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We evaluate the out-of-sample performance of a long-term investor who follows an optimized dynamic trading
strategy. Although the dynamic strategy is able to benefit from predictability out-of-sample, a short-term
investor using a single-period market timing strategy would have realized an almost identical performance.
The value of intertemporal hedge demands in strategic asset allocation appears negligible. The result is caused by
the estimation error in predicting the predictors. A myopic investor only needs to predict one-period-ahead
expected returns, but hedge demands also require accurate predictions of the predictor variables. To reduce
the problem of errors in optimized portfolio weights, we consider Bayesian procedures. Myopic and dynamic
portfolios are similarly affected by such modifications, and differences in performance become even smaller.
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1. Introduction

We compare the long-term out-of-sample performance
of two types of investors. Both investors can choose
between equity, long-term nominal bonds and short-
term nominally risk-free Treasury bills (T-bills). The first
investor follows the dynamic portfolio strategy derived
from optimizing a long-term objective function. The sec-
ond investor solves the much simpler single-period
optimization problem and follows a myopic strategy
each period. For a moderate level of relative risk aver-
sion, we find that the two types of investors perform
almost equally well out-of-sample when we evaluate
them using the long-term objective function.

This seems a puzzling result in the light of the
literature on strategic asset allocation. An important
element in the optimal portfolios of long-term investors
is the hedge demand that anticipates future changes in
investment opportunities. The theoretical foundation
for these hedge demands dates back to Merton (1969,
1971). The empirical importance has been established
by Brennan et al. (1997), Campbell et al. (2003), and
many others who show that long-term investors should
hold sizable hedge portfolios using an empirical model
with time-varying expected returns on all three asset
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classes. The hedge portfolios have two components.
The first relies on predictability of excess returns on
stocks and bonds relative to the instantaneous risk-
free rate. The other element reflects the exposure of
long-term real wealth to inflation and interest rate risk
from rolling over a short-term nominally risk-free asset.
Subsequent studies, like Sangvinatsos and Wachter
(2005), Jurek and Viceira (2011), and Larsen and Munk
(2012), have pointed at large certainty equivalent utility
gains from both types of hedge demands.

The portfolio weights and utility gains in these
and similar studies of strategic asset allocation are
in-sample, based on estimated models. In the portfolio
choice literature it has been recognized that the theoret-
ical gains may be hard to realize out-of-sample because
parameter estimation errors are exacerbated by the
optimization. In general, DeMiguel et al. (2009) find
that in many cases a naive equally weighted portfolio
of all asset classes outperforms an optimized portfolio.
More specifically, for the case of predicting equity
returns, Goyal and Welch (2008) and others find that
out-of-sample predictability of stock returns is minimal.
Even so, Campbell and Thompson (2008), Pesaran and
Timmermann (1995), Wachter and Warusawitharana
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(2009), and Dangl and Halling (2012) all find that trad-
ing on this predictability adds value if sensible restric-
tions on portfolio weights are imposed or parameter
uncertainty and instability are accounted for. Although
these studies find evidence of useful out-of-sample
predictability, they consider only myopic trading strate-
gies aimed at optimizing a single-period performance
criterion, ignoring hedge demands. Our results pertain
to the added value of hedge demands.

Quantifying the hedge portfolios requires much from
an empirical model. Just as for the myopic demands,
one needs an estimate of the time variation in expected
returns. On top of that, the optimal hedge demands
depend on the covariance of innovations in predictor
variables with the future variation in expected returns.
In a vector autoregressive model (VAR), this means
that one needs the full VAR, i.e., not just the predictive
equations for asset returns, but also the equations
for the state variables that predict returns. This may
be asking too much from a model. Our results seem
consistent, therefore, with the recent work of Pastor
and Stambaugh (2012), who argue that misspecification
of the VAR for stock returns causes equity to be even
more risky for long-term investors despite significant
evidence of predictability.

Although there are many studies on the out-of-sample
performance of strategies that maximize a single-period
objective, little evidence exists for dynamic strategies
based on intertemporal optimization. The seminal
Brennan et al. (1997) study looks at a single realiza-
tion of following a dynamic strategy with a 20 year
investment horizon for 20 years. Another example is
the study by DeMiguel et al. (2005)," who evaluate the
Campbell et al. (2003) model. They note that this model
has an infinite horizon and also includes an optimal
consumption plan, which makes the evaluation over a
finite horizon somewhat problematical. With that caveat,
they find that strategic asset allocation based on plug-in
parameter estimates and unrestricted portfolio weights
does not outperform naive diversification. Johannes
et al. (2014) study the out-of-sample performance of
dynamic portfolio choice with a two-year investment
horizon in a model with equity as the only risky asset.
In this setting they conclude that dynamic strategies
improve over a static benchmark once time-varying
volatility is included. However, they do not separate
the gains in a component due to myopic market timing
and a component due to hedge demands.

In designing our out-of-sample evaluation we make
a number of choices. First, we use the asset menu of
stocks, nominal bonds and cash considered by Brennan

! DeMiguel et al. (2005) is an early draft of DeMiguel et al. (2009)
that contains evidence on intertemporal portfolio optimization that is
not in the final version.

et al. (1997) and many others.? With these three asset
classes, long-term investors are subject to real interest
rate risk. This distinguishes our setting from studies
that assume the existence of a real risk-free rate,®> and
hence only concentrate on the hedge demands from
predictable movements in expected excess returns.

A second choice is the objective function. We max-
imize the expected constant relative risk-aversion
(CRRA) utility of real end-of-period wealth for a finite
horizon as in Brennan et al. (1997), Jurek and Viceira
(2011), Brandt et al. (2005), and others. This means
that we do not include intermediate consumption as
in Campbell et al. (2003), Rapach and Wohar (2009),
Engsted and Pedersen (2012) and others. Both objec-
tives generate intertemporal hedge demands, but we
opt for the finite horizon expected utility of terminal
wealth E,[U(W,, ¢)] criterion. This allows us to construct
time series of out-of-sample realized utilities based
on returns from different portfolio strategies. With
these we can compare the dynamic optimization results
with myopic portfolios. We thus sidestep modeling
consumption smoothing and labor income in a real-
istic life-cycle model. Since the importance of hedge
demands increases with the investment horizon, we
would like to take the investment horizon K as long
as possible. But the longer the investment horizon,
the fewer independent observations we will have on
realized utilities. As a compromise we set K to five
years for our main results.

Third, an important lesson from much of the single-
period portfolio choice literature is that it is important
to use some form of shrinkage estimators to reduce the
effects of parameter estimation error. In Campbell et al.
(2003) unrestricted optimized portfolios for long-term
investors show wildly fluctuating portfolio weights that
are even more extreme than for short-term investors.
Campbell et al. (2003) acknowledge the phenomenon
and suggest Bayesian priors and short-sell restrictions
for future work.* In this respect, we follow Wachter and
Warusawitharana (2009) and specify a skeptical Bayesian
prior that shrinks slope coefficients in the predictive
regressions for excess returns to zero, and shrinks the
coefficients of the state variables to a random walk. For
our six-dimensional VAR, we use a general Bayesian
shrinkage prior for time-series models advocated by Ni
and Sun (2003). With the shrinkage prior optimized
portfolio strategies become less aggressive compared to

2See, e.g., Brennan and Xia (2002), Koijen et al. (2010), Sangvinatsos
and Wachter (2005), and Campbell et al. (2003).

%See, e.g., Barberis (2000), Chacko and Viceira (2005), Lynch (2001),
Campbell et al. (2001), Pettenuzzo and Timmermann (2011), and
Branger et al. (2013).

4 Examples from the growing Bayesian literature include Merton
(1980), Cremers (2002), Jorion (1986), Black and Littermann (1992),
Avramov (2002), and Pastor and Stambaugh (2000).
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those for a uniform prior. We find that our results are
robust to the choice of prior. It affects the out-of-sample
performance of dynamic and myopic strategies, but
does not change their relative performance.

A fourth implementation issue is the solution to
the optimization problem. The “plug-in” method con-
ditions on a given set of estimated parameters (the
posterior mean). For the log-normal distribution and
unrestricted portfolio weights, Jurek and Viceira (2011)
derive an approximate closed-form solution for the
portfolio weights. Much of the recent portfolio choice
literature, e.g., Barberis (2000) and Johannes et al.
(2014), advocates the use of Bayesian decision theory
to explicitly account for parameter uncertainty in the
optimization. In this case, and also when short-sell
constraints are imposed, the optimization must be
done numerically. Our performance analysis requires
a fast and stable numerical algorithm, since we need
to repeat the optimization many times. To make our
extensive out-of-sample analysis feasible, we adapt
the method of Brandt et al. (2005) by introducing a
quadratic interpolation step that dramatically reduces
the number of portfolios that must be evaluated.
We describe the method in the online appendix (avail-
able at http://ssrn.com/abstract=1973648).

For our main results, we use monthly returns for the
period 1954-2012 for a full VAR and an investment
horizon of five years. Using a wide range of Bayesian
priors and implementations of the portfolio optimiza-
tion method, our main result is that repeated myopic
portfolios perform as well as strategic portfolios. On a
five-year horizon we do not find that hedge demands
add value out-of-sample. We offer two explanations
for the negligible value of hedge demands. First, we
conduct a Monte Carlo study where we generate data
according to the estimated VAR with predictable vari-
ation in expected returns. In the simulated data the
estimated myopic rules slightly outperform the strate-
gic rules. Both rules suffer from estimation error, but
the strategic rule is hurt more by estimation error than
the repeated myopic rule. The additional exposure to
estimation risk offsets the potential gains from hedge
demands.

When we impose short-sell constraints a second
mechanism explains the similarity in performance.
Portfolio weights are often extreme because of error
maximization if weights are unrestricted and are there-
fore often equal to upper and lower bound constraints
if weight restrictions are imposed. Mean reversion
induces a positive hedge demand for equity. But when
the myopic portfolio is already 100% of wealth, increas-
ing the share of equity in the portfolio beyond 100%
for hedging purposes is infeasible. Analogously, when
myopic bond demand is zero, negative hedge demands
are infeasible, and therefore the myopic and dynamic
portfolios will coincide.

