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It is clear from the growing role of Ad Exchanges in the real-time sale of advertising slots that web publishers

are considering a new alternative to their more traditional reservation-based ad contracts. To make this choice,

the publisher must trade off, in real-time, the short-term revenue from an Ad Exchange with the long-term

benefits of delivering good quality spots to the reservation ads.

In this paper, we formalize this combined optimization problem as a stochastic control problem and derive

an efficient policy for online ad allocation in settings with general joint distribution over placement quality

and exchange prices. We prove asymptotic optimality of this policy in terms of any arbitrary trade-off between

quality of delivered reservation ads and revenue from the exchange, and provide a rigorous bound for its

convergence rate to the optimal policy. We also give experimental results on data derived from real publisher

inventory, showing that our policy can achieve any Pareto-optimal point on the quality vs. revenue curve.

1. Introduction

Internet Display Advertising refers generally to the graphical and video ads that are now ubiquitous

on the web. These types of ads generated about 10 billion dollars in the US in 2010, and analysts see a

clear rising trend (Internet Advertising Bureau 2011). Traditionally, an advertiser would buy display

ad placements by negotiating deals directly with a publisher (the owner of the web page), and signing

an agreement, called a guaranteed contract. These deals usually take the form of a specific number of

ad impressions reserved over a particular time horizon (e.g., one million impressions over a month).

A publisher can make many such deals with different advertisers, with potentially sophisticated

relationships between the advertisers’ targeting criteria. The publisher would then need to assign

arriving impressions to the matching reservations so as to maximize the placement quality of the

contracts. Typically, the probability that a user clicks on an ad (known as click-trough rate) is used

as a metric of placement quality.

Guaranteed contracts can suffer in efficiency: since slots are booked in advance, both parties cannot

react to instantaneous changes to traffic patterns or market conditions. However, this has changed in

the last couple of years. Advertisers may now purchase ad placements through spot markets for the

real-time sale of online ad slots, called Ad Exchanges. Prominent examples of exchanges are Yahoo’s

RightMedia, Microsoft’s AdECN, Google’s DoubleClick and OpenX. While exchanges differ in their

implementations, in a generic Ad Exchange (AdX) (Muthukrishnan 2009), publishers post an ad slot

with a reservation price, advertisers post bids, and an auction is run; this happens between the time
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a user visits a page and the ad is displayed. Ad exchanges allow advertisers to bid in real time and

pay only for valuable customers, instead of bulk buying impressions and targeting large audiences.

In presence of ad exchanges, publishers face the problem of maximizing the overall placement

quality of the impressions assigned to the reservations together with the total revenue obtained

with AdX, while complying with the contractual obligations. Note that these two objectives are

potentially conflicting; in the short-term, the publisher might boost the revenue stream from AdX at

the expense of assigning lower quality impressions to the advertisers. In the long term, however, it

may be convenient for the publisher to prioritize her advertisers in view of attracting future contracts.

So for a given piece of ad inventory, the publisher must quickly decide whether to send the inventory

to AdX (and at what price), or to assign it to an advertiser with a reservation.

In this paper, we study the problem faced by the publisher, jointly optimizing over AdX and the

reservations. We bring to bear techniques from revenue management and stochastic optimal control,

perform a probabilistic modeling of the problem, and derive an efficient policy for making real-time

ad allocation decisions. We prove that our policy is asymptotically optimal in terms of an arbitrary

(i.e., publisher-defined) trade-off between quality delivered to reservation ads and revenue from the

exchange. Our policy and analysis is quite general, and works for any joint distribution over placement

quality and exchange prices, even allowing correlation between advertisers, or between quality and

exchange prices. In particular, we provide a rigorous bound on the convergence rate of our policy

to the optimal policy (Theorem 2). Typically ad allocation research compares to the optimal offline

policy in hindsight; instead, we compare our policy with an optimal online policy, obtaining a bound

on additive regret, as in online machine learning.

