω, to model (2.13) such that

(i) (x̄, ȳ) satisfies constraints (2.13b)–(2.13d), (K̄, x̄) satisfies constraints (2.13e)–

(2.13f), and K̄ satisfies constraints (2.14b)–(2.14f),

(ii) K̄ has no worse objective function value than K∗, i.e., G(K̄) ≤ G(K∗),

and

(iii) x̄ satisfies the set of inequalities in (2.19) for pair (i, i′).

Repeating this argument for all pairs (i, i′) ∈ ID for which x∗ does not satisfy

the set of inequalities in (2.19) proves the proposition.

Given two scenarios, ω′, ω′′ ∈ Ω, by constraints (2.13e)–(2.13f) we have

either S(x∗ω
′
) ⊇ S(x∗ω

′′
) or S(x∗ω

′
) ⊂ S(x∗ω

′′
). Thus, there exists an or-

dering, ω1, . . . , ω|Ω|, on the set of scenarios so that S(x∗ω1) ⊇ S(x∗ω2) ⊇

· · · ⊇ S(x∗ω|Ω|). Since the set of inequalities in (2.19) are not satisfied for

pair (i, i′), there must exist a nonempty subset of scenarios under which ac-

tivity i is not selected, but activity i′ is selected. Due to the nested nature

of the sets S(x∗ωj), j = 1, . . . , |Ω|, this nonconforming subset of scenarios

must constitute a subset of the ordering ω1, ω2, . . . , ω|Ω|, without an inter-

mediary conforming scenario that satisfies the set of inequalities in (2.19).
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In other words, there must exist t, t′ with 0 ≤ t < t′ ≤ |Ω| such that

i, i′ ∈ S(x∗ωj) for j = 1, . . . , t, i 6∈ S(x∗ωj), i′ ∈ S(x∗ωj) for j = t + 1, . . . , t′,

and i, i′ 6∈ S(x∗ωj) for j = t′ + 1, . . . , |Ω|. Consider a new solution (K̄, x̄, ȳ)

with (x̄, ȳ) = (x̄ω, ȳω)ω∈Ω constructed as follows.

(x̄ω, ȳω) =

{
(x∗ω,y∗ω) for ω ∈ Ω \ {ωt+1, . . . , ωt′},
(x∗ω(i,i′),y

ω(x∗ω(i,i′))) for ω ∈ {ωt+1, . . . , ωt′}.

(i) Proving that (x̄, ȳ) satisfies constraints (2.13b)–(2.13d), is the same

as showing that (x̄ω, ȳω) ∈ Y ω, which holds for scenarios ω ∈ Ω \

{ωt+1, . . . , ωt′} since for these scenarios (x̄ω, ȳω) = (x∗ω,y∗ω). For scenar-

ios ω ∈ {ωt+1, . . . , ωt′}, (x̄ω, ȳω) ∈ Y ω, where (x̄ω, ȳω) = (x∗ω(i,i′),y
ω(x∗ω(i,i′))),

by the following observations:

• x∗ω ∈ Xω, x∗ωi = 0, x∗ωi′ = 1, and i dominates i′. Thus, x∗ω(i,i′) ∈ Xω.

• yω(x∗ω(i,i′))) is the optimizer of model (2.17) for scenario ω and for

x = x∗ω(i,i′), and thus (x∗ω(i,i′),y
ω(x∗ω(i,i′))) ∈ Y ω.

The new solution, (x̄ω)ω∈Ω, differs from the old one, (x∗ω)ω∈Ω, only in

scenarios ω ∈ {ωt+1, . . . , ωt′}. In these scenarios, we set x̄ωi = 1 and

x̄ωi′ = 0. This preserves the nestedness of the sets S(x̄ω)ω∈Ω. In fact, this

preserves the ordering of the scenarios as well. Algorithm 3 constructs

K̄ so that (K̄, x̄) satisfies constraints (2.13e)–(2.13f), and K̄ satisfies

constraints (2.14b)–(2.14f).
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(ii) G(K∗) =
∑

ω∈Ω q
ωhω(x∗ω), and G(K̄) =

∑
ω∈Ω q

ωhω(x̄ω). Since (x̄ω, ȳω)

= (x∗ω,y∗ω), ω ∈ Ω \ {ωt+1, . . . , ωt′}, we have G(K̄)−G(K∗) =∑
ω∈{ωt+1,...,ωt′}

qω[hω(x̄ω)−hω(x∗ω)] =
∑

ω∈{ωt+1,...,ωt′}
qω[hω(x∗ω(i,i′))−hω(x∗ω)].

Hence, it suffices to show that hω(x∗ω(i,i′)) ≤ hω(x∗ω) for ω ∈ {ωt+1, . . . , ωt′}.

Since x∗ω ∈ Xω, x∗ωi′ = 1, x∗ωi = 0, and i dominates i′, we must have

hω(x∗ω(i,i′)) ≤ hω(x∗ω).

(iii) By construction, we have i, i′ ∈ S(x̄ωj) for j = 1, . . . , t, i ∈ S(x̄ωj), i′ 6∈

S(x̄ωj) for j = t + 1, . . . , t′, and i, i′ 6∈ S(x̄ωj) for j = t′ + 1, . . . , |Ω|.

Hence, xωi ≥ xωi′ , ω ∈ Ω.

Due to Theorem 2.4.1, an immediate corollary to both propositions is

that the inequalities in (2.18) and (2.19) also hold for models (2.3) and (2.2).

Corollary 2.5.3. There exists an optimal solution, L̄, to model (2.3) and a

corresponding optimal solution, (x̄, ȳ), to model (2.2) with x̄ = (xωi )i∈I, ω∈Ω

such that x̄ satisfies the set of inequalities

x̄ω
′

i ≥ x̄ω
′′

i , i ∈ I, (2.20)

for all (ω′, ω′′) ∈ ΩD such that ω′ ∈ ΩI . Further, there exists an optimal

solution, L̄, to model (2.3) and a corresponding optimal solution, (x̄, ȳ), to

model (2.2) with x̄ = (xωi )i∈I, ω∈Ω such that x̄ satisfies the set of inequalities

x̄ωi ≥ x̄∗ωi′ , ω ∈ Ω, (2.21)

for all (i, i′) ∈ ID.
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We note that we do not use the term valid inequality for the cutting

planes (2.18) and (2.19). The reason is that the cutting planes (2.18) and

(2.19) may rule out some of the feasible region, even some of the optimal

solutions. But, what we guarantee is that there remains at least one optimal

solution which is feasible. These cutting planes are more powerful than valid

inequalities in helping improve the solution times because we allow them to get

rid of not only integer infeasible solutions, but also integer feasible solutions,

even some optimal solutions. Israeli and Wood [17] refer to such inequalities

as super-valid inequalities.

Another good point about the cutting planes (2.18) and (2.19) is that

we can extract them from the problem data before we solve the problem. They

are globally valid, i.e., valid for all nodes of the branch-and-bound tree. A naive

approach is to add them to the problem definition initially. However, typically

most of these cutting planes do not become tight in the LP-relaxation solution.

In order to avoid increasing the problem size unnecessarily, we place them in

a cut pool and add them only as necessary, i.e., we add only those that are

infeasible to the LP-relaxation solution. This is the approach we use employing

cutting planes (2.18) for model (2.4) and cutting planes (2.19) for model (2.15).

There is even a simpler way to use cutting planes (2.18) for model (2.15) and

cutting planes (2.19) for model (2.4). If we have cutting planes of the form

xω
′

i ≥ xω
′′

i , i ∈ I, we can fix variable sω′ω′′ = 1 in model (2.15) . Then,

constraint (2.15d) for pair (ω′, ω′′) reads xω
′

i ≥ xω
′′

i , i ∈ I. Similarly, if we

have cutting planes of the form xωi ≥ xωi′ , ω ∈ Ω, we can fix variable sii′ = 1
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in model (2.4) . Then, constraint (2.4d) for pair (i, i′) reads xωi ≥ xωi′ , ω ∈

Ω. Hence, we can both decrease the solution time and obtain a tighter LP

relaxation using these ideas.

Table 2.4 shows the effect of cutting planes (2.18) and (2.19). The

table is to be interpreted as Table 2.3. It is appropriate to compare the two

tables cell by cell. It is expected that using cutting planes in small problem

instances increases solution times, the reason being that small problems are

already simple to solve. Thus, there is no need to make them larger with

the hope of improving their LP-relaxation values. This notion is consistent

with the results for 3 scenarios. As the number of scenarios grows, the benefit

of the cutting planes is amplified yielding ratios of CPU times of 5, 10, 20,

even 160. For example, in the instances with 10 items and 54 scenarios, and

15 items and 27 scenarios, using cutting planes improves the solution time

of model (2.15) almost by a factor of 160. We observe the same improving

effect in instances in which we only spend an hour. We can solve some of the

instances to optimality in an hour that we could not solve in this time without

using the cutting planes. Similarly we can obtain one-hour-optimality-gaps

for several instances that we could not without using the cutting planes.
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Chapter 3

Branch-and-Price Approach for the Prioritized

Multidimensional Knapsack Problem

A branch-and-price algorithm relies on performing a branch-and-bound

algorithm on what is typically a column-based reformulation of an original

problem. A column-based formulation often has a tighter LP-relaxation, hence

yielding in a smaller branch-and-bound tree. On the negative side, a column-

based formulation has an exponential number of columns that are impractical

to handle simultaneously. Delayed column generation is an effective method

to handle this drawback. We start with a small number of columns that are

sufficient to form a feasible formulation and add additional columns as neces-

sary, until no more columns that can improve the LP-relaxation remain. For

more background on branch-and-price algorithms see the surveys by Barnhart

et al. [2] and Lübbecke and Desrosiers [26], and the book by Desaulniers et al.

[11].

3.1 A Serial Algorithm

In this section, we develop a branch-and-price decomposition algorithm

for model (2.12). Specifically, we construct a column-based reformulation of
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model (2.12), develop two branching strategies, and introduce a tabu-search

heuristic in order to speed up the overall algorithm. The key elements in a

branch-and-price algorithm are the reformulation process and the branching

rules since both affect the number of nodes in the branch-and-bound tree.

The former is important as the tighter the LP relaxation of the column-based

reformulation, the fewer the number of nodes in the tree. There are various re-

formulation strategies for stochastic integer programs, which can be classified

as scenario decomposition [e.g., 27], nodal decomposition [e.g., 42], complete

decomposition, and geographical decomposition [e.g., 40, 41]. The first three

strategies use the fact that the problem decomposes into scenario subproblems,

while the last uses a loosely coupled structure of an original deterministic prob-

lem. We prefer complete decomposition, since the resulting pricing problem

becomes the same as the original deterministic problem before applying prior-

itization. Hence, any specific algorithm developed for the original problem can

be used as the pricing-problem-solver in our branch-and-price implementation.

Branching rules are developed to guarantee integrality of the original

decision variables. The de facto strategy in branching rules is to preserve the

pricing problem structure even after branching. We develop two branching

strategies; one preserves the pricing problem structure, the other does not,

and we show that the latter outperforms the former significantly in terms of

the overall running time.
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3.1.1 Column-based Reformulation

In complete decomposition for a two-stage stochastic integer program,

the second-stage constraints are handled by the pricing problem, and all other

constraints are kept in the master problem. Specifically, given ω ∈ Ω, let

xωj = (xωj1 , . . . , x
ωj
|I|), j ∈ Kω, enumerate feasible solutions of the constraint

set

{
(xi)i∈I :

∑
i∈I

cωitxi ≤ bωt , t ∈ T, xi ∈ {0, 1}, i ∈ I

}
.

In formulation (2.12), setting xωi =
∑

j∈Kω
λωjxωji , where λωj ∈ {0, 1}

and
∑

j∈Kω
λωj = 1, ω ∈ Ω, we obtain the following column-based reformula-

tion:

max
s, λ

∑
ω∈Ω

qω
∑
i∈I

aωi
∑
j∈Kω

xωji λ
ωj (3.1a)

s.t.
∑
j∈Kω

xωji λ
ωj ≥

∑
j∈Kω

xωji′ λ
ωj + sii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω, (3.1b)∑

j∈Kω

λωj = 1, ω ∈ Ω, (3.1c)

λωj ∈ {0, 1}, j ∈ Kω, ω ∈ Ω, (3.1d)

(2.12b), (2.12c). (3.1e)

Model (3.1) is referred to as the master program (MP) and its LP

relaxation as the master linear program (MLP). To solve the MP, we apply a

branch-and-bound algorithm, using the MLP. Including all elements of the set
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Kω, ω ∈ Ω, in the MLP usually leads to a very large problem. We start with

a partial set K ′ω ⊂ Kω, ω ∈ Ω, making sure that the new restricted master

linear program (RMLP) is feasible. Given a solution to the RMLP, along with

its dual variables, we then, search through each set Kω to find the element

with the largest positive reduced cost, by solving a pricing problem. If the

largest reduced cost is positive, we update K ′ω, adding the associated column,

and we resolve the RMLP. We repeat this process until the largest reduced

cost over all Kω, ω ∈ Ω, is non-positive. The termination criterion means that

adding further columns does not improve the optimal value of RMLP. We now

define both RMLP and the pricing problems:

max
s, λ

∑
ω∈Ω

∑
j∈K′ω

∑
i∈I

qωaωi x
ωj
i λ

ωj (3.2a)

s.t.
∑
j∈K′ω

(xωji − x
ωj
i′ )λωj ≥ sii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω, (3.2b)

∑
j∈K′ω

λωj = 1, ω ∈ Ω, (3.2c)

0 ≤ λωj ≤ 1, j ∈ K ′ω, ω ∈ Ω, (3.2d)

0 ≤ sii′ ≤ 1, i 6= i′, i, i′ ∈ I, (3.2e)

(2.12b). (3.2f)

Let πωii′ and αω be the dual variables corresponding to the constraints

(3.2b) and (3.2c), respectively. The pricing problem for scenario ω (i.e., set

Kω) is:
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max
x

∑
i∈I

(
qωaωi +

∑
i′∈I,i′ 6=i

(πωi′i − πωii′)

)
xi (3.3a)

s.t.
∑
i∈I

cωitxi ≤ bωt , t ∈ T, (3.3b)

xi ∈ {0, 1}, i ∈ I. (3.3c)

After the column generation process has terminated, i.e., no more

columns with positive reduced cost remain, the solution to the MLP may

not be integer. An immediate idea is to solve the problem at hand to IP-

optimality with the existing columns. But, this gives only a heuristic solution

to the MP. The reason is that whenever we branch we need to check whether

some of the excluded columns in the parent node can now enter the basis as

their reduced cost may now be positive due to new branching restrictions. In

the next section, we develop two branching rules that guarantee we find an

IP-optimal solution.

3.1.2 Branching

Branching on the convexity variables, i.e., the λ variables in model (3.1),

may not be a good practice. It may not be obvious how to fix the columns

corresponding to a component of λ to zero or one, in the pricing problem. To

avoid this complication we branch on the original variables of model (2.12).

Typically, in branch-and-price applications, branching on the original vari-

ables is done in such a way that the structure of the pricing problem is not

destroyed. In our application we consider two branching rules; one destroys
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the pricing problem structure, the other does not; and we show that the for-

mer outperforms the latter remarkably in terms of running time. A simple

consequence is that trading a nicely structured pricing problem for a smaller

branch-and-bound tree can sometimes be desirable. For both branching rules,

we need the following proposition.

Proposition 3.1.1. Relaxing constraint (2.12c) to be continuous in model

(2.12) does not change its optimal value. Furthermore, given any feasible solu-

tion (x, s) to model (2.12) with the continuous relaxation of constraint (2.12c),

we can find integral (x, s̄) that are feasible and have the same objective function

value.

Proof. We first prove the second part. We have integer x and (possibly)

non-integer s that satisfy the constraints of model (2.12), except that con-

straint (2.12c) is relaxed. We take x as given, and find integer s̄’s that form a

feasible solution to model (2.12). Since the latter variables do not appear in

the objective function, doing so is sufficient to prove the result. Given x and

a pair of items, (i, i′), there are two possibilities:

• ∃ at least one ω ∈ Ω such that xωi < xωi′ ,

• ∀ω ∈ Ω, xωi ≥ xωi′ .