Our choices in the design of the out-of-sample tests
imply a few aspects that are hard to address. We do
not incorporate hedge demands due to learning in our
setting with three risky asset classes. Our investors
learn about the parameters, since we update parameter
estimates every period. But parameter updates are also
changes in the investment opportunity set, and there-
fore a long-term investor may want to hedge against
future parameter updates. Such hedge demands are
studied in Barberis (2000), Xia (2001) and Brandt et al.
(2005). In a vector autoregressive model with multiple
asset classes it is, however, computationally infeasible
to compute the hedge demands from learning.” This
means that we can only account for learning in a very
parsimoniously parameterized model with two assets
and a single predictor variable. In our empirical work
we evaluate such models and find that also in this case
the hedging demands do not add value. The learn-
ing effects are limited in our case, since, as noted
by Skoulakis (2008), the benefits of hedging against
learning are small when the investment horizon is
much smaller than the estimation sample. In our setup
the estimation sample is at least 20 years. In addition,
the results in Xia (2001) for a model with equity as the
only risky asset suggest that optimal hedge demands
for learning may offset the hedge demands from mean
reversion of equity returns, which would imply that
the myopic allocation is very close to the true optimal
strategic asset allocation.

A second potential limitation is our assumption of
homoskedastic returns. This is the common assumption
in the strategic asset allocation literature following
Chacko and Viceira (2005). In their model time-varying
risk is an important feature of equity returns, but it
does not generate large hedge demands, i.e., the effect
on myopic and dynamic portfolios is similar.

For robustness, we explore various alternatives:
10- and 15-year investment horizons, an alternative
predictor, an extended data set, rolling window versus
expanding window estimation and alternative specifica-
tions with smaller asset menus. Many of the robustness
checks are available in the online appendix.

2. Methodology

2.1. General Setup
Define the n-vector y, as

vi=(n x s), @)

where 7, is the real return on a nominal T-bill, x, is the
vector of excess returns on stocks x, , and bonds x, ,,

® The computational problem is well recognized in the cited references
and arises because the number of state variables grows quadratically
with the dimension of the VAR. Johannes et al. (2014) report that the
intertemporal optimization problem is still beyond current computing
technology.
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and s, is a vector of predictor variables. As state
variables we use the nominal three-month T-bill yield,
the price-earnings (PE) ratio, and the yield spread
between long-term bonds and the nominal T-bill. Hence,
n=6.

We consider investors who choose portfolios of the
three asset classes to maximize expected utility over
terminal wealth W, with an investment horizon of
K periods. Formally, the investor chooses portfolio
weights w,, ..., w,, x_; such that the value function at
time ¢ maximizes the objective

V(K, y,, W)) = " max

Whyeeey Wrik—1

}E[U(Wt+K) VAR 2
where final wealth from the portfolio strategy equals
K1

[T wiRe, ®)

s=t

Wt+K —
W,

with R, =e"(1, e, e*t)’ the vector of gross returns
on the assets in period t. Portfolio weights add up
to 1. In the optimization we normalize initial wealth to
W, =1. We assume power utility preferences U(x) =
x177/(1 — y) with relative risk aversion y > 1.

An econometric model is needed to evaluate the
conditional expectation in (2). Following Campbell
et al. (2003), Jurek and Viceira (2011) and many others,
the dynamics of asset returns and state variables are
assumed to follow the first order vector autoregression

Yis1 =By + By, + €4, 4)

where B is an n-vector of intercepts, B; an (n x n)
matrix of slope coefficients, and €,,; an n-vector of
errors for which we make the common assumption
that they are normally distributed with mean zero and
covariance matrix X.° We collect all parameters in the
vector 0. The investor estimates the parameters using
different Bayesian priors that we explain in §2.5.

We compare two types of strategies: a dynamic strat-
egy and a myopic strategy. The myopic strategy is the
optimal solution for K =1. The dynamic strategy is the
optimal solution to a long-horizon problem with K > 1.
The hedge demand at time ¢ is defined as the difference
between the dynamic and the myopic strategy. Our
main question is whether investors should take the
hedge component into account. To answer this question
we compare the performance of the dynamic strategy
with the repeated myopic strategy out-of-sample. If we
would know the process that generates asset returns

¢ The VAR(1) is restrictive in two ways. First, it is unlikely that all
dynamics in the data are accounted for by using only one lag. Second,
it is unlikely that the error term is homoskedastic, i.e., that risk is
constant over time. There is a trade-off between model size and
estimation error. Much of the forecasting literature prefers smaller
models and therefore we stick to the VAR(1).

and state variables perfectly and had an infinitely long
sample, this would be a trivial question to answer.
A dynamic strategy would be superior to repeated
myopic strategies, since the former strategy encom-
passes the latter (for the same investment horizon).
Since we do not know the true data generating process,
the model we select for portfolio construction will be
subject to misspecification and parameter estimation
error. For the myopic portfolio, the errors are only
related to estimation error in the single-period expected
returns. The hedge component, however, is also sensi-
tive to the long-run predictions of returns and their
covariance with current returns. Out-of-sample, it is
therefore far from trivial which strategy works best.

In the out-of-sample analysis, our first investor has
an investment horizon of K periods and uses all data
available until period T; to estimate the model and
choose her initial portfolio weights wy,. In the next
period, Tj +1, her investment horizon is K —1, and
she updates her information set to choose portfolio
weights wy, ,;, etc. In period T + K — 1, her investment
horizon is 1 period, and she uses all data until that
period to choose her last portfolio weights wr x_;.
This sequence of K portfolio weights results in exactly
one terminal wealth value Wy . The next investor
follows a similar strategy but she starts in period T, +1
and ends in period T, + 1+ K with again exactly one
terminal wealth value Wy, x. We repeat this analysis
for many investors, all with horizon K, who start their
strategies one period after each other. The last investor
starts in T — K and ends in T, the end of the sample.
In this way, we obtain time series of terminal wealth
values W,y and realized utility values U(W, ). These
provide a measure of out-of-sample performance of
the investors, using only information that is available
to investors in real time. We use the sample means
of realized utilities to analyze whether dynamic and
repeated myopic strategies provide the same expected
utility.

For reporting purposes, we express average realized
utility as an annual certainty equivalent return (CER).
The CER is the risk-free return that would make
investors indifferent between following a strategy
or accepting this risk-free real return. The CER is a
monotone transformation of the average out-of-sample
realized utility and is given by

14 CER = ((1 — y)U)0-7), 5)

with U = (1/(T =K =T, +1)) =/~ (W, /(1— ). With
monthly data, we report the annualized certainty equiv-
alent returns (1+ CER)?/K —1.

We choose our starting date 1 such that we have
20 years of initial observations to estimate a model.
For our main results, the investment horizon is
five years with a monthly decision interval; hence



Diris, Palm, and Schotman: Long-Term Strategic Asset Allocation
Management Science 61(9), pp. 2185-2202, ©2015 INFORMS

2189

K = 60. The investment horizon of 60 months is a
medium to long-term horizon. With monthly postwar
U.S. data, it gives us almost eight nonoverlapping
out-of-sample investment periods.

Every month we allow investors to use all avail-
able information up to this month to update their
portfolio holdings. This means that we reestimate our
models every month to include the newest observa-
tions using an expanding data window. The period ¢
investor makes a plan at ¢, but reoptimizes it using
new parameter values at f+ 1.

We compare the myopic and dynamic strategies for
a number of alternatives regarding estimation and
portfolio optimization:

e three levels of risk aversion, y € {2,5,10};

* unrestricted portfolio weights or weights that are
restricted by short-sell constraints;

* optimization conditional on parameter estimates
(plug-in) or incorporating Bayesian parameter uncer-
tainty (decision theoretic);

e three different priors: uniform, shrinkage or no
predictability.

We perform the out-of-sample analysis for three
levels of risk aversion, but will focus our discussion
mainly on y =5. An investor with y =2 is fairly
aggressive and hedge demands for both stocks and
bonds are small. For y =10, the hedge demand for
stocks is small, since such investors hardly invest in
stocks.

As a benchmark for all strategies we consider four
model-free strategies. Three strategies invest fully in a
single asset, either stocks, bonds, or T-bills. The fourth
is the 1/N portfolio, which invests an equal amount in
every asset.

2.2. Unrestricted Weights

Solving the optimization problem (2) requires numerical
techniques. Even if all returns in R, ; are lognormally
distributed (conditional on the parameters and the
states 1,), the portfolio return w;R,,; in (3) is not
lognormal, and the expectation in (2) is not available
in closed form. To obtain an approximate analytical
solution, a large part of the literature solves a slightly
modified optimization problem. Some studies (e.g.,
Larsen and Munk 2012, Sangvinatsos and Wachter
2005) consider a continuous time version, whereas
others (e.g., Campbell et al. 2003, Jurek and Viceira
2011) take a loglinear approximation to the wealth
evolution (3). Both approximations lead to solutions
that allow for short selling and leverage, and indeed
applications often exhibit portfolios with negative
weights for one or more asset classes. In discrete
time negative portfolio weights can, however, lead
to negative wealth and hence a realized utility of
minus infinity. Hence negative weights are formally
inadmissable in discrete time under CRRA utility and

lognormally distributed returns.” Even so, many papers
(e.g., Brennan et al. 1997, Campbell et al. 2003, Jurek
and Viceira 2011) still consider short selling in a discrete
time setting. With real data, wealth will remain positive
for moderate levels of leverage as long as actual excess
returns x, and x, are believed to be bounded from
becoming too negative, i.e., if the actual distribution
differs from the assumed lognormal. The more extreme
the portfolio weights are, the larger the risk is that
wealth becomes negative. The probability that wealth
does become negative is deemed to be small enough
that it can be ignored in most applications.® Since
strategies with unrestricted weights are so common,
we evaluate the out-of-sample performance of the
approximate analytical solutions using the “plug-in”
method under the label unrestricted weights. These
results should be interpreted with some care, though.