Since the optimal policy cannot be computed efficiently in most real-world problems, we derive

a provably good policy which resembles a bid-price control but extended with a pricing function to

take into account for AdX. Our policy assigns each guaranteed contract a bid-price (or dual variable),

which may be interpreted as the opportunity cost of assigning one additional impression to the

advertiser. When a user arrives, the pricing function quotes a reserve price to submit to the exchange

that depends on the opportunity cost of assigning the impression to an advertiser. If AdX price

does not exceed this reserve price, the impression is immediately assigned to the advertiser whose

placement quality exceeds its opportunity cost by the largest amount. We also give experimental

results on data derived from real publisher inventory, showing that our policy can achieve any Pareto-

optimal point on the quality vs. revenue curve.

1.1. Related Work and Contributions

Our works draws on three streams of literature, namely, that of Display Advertising, Revenue Man-

agement, and Online Allocation. Rather than attempting to exhaustively survey the literature on

each area, we focus on the work more closely related to ours.

Display Advertising. There has been recent work on display ad allocation with both contract-based

advertisers and spot market advertisers. Ghosh et al. (2009) focus on “fair” representative bidding

strategies in which the publisher bids on behalf of the contract-based advertisers competing with the

spot market bidders. This line of work is mainly concerned with computing such fair representative
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bidding strategies for contract-based advertisers. Chen (2011) considers the case when the publisher

runs the exchange, and employing a mechanism design approach he characterizes, through dynamic

programming, the optimal dynamic auction for the spot market. In this model both bids from the

spot market and the total number of impressions are stochastic. We focus, instead, on combined

yield optimization and present a model and an algorithm taking into account any trade-off between

quality delivered to reservation ads and revenue from the spot market.

Yang et al. (2010) studied the problem faced by the publisher of allocating between the two

markets using multi-objective programming. As in our work, they consider different objectives for the

publisher, such as, minimizing the penalty of under-delivery, maximizing the revenue from the spot

market and the representativeness of the allocation. However, they employ a deterministic model with

no uncertainty in which future inventory and contracts are nodes in a bipartite graph. Alaei et al.

(2009) proposed an utility model that accounts for two types of advertisers: one oriented towards

campaigns and seeking to create brand equity, and the other oriented towards the spot market and

seeking to transform impressions to sales. Here impressions are commodities which can be assigned

interchangeably to any advertisers. In this setting they look for offline and online algorithms aiming to

maximize the utility of their contracts of the allocation. Roels and Fridgeirsdottir (2009) studied the

scheduling problem in display advertising in the case without the exchange. In this paper the publisher

needs to decide, as new contracts arrive, whether to accept them or not, and then dynamically deliver

arriving impressions to them. They take into account uncertainty both in supply and demand, provide

a dynamic programming formulation, and propose a certainty-equivalent control.

Revenue Management. Another stream of relevant work is that of Revenue Management (RM).

Even though RM is typically applied to airlines, car rentals, hotels and retailing (Talluri and van

Ryzin 2004), our problem formulation and analysis is inspired by RM techniques. As in the pro-

totypical RM problem, we look for a policy maximizing the ex-ante expected revenue, which can

be obtained using dynamic programming (DP). Since the resulting DP is intractable, we aim for a

deterministic version in which stochastic quantities are replaced by their expect values and quantities

assumed to be continuous. These are common in the literature (Gallego and van Ryzin 1994, Liu

and van Ryzin 2008), and provide policies with provably good performance. Indeed, we show that

our policy is asymptotically optimal.

The Display Ad problem can be thought of as a parallel-flight Network RM problem (see, e.g.,

Talluri and van Ryzin (1998)) in which users’ click probabilities are requests for itineraries, and

advertisers are edges in the network. The are three differences, however, with the traditional Network

RM problem. First, we aim to satisfy all contracts, or completely deplete all resources by the end

of the horizon. Second, in the traditional problem requests are for only one itinerary (which can

be accepted or rejected), while in our model each impression can be potentially assigned to any

contract and the publisher needs to decide whom to assign the impression based on possibly correlated

placement qualities. Finally, the publishers in display advertising may submit impressions to a spot

market to increase their revenues.
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Network RM Display Ads

Resources Legs (edges) Contracts

Constraints ≤ =

Objective Fares Placement Quality

Decision Accept/Reject Decide whom to assign to

Spot market No Yes

Table 1 Comparison of the Display Ad and Network Revenue Management problems.