We further analyze the first case together with constraints (2.12b),

(2.12d) and the continuous relaxation of (2.12c). Noting that x is binary,

whenever xωi < xωi′ for some ω ∈ Ω, by constraint (2.12d) for pair (i, i′) we
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must have sii′ = 0. Then, by constraints (2.12b) and the relaxation of (2.12c),

we have si′i = 1. Finally, considering constraint (2.12d) for pair (i′, i), we

have that xωi ≤ xωi′ , ∀ω ∈ Ω. Hence, given a pair of items (i, i′) we have two

possibilities:

• ∀ω ∈ Ω, xωi ≤ xωi′ ,

• ∀ω ∈ Ω, xωi ≥ xωi′ .

Setting s̄ii′ = 0, s̄i′i = 1 in the first case, and s̄ii′ = 1, s̄i′i = 0 otherwise,

gives us a feasible and integer s̄. We note that a tie can occur, i.e., both of

the cases may be satisfied. In this case, although either of the settings work,

without loss of generality, we set the lower indexed item to precede the upper

indexed one, i.e., s̄ii′ = 1, s̄i′i = 0 for i < i′.

By the second part of the proposition, the relaxed model cannot have

a better optimal objective function value than the original model. Thus, both

the relaxed and the non-relaxed models have the same optimal value.

Selection Branching

Following the result of Proposition 3.1.1 at any node of the branch-and-bound

tree, after the column generation process has terminated, we check whether the

resulting x solution is integral. If so, we fathom the node deeming it feasible. If

not, we choose a pair (i∗, ω∗) such that 0 < xω
∗

i∗ < 1. On one branch, we fix xω
∗

i∗
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to 0, on the other, to 1. To do so, we partition the columns corresponding to set

K ′ω∗ in model (3.2) into K ′ω∗ and K
′
ω∗ such that K ′ω∗ = {j ∈ K ′ω∗ | x

ω∗j
i∗ = 0},

and K
′
ω∗ = {j ∈ K ′ω∗| x

ωj
i∗ = 1}. On one branch, we fix λω

∗j = 0, for j ∈ K ′ω∗ ,

and on the other branch we fix λω
∗j = 0, for j ∈ K

′
ω∗ . To make sure that

pricing problems do not produce such columns, we add constraints xi∗ = 1

and xi∗ = 0, correspondingly, to the pricing problem indexed by ω∗.

The above-detailed branching, what we call selection branching, is valid

as it satisfies the following two criteria: First, there are finitely many branching

objects, i.e., at most |I| × |Ω|. Second, given any fractional solution x, we can

find a corresponding branching object, i.e., a pair (i∗, ω∗) with 0 < xω
∗

i∗ < 1,

such that the fractional solution x is not feasible to either of the two sibling

branches.

Selection branching does not destroy the structure of the pricing prob-

lems. Fixing some variables in RCASP just decrements the number of items

in the problem by one.

Precedence Branching

Our second branching rule branches on the precedence, i.e., s, variables. We

first note that this branching is not valid in model (2.12). That is, if we

relax the x variables to be continuous, and require only s variables to be

integer, we may obtain a non-integral optimal x solution. This is mainly due

to the underlying deterministic problem. Consider, for instance, a knapsack

problem with two identical items and two scenarios. In both scenarios, the
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items have identical benefits and weights, and we have budget to accommodate

only one and a half items. Then, the optimal solution to model (2.12) with

x variables relaxed is to have one and a half items in both scenarios, e.g.,

x1 = 1, x2 = 1/2, s12 = 1, s21 = 0. One explanation as to why this branching

rule works in our branch-and-price algorithm is that we already have integral

x variables (columns) in the RMLP. What remains to be shown for precedence

branching is that the convex combination of these columns is also integral.

The details of the precedence branching scheme follow: Upon conver-

gence of column generation, we check the columns with positive solution value.

If we can find a pair of items (i, i′), i, i′ ∈ I, a pair of (possibly identical) sce-

narios (ω, ω′), ω1, ω2 ∈ Ω, and a pair of columns (j, j′), j ∈ Kω, j
′ ∈ Kω′ ,

such that xω ji = 1, xω
′ j′

i = 0 and xω ji′ = 0, xω
′ j′

i′ = 1, we branch on sii′ . As in

selection branching, branching on the original variables require translation of

ideas between the original formulation and the column-based re-formulation.

On one branch, we set sii′ = 1, si′i = 0, fix to 0 all columns such that item i

has coefficient 0 and item i′ has coefficient 1, and add the constraint xi ≥ xi′

to all pricing problems; and we do just the opposite on the other branch. If

we cannot find such pairs of items and scenarios, we already have an integral

x solution, and based on Proposition 3.1.1 we fathom the node.

Although it may seem complicated to implement precedence branching,

it is quite simple. We pool all nonzero-solution columns, disregarding to which

scenario they belong. We then check all possible pairs of columns in the pool.

Given a pair of columns, if the difference of the set of items having coefficient 1
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in the first column from the set of items having coefficient 1 in the second, and

the same difference for the second column from the first are both nonempty,

we have such a pair. That is, if: (a) item i has coefficient 1 in the first column

and coefficient 0 in the second, and (b) item i′ has coefficient 1 in the second

column and coefficient 0 in the first, then, (i, i′) constitutes such pair. In

our implementation, for each distinct item pair we count the number of times

these two items are involved in such occurrences, and choose the pair having

the highest frequency as a branching object.

Before proving the validity of precedence branching we, set notation

and state an assumption. Given a vector x ∈ {0, 1}|I|, let S(x) denote the set

of selected items, i.e., S(x) = {i ∈ I |xi = 1}; and, let P ω(x) denote the total

profit of these items under scenario ω ∈ Ω, i.e., P ω(x) =
∑

i∈S(x) a
ω
i . With

this notation, S(xωj) denotes the set of items having coefficient 1 in column j

of scenario ω, and P (xωj) denotes the total profit of these items.

A1: Given two vectors x, x̄ ∈ {0, 1}|I| such that S(x) ⊂ S(x̄), we have

P ω(x) 6= P ω(x̄), ∀ω ∈ Ω.

Theorem 3.1.2. If A1 holds, precedence branching is a valid branching rule,

i.e.,

• the branch-and-bound algorithm terminates in a finite number of steps;

• a current solution is not feasible to any of the sibling nodes; and,

• the branching rule finds a branching object if and only if the current x

solution is fractional.
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Proof.

• There are finitely many branching objects, i.e., |I| · (|I| − 1)/2.

• The second condition holds by the following observation. Suppose we

have branched on pair (i, i′). In one of the branches, we add constraint

xi ≥ xi′ to all of the pricing problems, and fix to 0 all columns in the

RMLP that have coefficient 0 for item i and 1 for item i′. Thus, after

the column generation is terminated it is not possible to find a column

j′ such that xω j
′

i = 0, xω j
′

i′ = 1 for some w ∈ Ω. Hence, it is not possible

to find a pair of columns (j, j′) such that (i, i′) qualifies as a branching

object again. We can repeat this argument in the other branch since we

add the constraint xi′ ≥ xi to the pricing problem.

• If the current x solution is not fractional, we must have only one column

per scenario that has nonzero solution value. That is, only one of the

columns must have solution value 1, and the others must have 0. This

holds because of constraint (3.2c). Having more than one nonzero column

makes one of the xωi (where xωi =
∑

j∈K′ω
λω jxω ji ) fractional, as each

column is distinct and each element of the columns is zero or one. Let

ω1j1, . . . , ω|Ω|j|Ω| index these non-zero columns. By constraint (3.2b) we

must have S(xω1j1) ⊆ · · · ⊆ S(xω|Ω|j|Ω|), possibly after reordering the

scenarios. To prove this claim, suppose the opposite. Then, there must

exist two columns ωmjm and ωnjn such that S(xωmjm)\S(xωnjn) 6= ∅ and
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S(xωnjn) \ S(xωmjm) 6= ∅. But then, for item pair (i, i′), i ∈ S(xωmjm) \

S(xωnjn), i′ ∈ S(xωnjn) \ S(xωmjm), constraint (3.2b) is violated. This

nestedness of the sets implies that for each pair of scenarios, the set of

items selected in one of the scenarios is a subset of the other, leaving no

possibility for the branching rule to find a branching object.

We now prove the second part. If we cannot find a branching object, we

can order nonzero-solution columns such that S(xω1j1) ⊆ · · · ⊆ S(xωkjk).

As there is at least one nonzero-solution column per scenario, we have

k ≥ |Ω|. If k = |Ω|, the proof is complete since the trivial convex

combination of only one integral column is integral. We show that k >

|Ω| leads to a contradiction. If k > |Ω|, we must have two nonzero-

solution columns ωjm and ωjn for some scenario ω ∈ Ω such that, without

loss of generality, S(xωjm) ⊂ S(xωjn). And, A1 ensures, without loss of

generality, that P (xωjm) < P (xωjn). In this case, we form a new solution

by changing only λωjn and λωjm variables. We set the value of λωjn to

λωjn + λωjm , and set the value of λωjm to 0. This new solution is feasible

to model (3.2) and has better objective function value, contradicting the

optimality of the current solution.

3.1.3 Primal Heuristic

We develop a primal heuristic based on a tabu-search approach [e.g.,

14]. Efficient heuristic methods help terminate branch-and-bound based al-

72



gorithms earlier by improving the upper bound directly, improving the lower

bound indirectly when logical fixing, variable fixing, and/or reduced-cost fixing

is applied, and pruning more nodes based on bound-checking.

Heuristic and meta-heuristic algorithms based on local search start with

a given solution and move to its neighbors, hoping to visit solutions with better

objective function values. The initial solution can be chosen among one of the

good solutions, or it can be random. The latter is often preferred especially

if the heuristic may become stuck in a local optima. Sometimes, a simple

local search is performed instead of more complicated ones; but the search

is repeated many times starting from randomly constructed initial solutions

[e.g., 12].

Two main elements in local-search-based heuristics are coding a feasible

solution of the problem as a string of values, and defining a move function from

one solution to another. To code a feasible solution, we use the permutation of

items. As the move function, we use a swap function: At any iteration, given

the current solution and two items, the swap function swaps the items to move

to a new solution. Selecting which items to swap is important, and strategies

involving a candidate neighbor list play an important role in tabu-search. To

illustrate, we give two extreme alternatives: One is to consider swapping all(|I|
2

)
item pairs, and to move to the best one. The other is to choose a random

pair from the
(|I|

2

)
possibilities, and to move to it. The first option leads to

a locally good choice, but is more prone to becoming stuck in a local optima.

Additionally, it takes more computational effort than the second option. We
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use a candidate list strategy that is between these two extremes. We define

the candidate neighbors as follows: Choose a random item, consider swapping

all other |I|−1 items with it, and move to the solution with the best objective

function value.

Tabu search, as the name suggests, puts restrictions on the search. It

deems some moves as tabu, and forbids them for some number of iterations,

to diversify the search. We label both of the items chosen for swap as tabu,

eliminating them from the random list of candidate items for some number of

iterations. After selecting the random item, there is no tabu on selecting the

second item to swap. We still use the entire list, try each of the |I| − 1 items

as paired with the randomly chosen item, and choose the one leading to the

best objective function value. The number of iterations items are banned is

called the tabu tenure, and is a parameter defining the search.

Tabu search is well known for its diversification and intensification

strategies. The above strategy of making some items tabu is a means for

diversification. For intensification, we save the top quality solutions we en-

counter throughout the search. After the search terminates, we use these elite

solutions as a starting solution and do a separate search for each of them.

The aim is to explore the good solutions further, hoping to visit better neigh-

boring solutions. Two parameters are important here: One is the size of the

list of elite solutions. The larger the size, the greater the chance of visiting

the optimal solution. On the other hand, the larger the size, the greater the

search time. The second parameter uses the notion of a distance between two
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solutions, and ensures the list of elite solutions contains only those that ex-

ceed a pairwise minimum distance threshold. The point is that, we do not

want to fill the list with multiple similar solutions or solutions near the same

local optimum. Combining the two parameters, we update the list of elite

solutions as follows: At each iteration we consider the current permutation as

a candidate for the list. If the list contains a permutation that has a better

objective function value and that is close to the current permutation according

to the distance parameter, then current permutation is not inserted into the

list. Otherwise, the current permutation is inserted into the list. All of the

permutations that have both: (a) a worse objective function value than the

inserted permutation and (b) a distance less than the distance parameter are

removed from the list. Finally, if the list’s size becomes larger than the size pa-

rameter, the permutation with the worst objective function value is removed.

There is always the possibility that the list shrinks from iteration to iteration,

but its size should be at least one, and at most the size parameter.

A permutation can be defined by the s vector used in models (2.12)

and (3.2). The distance function we use is the Hamming distance between the

two solutions, s and s′. Hence, it can be at least 0 and most
(|I|

2

)
.

Making a move to a solution tabu is based on a short term memory

structure, whereas keeping the list of elite solutions is based on a long-term

memory structure. One more diversification routine is implemented based on a

long-term memory structure. A search might become stuck in a local optimum

in spite of our process of making solutions tabu. To help prevent this, we can
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store properties of the mostly-visited solutions, and start the search again

from a permutation with differing properties. We implement this as follows:

Permutations are used to define a score for each item. The first item in the

sequence receives the lowest score and the last one receives the highest score.

At each iteration, we sum the scores of the items. After the search is complete,

we order the items based on descending score, and do another search starting

from this sequence.

Compiling all of the ideas above, we implement the heuristic in two

passes. The first pass performs n + 1 searches, where n is a parameter of

heuristic. The first search starts from a prespecified permutation and the re-

maining n searches start from random permutations. The number of iterations

in each search is defined by another parameter, m. During each search of the

first pass, we keep a separate scoring list for items and a common list of elite

solutions. In the second pass, we do a separate search starting from the scor-

ing lists formed during the first pass. We also do a search for each of the

permutations in the list of elite solutions. Hence, in the second pass, there are

as many searches as the size of the resulting list of elite solutions plus n + 1.

After finishing the second pass, the heuristic reports the permutation with the

best objective function value.

In our implementation, the parameters are as follows: The number of

initial random-start searches, n, is equal to the number of items in the problem,

i.e., |I|. The number of iterations per search, m, is equal to 100. The tabu

tenure is equal to 1/3|I|. The size of the elite solution list is 1/2|I|. Finally,
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the distance parameter is |I|.

3.1.4 Additional Implementation Details

Let z∗MLP denote the optimal value of the LP relaxation of model (3.1),

z∗RMLP,k denote the the optimal value of model (3.2) at iteration k of the

column-generation algorithm, and z∗ωk denote the optimal value of model (3.3)

for scenario ω at iteration k. At every iteration k, z∗RMLP,k forms a lower bound

for z∗MLP , and z∗RMLP,k is nondecreasing. Hence, at each iteration we obtain

an improving lower bound for the optimal MLP. As an upper bound, we use

the quantity [e.g., 26]:

zMLP,k = z∗RMLP,k +
∑
ω∈Ω

z∗ωk . (3.4)

Unfortunately, zMLP,k is not necessarily nonincreasing, and so we keep track

of the best upper bound. If the upper bound is smaller than the objective

function value of the incumbent solution, the corresponding branch-and-bound

node can be pruned. Also, when these upper and lower bounds are equal, or

deemed sufficiently close, we can terminate the column-generation process.

One other implementation issue concerns the column elimination. As

column generation continues, some columns generated at the early iterations

may never enter the basis again. Hence, we might want to delete columns

that stay out of the basis for some pre-specified number of iterations. But,

we need to be wary of cycling that can occur if column elimination is per-

formed too aggressively. Another form of column elimination is based on the
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number of branch-and-bound nodes for which that column never enters the

basis. Columns generated at a node are inherited by the descendants of that

node. It may happen that, some of the columns never prove to be useful in the

descendants, and hence, we can eliminate those columns from further consid-

eration [e.g., 24]. In our implementation, neither form of column elimination

significantly improves the algorithm’s performance.

A third issue involves feasibility restoration. Both of our branching

rules force elimination of some columns. In the corresponding child nodes,

the RMLP with the remaining columns may be infeasible. In this case, we

must initialize with new columns so that column generation can restart. The

same issue also exists at the root node. There is a simple way to handle

this. Whatever branching rules we use, regardless of the form of the RMLP,

we simply add columns corresponding to the null solution so that the RMLP

becomes feasible. That is, adding |Ω| columns consisting of all 0s except a

single 1 at the index corresponding to the ωth position yields a feasible RMLP.