2.3. Plug-In vs. Decision-Theoretic Method

In the portfolio choice literature, there are two methods
to use the estimation results. The plug-in method
substitutes parameter estimates for the true parameters,
ignoring any form of parameter uncertainty. This
approach is adopted by, e.g., Campbell and Viceira
(2002), Jurek and Viceira (2011) and Koijen et al. (2009).
In this case the conditional distribution of future values
Y;41 for asset returns and state variables given their
current values is

PWri | é/yt)zN(éo-’_Blyt/i)r (6)

where éo, él, and 3 are estimates for the unknown
parameters in 6 based on a sample Y, of observations
up to period t. The current values of asset returns and
state variables summarize the conditioning space (next
to the parameter estimates). For point estimates, we
use posterior means.

The alternative is the decision-theoretic method,
which takes parameter uncertainty into account through
the predictive density. References for this method are
Barberis (2000) and Brandt et al. (2005). The predictive
density for asset returns and state variables, given the
current state v, is

P 1Yo y) = [ Pt 10,9)p(01 Y) o, (7)

7 The problem is well known in the literature. For a textbook discus-
sion, see Campbell and Viceira (2002, pp. 28-29) or Brandt (2010,
pp- 283-284). The problem does not occur in continuous time when
the investor can continuously rebalance.

8 Brandt (2010) uses the example of a leveraged portfolio with 220%
in equity and —120% in a risk-free asset. For this highly leveraged
portfolio, he estimates the probability of obtaining negative wealth
in one quarter to be of the order 10~°. Branger et al. (2010) analyze
the naive implementation of a continuous time strategy in discrete
time and conclude that it is viable as long as derivatives are not part
of the asset menu.
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where p(6 |Y,) is the posterior density of the parame-
ters. Parameter uncertainty is taken into account by
integrating the conditional density p(y, | 0, y,) with
respect to the posterior distribution of the parameters.
The predictive distribution of returns in (7) is not
lognormal anymore, but will usually have fatter tails
than the normal distribution. Since all assets, even the
T-bill, are risky in real terms, the expected utility of all
portfolio strategies is minus infinity unless we make
a slight modification. We impose a lower bound of
—20% on the monthly real return on the T-bill, which
guarantees that portfolios with a positive investment in
the T-bill and nonnegative weights for the other asset
classes have finite expected utility under the decision-
theoretic approach. In all numerical optimizations, we
impose these short-sell constraints.

When making long-term decisions, the investor can
anticipate that she learns more about parameter values
as time passes. For our main results, we ignore such
effects since it is computationally infeasible to account
for them given the size of the problem. We follow
Barberis (2000) and assume that investors take parame-
ter uncertainty into account, but ignore the impact of
future learning on today’s asset allocation. Under this
assumption, ¥, summarizes the conditioning space at
time t (next to the time t posterior distribution). In a
parsimoniously parameterized model with only one
risky asset that is predictable by only one predictor
variable, we are able to analyze the impact of learning.

2.4. Solution Method

Except for the approximate analytical solutions for the
plug-in methods with unrestricted weights, all portfolio
strategies require numerical optimization. Since we
recalculate dynamic strategies many times, compu-
tation time is an important issue for the numerical
methods. Therefore, we propose a refinement of the
method of Brandt et al. (2005) and van Binsbergen and
Brandt (2007). Relying on an important observation
made by Koijen et al. (2010), we parameterize the
regression coefficients in regressions that approximate
conditional utility by a quadratic function of portfolio
weights. This local quadratic approximation of the
conditional expectation of the objective function speeds
up calculations and makes our out-of-sample analysis
feasible. Technical details are reported in the online
appendix.

Our numerical solutions solve the discrete time
problem with monthly decision intervals and never
exhibit negative weights. We report these numerical
solutions under the label restricted weights.

2.5. Priors and Estimation

We use Bayesian methods to estimate the VAR in (4).
Our first prior is a uniform prior on 8 = vec([By, B;]')
and a Jeffreys prior on X,

p(B,2) o [E|"I2I(B), ®)

where I(B,) is an indicator function that is 1 if the matrix
B, implies a stationary model and 0 otherwise. It is the
most commonly used prior for VARs. The properties
of its posterior distribution are well known (see, e.g.,
Zellner 1971). The fact that the predictor variables are
close to having a unit root does not pose a problem for
inference, because (possible) nonstationarity does not
require specific Bayesian methods (see Sims and Uhlig
1991). Nevertheless, since it is common in the strategic
asset allocation literature to impose the assumption
of stationarity (see, e.g., Campbell and Viceira 2002,
Stambaugh 1999), we impose this assumption.

When many parameters need to be estimated, as
in a VAR, a uniform prior may result in very noisy
results. To reduce estimation noise, a shrinkage prior
is commonly adopted. In the absence of much data
information such a prior pulls the posterior density
toward a baseline value B, for the parameters. As our
second prior we therefore consider the shrinkage prior
specifically proposed in the context of a VAR by Ni
and Sun (2003):

PB, %) o< (B = Bo) (B By) -2
' |2|_(”+1)/21(B1). (9)

The prior itself is not proper, but Ni and Sun (2003)
show that the posterior is proper in a VAR. The negative
exponent on the distance between 8 and 3, shrinks
the coefficients toward ,. We set all elements of 3,
equal to zero except for the three diagonal elements
in B, that correspond to the first own lag of the state
variables s,. Since the predictor variables s, exhibit near
unit root behavior, we set these elements in 3, equal
to one. The prior on X is the noninformative Jeffreys
prior.

As in Wachter and Warusawitharana (2009), the
shrinkage prior reflects the beliefs of an investor who is
skeptical about predictability of asset returns. Such an
investor downplays the predictability that is found in
the data, but does not dogmatically ignore predictability.
If there is sufficient evidence in the data that asset
returns are predictable, this investor will take (some)
asset return predictability into account. Shrinking the
first lags of near unit root variables to one is a well-
known procedure dating back to the Minnesota prior
of Doan et al. (1984). This means that we shrink the
dynamics of the three state variables toward a random
walk.

As a third prior we dogmatically impose that excess
returns of stocks and bonds are not predictable. In this
case the second and third rows of B, are both equal to
zero. In the prior we restrict these parameters to zero
and use the uniform prior for all other elements of 8.
We refer to this specification as the no-predictability
prior. This prior serves as a benchmark to evaluate the
utility value of predictability. Investors that follow these
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rules do not actively time the stock and bond markets.
The dynamic and myopic strategies still differ, however,
since the expected real T-bill rate is assumed to vary
over time. To limit the total number of specifications,
we only combine the no-predictability prior with the
plug-in method.

For estimation, we use the conditional likelihood
function that conditions on the first observation. Com-
bining the likelihood with each of the priors we obtain
the posterior densities. Drawing from the posterior
density is fairly standard. We therefore refer to the
online appendix for technical details on the poste-
rior distributions and the Markov chain Monte Carlo
algorithm.

2.6. Additional Specifications

We consider several alternative specifications to test the
robustness of our results. First, we consider simplified
models in which an investor can only invest in the
T-bill rate and in one risky asset (either stocks or bonds).
The risky asset is only predictable by one predictor
variable (either the price—earnings ratio or the yield
spread) using a VAR(1) with only the lagged predictor
as right-hand-side variable, whereas the T-bill rate is
set equal to its average in the estimation window. Such
a tighter specification increases estimation precision
at the cost of potential model misspecification. This
setting is similar to the model in Barberis (2000) and
Brandt et al. (2005) and allows us to analyze the
impact of learning.” Second, we consider strategies
with investment horizons of 120 and 180 months. Since
one would expect that hedging is more important
for long horizons, these specifications should give
additional insight in the importance of the hedge
demand. The downside is that we now have fewer
than four nonoverlapping investments periods such
that the probability that results are driven by chance
is much larger. Third, we replace the price—earnings
ratio by the dividend-price (DP) ratio to check whether
our results are sensitive to a slightly different model
specification. Fourth, we consider an extended data set
that starts in 1927. However, we should keep in mind
that bond returns and T-bill rates are very different in
the early data. Finally, we estimate our models using a
rolling window of 20 years instead of an expanding
window. This method should allow us more easily to
incorporate time-variation in model parameters, but
could lead to increased estimation error.

? Since the lagged asset return itself is not a predictor in the restricted
VAR(1), there are only seven unique parameters in total: two inter-
cepts, two slope coefficients on the lagged predictor variable, two
error variances, and one error correlation. This leads to eight condi-
tioning variables in total, since the current value of the predictor
variable is also a conditioning variable. This makes the incorporation
of the learning hedge term feasible. The online appendix explains
how we define the conditioning variables.

The parsimonious model is analyzed in §4.3, and the
other alternative specifications are considered in §4.4
and the online appendix.

3. Data and Estimation Results

Our empirical analysis is based on monthly data for
the U.S. stock and bond market for the period February
1954 to December 2012. The first variable is the ex post
real T-bill rate, which is the difference between the log
return (or lagged yield) on the nominal three-month
T-bill obtained from the Federal Reserve Economic
Data (FRED) website,'” and log inflation, obtained
from the Center for Research in Security Prices (CRSP).
The second variable is the excess log stock return,
defined as the difference between the value weighted
log total return on the NYSE, NASDAQ, and AMEX
markets and the log return on the three-month T-bill.
The third variable, the excess log bond return, is defined
in a similar way, but it uses the five-year bond return
from CRSP.

To make our out-of-sample analysis credible, we
choose three predictor variables that have been used
as predictors for decades. We use the nominal yield,
the yield spread, and the price-earnings ratio. The log
yield spread is defined as the difference between the
log yield on a five-year bond obtained from the FRED
site and the log yield on the 90-day T-bill. The log of
the price—earnings ratio is obtained from the Irrational
Exuberance data, available from the website of Professor
Robert Shiller." It is defined as the log of the ratio of
the current price over the lagged mean of earnings
over the past 10 years.

Pesaran and Timmermann (1995) discuss the history
of stock return predictors, whereas Fama (1976) and
Fama and Schwert (1977) have references to early pre-
dictors of bond returns. The asset return and predictor
variables are also commonly used in the strategic asset
allocation literature; see, e.g., Campbell et al. (2003) and
Jurek and Viceira (2011). Table 1 provides summary
statistics of our monthly data.

In the robustness section we analyze an extended
data set starting in February 1927. We use the shorter
data set in our main analysis for two reasons. First,
the Federal Reserve kept the short-term nominal rate
basically fixed before the Treasury accord of 1952, which
makes it very hard to model interest rates accurately.
Second, because of a lack of suitable bond issues before
1941, the early bond return and bond yield data is less
reliable.