A popular method for controlling the sale of inventory in revenue management applications is

the use of bid-price controls. These were originally introduced by Simpson (1989), and thoroughly

analyzed by Talluri and van Ryzin (1998). In this setting, a bid-price control sets a threshold or bid

price for each advertiser, which may be interpreted as the opportunity cost of assigning one additional

impression to the advertiser. This approach is standard in the context of revenue maximization,

e.g. the stochastic knapsack problem by Levi and Radovanovic (2010). From this perspective, our

contribution is the inclusion of a spot market, the exchange, as an new sales channel. In this case, our

policy is a suitable modification of a bid-price control that takes into account AdX by incorporating a

pricing function. This pricing function quotes a reserve price to submit to the exchange that depends

on the opportunity cost of assigning the impression to an advertiser.

Online Allocation. Our work is closely related to online ad allocation problems, including the

Display Ads Allocation (DA) problem (Feldman et al. 2009, 2010, Agrawal et al. 2009, Vee et al.

2010), and the AdWords (AW) problem (Mehta et al. 2007, Devenur and Hayes 2009). In both of these

problems, the publisher must assign online impressions to an inventory of ads, optimizing efficiency

or revenue of the allocation while respecting pre-specified contracts.

In the DA problem, advertisers demand a maximum number of eligible impressions, and the pub-

lisher must allocate impressions that arrive online to them. Each impression has a potentially different

value for every advertiser. The goal of the publisher is to assign each impression to one advertiser max-

imizing the value of all the assigned impressions. The adversarial online DA problem was considered

in Feldman et al. (2009), which showed that the problem is inapproximable without exploiting free

disposal; using this property (that advertisers are at worst indifferent to receiving more impressions

than required by their contract), a simple greedy algorithm is 1
2
-competitive, which is optimal. When

the demand of each advertiser is large, a (1− 1
e
)-competitive algorithm exists (Feldman et al. 2009),

and it is tight. The stochastic model of the DA problem is more related to our problem. Following

a training-based dual algorithm by Devenur and Hayes (2009), training-based (1− ε)-competitive

algorithms have been developed for the DA problem and its generalization to various packing linear

programs (Feldman et al. 2010, Vee et al. 2010, Agrawal et al. 2009).

In the AW problem, the publisher allocates impressions resulting from search queries. Here each

advertiser has a budget on the total spend instead of a bound on the number of impressions. Other

than training-based dual algorithms and primal-dual algorithms that get similar bounds as in the

DA problem (Devenur and Hayes 2009), online adaptive optimization techniques have been applied



Balseiro et al.: Yield Optimization with Ad Exchange
Article submitted to ; manuscript no. 5

to online stochastic ad allocation (Tan and Srikant 2010). Such control-based adaptive algorithms

achieve asymptotic optimality following an updating rule inspired by the primal-dual algorithms.

Our work differs from all the above in three main aspects: (i) We study both the parametric and

non-parametric models, and compare their effectiveness in terms of the size of the sample sizes—

both analytically for various distributions and experimentally on real data sets. (ii) Instead of using

the framework of competitive analysis and comparing the solution with the optimum solution in

hindsight, we compare the performance of our algorithm with the optimal online policy, and present

a rate of convergence bound under this model. This is akin to regret bounds found in online Machine

Learning; and (iii) None of the above work considers the simultaneous allocation of reservation

ads and ads from AdX. In particular, these previous works do not consider the trade-off between

the revenue from a spot market based on real-time bidding and the efficiency of reservation-based

allocation.

It is tempting to simply reduce to online stochastic packing by considering the AdX as just another

“advertiser.” The problem with this is that it does not allow adjusting the reserve price, or allocating

a reservation advertiser if the AdX rejects. In fact one can make such a reduction go through by

considering online decisions on pairs of (reserve price, advertisers), and formalize the problem as an

online allocation problem with general packing constraints. After a couple more steps, one can apply

the techniques of Devenur and Hayes (2009), Feldman et al. (2010), Vee et al. (2010), Agrawal et al.

(2009) to derive an online algorithm for the combined problem. However this approach discretizes

the price space into multiples of δ; thus (a) we lose 1+δ in the yield, (b) we increase the running time

by a factor of 1
δ
, and (c) for the the competitiveness proof to hold, we need more stringent conditions

on the size of the weights. In addition, there is no clear way to apply the parametric technique. The

method presented in this work not only avoids this dependence, it is a much more natural, extensible

solution to the problem.