3.2 Computational Results

Our branch-and-price algorithm is implemented using COIN-BCP, a

serial and parallel branch-cut-price framework developed and maintained by

the COIN-OR initiative [7]. BCP is a software system that solves mixed-

integer linear programming problems by the branch-and-bound algorithm with

linear programming relaxations. It maintains the branch-and-bound tree, a

pool of cuts and columns, and offers the user a wide variety of IP solution
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strategies, such as, strong branching, variable selection strategies, tree search

strategies, etc. In branch-and-price, the user needs an LP solver to solve RMLP

and an IP solver to solve the pricing problems. For this purpose, BCP uses

COIN-OSI, another COIN-OR project, as an interface to various commercial

or open-source solvers, such as Cplex, Xpress, COIN-CBC, etc.

When running the branch-and-price algorithm on a single processor, we

use Cplex version 10.1 to solve both the master and pricing problems. We use

the problem instances described in Section 2.3. We run our branch-and-price

algorithm on a Dell Precision 530 Workstation with an Intel Xenon 1.8 GHz

dual processor with 1 GB RAM. We solve the problems to a 0.01% optimality

gap, unless otherwise stated. While presenting the results, whenever we say

“average”, we mean the geometric average. We use geometric average as a

summary statistic, since we typically consider the ratio of running times when

comparing two algorithms.

3.2.1 Branching Rules

We first give computational results comparing the precedence branch-

ing with and the selection branching strategies described in Section 3.1.2. The

latter strategy proved to be highly inefficient, only able to solve small-sized

problems. Hence, to compare both branching rules, we use small problem in-

stances, (6-10) and (10-10). In Table 3.1, we compare two branching rules on 26

problem instances using two tree search strategies: breadth-first search (BFS)

and best-bound search (BBS). Depth-first search (DFS) is not included because
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Table 3.1: Comparing branching rules. BFS stands for a breadth-first tree
search strategy; BBS for a best-bound first search strategy. Speedup columns
give the ratio of running times under selection branching to that under prece-
dence branching. Hence, values greater than one favor precedence branching.

BFS BBS
prec. bran. selec. branc. prec. bran. selec. bran.

Prob.
Inst.

#
node

run
time

#
node

run
time

s-up #
node

run
time

#
node

run
time

s-up

6-10-1-1 1 0 1 0 3.00 1 0 1 0 0.33
6-10-3-0 1 0 3 0 1.25 1 0 1 0 1.67
6-10-3-1 1 0 1 0 1.67 1 0 1 0 0.83
6-10-9-0 7 0 15 0 2.14 5 0 9 0 1.56
6-10-9-1 1 0 1 0 1.00 1 0 1 0 0.85
6-10-18-0 3 0 15 1 3.06 3 0 7 0 1.70
6-10-18-1 25 1 33 1 0.98 17 1 17 1 1.26
6-10-27-0 3 0 65 7 16.06 3 0 13 1 2.53
6-10-27-1 15 1 115 8 5.62 9 1 117 8 9.62
6-10-54-0 7 2 4685 828 402 7 2 179 23 11.92
6-10-54-1 51 7 30401 3400 494 23 4 2629 362 95.59
6-10-81-0 7 3 1.93M 360K* 104.2K 5 3 1.26M 379.8K* 117.8K
6-10-81-1 5 3 1.29M 378K* 116.1K 5 3 15521 2068 630
Average 28.64 9.04
10-10-1-1 1 0 1 0 1.25 1 0 1 0 0.75
10-10-3-0 171 5 209 6 1.29 171 5 187 6 1.17
10-10-3-1 3 0 7 0 2.27 3 0 7 0 2.32
10-10-9-0 143 15 5309 661 45.49 95 11 4665 617 57.66
10-10-9-1 131 12 771 81 6.77 73 7 521 65 9.16
10-10-18-0 117 21 241523 72.9K 3528 89 14 144.7K 34.3K 2389
10-10-18-1 183 21 1131 283 13.56 51 7 787 147 20.05
10-10-27-0 145 48 990345 360K* 7494 89 31 1.02M 360K* 11434
10-10-27-1 75 27 264714 557K* 20.5K 45 18 44043 19933 1133
10-10-54-0 151 114 73490 360K* 3153 89 69 70435 360K* 5224
10-10-54-1 373 177 68234 360K* 2031 155 66 80177 360K* 5447
10-10-81-0 125 185 29872 360K* 1947 51 94 30234 360K* 3824
10-10-81-1 251 396 23421 360K* 908 159 246 28765 360K* 1464
Average 169.32 170.89
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of memory limitations. In most of these problem instances, the combination of

selection branching and depth-first search results in an out-of-memory error.

Table 3.1 provides two columns to summarize the results. The second column

gives the running time of the algorithm in terms of seconds. Some values for

selection branching are given with asterisk sign, denoting lower bound esti-

mates for the running time. That is, after the given time we terminate the

algorithm without waiting for the algorithm to solve optimally. The first col-

umn represents the total number of branch-and-bound nodes evaluated before

terminations.

Precedence branching solves all problem instances within ten minutes,

and largely outperforms selection branching. The last column in each search

strategy, speedup, gives the ratio of the running time of selection branching to

that of precedence branching so that values greater than 1 favor precedence

branching. On average, precedence branching is 28.64 times better in the

(6,10) data set, if breadth-first search is used. The same number is 169.32

for the (10,10) data set. If, instead we use best-bound search, the speedup is

smaller for the (6,10) data set, but about the same for the (10,10) data set.

The benefit of precedence branching becomes amplified as the problem size

increases, either in terms of the number of scenarios or the number of items.

Based on the superior performance of precedence branching, we use this

branching rule for all other remaining computational experiments. We also

select BBS as the search strategy in the computational studies that follow.
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Table 3.2: The contribution of the primal heuristic. Speedup columns specify
the ratio of the algorithm’s running time not using the primal heuristic to that
using the primal heuristic. Hence, values greater than 1 favor the heuristic.

Tolerance: 0.01% Tolerance: 5%
w. heur. w.o. heur. w. heur. w.o. heur.

Prob.
Inst.

#
node

run
time

#
node

run
time

s-up #
node

run
time

#
node

run
time

s-up Prob.
Inst.

6-10-9-0 1 0 7 0 1.06 5 2 141 13 8.60 10-10-9-0
6-10-9-1 1 0 1 0 0.40 1 1 53 5 5.91 10-10-9-1
6-10-18-0 3 0 5 0 0.62 3 3 37 8 3.19 10-10-18-0
6-10-18-1 17 1 21 1 0.92 1 2 53 7 4.51 10-10-18-1
6-10-27-0 1 1 3 0 0.58 5 7 107 35 5.15 10-10-27-0
6-10-27-1 9 1 15 1 1.03 1 3 55 19 5.63 10-10-27-1
6-10-54-0 3 1 7 2 1.30 7 17 115 81 4.73 10-10-54-0
6-10-54-1 23 5 39 5 1.19 1 5 123 58 10.79 10-10-54-1
6-10-81-0 5 5 7 3 0.76 3 21 95 138 6.71 10-10-81-0
6-10-81-1 5 5 7 3 0.81 9 42 183 263 6.27 10-10-81-1
Average 0.82 5.83
10-10-9-0 95 11 159 15 1.32 1 2 127 38 17.93 15-10-9-0
10-10-9-1 73 8 81 8 1.01 1 3 369 108 41.21 15-10-9-1
10-10-18-0 45 11 69 13 1.16 1 4 903 524 121.1 15-10-18-0
10-10-18-1 51 9 69 9 1.06 1 4 51 27 6.81 15-10-18-1
10-10-27-0 55 25 107 35 1.38 1 6 1241 1288 212.6 15-10-27-0
10-10-27-1 29 15 55 19 1.27 51 178 4929 4658 26.24 15-10-27-1
10-10-54-0 89 72 147 99 1.37 1 26 4317 1035 387 15-10-54-0
10-10-54-1 73 48 129 62 1.28 1 27 183 816 30.78 15-10-54-1
10-10-81-0 47 95 95 140 1.48 1 19 651 3327 173.2 15-10-81-0
10-10-81-1 113 210 199 289 1.37 35 1047 5949 25551 24.4 15-10-81-1
Average 1.26 52.89
15-10-9-0 83 37 137 44 1.21 1 4 281 203 51.7 20-10-9-0
15-10-9-1 213 89 375 115 1.30 1 4 1177 832 190.4 20-10-9-1
15-10-18-0 549 428 917 576 1.35 1 8 3495 5431 677.1 20-10-18-0
15-10-18-1 29 26 51 28 1.11 1 15 1759 3475 227.7 20-10-18-1
15-10-27-0 749 1018 1431 1490 1.46 1 11 799 2344 212.8 20-10-27-0
15-10-27-1 7655 7222 11925 9638 1.33 1 50 31151 110.5K 2192 20-10-27-1
15-10-54-0 3227 9298 5357 12487 1.34 1 27 34259 249.1K 9212 20-10-54-0
15-10-54-1 4227 11298 5789 14573 1.29 1 81 44556 289.4K 1601 20-10-54-1
15-10-81-0 365 2767 677 3511 1.27 1 40 19249 234.8K 5873 20-10-81-0
15-10-81-1 5219 27798 8963 35648 1.28 61 10097 10923 360K* 35.65 20-10-81-1
Average 1.29 541.95
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3.2.2 The Primal Heuristic

We carry out computational tests to assess the potential benefit of the

primal heuristic described in Section 3.1.3. We test for two different settings:

In the first, the test problems are solved up to a 0.01% optimality gap; in the

second, up to 5%. For the first setting, we use the problem instances (6,10),

(10,10) and (15,10). For the second setting, we use instances (10,10), (15,10),

and (20,10). The other instances are omitted since solving them without the

heuristic takes too much time, even up to 5% optimality.

The results are displayed in two portions in Table 3.2. The left portion,

along with the problem instances in the left-most column, gives the results

when the problems are solved to within a 0.01% tolerance. The right portion

with problem instances in the right-most column, gives the same results when

the problems are solved to within a 5% tolerance. The speedup column in each

portion is the ratio of the running time of the algorithm when the heuristic is

not applied to that of the case when the heuristic is applied. Hence, values

greater than 1 favor the heuristic.

In the case of solving problems to within a 0.01% tolerance, heuristic

seems to have little impact on running time. In our smallest data set, (6,10),

the computational effort associated with the heuristic is more than its benefit

in terms of reducing the search tree. In the case of solving with a 5% tolerance,

using the heuristic significantly reduces the running time. In both cases, the

effect of the heuristic is greater as the problem size increases in terms of the

number of items.
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Table 3.3: Cplex results. The speedup columns give the ratio of Cplex’s
running time to that of our branch-and-price algorithm. Hence, values greater
than 1 favor branch-and-price algorithm.

Tolerance: 0.01% Tolerance: 5%

Prob.
Inst.

# node
run
time

s-up # node
run
time

s-up Prob.
Inst.

6-10-9-0 1 0 0.66 60 3 1.79 10-10-9-0
6-10-9-1 10 0 0.84 60 2 2.54 10-10-9-1
6-10-18-0 5 0 0.24 200 9 3.56 10-10-18-0
6-10-18-1 18 0 0.23 50 4 2.70 10-10-18-1
6-10-27-0 10 1 0.99 500 24 3.54 10-10-27-0
6-10-27-1 15 1 1.01 200 11 3.27 10-10-27-1
6-10-54-0 1 2 1.11 3300 260 15.08 10-10-54-0
6-10-54-1 100 9 2.09 990 82 15.17 10-10-54-1
6-10-81-0 1 1 0.20 23400 3020 146.4 10-10-81-0
6-10-81-1 12 1 0.18 27700 4375 104.1 10-10-81-1
Average 0.55 8.41
10-10-9-0 348 4 0.38 1930 134 54.14 15-10-9-0
10-10-9-1 136 2 0.32 1400 67 23.45 15-10-9-1
10-10-18-0 683 15 1.35 500 66 15.25 15-10-18-0
10-10-18-1 174 6 0.74 1190 68 16.98 15-10-18-1
10-10-27-0 3800 108 4.25 13317 3459 570.6 15-10-27-0
10-10-27-1 583 31 2.11 5600 2113 11.9 15-10-27-1
10-10-54-0 13800 980 13.56 12140 12070 465.5 15-10-54-0
10-10-54-1 2466 294 6.08 923 484 18.23 15-10-54-1
10-10-81-0 185.2K 360K* 3803 33468 50081 2607 15-10-81-0
10-10-81-1 3.12M 336.1K 1601 41000 360K* 344 15-10-81-1
Average 7.47 83.76
15-10-9-0 7000 459 12.52 7523 2289 581.6 20-10-9-0
15-10-9-1 2515 62 0.70 230 45 10.39 20-10-9-1
15-10-18-0 3740 640 1.49 11400 4898 610.6 20-10-18-0
15-10-18-1 2137 147 5.73 1600 565 37.05 20-10-18-1
15-10-27-0 350K 415.6K* 408.3 4400 2348 213.1 20-10-27-0
15-10-27-1 91700 200K 27.69 70300 360K* 7142 20-10-27-1
15-10-54-0 186.6K 360K* 38.72 40500 228.8K 8460 20-10-54-0
15-10-54-1 78592 110.9K 9.81 62300 360K* 1992 20-10-54-1
15-10-81-0 449.3K 1.06M* 384.6 32300 360K* 9003 20-10-81-0
15-10-81-1 192K 360K* 12.95 26500 360K* 35.65 20-10-81-1
Average 16.61 507.15
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3.2.3 Comparing with Cplex

In this section, we solve model (2.12) with Cplex version 10.1 and com-

pare the results with those of Table 3.2 which uses our branch-and-price al-

gorithm with precedence branching and the primal heuristic on model (3.1).

Table 3.3 gives the Cplex results. The table reads as the previous ones, ex-

cept for the speedup column, which now gives the ratio of the running time

of Cplex to the running times of Table 3.2 using the heuristic. For instance,

the speedup of 12.95 given at the last row and fourth column of Table 3.3

is the ratio of 360K to 27798. The results, except for the smallest data set

(6,10), show a clear superiority of our branch-and-price algorithm over Cplex.

This superiority is greater when we solve the problem instances to a 5% tol-

erance. We use Cplex to solve the RMLP and the pricing problems in our

branch-and-price implementation.

3.3 Parallelization Approaches

Parallelizing branch-and-bound algorithms has received considerable

attention in the literature. There are three main approaches [e.g., 13]: First,

the nodes of the branch-and-bound tree are distributed to the processors.

Namely, one processor, called the master, maintains the branch-and-bound

tree, specifies the search strategy, and sends the nodes to the other processors,

called slaves. These processors solve LP relaxations of the nodes, perform

bounding, create child nodes, and send the child nodes back to the master

processor. In the second approach, the workload performed at each node
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of the branch-and-bound tree is shared among multiple processors. That is,

processors work on the same node of the tree, and when finished, move to the

next node. In these two approaches, parallelization does not change the serial

branch-and-bound algorithm. It merely distributes the workload to multiple

processors. In the third approach, processors work on their own branch-and-

bound algorithm, each using (possibly) different strategies, and the processors

share information, such as upper bound, lower bound, etc.

Most of the literature on parallelizing the branch-and-bound algorithm

is devoted to the first approach. Specifically, COIN-BCP implements this

approach, although there is some flexibility towards implementing the second

one [35]. In this section, we apply the first two approaches to our branch-and-

price algorithm. For the first approach, we use COIN-BCP’s implementation;

for the second, we develop our own. For reasons we discuss later, if the number

of nodes in the tree is sufficiently large, the first approach proves more efficient.

The reason we develop the second approach is for small-sized branch-bound

trees. Some problems are so large that that even solving the root node of the

tree is challenging. In this case, it might be desirable to solve only the root

node, or at most, a few other nodes. Hence, we develop the second approach

to obtain better efficiencies in these circumstances. In what follows, we call

the first parallelization approach inter-node parallelization, and the second

approach intra-node parallelization.

We give more detailed explanations about the two approaches in the

corresponding sections, but we give a broad outline of the intra-node paral-
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lelization approach here. In this approach, at a given node of the tree, we

mainly perform two tasks: solving the RMLP and solving the pricing prob-

lems. There are as many pricing problems as the number of scenarios, |Ω|.

These pricing problems are independent of each other, which lends themselves

to parallelization. Hence, we implement the intra-node approach as follows:

The master processor solves the RMLP, and sends out dual solutions to the

slaves. These slaves solve the pricing problems, and send resulting solutions

back to the master.