Table 2 reports posterior moments for B and 2, for the
shrinkage prior. We obtain the standard result that the
state variables are highly autocorrelated. The nominal

10See http://research.stlouisfed.org/fred?2.
1 See http://www.econ.yale.edu/~shiller/data.htm.
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Table 1 Summary Statistics
r Xs Xb Snom SPE Sspr

Avg. 0.0008  0.0045 0.0014 0.0460 2.8762  0.0113
Std. dev. 0.0032 0.0442 0.0147 0.0280 0.4003 0.0089
Min —0.0112 —-0.2607 -—0.0692 0.0001 1.8929 —0.0160
Max 0.0197 0.1483 0.0898 0.1443 3.7887 0.0421
AR(1) 0.4424 0.1003 0.1149 0.9889 0.9954 0.9197

Notes. This table reports the average, standard deviation, minimum, maximum.

and first order autocorrelation for the ex post real return on the nominal T-bill
(r), the excess stock return (x,), the excess bond return (x,), the nominal yield
(Snom). the price—earnings ratio (Spe), and the yield spread (s,). The data set
starts in February 1954 and ends in December 2012. Returns are in monthly
units.

yield and the price—earnings ratio have a negative effect
on stock return predictions, whereas the yield spread
has a positive impact on expected bond returns. There
is also a large positive correlation between shocks to
the price-earnings ratio and excess stock returns, which
means that unexpected positive shocks to stock returns
lead to negative future investment opportunities. This
result implies that there is mean reversion in stock
returns. The predictability of the excess returns is the
main motivation for considering hedge demands in the
literature.

Table 2 Parameter Estimates—Shrinkage Prior
Parameter estimates
r Xs Xb snom SPE Sspr R2
r 0.3432 —0.0037 0.0129 0.0280 0.0010 0.0399 0.2298
0.0347 0.0024 0.0075 0.0052 0.0003 0.0136
x; —0.0473 0.0647 0.1333 —0.1662 —0.0125 —0.0055 0.0334
0.1233 0.0358 0.0844 0.0617 0.0046 0.1027
X 0.1568 —0.0610 0.0805 0.0232 0.0014 0.2537 0.0805
0.1061 0.0121 0.0360 0.0239 0.0017 0.0603
Spom —0.0082  0.0123 —0.0615 0.9892 0.0000 0.0302 0.9780
0.0414 0.0036 0.0109 0.0072 0.0005 0.0190
Spe 01749 0.4289 0.2045 —0.0557 0.9933 0.1323 0.9946
0.1204 0.0246 0.0612 0.0437 0.0032 0.0823
Ser —0.0164 —0.0039 —0.0661 0.0036 —0.0003 0.9464 0.8581
0.0379 0.0029 0.0090 0.00617 0.0004 0.0161
Error standard deviations and correlations
r Xs Xb snom SPE sspr
r 0.2845 0.0612 0.0784 —0.0565 0.1372 0.0309
X, 43853 0.0695 —0.0271 0.7761  —0.0380
X 1.4193 -0.6119 0.0214 0.1997
Snom 0.4192 —-0.0142 —0.8447
Spe 29710 —0.0295
Sspr 0.3400

Notes. This table reports estimates for the VAR(1) using the shrinkage prior.
Columns 2—-7 show the posterior mean and standard deviations (in italic) of
the slope coefficients. The last column shows the R? implied by the posterior
mean. The elements on the diagonal of the error correlation matrix are the
standard deviations (x 100) of the error terms, the off-diagonal elements are
the correlations. The sample period is February 1954-December 2012.

Parameter estimates using the uniform prior are
reported in the online appendix. Comparing estimation
results, we find that the shrinkage estimator reduces the
predictability of asset returns, while at the same time
increasing persistence of the state variables. The lower
predictability is reflected in lower R? values (calculated
using the posterior mean of the coefficients) under
the shrinkage prior, especially for excess stock returns.
The increased persistence is reflected in the increase of
the maximum eigenvalue from 0.9917 for the uniform
prior to 0.9928 for the shrinkage prior (evaluated at the
posterior means).

In the out-of-sample analysis, we estimate our mod-
els on data sets of increasing length by including the
newest observations. Figure 1 presents time-series plots
of the estimates of the important predictive coefficients
(%, spg) and (x;, S,,) for both priors. The figure shows
that there is a lot of uncertainty about the posterior
parameter values, since parameters vary considerably
over time and posterior probability intervals are large.
However, the estimated values for the shrinkage esti-
mator are less variable and closer to 0. For equity,
predictability becomes weaker over time, whereas
for bonds there is stronger predictability over time.
The effect of the shrinkage prior diminishes over time,
since the likelihood dominates when sample size grows.

4. Out-of-Sample Performance

4.1. Main Results

The starting date for our out-of-sample experiment is
January 1974. Table 3 reports benchmark results for
model-free strategies. The table shows that moderate
(y=5) and conservative investors (y = 10) would have
preferred the 1/N portfolio, whereas more aggressive
investors (y =2) have a preference for full investment
in the risky stock market. We use these specifications
as benchmarks for the model-dependent specifications.

Table 4 presents results for the model-dependent
specifications. Each line of the table compares the
performance of the dynamic strategy in a particular
specification to the repeated myopic strategy in the
same specification. The specifications differ by weight
restriction (long only or unrestricted), method (plug-in
or decision-theoretic method), prior distribution (no-
predictability, uniform, or shrinkage prior), and risk
preferences (y € {2, 5, 10}).

Most striking in the results is the similar economic
performance of dynamic and myopic strategies. Differ-
ences in prior and optimization technique lead to much
larger performance differences than different strate-
gies. In most cases the hedge component hardly adds
value, and in some cases even deteriorates the certainty
equivalent return. For the uniform prior, the repeated
myopic strategies often outperform dynamic strategies.
For example, for y =5, the hedge component leads
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Figure 1 Time Series for Predictive Coefficients
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Notes. This figure plots time series for the mean and the 5th and 95th percentiles of the posterior distribution of the coefficients (x;, Spe) and (x,, S,) in the VAR
for the uniform and shrinkage priors. The model is estimated from February 1954 until the date on the x-axis.

to a loss in CER of 0.24% per year for a specification
that uses restricted weights and the plug-in method.
The hedge component performs better if estimation
error is controlled using the shrinkage prior or if one
uses the no-predictability prior. But even here the gains
are small: with y =5, the largest gain with restricted
weights is 0.15% CER (shrinkage prior with plug-in
method). It appears that hedging changes in future
investment opportunities for stock and bond returns
can destroy value. Even though the average terminal
wealth is always higher for dynamic strategies, the risk
more than proportionally increases.

The lack of value of the hedge portfolio is not due
to a general failure of the predictive models, since

Table 3 Benchmark Results

y=2 y=5 y=10 -

CER CER CER TwW a(TW)
1/N 0.0410 0.0337 0.0243 1.2539 0.2042
T-hill 0.0130 0.0108 0.0074 1.0750 0.0935
Stock 0.0586 0.0309 0.0018 1.4699 0.4749
Bond 0.0353 0.0237 0.0034 1.2295 0.2217

Notes. This table reports the annualized CER, average terminal wealth (TW),
and the standard deviation of terminal wealth (o(TW)) for three different
risk-aversion levels y for four strategies: either the 1/N strategy, or else
full investment in the T-bill, the stock index, or the government bond. The
out-of-sample period is February 1974-December 2012.

most model-based strategies outperform the model-free
benchmarks. Even long-term investors who do not
believe in predictability should select a diversified
portfolio based on an estimated model without pre-
dictability instead of following simple rules of thumb.
It is only for y =2 and y =10 that some model-based
strategies underperform compared to model-free bench-
marks. For y =2, a portfolio that fully invests in stocks
beats the restricted no-predictability strategies, whereas
for y =10 the repeated myopic strategy underperforms
compared to the 1/N strategy. The latter finding is con-
sistent with results of DeMiguel et al. (2009), who find
that the 1/N strategy is tough to beat out-of-sample.
Investors who believe in predictability outperform
investors that ignore predictability for nearly all specifi-
cations. It pays off to time the stock and bond markets.
The only exception is an aggressive investor (y =2)
who uses unrestricted weights, the uniform prior, and
the plug-in method. With all modeling options at their
most aggressive setting, the strategy sometimes leads
to negative wealth and hence a CER of —100%.

The shrinkage prior boosts performance for all types
of investors because it leads to less aggressive portfo-
lios. The use of the shrinkage estimator reduces the
standard deviation of terminal wealth compared to the
uniform prior, which more than offsets the (for some
specifications) reduction in average terminal wealth.
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Table 4 Dynamic vs. Myopic Strategies—Main Data Set
Dynamic Repeated myopic
CER Tw a(TW) CER Tw a(TW)
Y= 2
Restricted
Plugln Nopr 0.0578 1.4673 0.4774 0.0580 1.4680 0.4769
Plugln Unif 0.0714 1.5132 0.4454 0.0714 1.5068 0.4297
Plugln Shrink 0.0781 1.5312 0.3751 0.0779 1.5249 0.3624
DecTh Unif 0.0712 1.5063 0.4330 0.0710 1.5021 0.4237
DecTh Shrink 0.0773 1.5210 0.3611 0.0773 1.5199 0.3584
Unrestricted
Plugln Nopr 0.0876 1.7692 0.7635 0.0846 1.7516 0.7713
Plugln Unif -1 21.5171 70.6508 -1 19.0981 59.6174
Plugln Shrink 0.3066 12.2410 11.5037 0.3086 12.3057 13.2611
y=5
Restricted
Plugln Nopr 0.0397 1.3211 0.2538 0.0390 1.3207 0.2648
Plugln Unif 0.0535 1.4747 0.4093 0.0559 1.4651 0.3797
Plugln Shrink 0.0651 1.4936 0.3323 0.0636 1.4695 0.3094
DecTh Unif 0.0542 1.4707 0.4025 0.0556 1.4593 0.3732
DecTh Shrink 0.0642 1.4845 0.3309 0.0631 1.4647 0.3062
Unrestricted
Plugln Nopr 0.0456 1.3445 0.2390 0.0423 1.3238 0.2439
Plugln Unif 0.0794 5.9031 6.5341 0.0865 4.6443 4.3208
Plugln Shrink 0.1233 3.6141 1.9235 0.1214 3.2918 1.7511
Y= 10
Restricted
Plugln Nopr 0.0258 1.2192 0.1442 0.0241 1.2047 0.1488
Plugln Unif 0.0428 1.4425 0.3564 0.0418 1.4074 0.3118
Plugln Shrink 0.0521 1.4436 0.2898 0.0478 1.3936 0.2442
DecTh Unif 0.0432 1.4238 0.3260 0.0415 1.4020 0.3061
DecTh Shrink 0.0491 1.4041 0.2449 0.0474 1.3893 0.2413
Unrestricted
Plugln Nopr 0.0249 1.2146 0.1421 0.0230 1.1940 0.1418
Plugln Unif 0.0440 2.8393 1.9480 0.0574 2.3863 1.2507
Plugln Shrink 0.0656 2.0585 0.6719 0.0645 1.9046 0.5768