2. Model

Consider a publisher displaying ads in a web page. The web page has a single slot for display ads,

and each user is shown at most one impression per page. The publisher has signed contracts with a

set A of advertisers guaranteeing them a certain number of targeted impressions within a given time

horizon. We denote by A= {1, . . . ,A} the set of advertisers.

Even though the number of users visiting a web page is uncertain, publishers usually have fairly

good estimates of the total number of expected users that arrive in a given horizon. In this model

we index time based on the arrival of each user, and assume that the total number of users is fixed

and equal to N . We do allow users to have different characteristics (random number of users can be

accommodated in our model by considering dummy arrivals). Indeed, depending on the user profile,

the impression may be more or less attractive for different advertisers.

We assume that the n-th impression is endowed with a vector of placement qualities Qn =

{Qn,a}a∈A, where Qn,a is the predicted quality advertiser a would perceive if the impression is assigned

to her. Qualities lie in some compact space Ω⊆ RA. A typical measure of placement quality is the

estimated probability that the user click on each ad. In practice, such measure of quality is learned
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Impression n-th
arrives with
quality Qn

Assign to an advertiser or discard

Submit to AdX
with price p

Obtain payment

Assign to an
advertiser or
discard

ac
ce

pt

reject

Figure 1 Publisher’s decision tree for a new impression.

using, for example, logistic regression. Here we abstract from the learning problem and assume that

qualities {Qn}n=1,...,N are random and drawn independently from some joint c.d.f G(·). We do allow,

however, for qualities to be jointly distributed across advertisers. This captures the fact that adver-

tisers might have similar target criteria, and hence the qualities perceived might be correlated. We

do not impose any further restrictions on the qualities, other than finite second moments. Notice

that the publisher observes the realization of the placement quality before showing the ad.

The publisher has agreed to deliver exactly Ca impressions to advertiser a∈A; neither over-delivery

nor under-delivery is allowed. We denote by ρ= {ρa}a∈A with ρa = Ca
N

, the capacity to impression

ratio of each advertiser. Note that a necessary condition for the feasibility of the operation is that

the number of arriving impressions suffices to satisfy the contracts, or
∑

a∈A ρa ≤ 1. An assumption

of this general model is that any user can be potentially assigned to any advertiser. In practice each

advertiser may be interested in a particular group of user types. It is important to note that this is

not a limitation of our results, but rather a modeling choice; in §5 we show how to handle targeting

criteria by setting Qn,a = −τa for impressions not matching the targeting criteria of an advertiser.

This can also be interpreted as forcing the publisher to pay a good will penalty τa to the advertisers

each time an undesired impression is incorrectly assigned.

Arriving impressions may either be assigned to the advertisers, discarded or auctioned in the Ad

Exchange (AdX) for profit. In a general AdX (Muthukrishnan 2009), the publisher contacts the

exchange with a minimum price she is willing to take for the slot. Additionally, the publisher may

submit some partial information of the user visiting the website. For simplicity, we first assume that

no information about the user is revealed. However, in section 7.3 we relax this assumption. Internally

the exchange contacts different ad networks, and in turn they return bids for the slot. The exchange

determines the winning bid among those that exceed the reserve price via an auction, and returns

a payment to the publisher. In this case we say that the impressions is accepted, and the publisher

is contractually obligated to display the winning impression. In the case that no bid attains the

reserve price, no payment is made and the impression is rejected. We present the formal model of the

exchange in Section 2.2. The entire operation above is executed before the page is rendered in the

user’s screen. Thus, in the event that the impression is rejected by the exchange, the publisher may

still be able to assign it to some advertiser. Figure 1 summarizes the decisions involved.
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For notational simplicity we extend the set of advertisers to A0 = {0}∪A by including an outside

option 0 that represents discarding an impression. We set the quality of the outside option identically

to zero, i.e. Qn,0 = 0 for all impressions n = 1, . . . ,N . In the following, the terms discarding an

impression or assigning it to advertiser 0 are used interchangeably. We set ρ0 = 1−
∑

a∈A ρa to be the

fraction of impressions that are not assigned to any advertiser. To wit, a fraction of the ρ0 impressions

will be assigned to the winning impression of AdX, and the remainder effectively discarded.