We test both inter-node and intra-node parallel implementations on the

data sets (10,10) and (15,10). These two data sets are chosen to represent the

problem instances that require small and large numbers of nodes in the branch-

and-bound tree. We run the implementations on the Lonestar Dell Dual-Core

Linux Cluster at the Texas Advanced Computing Center [44]. Compute nodes

have two processors, each a Xeon 5100 series 2.66GHz dual-core processor with

a 4MB unified (Smart) L2 cache. The memory system uses Fully Buffered

DIMMS (FB-DIMMS) and a 1333 MHz (10.7 GB/sec) front side bus. An

InfiniBand switch fabric, employing PCI Express interfaces, interconnects the

nodes (I/O and compute) through a fat-tree topology, with a point-to-point

bandwidth of 1GB/sec (unidirectional speed). We use COIN-CLP, COIN-OR’s

LP solver, to solve the master problem, and COIN-CBC, COIN-OR’s mixed

integer programming solver, to solve the pricing problems. Before describing

the implementations in greater detail, we briefly discuss how to measure the

efficiency of a parallel algorithm.
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3.3.1 Efficiency of Parallel Algorithms

One of the commonly used efficiency criterion involves measuring the

savings in completion time of the algorithm by running on multiple processors,

as compared to running it on a single processor. Restating in ratio terms, the

speedup criterion is the ratio of the CPU time on one processor to that on

multiple processors. Ideally, one can obtain a linear speedup, equal to the

number of processors involved in parallelization. The efficiency is considered

good if the speedup is close to linear.

What makes the speedup less than the number of processors is the serial

fraction of the algorithm that cannot be run in parallel. Let fn be the fraction

of time the algorithm that runs in serial when it is run on n processors. Then,

the speedup, sn, on n processors is

sn =
serial time + parallel time

serial time +
parallel time

n

=
1

fn + 1−fn
n

. (3.5)

If fn is bounded below by f , the speedup can at most be 1/f . Taking, for

instance, f to be 0.05, speedup can at most be 20, even if we use thousands

of processors.

In some parallel algorithms, it is easy to estimate fn beforehand. Con-

sider, for instance, our implementation of the intra-node approach. If the

number of scenarios is evenly divisible by the number of processors, and if

the running times of pricing problems are identical, then the serial fraction

of the algorithm is the ratio of the time to (repeatedly) solve the RMLP to

the overall time, at least under a synchronous implementation. Even in this
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simple case, to obtain fn, we had to make some assumptions on the number

of scenarios, on the number of processors, and on the running times of pricing

problems. On more intricate cases, it is more difficult. Furthermore, in most

of the parallel algorithms, some non-negligible amount of time is spent for

message passing. This time depends on the communication requirement of the

algorithm as well as the specific hardware on which the algorithm is running.

Hence, it is usually a good idea to obtain the observed serial fraction, f̂n, and

use it to estimate the performance of the algorithm on more processors [e.g.,

18]. Isolating fn in equation (3.5), we obtain

fn =
1/sn − 1/n

1− 1/n
. (3.6)

It is reasonable to assume that fn increases with n, for at least two reasons:

First, the granularity of the algorithm might be limited. Considering our im-

plementation of the intra-node parallelization approach, we can use at most

as many processors as the number of scenarios. After this number, any addi-

tional processor waits idle. The second reason is the message passing overhead.

Even if the granularity of the algorithm is not limited, after some number of

processors, the message passing time dominates the time spent carrying out

computations at the processors. Hence, assuming fn increases with n, the ob-

served serial fraction f̂n gives us a good deal of information about the speedup.

That is, we can deduce that the best speedup, having the flexibility of using

arbitrarily many processers, is limited by 1/f̂n for each n.

Lastly, consider two parallel implementations of the same algorithm.

Suppose one has a serial fraction sequence, indexed by the number of processors
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as, fn = n
2(n+10)

∀n. The other has fn = 1/3 ∀n. For values of n less than 20,

the first implementation is better than the second, but eventually the second

algorithm has the best speedup of 3, while the first drops towards 2. So, we use

speedup as the primary efficiency criterion, but we also report the observed

serial fractions to point out the potential best speedup that the algorithm can

achieve, if we were unconstrained in the number of processors that could be

used.

3.3.2 Inter-Node Parallelization

There are multiple implementations of an inter-node parallelization

scheme. We sketch the basic algorithm that COIN-BCP implements [35].

It uses one master processor to organize and maintain the branch-and-bound

tree, and lead the search. Namely, the master processor sends current nodes

in the pool to the slave processors, receives the nodes processed by the slaves,

and repeats this process until all of the nodes in the tree are pruned. Slave

processors solve LP relaxations and perform bounding. During the search, as

soon as a slave finds an incumbent solution, it sends it to the master processor,

which communicates the solution to all the slaves.

BCP uses message passing as its parallel programming paradigm [34].

Specifically, it can be run either using PVM, or MPI. We use the MPI parallel

programming library, which is the most modern form of libraries implementing

the message passing paradigm. For more on different parallel programming

paradigms, on the message passing paradigm, and specifically on MPI see
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Table 3.4: Speedup results for inter-node parallelization. The instances are
solved to within a 0.01% tolerance. The third column shows the serial running
time in seconds. The remaining columns show the speedup.

Prob.
Inst.

# nodes
# processors

1 4 8 12 16 20 24 28 32
10-10-9-0 57 20 2.19 2.32 2.29 2.29 2.29 2.26 2.27 2.27
10-10-9-1 59 19 2.92 3.43 3.50 3.46 3.49 3.47 3.44 3.38
10-10-18-0 41 36 2.61 2.78 2.76 2.76 2.76 2.77 2.75 2.70
10-10-18-1 43 20 1.79 1.88 1.87 1.86 1.89 1.88 1.88 1.87
10-10-27-0 47 72 1.81 1.82 1.82 1.82 1.82 1.81 1.81 1.80
10-10-27-1 33 55 1.90 1.91 1.90 1.90 1.91 1.91 1.90 1.90
10-10-54-0 93 252 3.10 3.55 3.55 3.55 3.56 3.56 3.55 3.55
10-10-54-1 79 110 2.09 2.43 2.47 2.46 2.47 2.46 2.46 2.48
10-10-81-0 65 421 2.24 2.24 2.23 2.23 2.24 2.23 2.23 2.24
10-10-81-1 121 508 2.92 3.79 3.83 3.82 3.79 3.83 3.83 3.81
Average 2.31 2.53 2.53 2.52 2.53 2.52 2.52 2.51
15-10-9-0 91 499 3.50 4.05 4.02 4.05 4.03 4.12 4.11 4.11
15-10-9-1 143 652 3.62 6.26 7.57 8.21 8.17 8.30 8.31 8.35
15-10-18-0 541 4820 3.83 7.24 10.04 12.29 14.22 16.51 17.69 18.70
15-10-18-1 39 280 2.78 2.81 2.81 2.81 2.81 2.87 2.88 2.87
15-10-27-0 717 13264 3.87 7.26 10.77 13.55 15.10 18.23 19.69 21.11
15-10-27-1 6881 49665 3.84 7.70 11.28 14.94 18.26 22.53 25.85 29.18
15-10-54-0 3223 75514 3.80 7.53 11.02 14.34 17.52 21.99 25.26 28.24
15-10-54-1 3537 47025 3.73 7.47 11.01 14.57 17.70 22.19 25.27 28.41
15-10-81-0 321 23838 3.66 6.79 9.28 9.93 10.24 11.01 11.12 11.12
15-10-81-1 5249 192208 3.91 7.68 11.51 14.81 18.27 23.16 26.47 29.40
Average 3.64 6.21 8.18 9.67 10.77 12.35 13.24 14.04

Pacheco [32].

Table 3.4 shows results of our inter-node parallelization on various num-

bers of processors. The values in column 3 are the CPU times spent on a single

processor to run the algorithm. The values in other columns are the speedups.

Hence, time required to run the algorithm on twelve processors, for instance,
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Table 3.5: Observed serial fractions for the results in Table 3.4.

Prob. Inst.
# processors

4 8 12 16 20 24 28 32

10-10-9-0 0.28 0.35 0.38 0.40 0.41 0.42 0.42 0.42
10-10-9-1 0.12 0.19 0.22 0.24 0.25 0.26 0.26 0.27
10-10-18-0 0.18 0.27 0.30 0.32 0.33 0.33 0.34 0.35
10-10-18-1 0.41 0.46 0.49 0.51 0.51 0.51 0.51 0.52
10-10-27-0 0.40 0.49 0.51 0.52 0.53 0.53 0.53 0.54
10-10-27-1 0.37 0.46 0.48 0.49 0.50 0.50 0.51 0.51
10-10-54-0 0.10 0.18 0.22 0.23 0.24 0.25 0.25 0.26
10-10-54-1 0.30 0.33 0.35 0.37 0.37 0.38 0.38 0.38
10-10-81-0 0.26 0.37 0.40 0.41 0.42 0.43 0.43 0.43
10-10-81-1 0.12 0.16 0.19 0.21 0.23 0.23 0.23 0.21

Average 0.23 0.30 0.34 0.35 0.36 0.37 0.37 0.38

15-10-9-0 0.05 0.14 0.18 0.20 0.21 0.21 0.22 0.22
15-10-9-1 0.03 0.04 0.05 0.06 0.08 0.08 0.09 0.09
15-10-18-0 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02
15-10-18-1 0.15 0.26 0.30 0.31 0.32 0.32 0.32 0.33
15-10-27-0 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02
15-10-27-1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
15-10-54-0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
15-10-54-1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
15-10-81-0 0.03 0.03 0.03 0.04 0.05 0.05 0.06 0.06
15-10-81-1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Average 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02

can be obtained by dividing the number in column 1 to that in column 12. We

also give the number of branch-and-bound nodes generated throughout the

algorithm. After each data set, there is a row giving the geometric averages of

the speedups.

An immediate observation is the correlation between the number of

branch-and-bound nodes and the speedup: the more nodes, the greater the
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speedup. This can be observed better by comparing the average speedups

of the data sets (10,10) and (15,10). In some problem instances, there is no

improvement in speedup, after some number of processors. This is due to the

limited granularity of the algorithm in small branch-and-bound trees. That is,

throughout the search, the number of nodes that are run in parallel is less than

the number of processors. However, if there are more than a few branch-and-

bound nodes in the tree, which is the case for many linear integer programming

problems, the speedup is close to ideal, as in the cases of 15-10-27-1 and 15-

10-81-1. One caveat about the number of nodes is the following. If there were

no pruning based on the upper bound information, the number of nodes in

the tree would be identical no matter how many processors are used. But, in

the case of pruning by an upper bound, using different numbers of processors

can lead to different number of nodes, due to different timings of obtaining

new incumbent solutions. To prevent this from happening we used a best-

bound-search strategy. Furthermore, the effectiveness of our primal heuristic

leads to near-optimal solutions early in the tree most of the time. Hence,

in our results, the number of nodes in the tree is always the same. This

is important, especially when comparing the speedups, because otherwise we

would be comparing running times of algorithms that search different branch-

and-bound trees.

Inspecting Table 3.4 for the data set (15,10) leads to the question of

whether we can obtain increasing speedup as we increase the number of pro-

cessors. This can be estimated, to some extent, by looking at the observed
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serial fractions in Table 3.5. These observed serial fractions show that the data

set (15,10) has potential to give increasing speedup as we increase the number

of processors. In fact, some of the instances can have a speedup close to 100.

On the other hand, data set (10,10) does not have promising speedups. Some

of the instances, 10-10-18-1 and 10-10-27-0, are limited to a speedup of less

than 2.

3.3.3 Intra-Node Parallelization

In our intra-node parallelization scheme, we distribute the pricing prob-

lems to slave processors. Specifically, master processor solves the RMLP, sends

dual solutions to the slaves, which solve the pricing problems, and return solu-

tions to the master. Clearly, the serial fraction here is the ratio of the solution

times for the RMLP to that time plus the computational time for the pricing

problems. In our branch-and-price implementation, average serial fractions for

the data sets (10,10) and (15,10) are 0.2 and 0.09, respectively. This prevents

us from obtaining better speedups than inter-node parallelization, at least in

the case of (15,10). As we mention above, it is best to apply this parallelization

to the case of small branch-and-bound trees, where inter-node parallelization

performs poorly.

To illustrate this, we run the branch-and-price algorithm until we ob-

tain ten nodes in the branch-and-bound tree. As soon as the tenth node is

solved, the algorithm terminates. We take the view that we may be required to

terminate with small branch-and-bound trees like this when solving the prob-
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Table 3.6: Speedup results for inter-node parallelization. Only ten branch-
and-bound nodes are solved. The third column shows the serial running time
in seconds. The remaining columns show the speedup.

Prob.
Inst.

Rem.
Gap (%)

# processors

1 4 8 12 16 20 24 28 32
10-10-9-0 2.3 9 1.61 1.64 1.63 1.62 1.63 1.61 1.62 1.62
10-10-9-1 3.1 7 1.89 1.88 1.85 1.87 1.87 1.87 1.87 1.86
10-10-18-0 2.4 15 1.44 1.67 1.66 1.65 1.65 1.66 1.65 1.65
10-10-18-1 1.2 10 1.44 1.45 1.45 1.43 1.43 1.42 1.46 1.45
10-10-27-0 2.1 41 1.80 1.79 1.80 1.80 1.80 1.80 1.80 1.79
10-10-27-1 2.4 36 1.63 1.64 1.63 1.63 1.63 1.64 1.62 1.63
10-10-54-0 3.7 79 2.02 2.02 2.02 2.03 2.02 2.02 2.02 2.02
10-10-54-1 1.4 41 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17
10-10-81-0 3.6 188 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.12
10-10-81-1 4.4 156 1.87 1.92 1.92 1.92 1.92 1.92 1.92 1.91
Average 1.67 1.71 1.70 1.70 1.70 1.70 1.71 1.70
15-10-9-0 0.9 80 1.85 1.64 1.63 1.64 1.64 1.64 1.64 1.64
15-10-9-1 2.0 74 1.70 1.72 1.72 1.72 1.72 1.72 1.72 1.71
15-10-18-0 2.6 187 1.79 1.79 1.80 1.79 1.79 1.79 1.79 1.78
15-10-18-1 0.3 119 1.84 1.84 1.84 1.83 1.83 1.84 1.84 1.84
15-10-27-0 2.0 328 1.85 1.78 1.79 1.78 1.78 1.78 1.78 1.78
15-10-27-1 6.1 412 2.00 2.22 2.22 2.21 2.20 2.21 2.22 2.21
15-10-54-0 4.3 654 1.76 1.79 1.78 1.78 1.80 1.79 1.78 1.78
15-10-54-1 3.1 481 1.79 1.82 1.83 1.82 1.83 1.83 1.83 1.83
15-10-81-0 1.6 1253 1.97 1.97 1.97 2.14 2.12 1.95 2.14 2.14
15-10-81-1 5.8 2367 2.03 2.11 2.09 2.10 2.10 2.11 2.10 2.09
Average 1.85 1.86 1.86 1.87 1.87 1.86 1.87 1.87

lem to near optimality is excessively expensive. We give the associated results

of the inter-node parallelization in Tables 3.6 and 3.7, and of the intra-node

parallelization in Tables 3.8 and 3.9.

The second column of Table 3.6 gives the remaining optimality gaps

after solving ten nodes. Comparing the speedups in Table 3.6 with those of
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Table 3.7: Observed serial fractions for the results in Table 3.6.

Prob. Inst.
# processors

4 8 12 16 20 24 28 32

10-10-9-0 0.50 0.55 0.58 0.59 0.59 0.60 0.60 0.60
10-10-9-1 0.37 0.47 0.50 0.50 0.51 0.51 0.52 0.52
10-10-18-0 0.59 0.54 0.57 0.58 0.59 0.59 0.59 0.59
10-10-18-1 0.59 0.65 0.66 0.68 0.68 0.69 0.67 0.68
10-10-27-0 0.41 0.50 0.52 0.53 0.53 0.54 0.54 0.54
10-10-27-1 0.49 0.56 0.58 0.59 0.59 0.59 0.60 0.60
10-10-54-0 0.33 0.42 0.45 0.46 0.47 0.47 0.48 0.48
10-10-54-1 0.80 0.84 0.84 0.84 0.85 0.85 0.85 0.85
10-10-81-0 0.29 0.39 0.42 0.43 0.44 0.45 0.45 0.45
10-10-81-1 0.38 0.45 0.48 0.49 0.50 0.50 0.50 0.51

Average 0.45 0.52 0.55 0.56 0.56 0.57 0.57 0.57

15-10-9-0 0.39 0.55 0.58 0.58 0.59 0.59 0.60 0.60
15-10-9-1 0.45 0.52 0.54 0.55 0.56 0.56 0.57 0.57
15-10-18-0 0.41 0.50 0.52 0.53 0.54 0.54 0.54 0.55
15-10-18-1 0.39 0.48 0.50 0.52 0.52 0.52 0.53 0.53
15-10-27-0 0.39 0.50 0.52 0.53 0.54 0.54 0.55 0.55
15-10-27-1 0.33 0.37 0.40 0.42 0.42 0.43 0.43 0.43
15-10-54-0 0.42 0.49 0.52 0.53 0.53 0.54 0.54 0.55
15-10-54-1 0.41 0.49 0.50 0.52 0.52 0.53 0.53 0.53
15-10-81-0 0.34 0.44 0.46 0.43 0.44 0.49 0.45 0.45
15-10-81-1 0.32 0.40 0.43 0.44 0.45 0.45 0.46 0.46

Average 0.38 0.47 0.50 0.50 0.51 0.52 0.52 0.52

Table 3.4, it is clear that, inter-node parallelization is less efficient than inter-

node parallelization. This can also be observed from the serial fractions in

Table 3.7. For both data sets, (10,10) and (15,10), the serial fractions are on

average greater than 1/2, meaning that we cannot obtain a speedup greater

than 2. On the other hand, looking at Table 3.8, we see some speedups close

to 5 for data set (15,10). Intra-node parallelization gives better speedups with
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smaller number of nodes.