Notes. This table reports the annualized CER, average terminal wealth (TW), and the standard deviation of terminal wealth (o(TWW/)) for the
dynamic and repeated myopic strategies for specifications that differ in the weight restrictions (restricted or unrestricted), the method
(plug-in (Pluglin) or decision theoretic (DecTh)), the prior (no-predictability (Nopr), uniform (Unif), or shrinkage (Shrink)), and the
risk-aversion level. Results are based on the general VAR(1) estimated using an expanding window. The out-of-sample period runs from

February 1974 until December 2012.

Differences are large for unrestricted weights, which
are the most sensitive to estimation risk. However,
as indicated above, the difference between dynamic
and repeated myopic strategies remains small, because
CERs for myopic and dynamic strategies increase
together when using shrinkage.

Accounting for parameter uncertainty with the
decision-theoretic optimization does not lead to better
performance. Brandt et al. (2005) show that accounting
for parameter uncertainty in the portfolio optimiza-
tion problem mainly has an impact on the hedging
component of a dynamic strategy. Therefore, it is not
surprising that there is no performance difference
between the plug-in and decision-theoretic methods,
since the hedging component does not have an impor-
tant impact on performance.

Imposing weight restrictions leads to a substantial
reduction in risk and average terminal wealth for

investors using either the uniform or shrinkage prior.
It avoids CERs of —100% for y = 2. In theory, investors
with y =5 or y =10 can also become insolvent if short
selling is allowed. However, empirically we find that
allowing for short selling in discrete time does not lead
to negative terminal wealth for such investors, since
portfolio weights are not as extreme as the portfolio
weights for y=2.

For a more detailed analysis, we focus on the specifi-
cation with a shrinkage prior, restricted weights, the
plug-in method, and moderate risk aversion y =5.
Figure 2 plots time series and histograms of terminal
wealth and realized utility for the dynamic strategy.
Even though the distribution of terminal wealth is
somewhat right skewed, the distribution of realized
utility is left skewed. Most utility values are near zero,
but there are a few negative outliers corresponding to
low terminal wealth values. Realized utility is a metric
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Figure 2 Performance Realizations
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Notes. Panels (a) and (b) plot time series and panels (c) and (d) plot histograms of terminal wealth and realized utility for the restricted dynamic strategy that uses
the plug-in method and the shrinkage prior for y = 5. Dates refer to the start dates of the investment periods in panels (a) and (b).

that heavily penalizes bad realizations. These outliers
strongly affect the CER values in Table 4. This suggests
that specifications that limit the number and/or size of
negative events are the ones with the highest average
realized utility.

Even though hedging has a small positive effect for
this specification, the left panel of Figure 3 shows that
the realized terminal wealth values for the dynamic
and myopic strategies are very similar. The right panel

Figure 3 Realized Hedging Performance
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shows that differences in realized utility are also mostly
small. The difference in realized utility can be both
positive and negative, which suggests that neither
strategy substantially outperforms the other. Since there
is much overlap in the evaluation periods, the figures
show prolonged periods where one strategy is doing
slightly better than the other. The most recent four
years of data, all of which include the financial crisis
in the out-of-sample period, show negative values

(b) Realized utility: Dynamic minus myopic
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Notes. This figure compares the dynamic to the myopic strategy for a specification with the plug-in method, shrinkage prior, restricted weights, and y =5.
Panel (a) plots time series of terminal wealth values, whereas panel (b) plots the difference in realized utility values.
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Figure 4 Realized Myopic Performance
(a) Portfolio returns: Uniform vs. shrinkage (b) Realized utility: Uniform minus shrinkage
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Notes. This figure compares the uniform to the shrinkage prior for a myopic strategy in a specification with the plug-in method, restricted weights, and y =5.
Panel (a) plots the portfolio returns, whereas panel (b) plots the difference in realized utility values. Dates refer to the start dates of the investment periods.

for hedge demands. The dynamic strategy does not
succeed in reducing risk by hedging future changes
in investment opportunities. It leads to both the high-
est and lowest terminal wealth values and therefore
amplifies (negative) events. Since risk-averse investors
dislike negative events, the hedge component hardly
adds value.

The shrinkage prior generally provides better per-
formance than the uniform prior. Figure 4 plots the
portfolio returns and the difference in realized utility
for the uniform and shrinkage priors for the same spec-
ification with restricted weights and y =5. The results
are shown for the myopic strategy.'? Portfolio returns
and realized utilities are very similar in most periods.
However, if there is a large negative event, the shrink-
age prior manages to reduce these losses compared to
the uniform prior. This is the reason why risk-averse
investors value this specification the most. Panel (a)
shows the relatively large negative portfolio returns
for the uniform prior, and panel (b) reports the corre-
sponding relatively large negative utility differences,
which imply outperformance by the shrinkage prior in
these particular periods.

4.2. Weights

Table 5 reports portfolio weight statistics for y =5
for the different specifications. Panel A shows results
for a dynamic investor with a remaining horizon of
60 months, panel B reports statistics for a myopic
investor and, panel C shows results for the hedge
demand, defined as the difference between the dynamic
portfolio with K =60 and the myopic portfolio."?

12 At every point in time, there are 60 dynamic investors active with
different remaining horizons and different strategies, and therefore
different portfolio returns. However, the 60 repeated myopic investors
choose the same portfolio weight in every period and hence have
the same portfolio returns in every period.

13 Results for other risk-aversion levels can be found in the online
appendix.

First consider strategies with restricted weights.
The upper and lower bound constraints for stock and
bond weights are often binding (except when using the
no-predictability prior). For example, for the uniform
prior and plug-in optimization, we find that the port-
folio weight of stocks is at either the upper or lower
limit 76% of the time, whereas the bond weight is at
the boundary in 79% of cases. A dynamic investor who
uses a uniform prior invests on average 40% in stocks
and 38% in bonds. The standard deviation of weights
is 45% for both stocks and bonds, meaning that the
investor changes the portfolio composition aggressively.
The estimated portfolio weights are extremely sensitive
to small changes in predictor variables and parameter
estimates. The shrinkage prior or the decision-theoretic
optimization both lower the variability of weights, but
not by much. By construction the no-predictability
prior greatly reduces the variability of the stock port-
folio weights, since it shuts off all forms of market
timing in the stock market. Bond weights still vary a
lot under the no-predictability prior because of changes
in parameter estimates.

Hedge demands are small, since the weights are often
equal to upper or lower bound constraints. The hedge
demand for stocks cannot be positive if a myopic
investor already invests 100% in the stock market.
Similarly, the hedge demand for bonds cannot be
negative if the myopic bond weight is 0%. The average
hedge demand varies between 4% and 11% for stocks
and —4% and —8% for bonds for specifications with
predictability. However, if we only consider periods
with hedge demands that differ from 0%, the average
hedge demand for stocks varies between 7% and
20%, and the average hedge demand for bonds varies
between —9% and —20%. The hedge term mainly adds
noise though, since performance in general does not
improve when hedging is taken into account.

With unrestricted weights, both average weights as
well as standard deviations are a lot more extreme
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Table 5 Portfolio Weights for y =5
Restricted weights Unrestricted weights
Plugln Plugin Plugin DecTh DecTh Plugln Plugln Plugln
Nopr Unif Shrink Unif Shrink Nopr Unif Shrink
Panel A: Dynamic weights

A 0.4813 0.3993 0.4750 0.3705 0.3959 0.5082 0.3500 0.8048
o (w,) 0.0713 0.4461 0.4202 0.4357 0.3923 0.0485 2.0455 1.2324
Wy 0.3756 0.3813 0.3422 0.3628 0.3768 0.5862 3.0556 1.8186
a (W) 0.2402 0.4482 0.4097 0.4375 0.4104 0.6762 4.7704 3.5117
p(wg, w,) —0.4607 —0.6191 —0.6511 —0.5671 —0.5830 —0.2631 —0.1478 —0.0611
w, = UB 0 0.2869 0.2677 0.2484 0.1734

w, =LB 0 0.4711 0.2827 0.4861 0.3212

w, = UB 0 0.2719 0.1606 0.2484 0.1820

w,=LB 0.2420 0.5225 0.4904 0.5161 0.4240

Panel B: Myopic weights

A 0.5549 0.3334 0.3607 0.3293 0.3572 0.5716 0.1069 0.3992
o (w,) 0.0606 0.4269 0.3893 0.4218 0.3850 0.0507 1.5499 0.6964
vy 0.2937 0.4275 0.4218 0.4236 0.4176 0.3974 2.2160 1.7669
o (W) 0.1998 0.4572 0.4238 0.4520 0.4191 0.4816 41714 3.3731
p(wg, w,) —0.4290 —0.5853 —0.5760 —0.5840 —0.5755 —0.3454 0.1217 —0.0812
w, = UB 0 0.2013 0.1456 0.2034 0.1413

w,=LB 0 0.5396 0.3683 0.5375 0.3683

w, = UB 0 0.3212 0.2184 0.3169 0.2184

w,=LB 0.2163 0.4582 0.3876 0.4604 0.3883

Panel C: Hedge weights

A —0.0736 0.0659 0.1143 0.0411 0.0387 —0.0634 0.2430 0.4056
a(w,) 0.0385 0.1200 0.1421 0.0794 0.0773 0.0102 0.8169 0.6921
v, 0.0819 —0.0462 —0.0796 —0.0609 —0.0409 0.1888 0.8397 0.0517
a(w,) 0.1305 0.1340 0.1652 0.1726 0.1214 0.2760 2.2333 1.1404
p(wg, wy) —0.2901 —0.8350 —0.8307 —0.4054 —0.4019 -0.0134 —0.4638 —0.5284
W, #0 —0.0736 0.2013 0.1999 0.1325 0.0705