2.1. Objective

The publisher’s problem is to maximize the overall placement quality of the impressions assigned to

the advertisers together with the total revenue obtained with AdX, while complying with the contrac-

tual obligations. Note that the objectives are potentially conflicting; in the short-term, the publisher

might boost the revenue stream from AdX at the expense of assigning lower quality impressions to

the advertisers. In the long term, however, it may be convenient for the publisher to prioritize her

advertisers, in view of attracting future contracts.

We attack the multi-objective problem by taking a weighted sum of both objectives. The publisher

has at her disposal a parameter γ, which allows her to trade-off between these conflicting objectives.

The aggregated objective is given by

yield = revenue(AdX) + γ · quality(advertisers),

Hence, by choosing a suitable large γ the advertisers may focus on assigning high quality impressions

to the advertisers; while a small γ would prioritize the revenue from AdX (the publisher may set

different values of the parameter for each advertiser). Without loss of generality, we set γ = 1 for the

remainder of this paper, except when noted otherwise.

Alternatively, the publisher might impose that the overall quality of the impressions assigned to

the advertiser is greater than some threshold, and then maximize the total revenue obtained from

AdX; this may have a more natural interpretation for some publishers, and would be simpler than

having to set γ. We can model this simply by interpreting γ as the Lagrange multiplier of the quality

of service constraint, and our problem as the Lagrange relaxation of the constrained program. In §7.1

we analyze the implications of this formulation, and in §6.1 we study experimentally the impact of

the choice of γ on both objectives.

2.2. AdX Model

The publisher submits an impression to AdX with the minimum price it is willing to take, denoted

by p≥ 0. The impression is accepted if there is a bid of value p or more. We denote by B the winning

bid random variable. In the following we assume that bids are independent of the quality of the

impression, and identically distributed according to a c.d.f. F (·). Hence, the impression is accepted

with probability 1−F (p) = F̄ (p). In this first model, when the impression is accepted, the publisher

is paid the minimum price p. In Sections 7.2 and 7.3 we drop this assumption and consider a more

general second-price auction with side information.

Suppose the publisher has computed an opportunity cost c for selling this inventory in the exchange;

that is, the publisher stands to gain c if the impression is given to a reservation advertiser.Given
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opportunity cost c≥ 0 the publisher picks the price that maximizes its expected revenue. Hence, the

publisher solves the optimization problem R(c) = maxp≥0 F̄ (p)p+F (p)c. Changing variables, we can

define r(s) = sF̄−1(s) to be the expected revenue under acceptance probability s, and rewrite this as

R(c) = max
s∈[0,1]

r(s) + (1− s)c. (1)

Also, let s∗(c) be the least maximizer of (1), and p∗(c) = F̄−1 (s∗(c)) be the price that verifies the

maximum.

Assumption 1 The expected revenue under survival probability s is continuous, concave, non-

negative, bounded, and satisfies lims→0 r(s) = 0. We call a function r(s) that satisfies all of the

assumptions above a regular revenue function.

These assumptions are common in RM literature (see, e.g., Gallego and van Ryzin (1994)). A

sufficient condition for the concavity of the revenue is that B has increasing generalized failure

rates (Lariviere 2006). Regularity implies, among other things, the existence of a null price p∞ such

that limp→p∞ F̄ (p)p= 0. Additionally, it allows us to characterize the value function R(c). In §7.2 we

show that r(s) remains regular in the presence of multiple bidders in the AdX by considering the

joint density of the highest and second-highest bids. Thus, all our results hold in this case too.

Proposition 1 Suppose that r(s) is regular revenue function. Then, R(c) is non-decreasing, convex,

continuous, and R(c)≥ c. Additionally, R(c)− c is non-increasing, s∗(c) is non-increasing, and p∗(c)

is non-decreasing.

An important consequence of above is that the maximum revenue expected from submitting an

impression to AdX is always greater than the opportunity cost. This should not be surprising, since

the publisher can pick a price high enough to compensate for the revenue loss of not assigning the

impression. Hence, assigning an impression directly to an advertiser (rather than first testing the

exchange) is never the right decision, and so in Figure 1 the upper branch is never taken.