Table 3.8 gives two results: one immediate, and one more subtle. As

the number of items increases, intra-node parallelization tends to give better

speedups. Secondly, speedups corresponding to problem instances with suffix

“-0” are better than the ones with suffix “-1.” This is due to greater asymmetry

in the pricing problems in the case of “-1.” In the case of “-1” we multiply the

costs by 0.6, 1, and 1.4 for pessimistic, most likely and optimistic estimates,

respectively. Similarly, we multiply the budget with 1.4 and 0.6. Hence, it is

expected that scenarios (pricing problems) corresponding to items and budget

taking pessimistic multipliers are more difficult to solve than scenarios in which

they take optimistic multipliers, as the knapsack constraints are tighter in the

first case. The differences between the difficulty of pricing problems are more

emphasized when the multipliers are 1.4, 1, and 0.6 as opposed to that of 1.2,

1, and 0.8. This asymmetry affects intra-node parallelization, as some of the

processors solve easy pricing problems and wait idle for those that solve harder

ones. To observe this difference, we also compute the average speedups and

serial fractions for problem instances with suffix “-0” and “-1.” The results

are given in the last two lines of Tables 3.8 and 3.9.

To overcome the negative effect of the asymmetry in pricing problems,

one can modify the implementation so that the master processor does not

wait for all the slave processors. After receiving some percentage of pricing

problem solutions, the master performs another iteration, computes new dual

solutions, and sends those to slaves. The slaves check periodically for dual
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solutions from the master. If they receive a new dual solution, they preempt

their current task and start working on new pricing problems, using new dual

solutions. This strategy comes with some caveats, though. First, the master

processor needs to keep track of the pricing problems that are not solved at the

current iteration, so that it gives higher priority to those in the next iteration.

This way, the algorithm becomes more balanced. Second, after some number

of iterations, the master should wait for all the pricing problems to be solved

so that it computes the upper bound.

Before finishing the discussion we note the relation between the column

based reformulation and intra-node parallelization. The serial fraction in intra-

node parallelization depends on how we reformulate the problem. If we had

formulated it in such a way that the pricing problems are larger and the

RMLP is smaller than their current forms, as could be the case if we had

implemented scenario decomposition instead of complete decomposition, then

the serial fraction would be much smaller, and we could obtain better speedups.
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Table 3.8: Speedup results for intra-node parallelization. Only ten nodes are
solved. The second column shows the serial running time in seconds. The
remaining columns show the speedup.

Prob. Inst.
# processors

1 4 8 12 16 20 24 28 32

10-10-9-0 9 1.82 2.25 2.42 2.44 2.44 2.43 2.41 2.40
10-10-9-1 7 1.60 1.71 1.84 1.82 1.82 1.84 1.84 1.81
10-10-18-0 15 1.80 2.11 2.23 2.34 2.37 2.44 2.43 2.43
10-10-18-1 10 1.60 1.74 1.71 1.86 1.82 1.87 1.87 1.86
10-10-27-0 41 2.15 2.77 3.05 3.25 3.37 3.55 3.71 3.75
10-10-27-1 36 1.96 2.39 2.66 2.79 2.87 3.00 3.07 3.10
10-10-54-0 80 2.01 2.45 2.72 2.83 2.96 3.04 3.08 3.10
10-10-54-1 42 1.78 2.08 2.16 2.26 2.33 2.36 2.41 2.43
10-10-81-0 188 2.32 3.07 3.54 3.75 3.99 4.09 4.15 4.23
10-10-81-1 157 2.00 2.44 2.64 2.78 2.87 2.92 2.99 2.98

Average 1.89 2.27 2.44 2.55 2.61 2.67 2.71 2.71

15-10-9-0 80 2.62 3.56 4.89 4.97 4.94 4.93 4.95 4.93
15-10-9-1 74 1.98 2.70 2.96 3.00 3.01 3.00 3.01 2.99
15-10-18-0 186 2.61 3.65 4.33 4.58 5.84 5.89 5.86 5.87
15-10-18-1 119 2.28 2.99 3.36 3.74 4.39 4.38 4.36 4.40
15-10-27-0 327 2.99 4.41 5.30 6.38 6.44 6.61 8.32 8.32
15-10-27-1 410 2.41 3.26 3.77 4.14 4.21 4.47 5.11 5.04
15-10-54-0 650 2.54 3.44 3.95 4.28 4.57 4.65 5.03 5.01
15-10-54-1 478 2.17 2.75 3.04 3.26 3.37 3.46 3.63 3.63
15-10-81-0 1235 2.65 3.67 4.30 4.62 4.86 5.02 5.31 5.32
15-10-81-1 2346 2.28 2.96 3.32 3.55 3.65 3.79 3.95 3.96

Average 2.44 3.30 3.85 4.16 4.42 4.51 4.78 4.77

Average -0 2.32 3.06 3.53 3.76 3.96 4.04 4.22 4.23

Average -1 1.99 2.45 2.67 2.82 2.91 2.98 3.06 3.06
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Table 3.9: Observed serial fractions for the results in Table 3.8.

Prob. Inst.
# processors

4 8 12 16 20 24 28 32

10-10-9-0 0.40 0.37 0.36 0.37 0.38 0.39 0.39 0.40
10-10-9-1 0.50 0.52 0.50 0.52 0.53 0.52 0.53 0.54
10-10-18-0 0.41 0.40 0.40 0.39 0.39 0.38 0.39 0.39
10-10-18-1 0.50 0.52 0.55 0.51 0.53 0.52 0.52 0.52
10-10-27-0 0.29 0.27 0.27 0.26 0.26 0.25 0.24 0.24
10-10-27-1 0.35 0.33 0.32 0.32 0.31 0.30 0.30 0.30
10-10-54-0 0.33 0.32 0.31 0.31 0.30 0.30 0.30 0.30
10-10-54-1 0.42 0.41 0.41 0.41 0.40 0.40 0.39 0.39
10-10-81-0 0.24 0.23 0.22 0.22 0.21 0.21 0.21 0.21
10-10-81-1 0.33 0.33 0.32 0.32 0.31 0.31 0.31 0.31

Average 0.37 0.36 0.35 0.35 0.35 0.35 0.34 0.35

15-10-9-0 0.18 0.18 0.13 0.15 0.16 0.17 0.17 0.18
15-10-9-1 0.34 0.28 0.28 0.29 0.30 0.30 0.31 0.31
15-10-18-0 0.18 0.17 0.16 0.17 0.13 0.13 0.14 0.14
15-10-18-1 0.25 0.24 0.23 0.22 0.19 0.19 0.20 0.20
15-10-27-0 0.11 0.12 0.11 0.10 0.11 0.11 0.09 0.09
15-10-27-1 0.22 0.21 0.20 0.19 0.20 0.19 0.17 0.17
15-10-54-0 0.19 0.19 0.19 0.18 0.18 0.18 0.17 0.17
15-10-54-1 0.28 0.27 0.27 0.26 0.26 0.26 0.25 0.25
15-10-81-0 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16
15-10-81-1 0.25 0.24 0.24 0.23 0.24 0.23 0.23 0.23

Average 0.21 0.20 0.19 0.19 0.18 0.19 0.18 0.18

Average -0 0.23 0.22 0.21 0.21 0.21 0.21 0.21 0.21

Average -1 0.40 0.43 0.44 0.44 0.45 0.45 0.45 0.45
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Chapter 4

An Application in the Nuclear Power Industry

4.1 Introduction

When practitioners plan for capital budgeting they often form a priority

list of candidate projects, by scoring the projects individually, using economic

measures like net present value, benefit-investment ratio, payback period, in-

ternal rate of return, etc. The academic literature frequently points out [e.g.,

5, 39] that priority lists built on such simple ranking measures are inferior to

allocating funds to capital projects using variants of a multidimensional knap-

sack model. The multidimensional knapsack approach to capital budgeting

[e.g., 4, 20, 45] takes as input a budget forecast, along with the stream of lia-

bilities and the profit of each project. The multidimensional knapsack model

is an integer program that has: a binary decision variable for each project

to indicate whether it is selected; a budget constraint for each time period

(e.g., year); and, the objective of maximizing total profit. The output of the

multidimensional knapsack model is a collection of projects to be performed,

assuming the point forecasts for these input parameters are correct. We refer

to this selected collection of projects as a project portfolio.

If the costs and profits of the candidate projects as well as the bud-
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gets in coming years are known with certainty, the multidimensional knapsack

model provides an attractive tool for selecting a project portfolio. However,

how should we approach capital budgeting when we have uncertain forecasts

for these parameters? One approach is to re-solve a multidimensional knapsack

model when refined forecasts for costs, profits and budgets become available.

Unfortunately, this is not always viable. Capital projects typically are imple-

mented in phases over time and usually, some irreversible decisions have been

made. Thus, it is not always practical to fully revise a project portfolio when-

ever better forecasts become available. Additionally, the process of obtaining

and analyzing the data, performing required reviews and obtaining necessary

approvals typically is very time consuming and resource intensive. As a result,

practitioners use either simplistic approaches or intuition and experience to

address the impact of emerging events and conditions.

To illustrate how uncertainty can cause a problem, we discuss the fol-

lowing common scenario. Imagine that a multidimensional knapsack model

has been used in the capital budgeting process to form a project portfolio.

Then, over the course of the year, the available budget decreases due to some

reason such as an external event or because some projects experience cost over-

runs. As a practical matter, some other projects are forced out of the portfolio,

i.e., they are not performed. Unfortunately, multidimensional knapsack model

is not designed to address such a scenario.

Experience over many years of capital budgeting practice indicates that

decision-makers often have the right intuition in seeking a priority list that
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is robust with respect to changes in budget values as well as project costs

and profits. However, it is well known that priority lists formed by scoring

projects individually fail to capture dependencies between projects, and we

demonstrate this by considering heuristics based on scoring projects using net

present value (NPV) and benefit- investment ratio (BIR). (For more on these

and other commonly-used investment criteria see, e.g., Chapter 9 of Ross et al.

[38].) Thus, it would be beneficial to have an approach to prioritizing that

does capture dependencies between projects. Associated analysis then could

be used to provide better priority lists to decision-makers to support better

risk-informed decisions. The path of investigation described in this chapter is

as follows:

• We first investigate whether the optimal solution to a multidimensional

knapsack model naturally yields a prioritized list that is robust to the

uncertainties described above. We show it does not.

• Next, we heuristically alter the multidimensional knapsack approach,

and force it to produce a prioritized list. We describe a class of ways to

do so depending on the initial budget value, and we call these greedy-

heuristic priority lists. We also build heuristic priority lists using BIR

and NPV, as is commonly done in practice.

• Then, we ask whether we can build a priority list that outperforms the

heuristic priority list, at least when we assume a probabilistic forecast

for the uncertain parameters. For the two sets of candidate projects we
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examine, this question is answered affirmatively. We formulate a model

that explicitly incorporates multiple budget, cost and profit scenarios

and forms an optimal priority list, which maximizes the expected NPV

of the project portfolio ultimately implemented.

We detail briefly our approach of prioritizing projects. Our model is a two-

stage stochastic integer program. It builds a priority list and forms a corre-

sponding optimal project portfolio as its first- and second-stage decisions. We

assume that the uncertainties regarding the budget, projects’ cost and profit

reveal during the first year after we commit to the priority list. When forming

the optimal project portfolio for a specific scenario, our prioritization model

makes sure that no project is in the portfolio unless all projects with higher

priority are also in the portfolio. Thus, portfolio of projects corresponding to

different scenarios are subsets of each other. This type of approach eliminates

the fragility of the multidimensional knapsack model. Namely, projects are

not removed from the portfolio, but only added as uncertainty reveals.

The next section provides further background specific to our moti-

vating capital budgeting problem using data from the South Texas Project

Nuclear Operating Company (STPNOC), a two-unit nuclear power plant in

Wadsworth, Texas. Then, we formulate a multidimensional knapsack model

for capital budgeting under a point forecast (i.e., a deterministic forecast) of

the problem’s input parameters. The solution yields an optimal set of projects

to select, and we show these portfolios fail to yield a prioritized list of projects.
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That is, we address the first of the three items listed above. The subsequent

two sections then address the second and third bulleted items in turn, assuming

a distributional forecast for the uncertain parameters. The chapter’s penul-

timate section then applies the optimal prioritization scheme to two larger

problem instances involving 41 projects; it also investigates the performance

of the heuristics on these problem instances. We note that abbreviated ver-

sions of this chapter have appeared in Koç et al. [21, 23], and the full version

have appeared in Koç et al. [22].

We consider two real-life problem instances from STPNOC. The first

one has 9 projects, the second one has 41 projects. Each project can last up

to 5 years. The first instance considers only budget uncertainty. It has 10

budget scenarios. The second one considers also cost uncertainty. It has 10

budget scenarios and 9 cost scenarios, amounting to 90 scenarios. We also

construct stylized examples to assess the performance of our heuristics with

an eye towards showing that they can perform poorly, i.e., that performance

guarantees for the heuristics are not assured. As a result, we recommend us-

ing the optimal prioritization scheme, instead of employing an approximation

using a heuristic.

4.2 Background and Motivation

As the operator of a large commercial nuclear power generating sta-

tion, STPNOC evaluates investment in numerous projects and aims to select

projects that achieve the organization’s objectives. To do so, STPNOC an-
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nually develops a priority list of projects. This rank-ordered list specifies the

highest priority project, the second highest priority project and so forth. The

current budget and project-cost forecasts yield what STPNOC calls the “blue

line.” Projects above the blue line are to be funded and those below it are not.

Thus, the blue line serves as the demarcation where the available budget is

exhausted. Over the course of the year, the blue line can shift due to a variety

of reasons such as an external event or because a high-priority project experi-

ences cost over-runs. We note that this paradigm is not unique to STPNOC,

nor to the nuclear power industry. Rather, similar capital budgeting practices

are employed across a wide range of industrial and government applications.

The optimization model we describe recognizes the fact that prioritizing is

common practice and aims to build priority lists that are financially robust to

the types of uncertainties described above. More specifically, we seek a prior-

ity list that maximizes the expected NPV of the project portfolio ultimately

implemented.

Our approach to forming an optimal priority list focuses on financial

performance measures. However, it is recognized that financial goals alone do

not drive capital planning decisions. The need to ensure regulatory compliance

enters heavily into decision-making at STPNOC, and throughout the commer-

cial nuclear power industry. So, as in other optimization problems, forming an

optimal priority list generally requires addressing multiple criteria including

both financial and non-financial issues. At STPNOC, and many commercial

nuclear plants, this results in application of a multi-attribute utility theoretic

106



approach to performing this integration [e.g., 19]. In demonstrating the ap-

proach we propose, we first consider a small set of example projects from

STPNOC in which some projects have negative NPV estimates and hence

would be rejected from a purely financial perspective. However, these projects

are forced into the project portfolio by plant management because they are

deemed necessary to address a safety or regulatory issue. In this example we

show how this affects our approach and we further discuss how regulatory and

safety issues often can be well-aligned with financial goals.