W, #0 0.0983 —0.1599 —0.1667 —0.2017 —0.0892

Notes. This table reports portfolio weight statistics for the dynamic strategy with a remaining horizon of 60 months (panel A), the myopic strategy (panel B), and
the hedge demands with a remaining horizon of 60 months (panel C) for specifications that differ in the weight restrictions (restricted or unrestricted); the method
(plug-in (Plugln) or decision theoretic (DecTh)); and the prior (no-predictability (Nopr), uniform (Unif), or shrinkage (Shrink)) for risk aversion y = 5. Statistics w;,
Wy, a(wy), a(w,), and p(w,, w,) give the average stock and bond weights, their standard deviations, and the correlation between stock and bond weights in the
out-of-sample analysis. Quantities w, = UB, w, = UB, w, = LB, and w, = LB show the fraction of months that the stock and bond weights are equal to their upper
bounds (1 for the plug-in method, 0.99 for the decision-theoretic method) or equal to their lower bounds (0 for both methods). Statistics w, 0 and w,, # 0 give

the average stock and bond hedge demands when these differ from 0.

because of error maximization. The unrestricted stock
weights have a standard deviation of over 200%,
whereas for bonds it is even larger at 477% of wealth.
Given these results, it is not surprising that the portfolio
weights are often equal to the upper or lower bound
constraints when short-sell restrictions are imposed.
Hedge demands are large with unrestricted weights,
but also very sensitive to the prior. For example, with
a uniform prior, the average hedge demand for bonds
is 84%, whereas it is just 5% under the shrinkage prior.
The unrestricted hedge demand for stocks is always
larger than for the restricted weights. These demands
make dynamic strategies riskier than myopic strategies
due to the large standard deviation of hedge demands.

Figure 5 plots time series of hedge demands for spec-
ifications with restricted weights, the plug-in method,
v =5, and using either a uniform or shrinkage prior.
The figure shows that the hedge demand for stocks
is, in general, positive (never negative), whereas the

hedge demand for bonds is, in general, negative, as
expected (see, e.g., Campbell et al. 2003). Even though
the hedge demands can be as large as 60% for stocks
and as small as —60% for bonds, the hedge demands
are often 0% and change a lot over time. This illustrates
that estimated portfolio weights are very sensitive to
changes in predictor variables and parameter estimates,
and that myopic weights are often equal to their upper
and lower bounds. Nevertheless, no matter whether
hedge demands are only different from zero when
weights are not too extreme or are essentially unre-
stricted, the hedge demands hardly add any value and
mainly add noise.

4.3. A Parsimonious Model

One possible explanation why the hedge demand does
not add value may be the large number of estimated
parameters and the resulting estimation noise. There-
fore, we consider a simplified setting with an investor
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Figure 5 Time Series of Hedge Demands
(a) Shrinkage, stock weight (b) Uniform, stock weight
105 |— Hedge; 10t 1
08} . 08} .

5 z

' 0.6 f 1 © 06} ]

2 2

X X

804 13 04} i

n 7]

0.2 g 02t .
of 0
1974m1 1984m1 1994m1 2004m1 2012m11  1974m1 1984m1 1994m1 2004m1 2012m11
Date Date
(c) Shrinkage, bond weight (d) Uniform, bond weight
0.6 : . . 0.6 : . ; ;
04} 0.4 .

. 02f . 02F 1

< <

()] (®)]

@ Of s 0

S 2

2 02 2-02 1

o o]

D 04 D o4 J
-0.6 f! -06 .
-0.8 : : ; : -0.8 : . . .

1974m1 1984m1 1994m1 2004m1 2012m11  1974m1 1984m1 1994m1 2004m1 2012m11
Date Date

Notes. The first row plots time series of the stock hedge demand (with remaining horizon K = 60) for the shrinkage (panel (a)) and uniform priors (panel (b)),
whereas the second row plots time series of the bond hedge demand for the shrinkage (panel (c)) and uniform priors (panel (d)). Results are for specifications with

restricted weights, the plug-in method, and y =5.

who can only invest in the stock index and a T-bill
which is assumed constant. We also assume that the
PE ratio is the only predictor variable. This simpli-
fied model structure is analogous to the specification
considered by Barberis (2000), who uses the dividend
yield instead of the price—earnings ratio. The results
are in Table 6.

First, the CERs are a lot lower than for the full
model, which indicates that the combined predictability
of stocks and bonds is what leads to high CERs.!
Second, the hedge demands hardly have an impact
on performance. Even in a setting with much fewer
parameters and less estimation uncertainty, the impact
of the hedge demand is minor. Third, the shrinkage
prior is not effective here. This is not surprising since
shrinkage estimators mainly improve performance
when the number of parameters is large. It appears that
the shrinkage prior removes almost all predictability
of stock returns, which leads to very small hedge
demands and CERs that are close to the CERs for the
no-predictability strategies.

In this parsimonious model we can also account for
the hedge demands from learning about the parameters.

4 The online appendix shows alternative specifications with T-bills
and bonds with similar low CERs.

Table 6 Dynamic Strategies vs. Myopic Strategies—Restricted Model
fory=>5
Dynamic strategy Repeated myopic
CER TW o(TW) CER TW  o(TW)
Restricted
Plugln Nopred 0.0279 1.2845 0.2890 0.0279 1.2845 0.2890
Plugin Unif 0.0321 1.2836 0.2899 0.0313 1.2687 0.2751
Plugin Shrink  0.0273 1.2396 0.2257 0.0266 1.2352 0.2262
DecTh Unif 0.0310 1.2629 0.2572 0.0310 1.2648 0.2755
DecTh Shrink  0.0251 1.2201 0.2180 0.0264 1.2331 0.2251
Learn Unif 0.0312 1.2655 0.2689 0.0310 1.2648 0.2755
Unrestricted
Plugln Nopred 0.0278 1.2838 0.2891 0.0278 1.2838 0.2891
Plugin Unif 0.0079 1.3034 0.3616 0.0285 1.2820 0.3044
Plugln Shrink  0.0256 1.2372 0.2319 0.0261 1.2347 0.2277

Notes. This table reports the annualized CER, average terminal wealth (TI/),
and standard deviation of terminal wealth (o(TW)) for the dynamic and
the repeated myopic strategies for specifications that differ in the weight
restrictions (restricted or unrestricted), the method (plug-in (Plugln), decision
theoretic (DecTh), or learning (Learn)), and the prior (no-predictability (Nopred),
uniform (Unif), or shrinkage (Shrink) prior). The decision-theoretic method
incorporates parameter uncertainty but ignores learning, whereas the learning
method incorporates both. Results are for y =5 and based on the simplified
VAR(1) with the stock return and the price—earnings ratio estimated using an
expanding window. The risk-free rate is assumed constant. The out-of-sample
period runs from February 1974 until December 2012.
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The results show that the hedge demand due to learning
does not improve performance. It lowers the invest-
ment in the stock market and therefore leads to lower
average terminal wealth and lower standard deviations
of terminal wealth as expected, but does not improve
performance.!®> We also consider alternative specifica-
tions in the online appendix that use a rolling window
of 20 years instead, since one might expect that learning
is more important in settings with smaller estimation
windows. Nevertheless, even for these settings we
do not find that incorporating learning has a positive
impact on out-of-sample performance. We find very
similar results for the decision-theoretic specifications
that incorporate parameter uncertainty but ignore learn-
ing. We conclude that the simplified setting confirms
the findings for the general model with multiple risky
asset classes.

4.4. Alternative Specifications

Table 7 reports results on a number of robustness
checks for y =5. More robustness checks are reported
in the online appendix. First, we consider a longer
investment horizon of 120 months. We expect that the
difference between myopic and dynamic portfolios
becomes larger, since longer investment horizons should
lead to more important hedge demands. A close look at
the average terminal wealth and standard deviation of
terminal wealth suggests that this is indeed the case.
The difference between myopic and dynamic strategies
becomes larger. This does not always translate into
a gain in CER though. In pairwise comparisons, the
shrinkage estimator leads to higher CERs for dynamic
strategies, whereas the myopic strategy is still the
best for the uniform prior. For both unrestricted and
restricted weights, the best performing strategies are
dynamic strategies. For unrestricted weights, the CER
of the best dynamic strategy (CER of 16.77%) is only
slightly higher than the CER for the best myopic strategy
(CER of 16.37%). The online appendix shows additional
results for a 15 years horizon with similar conclusions.

Second, we analyze specifications that use DP as
a predictor instead of PE. The CERs with DP as the
predictor are quite a bit lower than the CERs for our
main specification and can even be negative if one
combines the uniform prior with unrestricted weights.
It appears that the model with DP is less stable and
more sensitive to estimation error. The hedge demand
does not add much value.

Third, we consider the extended data set. The CERs
are a lot lower and sometimes negative (even for the
no-predictability strategies). This is most likely caused
by model instability, since the early data for the T-bill
rate, the bond return, and the yield spread are hardly

15 Since we already concluded that the shrinkage estimator does not
work well in this setting, we only analyze learning for the uniform
prior.
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Table 7 Dynamic Strategies vs. Myopic Strategies—AIlternative
Specifications
Dynamic strategy Repeated myopic
CER TW o(TW) CER TW  o(TW)
Panel A: Horizon = 120 months
Restricted
Plugin ~ Nopred 0.0446 1.8364 0.4343 0.0447 1.8217 0.4145
Plugln  Unif 0.0626 2.3317 0.8442 0.0653 2.2478 0.7020
Plugin  Shrink 0.0730 2.3677 0.7174 0.0686 2.2074 0.5877
Unrestricted
Plugin ~ Nopred 0.0551 1.9370 0.4061 0.0488 1.8250 0.3878
Plugln  Unif 0.1510 48.1012 64.2794 0.1637 20.4874 22.4607
Plugin  Shrink  0.1677 15.2246 13.3397 0.1577 9.7265 6.4691
Panel B: DP as predictor
Restricted
Plugin ~ Nopred 0.0398 1.3260 0.2605 0.0390 1.3208 0.2651
Plugin  Unif 0.0606 1.4713 0.3294 0.0596 1.4584 0.3339
Plugin  Shrink  0.0590 1.4405 0.2766 0.0557 1.4008 0.2465
Unrestricted
Plugin ~ Nopred 0.0454 1.3423 0.2397 0.0423 1.3240 0.2442
Plugin  Unif —0.0858 5.4109 5.3886 0.0106 4.2374 3.5769
Plugin ~ Shrink 0.0846 2.5822 1.4741 0.0839 2.4064 1.5134
Panel C: Extended data set
Restricted
Plugin ~ Nopred 0.0261 1.2282 0.2239 0.0262 1.2289 0.2285
Plugin  Unif 0.0349 1.3280 0.2918 0.0341 1.2855 0.2556
Plugin ~ Shrink 0.0329 1.3071 0.2621 0.0320 1.2578 0.2255
Unrestricted
Plugin ~ Nopred—0.0009 1.2755 0.3802 0.0056 1.2574 0.3413
Plugin  Unif —0.0103 2.7430 2.3822-0.0079 2.4642 2.2409
Plugin ~ Shrink  0.0250 2.5004 1.9296 0.0181 2.2818 1.8354
Panel D: Rolling window
Restricted
Plugin ~ Nopred 0.0317 1.2613 0.2325 0.0306 1.2584 0.2522
Plugin  Unif 0.0515 1.4826 0.4227 0.0535 1.4716 0.3962
Plugin ~ Shrink 0.0362 1.3150 0.2994 0.0379 1.3107 0.2829
Unrestricted
Plugin ~ Nopred 0.0521 1.4496 0.3217 0.0474 1.4068 0.3111
Plugln  Unif 0.0778 4.9793 5.3891 0.0755 4.0642 3.7248
Plugin ~ Shrink 0.1112 2.4863 1.3177 0.0933 2.2275 1.2095

Notes. This table reports the annualized CER, average terminal wealth (TW/),
and standard deviation of terminal wealth (o(TW)) for specifications that
differ in one dimension from the main specification of Table 4 for y = 5.
Panel A extends the investment horizon to 120 months. Panel B uses DP as
the predictor. Panel C uses the extended data set from January 1927 until
December 2012. Panel D uses a rolling window of 240 months. Results are
based on the general VAR(1).

comparable to more recent data. The performance of
the dynamic and myopic strategies are very close to
each other for restricted weights, whereas differences
are larger (both positive and negative) for unrestricted
weights. The online appendix shows that the outperfor-
mance of the dynamic strategy for the shrinkage prior
and unrestricted weights is unique to y =5.

Fourth, we use a rolling window instead of an
expanding window to estimate our model. Remarkably,
the hedge component destroys value for specifications
with restricted weights, whereas it adds value for
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specifications with unrestricted weights. It is important
to note though that these results are more affected
by estimation noise, since these are based on smaller
estimation windows.

4.5. Statistical Tests

To evaluate the statistical significance of the results
on hedge demands, we test whether the difference in
average realized utility between dynamic strategies and
myopic strategies is equal to zero. As a test statistic we
use the Diebold and Mariano (1995) test on the utility
series. Diebold and Mariano (1995) test whether the
performance difference between two forecasts has zero
expectation by means of a standard t-ratio. They show
that this test statistic has an asymptotically standard
normal distribution. Estimating the standard error of
the average difference in realized utility is somewhat
problematic because of the large number of overlap-
ping data points in the 60-month cumulative returns.
We estimate the covariance matrix of average realized
utility nonparametrically by means of the Newey and
West (1987) estimator and choose the lag length using
the Newey and West (1994) selection criterion.

Results are reported in Table 8. Almost all t-statistics
are small. The difference in value between the myopic
and dynamic strategies is statistically insignificant.
Among the restricted weight strategies, the only excep-
tions are for the shrinkage prior with y =10. For the
unrestricted weights, we find significant hedging value
in the model without predictability. Hence, hedging
interest rate risk pays off, but recall from Table 4 that
the CER values for the no-predictability prior are much
lower than for models with predictability.'®

The t-statistics for the alternative strategies of
Tables 6 and 7 show similar results. The hedge demand
adds some value for restricted strategies that use the
plug-in method and shrinkage. The gain is statistically
significant for the parsimonious model (t-statistic, 2.22),
for K =120 (t-statistic, 3.28), and with DP as the pre-
dictor (t-statistic, 4.84). However, the economic gains
are still very small, as shown in the previous sections.

When using unrestricted weights, we do not find
any significant results for K =120. For this case, we
found the largest gains in CER for the dynamic strategy,
but at the same time were faced with a much smaller
effective sample period due to the large overlap in the
different 10-year utilities.

4.6. Monte Carlo Simulation
We complete our analysis of the value of hedge
demands by a small Monte Carlo experiment, where

16 As an alternative, we also calculate f-statistics using only nonover-
lapping observations and find that these t-statistics are on average
2.5 times smaller than the ones reported in Table 8. We again find
that the added value of the hedge demand is not significant. Note
however that this alternative test hardly has any power because of
the small number of nonoverlapping observations.

Table 8 Significance Tests: Dynamic vs. Myopic Strategies
y=2 y=5 y=10
Restricted
Plugin Nopred —1.64 0.74 1.19
Plugln Unif 0.08 -1.24 0.63
Plugin Shrink 0.20 1.10 3.24
DecTh Unif 0.59 —1.58 1.12
DecTh Shrink -0.12 1.27 2.79
Unrestricted
Plugin Nopred 410 2.57 1.09
Plugin Unif — -0.49 -1.43
Plugln Shrink -0.15 0.59 0.41

Notes. This table presents t-statistics to test whether average realized utility
for the dynamic and repeated myopic strategies are statistically different
from each other. Specifications differ by weight restrictions (restricted or
unrestricted), method (plug-in (Plugin) or decision theoretic (DecTh)), and
prior (no predictability (Nopred), uniform (Unif), or shrinkage (shrink)). Results
are based on the general VAR(1) estimated using an expanding window.

we generate data under the null of predictability. In par-
ticular, we assume that the posterior means of the VAR
parameters obtained using the uniform prior on the full
data set define the true data generating process (DGP).
For this model, we simulate 100 samples of 58 years of
data, and for each sample we perform the same out-of-
sample analysis as on the real data set. We calculate
portfolios using the estimated parameters based on
either the uniform or shrinkage prior. Because these
simulations are computationally intensive, we con-
sider only the approximate solutions with unrestricted
portfolio weights in the Monte Carlo analysis.

The differences in CERs between a dynamic and
a myopic strategy are shown in Table 9. A positive
difference implies that the dynamic strategy outper-
forms the repeated myopic strategy. In the Monte Carlo
simulations, we find that when parameters need to be
estimated using only the available data, the dynamic
strategy is often inferior to the repeated myopic strat-
egy over a 58-year sample period. At the median, the
dynamic strategy is slightly worse than the myopic
strategy for the uniform prior, whereas the two are
almost equal under the shrinkage prior. The median
certainty equivalent return is very close to what we
find in the actual data (see Table 4), except for the
aggressive investor with y =2. The sampling distri-
bution of the CER differences is also fairly negatively
skewed. In the tails, negative differences over a 58-year
sample tend to be larger than positive ones.

The median difference in the Monte Carlo simulations
is negligible (or even negative) despite the fact that a
dynamic strategy based on the true (unknown) model
parameters would have been optimal given the DGP
with predictability. As an (infeasible) benchmark, we
also report the gains from hedging if the investor would
know the full sample parameter estimates. In these
ideal circumstances, investors with a y of 5 or 10
would have benefited from hedging. Irrespective of the
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Table 9 Monte Carlo Simulation with Predictability
Uniform prior Shrinkage prior

y=2 y=5 y=10 y=2 y=5 y=10
Median ~ —0.0109 —0.0049  0.0000 —0.0032 0.0006  0.0009
Min —1.6968 —1.2137 —0.0922 —1.5752 —0.1434 —0.0840
5th —1.2450 —0.1347 —0.0594 -0.1123 —0.0534 —0.0286
95th 0.0339 0.0371  0.0239 0.0435 0.0332 0.0191
Max 0.1739  0.0564 0.0473 0.0651 0.0514  0.0404
Data 0 —0.0071 —0.0134 —0.0020 0.0019  0.0011
In-sample 0 0.0204  0.0109 0 0.0196  0.0103

Notes. This table gives results for 100 Monte Carlo simulations assuming
predictability. The table reports quantiles of the CER differences (CERyy, —
CERyopic) fOr specifications based on either the uniform or shrinkage prior.
Specifications differ in their risk-aversion level. Median, Min, Max, 5th, and
95th show the median, minimum, maximum, and percentiles, respectively, in
the Monte Carlo simulations. Results are based on the VAR(1) estimated using
an expanding window. Entries in the row labeled “Data” are the out-of-sample
results found in the actual data set and are based on Table 4. “In-sample”
gives the results for the actual data set when using the full in-sample estimates
instead of expanding window estimates.

prior, an investor with y =5 would have made a 2%
certainty equivalent gain from following the dynamic
strategy. With the larger y =10, the gains from hedging
are reduced, but are still positive at 1% and better
than the median in the Monte Carlo simulation of
the out-of-sample performance. This illustrates the
effect of estimation error. For y =2, the CERs for both
the dynamic and myopic strategies are —100% for the
in-sample specification. Hence, no matter whether an
investor knows the in-sample estimates or not, she
takes too much risk and becomes insolvent in some
periods. This result once again illustrates that allowing
for short selling in a discrete time setting can lead
to disastrous results for investors with very low risk
aversion.