A typical project at STPNOC is implemented over 1-5 years, and we

may prioritize a project now even though its first costs are not incurred until

a future year. Furthermore, STPNOC carries out project prioritization an-

nually, and in this sense capital budgeting decisions are implemented using a

rolling horizon. Current STPNOC practice in estimating the cost streams as-

sociated with the candidate projects is as follows: Optimistic, pessimistic and

most-likely cost streams are estimated for each project. Then, each project is

categorized as being low-risk, medium-risk or high-risk. This categorization

is based on answering multiple questions within each of 17 categories, which

range from the projects engineering-design complexity to STPNOCs level of

experience with the proposed contractor to the nature of the radiation fields

in the installation environment (i.e., anticipated personnel radiation exposure

during installation), etc. The higher the risk of the candidate project, the more

this weighted sum is skewed toward the pessimistic cost forecast. A point esti-

mate for the projects costs is formed by assigning normalized weights to each
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of the optimistic, pessimistic and most-likely cost streams, and calculating the

weighted sum. The manner in which the prioritization model we propose ex-

plicitly captures multiple budget, cost and profit scenarios was motivated by

this type of cost-stream analysis at STPNOC.

A simplistic ranking scheme scores projects individually, e.g., using

their NPV, BIR, internal return rate, etc., and then forms a priority list by

sorting the projects based on their individual scores. Such an approach fails

to recognize the structural and stochastic dependencies among the projects.

While our approach forms a priority list, it recognizes that the projects ulti-

mately implemented, after the stochastic budgets, costs and profits are real-

ized, act as a portfolio. That is, the model captures dependencies among the

projects. We emphasize that our model is appropriate only when irreversible

decisions regarding project selection must be made before knowing budget,

cost and profit values with certainty. If we can wait until these quantities

become known before committing to project selection decisions, we should do

so and solve what is then a deterministic multidimensional knapsack model.

4.3 Optimal Project Portfolio

As indicated above, capital budgeting classically is formulated using

variants of a multidimensional knapsack problem [e.g., 4, 6, 28, 45]. Specif-

ically, given a set of candidate projects, and given (point estimates of) the

NPV of each project, the cost of each project in each year and the available

yearly budgets, the goal is to find the subset of projects which maximizes the

108



total NPV while staying within the budget in each year. When considering a

single year, the problem can be visualized as packing a knapsack with items

of different volume and utility such that the selected items fit in the knapsack

and maximize total utility. When the time horizon includes multiple years and

selecting a project can obligate funds in more than one year, there are multi-

ple knapsack constraints, i.e., budget constraints, to satisfy; hence the name

multidimensional knapsack. The knapsack problem, and its variations, such as

multidimensional knapsack, have a rich history, and have received significant

attention in the literature [e.g., 20].

In this section, we first set notation and briefly describe a multidimen-

sional knapsack formulation for the deterministic capital-budgeting problem,

and then discuss the implications of instead having stochastic budget levels.

For simplicity, we begin by only considering stochastic budget levels, but later

we handle uncertain project costs and profits. The notation and formulation

of the multidimensional knapsack model are as follows:
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Indices and sets:

i ∈ I candidate projects

t ∈ T time periods (years)

Data:

ai net present value of project i

bt available budget in year t

cit cost of project i in year t

Decision variables:

xi 1 if project i is selected; 0 otherwise

Formulation:

max
x

∑
i∈I

aixi (4.1a)

s.t.
∑
i∈I

citxi ≤ bt, t ∈ T, (4.1b)

xi ∈ {0, 1}, i ∈ I. (4.1c)

Constraint (4.1b) ensures the yearly cost of selected projects is within the

budget for each year bt, t ∈ T . Yes/No restrictions on selecting projects are

enforced by constraint (4.1c). The objective function (4.1a) sums the NPV

contributions of all selected projects. The optimal solution to the multidi-

mensional knapsack model (4.1) gives the portfolio of projects to select which

maximizes total NPV while staying within the yearly budgets.

To understand the nature of solutions to model (4.1), we consider a

numerical example with 16 projects (see Table 4.1) each having liabilities in
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Table 4.1: Problem data (cost and NPV values are in $M).

yearly costs cit
Project i 1 2 3 4 5 NPV (ai) BIR

1 0.219 0.257 0.085 2.315 4.405
2 0.122 0.103 0.013 0.824 4.328
3 5.044 1.839 22.459 3.338
4 6.740 6.134 10.442 60.589 2.871
5 0.425 0.667 1.569
6 2.125 2.122 5.173 1.272
7 2.387 0.190 0.012 2.383 0.192 4.003 0.883
8 0.950 0.582 0.669
9 0.030 0.030 0.688 0.122 0.192
10 0.2 0.763 0.739 2.539 -2.870 -0.905
11 0.081 0.032 -0.102 -0.925
12 0.300 -0.278 -0.927
13 0.347 -0.322 -0.928
14 4.025 0.297 -3.996 -0.930
15 0.095 0.095 0.095 -0.246 -0.940
16 5.487 5.664 0.500 6.803 6.778 -20.155 -0.957

some or all of the next 5 years. These projects are from STPNOC and were

selected because they constituted a set of projects that were close to the budget

cutoff point, with some being funded and others not. Thus, the subset of

projects identified in Table 4.1 was selected to provide a useful validation of

the applicability of the methods discussed in this chapter.

Table 4.1 shows the project cost (cit) and NPV (ai) values for each of

the projects, and the table orders projects by their BIR, i.e., by the ratio of the

NPV of a project to its net present cost. Projects 10-16 have negative NPVs,
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i.e., ai < 0, and thus also have negative BIRs. We note that the optimization

model (4.1) is driven by a purely financial goal, and hence if this were the sole

basis for the investment decision, we would not choose any of these projects.

However, projects 10-16 have been managerially mandated for inclusion in the

portfolio for reasons beyond the scope of our analysis. Obviously, regulatory

and safety goals are of foremost concern in the nuclear-power industry. In

some industries, inaction on regulatory or safety requirements may result in

a fine or other regulatory consequence which is deemed to be “acceptable” to

the organization, i.e., one that could be accepted as a profitable business deci-

sion. However, failure to meet regulatory or safety goals in commercial nuclear

power can very easily result in significant revenue loss. For example, a year-

long regulatory mandated shutdown could lead to revenue losses in the range

of hundreds of millions of dollars in some cases, and more than a billion dollars

at a multi-plant site. We contend that if a more detailed financial analysis of

projects 10-16 were performed that included the potential impacts of unfavor-

able regulatory actions, this analysis could lead to their NPVs being positive.

However, for the purposes of this study, since these projects are managerially

mandated, we assume there is little reason to justify them financially. Thus, in

our example, projects 10-16 are not included when solving model (4.1), except

that they reduce the budget available for choosing among projects 1-9, and

they do decrease overall NPV of the portfolio by almost $28M.

We solve 10 instances of model (4.1) with bt = $11M, . . . , $20M for

each of the five years in these respective instances, and display the solutions
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Table 4.2: Solutions to 10 instances of model (4.1) with bt = $11M, . . . , $20M.

Budget, bt xi NPV
($M) 1 2 3 4 5 6 7 8 9 ($M)

11 1 1 0 0 1 0 0 1 0 -23.58
12 1 1 0 0 1 0 0 1 1 -23.46
13 1 1 0 0 0 1 0 1 1 -18.95
14 1 1 0 0 1 1 0 1 1 -18.29
15 0 1 0 0 0 1 1 1 1 -17.27
16 1 1 1 0 0 0 0 1 1 -1.67
17 1 1 1 0 1 0 0 1 1 -1.00
18 1 1 0 1 1 0 0 1 1 37.13
19 1 1 0 1 1 0 0 1 1 37.13
20 1 1 0 1 1 1 0 1 1 42.30

in Table 4.2. For each budget level, the 1s and 0s indicate whether the cor-

responding project was selected (1) or not (0), and the final column gives the

optimal NPV. For example, when bt = $16M we do not select projects 4, 5, 6,

7 but do select the others. The corresponding NPV for this budget is negative

$1.67M.

We solve model (4.1) for a range of budget values because we recognize

that the budget is uncertain. Moreover, for reasons explained in the first two

sections, we know STPNOC management seeks a priority list. If the sets of

projects selected as we increase the budget from $11M to $20M are nested,

i.e., the project portfolio at each budget level is a superset of all those at lower

budget levels, then the multidimensional knapsack model yields a prioritized

solution. However, as we notice from Table 4.2, some of the projects are part

of the portfolio for a particular budget level but are absent from the portfolio

113



at higher budget levels. For instance, as we parametrically range the budget

level from $11M to $20M, projects 1, 3, 5, 6 and 7 alternate in and out of

the portfolio. This is a typical situation in knapsack problems, and more

generally, in resource-constrained combinatorial optimization problems. That

is, when the problem data are slightly perturbed, the new optimal solution

can be far from the original optimal solution. This phenomenon represents

a significant issue to decision-makers in our setting because it can result in

decreased confidence in the project- selection decisions recommended by the

multidimensional knapsack model.

To understand why the solutions behave in this manner, it is instructive

to compare projects 4 and 7. Project 4 has a large NPV compared to project

7 ($60M and $4M, respectively), but it is costly, at $23M (nominal) over

three years (see Table 4.1). Hence, we would like to include project 4 in the

portfolio if it fits within the available budget. This is exactly what happens for

budget levels of $18M and higher. Project 7 enters the portfolio only when its

relatively low cost allows it to “just fit” within the residual budget when other

more profitable projects are too costly to do so, and this is what occurs at

the $15M budget level. So, we can view project 7 as a “filler” project, funded

when its cost profile happens to align well with the residual planned budget.

4.4 Heuristic Project Prioritization

Managers, including those at STPNOC, often seek a priority list as the

solution to a capital budgeting problem. The “volatility” of the optimal port-
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folios obtained from model (4.1), with respect to budget changes, complicates

our ability to extract a priority list from the portfolios in Table 4.2. More

generally, this volatility may be disconcerting to decision makers, and so we

investigate an alternative that lends itself to building a priority list: As an

initial simplistic approach, we begin by solving model (4.1) with bt = $11M.

Then, we solve model (4.1) with bt = $12M under the additional requirement

that all projects selected at the $11M-budget level remain in the portfolio. We

continue in this way to larger budget levels. The result is a nested collection

of portfolios, shown in Table 4.3, from which we easily can extract a priority

list. The associated heuristic priority list consists of the following. Projects

in the group {1,2,5,8} all receive top priority because they are funded for all

budget levels we consider. Projects 9, 6 and 7 follow, prioritized in that order.

Project 9 is funded if the budget is $12M or above, project 6 if the budget

is $14M or above, and project 7 if the budget is $16M or above. Finally,

projects 3 and 4 received lowest priority because they are not funded even

with the highest budget level of $20M. We denote the resulting priority list

L = [{1, 2, 5, 8}, {9}, {6}, {7}, {3, 4}].

The heuristic approach has placed additional restrictions on the multi-

dimensional knapsack model, which were not present in the solutions obtained

via the analysis presented in Table 4.2. Thus it is natural that the NPV values

obtained for portfolios from the heuristic approach are not as large. The mag-

nitude of the difference between the NPVs can be significant, particularly at

the larger budget values. The intuition behind this result should be clear: As
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Table 4.3: Solutions to the restricted problem that form the heuristic priority
list, H-11.

Budget, bt NPV
($M) 1 2 3 4 5 6 7 8 9 ($M)

11 1 1 0 0 1 0 0 1 0 -23.58
12 1 1 0 0 1 0 0 1 1 -23.46
13 1 1 0 0 1 0 0 1 1 -23.46
14 1 1 0 0 1 1 0 1 1 -18.29
15 1 1 0 0 1 1 0 1 1 -18.29
16 1 1 0 0 1 1 1 1 1 -14.28
17 1 1 0 0 1 1 1 1 1 -14.28
18 1 1 0 0 1 1 1 1 1 -14.28
19 1 1 0 0 1 1 1 1 1 -14.28
20 1 1 0 0 1 1 1 1 1 -14.28

we incrementally raise the budget level we continue to add projects which fit

within the new budget increment. While these projects increase NPV, this in-

cremental strategy never allows us to select the higher cost (but higher value)

project 4. In practice, project 4 would likely be funded by management be-

cause its benefits are so clear. However, less extreme instances of this issue

often arise for projects, and collections of projects, that fall near the cut-off

point. Without the type of tool we describe, the benefits of such projects

easily may be missed.

We can initialize the heuristic scheme just described at levels other

than the lowest budget. Instead, we could begin by solving model (4.1) with

the largest budget level, bt = $20M. Then, decrement the budget to bt =

$19M, and resolve model (4.1), subject to the restriction that we can only
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Algorithm 4 Greedy heuristic starting at budget scenario ω′: H-ω′.

Input: (ai, cit, b
ω
t ), i ∈ I, t ∈ T, ω ∈ Ω = {ωmin, ωmin + 1, . . . , ωmax}, and ω′, the

heuristic’s initial budget scenario.
Output: Priority list for greedy heuristic H-ω′, L = [L1, . . . ,LL]. L is the number
of priority levels, L1 denotes the highest priority projects, L2 denotes the second
highest priority projects, etc.

Solve model (4.2) with parameters (ai, cit, bt = bω
′

t ), i ∈ I, t ∈ T , to obtain
solution x∗.
Sω
′ ← {i |x∗i = 1}.

for ω = ω′ + 1 incremented to ωmax do
Solve model (4.2) with parameters (ai, cit, bt = bωt ), i ∈ I, t ∈ T , and with
additional constraint set {x |xi = 1, i ∈ Sω−1}, to obtain solution x∗.
Sω ← {i |x∗i = 1}.

end for

for ω = ω′ − 1 decremented to ωmin do
Solve model (4.2) with parameters (ai, cit, bt = bωt ), i ∈ I, t ∈ T , and with
additional constraint set {x |xi = 0, i 6∈ Sω+1}, to obtain solution x∗.
Sω ← {i |x∗i = 1}.

end for

j ← 0, Sωmin−1 ← ∅
for ω = ωmin incremented to ωmax do

if Sω \ Sω−1 6= ∅ then
j ← j + 1
Lj ← Sω \ Sω−1

end if
end for
if ∪ω∈ΩS

ω = I then
L← j and L = [L1, . . . ,LL].

else
L← j + 1, LL = I \ ∪ω∈ΩS

ω, and L = [L1, . . . ,LL].
end if

choose projects that were present in the portfolio for bt = $20M. (From the

last row of Table 4.2, we see this excludes from consideration projects 3 and
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7.) We then decrement the budget, i.e., repeat this with bt = $18M, and

so on. This again leads to a nesting of project portfolios at different budget

levels from which we can extract a priority list. Given the incremental and

decremental techniques for forcing nested portfolios, we can therefore start

by solving model (4.1) at any intermediate budget level, e.g., bt = $17M,

and then decrement to bt = $16M, . . . , $11M, and increment from bt = $17M

to bt = $18M, . . . , $20M and finally extract a priority list. We call these

greedy heuristics. Algorithm 4 formalizes this class of heuristics, where H-ω′

corresponds to initializing the heuristic with budget scenario ω′. Algorithm 4

assumes that Ω = {ωmin, ωmin + 1, ..., ωmax} is a set of consecutive integers,

and in our numerical example Ω = {11, 12, ..., 20}. Of course, constructing

heuristic priority lists need not be rooted in model (4.1). We could instead

score the projects individually using, e.g., BIR or NPV, to form a priority list,

and we label these ranking heuristics. We use the designations H-BIR and

H-NPV to denote the ranking heuristic lists based on the projects’ benefit-

investment ratios and net present values, respectively.

In order to assess the quality of a priority list, we require a model of

uncertainty governing the realizations of the projects’ profits, costs and the

yearly budgets. Our uncertainty model places a probability distribution on the

realizations of these model parameters, and for the moment, we focus on bud-

get uncertainty. The range of possible budgets used in the analyses provided

in Tables 4.2 and 4.3 is large and management probably only approves capital

budgets relatively close to some predefined target. To address this, we assign
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Figure 4.1: Discrete probability mass function for budget values. The line only
serves to illustrate exponential and linear drops in probability mass.

relatively low probabilities to budget realizations far from the target budget.

For this example, these probabilities were assigned in an ad hoc manner but

were selected so that they represented plausible values. For our example ap-

plication, we assume the most likely (target) budget value is $17M. There is

some chance that the budget is larger and the probability it is $18M, $19M or

$20M is assumed to drop off linearly. Conversely, the actual budget may be

smaller than $17M, and the individual probability masses are assumed to drop

exponentially from $17M to $11M with the specific values shown in Figure 4.1
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Table 4.4: Budget realizations and probabilities.

Budget, bωt ($M) Weight Probability, qω

11 5e−3 0.012
12 5e−5/2 0.019
13 5e−2 0.032
14 5e−3/2 0.052
15 5e−1 0.086
16 5e−1/2 0.142
17 5 0.235
18 4 0.188
19 3 0.141
20 2 0.094

Table 4.5: Heuristic priority lists and their expected NPVs.

Heuristic Priority List NPV ($M)
H-11 {1, 2, 5, 8}, {9}, {6}, {7}, {3, 4} -15.42
H-12 {1, 2, 5, 8}, {9}, {6}, {7}, {3, 4} -15.42
H-13 {1, 2, 8, 9}, {6}, {5}, {7}, {3, 4} -15.29
H-14 {1, 2, 8, 9}, {6}, {5}, {7}, {3, 4} -15.29
H-15 {2, 8, 9}, {6}, {7}, {1, 5}, {3, 4} -15.50
H-16 {1, 2, 8, 9}, {3}, {5}, {6}, {4, 7} -4.54
H-17 {1, 2, 8, 9}, {3}, {5}, {6}, {4, 7} -4.54
H-18 {1, 2, 5, 8}, {9}, {4}, {6}, {3, 7} 2.59
H-19 {1, 2, 5, 8}, {9}, {4}, {6}, {3, 7} 2.59
H-20 {1, 2, 5, 8}, {9}, {4}, {6}, {3, 7} 2.59
H-BIR {1, 2}, {3}, {4, 5, 6, 7, 8, 9} -6.89
H-NPV {4}, {1, 2, 3, 5, 6, 7, 8, 9} -2.40

and Table 4.4. The weights in the second column of Table 4.4 are normalized

to yield the probabilities in the third column. And, the 10 budget realizations
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of Table 4.4 are perfectly correlated over time, i.e., if the budget realization in

year 1 is $13M then it also takes that same value in the next four years.

Under this probability distribution we obtain an expected NPV of -

$15.42M by implementing the heuristic priority list, H-11. This expectation is

computed by forming the weighted sum of the 10 NPV realizations in Table 4.3,

using the probability mass function, qω, from Table 4.4. We compute the

expected NPV under the other heuristics in a similar manner. The resulting

heuristic priority lists and their NPVs are given in Table 4.5.

Examining the results in Table 4.5, we see that initializing the greedy

heuristic at a larger budget value in the range $11M to $20M allows selection of

higher-cost projects that are also of higher NPV.As indicated above, project 4

is a project that provides a large NPV but also incurs high costs. Heuristics H-

11 through H-17 give project 4 the lowest possible priority because they cannot

feasibly choose that project with their initial budget, and when the budget

grows their existing commitments leave no room for project 4. Nominally, the

ranking heuristics produce a fully-ordered list. For example, H-BIR’s ordered

list is simply projects 1-9, in that order. The H-BIR list given in Table 4.5

indicates that projects 1 and 2 can both be performed at the lowest budget level

($11M), that project 3 is included at a higher budget level (which is $16M),

and that the remaining projects are unfunded, even at the highest budget

level. The H-NPV prioritization is obtained by simply sorting the projects

from largest to smallest NPV. From Table 4.1 we see that under this scheme

project 4 has the highest priority, project 3 is ranked second, etc. Table 4.5
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indicates that project 4 is funded (eventually, under the $18M budget scenario)

but that even under the highest budget realization, we cannot fund project 3.

We also compute the expected NPV under perfect information by weight-

ing the NPVs in Table 4.2 to obtain $11.90M. The expected NPV under perfect

information is the value we would obtain if we could wait until the budget is

realized before selecting our portfolio of projects. Comparing $11.90M with

the values obtained using the heuristics in Table 4.5 indicates that the “value

of information” is significant in this problem. If we could improve the budget

forecast, e.g., by further data collection, obtaining better estimates of project

cost, revenue and NPV, or performing a more detailed forecasting analysis,

then the ability to prioritize the projects could be improved substantially.

Some additional remarks regarding the greedy and ranking heuristics

are in order. From Table 4.5, one may be tempted to conclude that greedy

heuristics perform better if initialized at larger budget values. Comparing H-

14 and H-15 already shows this temptation is vain, but the following example

gives further insight.

Example 4.4.1. Consider an instance of a single-knapsack model with eleven

projects. Ten projects have profit and cost equal to 1, and the other project

has a profit of 11, and a cost of 10. The budget takes values 1, . . . , 10 with

probabilities q1, . . . , q10, which sum to one. For this problem, H-1 to H-9 all

yield the same expected NPV of
∑10

ω=1 ωq
ω, while H-10 has an expected NPV

of 11q10. If the budget scenarios are equally likely, the H-10 heuristic is worse

than the other heuristics by a factor of 5, and as the probability mass on the
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budget realization of 10 shrinks to zero the factor by which H-10 is worse grows

without bound, regardless of the specific values of q1, . . . , q9.

As Example 4.4.1 indicates, the fact that the greedy heuristics ignore the prob-

ability distribution means we should not anticipate, in general, one heuristic

to dominate the others with respect to expected NPV. As the example also

suggests, the worst-case performance of the greedy heuristics can be arbitrarily

poor.

The ranking heuristics H-BIR and H-NPV ignore the budget, which

points to a potential pitfall. Foremost, the highest priority project may fail

to satisfy the budget under one or more (even all!) of the scenarios. In this

case, until the budget scenario climbs to a level where that project can be

funded, we cannot perform any other project. As described above, this is

exactly what occurred for H-NPV in Table 4.5 where no project was funded

for budget realizations $11-17M. Even when this feasibility issue does not arise,

a potential pitfall remains as the following example illustrates.

Example 4.4.2. Consider a single-knapsack problem instance with two projects.

The first project’s cost and profit are 2 and 4, respectively. The second

project’s cost and profit are M , a large number. There are two budget scenar-

ios: M and M + 1. The expected NPV obtained under H-BIR is 4, whereas

the optimal solution has an expected NPV of M . As M grows, the ratio

of the optimal priority list’s expected NPV to that of H-BIR grows without

bound.
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These simple examples show that commonly-employed heuristics that

ignore either the budgets, or their likelihood of occurrence, can lead to arbitrar-

ily poor priority lists. The next section formulates a new model which yields

an optimal priority list by incorporating a probability distribution governing

the budget, cost and profit realizations.

4.5 Optimal Project Prioritization

The deterministic capital budgeting model (4.1) assumes that we know

the problem data (i.e., project costs and revenues and the budget) in advance

with certainty. And, as was demonstrated, the model does not naturally pro-

duce a priority list. In the previous section, we used the deterministic model

to deal with uncertain budgets, but that analysis was admittedly ad hoc and

is why we referred to the results as heuristic priority lists. In this section we

build a model that explicitly incorporates multiple budget, cost and revenue

scenarios.

The need to deal with these uncertain parameters motivates extending

model (4.1) to form a priority list with the goal of maximizing the expected

NPV of the projects we can implement after the uncertain parameters are

revealed. The notation and formulation of the optimal prioritization model
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are as follows:

Indices and sets:

i, i′ ∈ I candidate projects

p ∈ P priorities;P = {1, 2, . . . , |I|}

t ∈ T time periods (years)

ω ∈ Ω scenarios

Data:

aωi net present value of project i under scenario ω

bωt available budget in period t under scenario ω

cωit cost of project i in period t under scenario ω

qω probability of scenario ω

Decision variables:

sii′ 1 if project i has higher priority than i′; 0 otherwise

zip 1 if project i is assigned priority level p; 0 otherwise

xωi 1 if project i is selected under scenario ω; 0 otherwise
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Formulation:

max
s, z,x

∑
ω∈Ω

qω
∑
i∈I

aωi x
ω
i (4.2a)

s.t.
∑
i∈I

cωitx
ω
i ≤ bωt , t ∈ T, ω ∈ Ω, (4.2b)∑

i∈I

zip = 1, p ∈ P, (4.2c)∑
p∈P

zip = 1, i ∈ I, (4.2d)

|P |sii′ ≥
∑
p∈P

(|P | − p)(zip − zi′p), i 6= i′, i, i′ ∈ I, (4.2e)

sii′ + si′i = 1, i < i′, i, i′ ∈ I, (4.2f)

xωi ≥ xωi′ + sii′ − 1, i 6= i′, i, i′ ∈ I, ω ∈ Ω, (4.2g)

xωi ∈ {0, 1}, i ∈ I, ω ∈ Ω, (4.2h)

sii′ ∈ {0, 1}, i 6= i′, i, i′ ∈ I, (4.2i)

zip ∈ {0, 1}, i ∈ I, p ∈ P. (4.2j)

Model (4.2) is an application of model (2.9) to multidimensional knap-

sack problem (4.1). All constraints and variables read similarly, and hence

we do not give details. Although model (4.2) prioritizes a relatively simple

multidimensional knapsack model, we can similarly prioritize any resource-

constrained combinatorial optimization problem with binary activity selection

decisions (See models (2.3) and (2.14)). In the context of capital budgeting,

a more detailed model would capture important issues such as: Selecting one

project can yield a synergistic opportunity for other projects; selection of a

project may require selection of one or more prerequisite projects; a collec-
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Figure 4.2: Obtained NPVs for each budget realization under perfect informa-
tion, the H-11 heuristic priority list and the optimal priority list. The y-axis
is NPV ($M) and x-axis is budget level ($M).

tion of projects may represent mutually exclusive alternatives; some projects

are implemented in phases, with opportunities for acceleration or delay; col-

ors, beyond yearly availability, can distinguish types of money; both fixed and

variable costs play a role in asset replacement models; resources in addition

to monetary budgets can limit project selection; and, demand constraints can

drive project selection. See, for instance, Brown et al. [6] and Hartman [15]

for a discussion of these and related issues. For capital budgeting under uncer-
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tainty, Meier et al. [28] couple a knapsack model with contingent-claim anal-

ysis, in place of traditional cash-flow analysis. Through a proper partitioning

of the uncertainties, their model is also amenable to prioritization.

To illustrate the optimal prioritization model, we continue our example

from the previous two sections in which only the budget is random, and we

have nine projects with positive NPV. While our illustrative example only

has uncertainty in the budget level, model (4.2) also handles uncertainty in

the profits and costs of the projects. The next section considers a larger

problem with 41 projects, including an instance in which the budget, cost and

profit parameters are modeled as random variables with defined distribution

functions. We use the same values for ai and cit as given in Table 4.1. As

in the previous section, we use the budget realizations, bωt , and associated

probabilities, qω, given in Table 4.4. The priority list solving this instance of

model (4.2) is given in Table 4.6. The priority lists for a number of the greedy

heuristics are also given for reference. As is shown in the table, the list obtained

by the heuristics H-18, H-19 and H-20 find the optimal priority list, confirmed

by the solution of model (4.2). The other heuristics yield substantially inferior

lists, i.e., they yield a substantially lower expected NPV. It is, perhaps, not

surprising that when prioritizing a small set of candidate projects (in this case

consisting of only 9 projects) using multiple heuristics (in this case 12 different

heuristics; see Table 4.5) that some of those heuristics find the optimal solution.

This result is also not surprising given the dominant nature of project 4, and

the fact that the heuristics H-18, H-19 and H-20 have sufficient budget to
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include that project.

We can obtain further insight by comparing the optimal priority list

to that obtained by the heuristics H-11 and H-12. Comparing these two lists

in Table 4.6, the only difference is that in the optimal list, the largest NPV

project 4 has higher priority. Despite this simple difference, it is interesting

to note that priority lists obtained by intermediate heuristics, e.g., H-15 and

H-17, have a somewhat different structure. In H-15, projects 1 and 5 move

substantially down the list. H-17 is arguably a natural heuristic to run in

this setting because it first solves model (4.1) under the most-likely budget

scenario. Still, its expected NPV is $7.13M short of optimal.

The performance of the optimal priority list under each budget scenario

is given in Table 4.7. Comparing this with the results of the H-11 heuristic

for each scenario in Table 4.3, we see that the optimal priority list underper-

forms the greedy heuristic (by a relatively small amount) for budget values

of $14M-17M. However, for larger amounts of available budget, the stochas-

tic approach significantly outperforms the heuristic priority list, as seen by

the resultant portfolio NPVs obtained for the budget values between $18M-

20M. The optimal expected NPV from the prioritization problem of $2.59M

is (necessarily) at least as large as that of all the heuristics in Table 4.5, and,

of course, smaller than that under perfect information ($11.90M). Figure 4.2

compares the NPVs for each budget scenario for H-11, the optimal priority list,

and perfect information. The expected NPV obtained under H-11 (-$15.42M),

the optimal prioritization ($2.59M) and perfect information ($11.90M) can
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Table 4.6: Priority lists from greedy heuristics and model (4.2), with their
expected NPVs.

H-11, H-12 H-15 H-17 H-18—H-20, Optimal
Priority Project Priority Project Priority Project Priority Project

1-4 {1,2,5,8} 1-3 {2, 8, 9} 1-4 {1,2,8,9} 1-4 {1,2,5,8}
4 6

5 9 5 7 5 3 5 9
6 6 6-7 {1,5} 6 5 6 4
7 7 7 6 7 6

8-9 {3,4} 8-9 {3,4} 8-9 {4,7} 8-9 {3,7}
-$15.42M -$15.50M -$4.54M $2.59M

be obtained from Figure 4.2 by weighing the respective points for each bud-

get realization by the probabilities from Figure 4.1 and summing. Again, as

the figure shows, the heuristic priority list outperforms the optimal list under

some budget scenarios ($14M-17M), but not in the overall expected value of

the NPV due to its large underperformance for budget values $18M-20M.

With the small number of projects in this example, we likely could have

obtained the optimal priority list by trial-and-error, or even brute force, as

the total number of possible priority lists is modest (i.e., there are 9!=362,880

possible orderings of the 9 projects). This small-sized example is useful because

the behavior of the optimal solution is transparent. However, as we show in

the next section, the prioritization model can produce similar results when the

number of projects is larger and it is impossible to exhaustively examine all

such alternatives.

Before turning to this larger numerical example, we note that from
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Table 4.7: Solution to the 9-project prioritization problem.

Budget NPV
Level ($M) 1 2 3 4 5 6 7 8 9 ($M)

11 1 1 0 0 1 0 0 1 0 -23.58
12 1 1 0 0 1 0 0 1 1 -23.46
13 1 1 0 0 1 0 0 1 1 -23.46
14 1 1 0 0 1 0 0 1 1 -23.46
15 1 1 0 0 1 0 0 1 1 -23.46
16 1 1 0 0 1 0 0 1 1 -23.46
17 1 1 0 0 1 0 0 1 1 -23.46
18 1 1 0 1 1 0 0 1 1 37.13
19 1 1 0 1 1 0 0 1 1 37.13
20 1 1 0 1 1 1 0 1 1 42.30

Table 4.6 one may be tempted to infer that the best of the greedy heuristics

obtains an optimal, or near-optimal solution, as H-18-H-20 do in this example.

However, the following example shows that the factor by which the expected

NPV of the optimal prioritization outperforms that of the best of the greedy

heuristics can be arbitrarily large. In other words, we do not have any such

performance guarantee for these greedy heuristics.

Example 4.5.1. Let k be a positive integer and consider an instance of a two-

dimensional knapsack problem with projects indexed by I = {1, 2, . . . , 2k},

and scenarios indexed by Ω = {1, 2, . . . , k}. Projects i = 1, . . . , k have

profit/cost streams of M/(1, 1), 2M/(2, 1), · · · , kM/(k, 1), where the pair (i, 1)

represents the first- and second-year project costs, respectively. The remain-

ing projects i = k + 1, . . . , 2k are all identical and have a profit of M − 1 and
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costs of (1, 1/k). The only uncertainty lies in the budget. In scenario ω there

is a budget of (ω, 1) for ω = 1, . . . , k. The probabilities of these scenarios are

qω = 1
ω(ω+1)

for ω = 1, . . . , k − 1, and the last scenario has a probability of 1
k
.

When M is sufficiently large, it is not difficult to see that the H-ω

greedy heuristic, for ω = 1, . . . , k, begins by choosing project i = ω since the

optimal solution of the two-dimensional knapsack problem with budget (ω, 1)

is project i = ω. In all scenarios ω′ < ω, no project is selected under H-ω.

And, for scenarios ω′ > ω, project i = ω remains the only project selected

because it exhausts the second-year budget. Hence, the objective function

value under the H-ω heuristic is given by:

k∑
ω′=ω

(ωM)qω
′
= (ωM)

(
1

k
+

k−1∑
ω′=ω

1

ω′(ω′ + 1)

)
= (ωM)

(
1

k
+

1

ω
− 1

k

)
= M.