5. Conclusion

The hedge portfolio is the difference between the
optimal portfolios of a long-term and a short-term
investor. In theory, long-term investors should hold
hedge portfolios to hedge future changes in investment
opportunities. However, in an out-of-sample test, we
find that this hedge component hardly adds value.
Using a wide range of Bayesian priors and portfolio
optimization methods, we find that repeated myopic
portfolios perform as well as dynamic portfolios. Both
dynamic and myopic investors benefit from predictabil-
ity out-of-sample, but the certainty equivalent returns
for both strategies remain very close to each other
across alternative model specifications.

The negligible impact of the hedge term is due to
parameter estimation error. First, Monte Carlo simula-
tions show that even in simulated data that contain
predictability, estimated dynamic strategies underper-
form compared to repeated myopic strategies. Second,

portfolio weights are extreme, since weights are sus-
ceptible to error maximization. When short-selling
restrictions are imposed, estimated myopic weights are
often equal to the upper or lower bound, and there-
fore there is no room for hedge demands. The hedge
component is more susceptible to estimation error
than the myopic component, since the hedge demands
are also affected by estimation error in state variable
predictions. The additional estimation error offsets
the theoretical gains from hedging changes in future
investment opportunities.

For our main results, we consider an investor with a
horizon of 60 months who can choose between equity,
long-term nominal bonds and a short-term nominally
risk-free rate. There are some aspects that we do not
address with such a setup. First, hedge demands might
have a larger impact when investment horizons are
longer. In general, we do not find consistent outperfor-
mance of the dynamic strategy for longer horizons, but
these results are statistically less reliable because we
simply do not have enough nonoverlapping observa-
tions for reliable inference for very long investment
horizons. Second, hedging might be more important
for settings with more assets and for models with more
complicated dynamics. One would expect, though, that
estimation error plays an even more important role in
such settings. Third, we cannot incorporate the hedge
demand due to learning in our most general setting.
Our results for learning in a restricted setting suggest
that such hedge demands do not have a large impact
on performance, but this might be different in more
general settings.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /mnsc.2014.1924.

Acknowledgments

The authors are grateful to Brad Barber (department editor),
the anonymous associate editor, two anonymous referees,
Michael Brennan, Herman van Dijk, Roy Hoevenaars, Frank
de Jong, Ronald Mahieu, Yuliya Plyakha, Jeffrey Pontiff,
Marno Verbeek, Luis Viceira, and Peter Vlaar, as well as
(seminar) participants at the Second International Workshop
on Computational and Financial Econometrics in Neuchatel,
the 3M in Finance Workshop in Rotterdam, the 14th Interna-
tional Conference on Computing in Economics and Finance
in Paris, Aarhus School of Business, APG Investments, the
2008 Econometric Society European Meeting in Milan, the
2010 European Finance Association Meeting in Frankfurt,
the Long Term Asset Management Conference in Lausanne,
Maastricht University, Manchester Business School, the NBER
Time-Series Conference in Aarhus, the Netspar Pension Work-
shop, the Stockholm School of Economics, and Universitat
Miinster. Bart Diris acknowledges financial support from
the Netherlands Organisation for Scientific Research (NWO).
Research by Peter Schotman was funded by Netspar.



2202

Diris, Palm, and Schotman: Long-Term Strategic Asset Allocation
Management Science 61(9), pp. 2185-2202, © 2015 INFORMS

References

Avramov D (2002) Stock return predictability and model uncertainty.
J. Financial Econom. 64:423-458.

Barberis N (2000) Investing for the long run when returns are
predictable. ]. Finance 55:225-264.

Black F, Littermann R (1992) Global portfolio optimization. Financial
Analyst ]. 48:28-43.

Brandt M (2010) Portfolio choice problems. Ait-Sahalia Y, Hansen
LP, eds. Handbook of Financial Econometrics, Volume 1: Tools and
Techniques (North-Holland, Amsterdam), 269-336.

Brandt M, Goyal A, Santa-Clara P, Stroud ] (2005) A simulation
approach to dynamic portfolio choice with an application
to learning about return predictability. Rev. Financial Stud. 18:
831-873.

Branger N, Breuer B, Schlag C (2010) Discrete-time implementation
of continuous-time portfolio strategies. Eur. ]. Finance 16:137-152.

Branger N, Larsen L, Munk C (2013) Robust portfolio choice with
ambiguity and learning about return predictability. J. Banking
Finance 37:1397-1411.

Brennan M, Xia Y (2002) Dynamic asset allocation under inflation.
J. Finance 57:1201-1238.

Brennan M, Schwartz E, Lagnado R (1997) Strategic asset allocation.
J. Econom. Dynam. Control 21:1377-1403.

Campbell J, Thompson S (2008) Predicting excess stock returns out of
sample: Can anything beat the historical average? Rev. Financial
Stud. 21:1509-1531.

Campbell ], Viceira L (2002) Strategic Asset Allocation (Oxford Univer-
sity Press, New York).

Campbell ], Chan Y, Viceira L (2003) A multivariate model of strategic
asset allocation. |. Financial Econom. 67:41-80.

Campbell J, Cocco J, Gomes F, Maenhout P, Viceira L (2001) Stock
market mean reversion and the optimal equity allocation of a
long-lived investor. Eur. Finance Rev. 5:269-292.

Chacko G, Viceira L (2005) Dynamic consumption and portfolio
choice with stochastic volatility in incomplete markets. Rev.
Financial Stud. 18:1369-1402.

Cremers M (2002) Stock return predictability: A Bayesian model
selection perspective. Rev. Financial Stud. 15:1223-1249.

Dangl T, Halling M (2012) Predictive regressions with time-varying
coefficients. . Financial Econom. 106:157-181.

DeMiguel V, Garlappi L, Uppal R (2005) How inefficient is the
1/N asset-allocation strategy? Working paper, London Business
School, London. http://ssrn.com/abstract=785164.

DeMiguel V, Garlappi L, Uppal R (2009) Optimal versus naive
diversification: How inefficient is the 1/N portfolio strategy?
Rev. Financial Stud. 22:1915-1953.

Diebold F, Mariano R (1995) Comparing predictive accuracy. J. Bus.
Econom. Statist. 13:253-263.

Doan T, Litterman R, Sims C (1984) Forecasting and conditional
projection using realistic prior distributions. Econometric Rev.
3:1-100.

Engsted T, Pedersen T (2012) Return predictability and intertemporal
asset allocation: Evidence from a bias-adjusted VAR model.
J. Empirical Finance 19:241-253.

Fama E (1976) Forward rates as predictors of future spot rates.
J. Financial Econom. 3:361-377.

Fama E, Schwert W (1977) Asset returns and inflation. . Financial
Econom. 5:115-146.

Goyal A, Welch I (2008) A comprehensive look at the empirical
performance of equity premium prediction. Rev. Financial Stud.
21:1455-1508.

Johannes M, Korteweg A, Polson N (2014) Sequential learning,
predictability, and optimal portfolio returns. J. Finance 69:611-644.

Jorion P (1986) Bayes-Stein estimation for portfolio analysis. J. Finan-
cial Quant. Anal. 21:279-292.

Jurek J, Viceira L (2011) Optimal value and growth tilts in long-
horizon portfolios. Rev. Finance 15:29-74.

Koijen R, Nijman T, Werker B (2010) When can life-cycle investors
benefit from time-varying bond risk premia. Rev. Financial Stud.
23:741-780.

Koijen R, Rodriguez JC, Sbuelz A (2009) Momentum and mean-
reversion in strategic asset allocation. Management Sci. 55:
1199-1213.

Larsen L, Munk C (2012) The costs of suboptimal dynamic asset
allocation: General results and applications to interest rate risk,
stock volatility risk, and growth/value tilts. J. Econom. Dynam.
Control 36:266—293.

Lynch A (2001) Portfolio choice and equity characteristics: Character-
izing the hedging demands induced by return predictability.
J. Financial Econom. 62:67-130.

Merton R (1969) Lifetime portfolio selection under uncertainty: The
continuous time case. Rev. Econom. Statist. 51:247-257.

Merton R (1971) Optimal consumption and portfolio rules in a
continuous-time model. ]. Econom. Theory 3:373-413.

Merton R (1980) On estimating the expected return on the mar-
ket: An exploratory investigation. |. Financial Econom. 8:
323-361.

Newey W, West K (1987) A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix.
Econometrica 55:703-708.

Newey W, West K (1994) Automatic lag selection in covariance
matrix estimation. Rev. Econom. Stud. 61:631-653.

Ni S, Sun D (2003) Noninformative priors and frequentist risks of
Bayesian estimators of vector-autoregressive models. ]. Economet-
rics 115:159-197.

Pastor L, Stambaugh R (2000) Comparing asset pricing models: An
investment perspective. J. Financial Econom. 56:335-381.

Pastor L, Stambaugh R (2012) Are stocks really less volatile in the
long run? J. Finance 67:431-478.

Pesaran H, Timmermann A (1995) Predictability of stock
returns: Robustness and economic significance. J. Finance 50:
1201-1228.

Pettenuzzo D, Timmermann A (2011) Predictability of stock returns
and asset allocation under structural breaks. J. Econometrics
164:60-78.

Rapach D, Wohar M (2009) Multi-period portfolio choice and the
intertemporal hedging demands for stocks and bonds: Interna-
tional evidence. |. Internat. Money Finance 28:427-453.

Sangvinatsos A, Wachter ] (2005) Does the failure of the expectations
hypothesis matter for long-term investors? J. Finance 60:179-230.

Sims C, Uhlig H (1991) Understanding unit rooters: A helicopter
view. Econometrica 59:1591-1599.

Skoulakis G (2008) Dynamic portfolio choice with Bayesian learning.
Working paper, University of Maryland, College Park.

Stambaugh R (1999) Predictive regressions. . Financial Econom.
54:375-421.

van Binsbergen ], Brandt M (2007) Solving dynamic portfolio choice
problems by recursing on optimized portfolio weights or on the
value function. Computational Econom. 29:355-367.

Wachter J, Warusawitharana M (2009) Predictable returns and
asset allocation: Should a skeptical investor time the market?
J. Econometrics 148:162-178.

Xia Y (2001) Learning about predictability: The effect of parameter
uncertainty on dynamic asset allocation. J. Finance 56:205-246.

Zellner A (1971) An Introduction to Bayesian Inference in Econometrics
(John Wiley & Sons, New York).