On the other hand, the solution to the optimal prioritization model (4.2)

selects project k + 1 under the first scenario, selects projects k + 1 and k + 2

under the second, and so forth until it selects projects k+ 1, . . . , 2k under the

last scenario. This optimal solution’s objective function value is:

k∑
ω=1

ω(M − 1)qω = k(M − 1)
1

k
+

k−1∑
ω=1

ω(M − 1)

ω(ω + 1)
= (M − 1)

k∑
ω=1

1

ω
.

In this example, the H-ω heuristics all perform identically. Thus the ratio of

the expected NPV from the best of the H-ω heuristics to that of the optimal

prioritization is
M

(M − 1)
∑k

ω=1
1
ω

. As M grows large, this ratio converges to

132



(
k∑

ω=1

1

ω

)−1

. And finally, as k grows large, this ratio shrinks to zero, meaning

that the factor by which the optimal prioritization outperforms the best of the

H-ω heuristics grows without bound.

4.6 A Problem with More Projects

In this section, we consider a larger problem with 41 projects, all of

which have positive NPV. As in the smaller problem considered in the previous

sections, all of the project data, including profits and cost streams, are from

STPNOC, with the cost stream estimates covering the next five years. Point

forecasts for the project profits and cost streams (nominal) over the next five

years are given in Table 4.8, along with the benefit-investment ratio for each

project. The NPV and cost-stream values are of similar magnitude to those

reported in Table 4.1, but Table 4.8 reports both the cit and ai values as

percentages of the total NPV summed over all 41 projects due to business

sensitivity. So, the sum of the 41 entries in the NPV (ai) column is 100. As

before, a blank entry for a cit value means that project i does not incur a cost

in year t.
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Table 4.8: Data for 41 projects. Both the cost and NPV values are given as
percentages of total NPV summed over all 41 projects.

yearly costs cit
Project i 1 2 3 4 5 NPV (ai) BIR

1 0.07 0.08 0.01 0.01 12.71 96.612
2 0.09 3.10 38.769
3 0.02 0.40 20.855
4 0.04 0.66 16.009
5 0.21 3.12 14.950
6 0.29 2.86 10.006
7 0.34 3.35 9.973
8 0.33 0.22 4.63 9.499
9 0.08 0.08 0.08 2.11 9.267
10 0.06 0.36 6.973
11 0.04 0.26 6.237
12 0.11 0.09 1.17 6.016
13 0.22 0.21 2.21 5.350
14 0.27 0.53 0.11 4.32 5.090
15 0.18 0.21 0.07 1.94 4.484
16 0.29 0.45 1.71 3.159
17 0.93 1.30 0.35 7.37 3.055
18 0.12 0.31 0.07 1.11 2.661
19 0.08 0.19 0.12 0.77 2.342
20 0.13 0.29 0.15 1.02 2.339
21 0.08 0.19 0.12 0.76 2.315
22 2.24 6.46 4.81 17.72 1.735
23 0.36 0.56 1.568
24 1.78 1.78 4.34 1.272
25 0.17 0.78 0.07 0.98 1.231
26 0.27 4.54 13.96 16.26 1.204
27 0.08 0.17 0.17 0.17 0.17 0.75 1.196
28 0.29 0.29 0.59 1.141
29 0.13 0.13 0.13 0.13 0.13 0.44 0.784
30 0.10 0.29 0.21 0.740
31 0.80 0.49 0.669
32 0.34 0.23 0.662
33 0.13 0.17 0.13 0.13 0.13 0.32 0.568
34 0.52 0.75 0.33 0.359
35 0.20 0.01 0.07 0.339
36 0.13 0.04 0.301
37 0.61 1.08 0.42 0.66 0.50 0.222
38 0.15 0.36 0.10 0.208
39 0.12 0.04 0.03 0.201
40 0.04 0.01 0.158
41 0.45 0.81 0.09 0.101
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We analyze two problem instances based on these projects. In the first

instance, only the budget is uncertain and we consider 10 budget scenarios

over the range of $2.5M to $7M in increments of $0.5M. As in the previous

sections, if the budget scenario takes a value, say $4.5M, in year 1, then it

takes that same value in years 2-5. These yearly budget values range from

about 2% to 6% of the total NPV. The probability weights we place on these

10 scenarios are those given in the third column of Table 4.4. That is, the

probability of having a budget of $2.5M is 0.012, that of having $3M is 0.019,

and so on.

Solving this instance of model (4.2), we obtain the desired priority list.

For comparison we also obtain priority lists using the greedy heuristics H-2.5

through H-7. Finally, we also use the H-BIR and H-NPV heuristics. Figure 4.3

plots the NPV of the selected projects as a function of the budget realization

for this problem instance for the prioritization model (4.2), the best (H-4.5)

and worst (H-2.5) performing greedy heuristic procedures, the BIR heuristic,

and the NPV under perfect information. These NPV results are reported as

a percentage of total NPV, summed over all projects.

The expected NPV of each method is given in Table 4.9, again as a

percentage of total. In our earlier small test problem the heuristics initialized

at the largest budget realizations performed best. Here, however, the heuristic

initialized at either extreme (H-2.5 or H-7) performs poorly relative to the

optimal list and relative to the heuristic initialized near the most-likely budget

scenario (H-5.5). We note that this emphasizes the conclusion presented in the

135



50

60

70

80

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Budget Value ($M)

N
P
V
 (
%
)

Perf. Info. Opt. Prioritization H-BIR H-2.5 H-4.5

Figure 4.3: Replication of Figure 4.2 for 41-project problem under budget
uncertainty.

previous section that use of the greedy heuristics is not guaranteed to obtain

an optimal, or near-optimal solution. We also note that the H-NPV has an

expected NPV of zero because the highest NPV project is so costly that it

cannot be implemented even under the highest budget scenario we consider.

Finally, we turn to a problem instance in which the cost streams also

are uncertain. As described in the background section, for each project STP-

NOC forecasts a pessimistic, optimistic and most-likely cost stream, and these

in turn yield three forecasts for each project’s NPV. In the 41 projects we con-
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Table 4.9: Procedures for 41-project problem instance and their expected
NPVs (%).

Procedure Perf. Info. Optimal H-2.5 H-3 H-3.5 H-4 H-4.5
NPV (%) 61.20 60.25 54.69 54.69 60.16 60.16 60.17

Procedure H-5 H-5.5 H-6 H-6.5 H-7 H-BIR H-NPV
NPV (%) 60.17 60.14 58.83 57.77 57.77 55.25 0.00

sider, there are two types of projects, those labeled low-risk and those labeled

medium-risk (i.e., none of the projects were classified as high risk). For a low-

risk project, its cost and profit are assigned the pessimistic NPV value with

probability 1/6, the optimistic value with probability 1/6 and the most-likely

value with probability 4/6. For medium-risk projects these three respective

probability masses are instead 2/6, 1/6 and 3/6. (For completeness we note

that for high-risk projects, these respective probability masses are 3/6, 1/6

and 2/6.) These weights reflect estimates based on STPNOC’s experience.

The point forecasts for the cost-streams and the profits are the same

as those used above, i.e., those given in Table 4.8. We give the uncertainties

in the costs and profits in terms of multipliers. Consider the multipliers in

Table 4.10, corresponding to the pessimistic, optimistic and most-likely cost

streams and profits. Profit (cost) of a project under the pessimistic, optimistic

or most-likely scenario is its point forecast times the corresponding pessimistic

multiplier in Table 4.10. That table also contains the low-risk or medium-risk

label for each project. In our analysis, we assume that the project’s cost and

NPV are perfectly correlated, e.g., if the cost stream takes the pessimistic
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realization, then so does the NPV. We further assume that all projects with

the same risk label are perfectly correlated. So, all medium-risk projects either

take the pessimistic, optimistic or most-likely realization. The same holds for

projects within the low-risk category. However, the low-risk and medium-

risk projects are assumed to behave independently. Each risk group thus

has three realizations and the two groups are independent; hence there are

a total of 9 scenarios governing the cost-profit uncertainty. In addition to

this uncertainty, we also have budgetary uncertainty, which is modeled as

unfolding independently of the cost-profit uncertainty. We use the same 10

budget scenarios described previously. This results in a total of |Ω| = 90

scenarios.

The greedy heuristic must be altered slightly to deal with a problem

instance that contains cost uncertainty. When there is only budgetary uncer-

tainty, the scenarios can be ordered, and hence we can naturally produce a

nested set of portfolios that, in turn, yields a priority list. This is not pos-

sible when costs, profits and budgets are all uncertain. So, we instead use

the average cost estimate and then form the greedy priority lists. Still, as

is shown in Tables 4.5 and 4.6, these heuristics produce a partially-ordered

priority list. For example, under a number of the greedy heuristics for the

9-project problem, projects {1,2,5,8} all receive top priority. We break the

ties within this partial ordering using BIR, and this allows us to produce the

fully-ordered priority lists that are required to compute the expected NPV

under cost uncertainty.
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Table 4.10: Multiplier factors for 41 projects under pessimistic, optimistic and
most-likely scenarios.

Cost factors NPV factors
Project i Risk Level Pess. Opt. M.L. Pess. Opt. M.L.

1 L 1.131 0.880 0.997 0.999 1.001 1.000
2 M 1.104 0.912 0.960 0.997 1.002 1.001
3 L 1.171 0.927 0.976 0.993 1.004 1.001
4 L 1.100 0.900 1.000 0.994 1.007 1.000
5 L 1.000 1.000 1.000 1.000 1.000 1.000
6 L 1.050 0.950 1.000 0.995 1.005 1.000
7 M 1.200 0.720 0.960 0.980 1.036 1.001
8 L 1.131 0.934 0.984 0.987 1.007 1.001
9 L 1.050 0.950 1.000 0.995 1.006 1.000
10 L 1.100 0.900 1.000 0.986 1.015 1.000
11 L 1.000 1.000 1.000 1.000 1.000 1.000
12 M 1.134 0.898 0.945 0.979 1.017 1.008
13 L 1.046 0.961 0.998 0.992 1.007 1.000
14 L 1.000 1.000 1.000 1.000 1.000 1.000
15 L 1.082 0.984 0.984 0.983 1.003 1.003
16 M 1.104 0.912 0.960 0.968 1.029 1.011
17 L 1.127 0.872 1.000 0.961 1.046 0.998
18 M 1.104 0.912 0.960 0.963 1.034 1.014
19 M 1.104 0.912 0.960 0.958 1.039 1.015
20 M 1.104 0.912 0.960 0.957 1.039 1.015
21 M 1.104 0.912 0.960 0.957 1.039 1.016
22 M 1.104 0.912 0.960 0.943 1.052 1.021
23 L 1.000 1.000 1.000 1.000 1.000 1.000
24 M 1.067 0.932 0.978 0.949 1.055 1.016
25 M 1.104 0.912 0.960 0.919 1.074 1.029
26 M 1.086 0.897 0.977 0.931 1.091 1.016
27 L 1.000 1.000 1.000 1.000 1.000 1.000
28 L 1.138 0.933 0.982 0.891 1.059 1.012
29 L 1.000 1.000 1.000 1.000 1.000 1.000
30 M 1.104 0.912 0.960 0.866 1.122 1.048
31 L 1.050 0.950 1.000 0.928 1.077 0.999
32 L 1.000 1.000 1.000 1.000 1.000 1.000
33 L 1.000 1.000 1.000 1.000 1.000 1.000
34 L 1.131 0.934 0.984 0.670 1.184 1.036
35 L 1.050 0.950 1.000 0.857 1.152 0.998
36 L 1.000 1.000 1.000 1.000 1.000 1.000
37 L 1.140 0.893 0.992 0.435 1.508 1.014
38 M 1.073 0.927 0.976 0.663 1.360 1.105
39 L 1.157 0.801 1.010 0.306 2.112 0.895
40 L 1.000 1.000 1.000 1.000 1.000 1.000
41 M 1.104 0.912 0.960 0.067 1.851 1.338
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The problem instance with cost uncertainty is almost an order of mag-

nitude larger than the 41-project problem with just 10 budget scenarios. We

solve this stochastic integer program to within 1% of optimality, again using

CPLEX version 10.1 [8]. The near-optimal priority list we find has an expected

NPV of 60.18%. The respective expected NPV results for the heuristics H-2.5,

H-5.5 and H-7 are 54.65%, 60.04% and 57.04%. (The expected NPVs of these

priority lists are given as percentages of the total NPVs summed over all 41

candidate projects.) We report H-5.5 because it is the heuristic initialized at

the most-likely scenario and because, of all the greedy heuristics, it yielded

the highest expected NPV. The H-BIR heuristic yielded an expected NPV of

55.27%, and H-NPV again could not implement any projects because of the

top priority being given to an excessively costly project. Finally, the expected

NPV under perfect information is 61.19%.

As in our smaller computational example using data from STPNOC,

sometimes a heuristic performs well. However, predicting which, if any, heuris-

tic will perform well can be difficult. One can avoid the need for our prior-

itization model (4.2) if the gap between a heuristics expected NPV and the

expected NPV under perfect information is small. This gap is a posterior

bound in that it can be computed only once the problem data are known. In

the 90-scenario instance just considered, the relative gap between the expected

NPV of the H-5.5 heuristic and that under perfect information is 1.9%, and

if that is deemed sufficiently small, we can employ the priority list from the

H-5.5 heuristic. However, in other problem instances (e.g., our 9-project in-
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stance) this gap is large. In such cases, we recommend applying our optimal

prioritization model (4.2).
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Chapter 5

Conclusions and Future Work

Resource-constrained activity selection problems have applications in

many real-life decision making activities, such as capital budgeting and facil-

ity location problems. The current literature in operations research frequently

approaches these problems by forming an optimal portfolio of activities. Prac-

titioners in industry and government instead often form a priority list of ac-

tivities and select those that have the highest priority. Considering both view-

points, we propose a new prioritization approach that prioritizes the activities

recognizing structural and stochastic dependencies among them.

In Chapter 1, we motivate our prioritization approach, and in Chap-

ter 2, we provide several mathematical programming tools to apply this ap-

proach to resource-constrained activity selection problems. Namely, we first

give a formulation that takes an activity-prioritization perspective on our ap-

proach and compare it with a fully-ordered priority list. We then give a for-

mulation that takes a scenario-prioritization perspective and show that each

of the two perspectives can be more efficient than the other depending on the

problem parameters. We also develop two sets of cutting planes for both for-

mulations and show their computational use. The formulations in this chapter
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are generic, i.e., we mean that apply generally to resource-constrained activity

selection problems. An important research direction related to this chapter is

to develop special purpose prioritization algorithms, i.e., algorithms that ex-

ploit special structures in particular problems, providing more efficient solution

approaches than our more general formulation. One other research direction

relates to prioritizing the k-median problem. The computational instances we

discuss in Chapters 1 and 2 assume equal probabilities for each realization of

k. It would be insightful to investigate threshold levels for these probabilities

at which there are structural changes in the optimal prioritization.

Real-life problems are usually large in scale and the formulations in

Chapter 2 sometimes fail to solve such larger problem instances. In Chap-

ter 3, we develop a branch-and-price decomposition algorithm for an applica-

tion of our prioritization approach to the multidimensional knapsack problem.

Specifically, we construct a column-based reformulation, develop two branch-

ing strategies, and propose a tabu-search-based primal heuristic. We also

propose two parallelization schemes for our branch-and-price algorithm: inter-

node and intra-node parallelization. Comparing the two parallelization, we see

that inter-node parallelization tends to perform better on large branch-and-

bound trees and intra-node parallelization performs better on small branch-

and-bound trees. Several research directions may extend the study of this

chapter. One is to develop an alternative column-based reformulation that

better lends itself to intra-node parallelization. The second is to develop a

hybrid parallelization that uses the ideas in both parallelization approaches.
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The third one relates to the tabu-search heuristic. It is worth experimenting

with the parameters of the heuristic to improve its performance and testing it

on a wider variety of problem instances.

In Chapter 4, we discuss the practical advantages of our approach

and present a case study on its application to a real-life problem. We rank

STPNOC’s nuclear-maintenance and capital-improvement projects, consider-

ing uncertainties in the profits and cost flows of the projects and in the yearly

budgets. We compare our approach with several heuristic ranking schemes.

In this chapter, we use STPNOC’s optimistic, pessimistic and most-likely sce-

narios to model the uncertainty in the project costs and profits. One direction

of future research is to investigate the effect of various other characterizations

of the uncertainty on the relative priorities of items, and to experiment and

see if these different characterizations have any impact on the computational

time to solve the project prioritization problem.
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