3. Problem Formulation

In this section we start by formulating an optimal control policy for yield maximization based on

dynamic programming (DP), where the state of the system is represented by the number of impres-

sions yet to arrive, and a vector of the number of impressions needed to comply with each advertiser’s

contract. Unfortunately, the state space of the DP has size O(NA+1), and in most real-world prob-

lems the number of impressions in a single horizon can be in the order of millions. So the DP is not

efficiently solvable. We give, instead, an approximation in which stochastic quantities are replaced

by their expected values, and are assumed to be continuous. Such “deterministic approximation

problems (DAP)” are popular in RM (see, e.g., Talluri and van Ryzin (1998)). In our setting, the

approximation we make is to enforce contracts to be satisfied only in expectation. We formulate the

problem based on this assumption and obtain an infinite-dimensional program. This DAP is solved

by considering its dual problem, which turns out to be a more tractable finite-dimensional convex
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program. Finally, we wrap a full stochastic policy around it (one that always meets the contracts,

not just in expectation).

3.1. Dynamic Programming Formulation

Let (m,X) be the state of the system, where we denote by m the total number of impressions

remaining to arrive, and by X = {xa}a∈A the number of impressions needed to comply with each

advertiser’s contract. Let the value function, denoted by Jm(X), be defined as the optimal expected

yield obtainable under state (m,X). Using the fact that is optimal to first test the exchange, we

obtain the following Bellman equation

Jm(X) =EQn
[

max
p≥0

{
F̄ (p)(p+Jm−1(X)) + (1− F̄ (p))max

a∈A0

{Qn,a +Jm−1(X −1a)}
}]

= Jm−1(X) +EQn
[
R

(
max
a∈A0

{Qn,a−∆aJm−1(X)}
)]

, (2)

where we defined 1a as a vector with a one in entry a and zero elsewhere, 10 = 0, and ∆aJm(X) =

Jm(X)− Jm(x− 1a) as the expected marginal yield of one extra impression for advertiser a. In (2)

the objective accounts for the yield obtained from attempting to send the impression to AdX. In the

yield has two terms that depend on whether the impression is accepted or not by AdX. In the latter

case the maximum accounts for the decision of assigning the impression directly to the advertiser or

discarding the impression (when a= 0). In (2) we used the fact that assigning an impression directly

to an advertiser is never the right decision (except in boundary conditions, see below). The publisher,

however, may choose to discard impressions with low quality after being rejected by AdX.

Our objective is to compute J∗N = JN(C). Let M be an upper-bound on the expected yield.1 The

boundary conditions are

Jm(x) =−M, ∀X s.t. xa < 0 for some a∈A,

Jm(x) =−M, ∀m<
∑
a∈A

xa.

Recall that when the contract with an advertiser is fulfilled, no extra yield is obtained from assigning

to her more impressions. This is the case of the first boundary condition, which guarantees that

advertisers whose contract is fulfilled are excluded from the assignment. In particular, when X = 0 all

remaining impressions are sent to AdX with the yield maximum price p∗(0) when x= 0. The second

boundary condition guarantees that the contracts with the advertisers are always fulfilled. When∑
a∈A xa =m AdX must be bypassed, and impressions should be assigned directly to the advertisers.

The optimal policy is described in Policy 1.

In the above policy, when the impression is submitted to AdX, the optimal price ponders an

opportunity cost of Qn,a∗n − ∆a∗nJn−1(X). This opportunity cost, when positive, is just the value

of the impression adjusted by the loss of potential yield from assigning the impression right now.

Note that the two boundary conditions are implicit in the optimal policy. This guarantees that the

policy complies with the contracts. It is routine to check that the value function Jn(X) is finite for

1 One could set, e.g., M ,max{p∞, Q̄} where Q̄ is an upper-bound on the placement quality
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Policy 1 Optimal dynamic programming policy.

Observe state (m,X) and the realization Qn.

Let a∗n = arg maxa∈A0
{Qn,a−∆aJn−1(X)}.

Submit to AdX with price p∗
(
Qn,a∗n −∆a∗nJn−1(X)

)
.

if impression rejected by AdX and a∗n 6= 0 then

Assign to advertiser a∗n.

end if

all feasible states and that Policy 1 is optimal for the dynamic program in (2). It is worth noting

that in order to implement the optimal policy one needs to pre-compute the value function, which is

intractable in most real instances.

3.2. Deterministic Approximation Problem (DAP)

We aim for an approximation in which (i) the policy is independent of the history but dependent on

the realization of Qn, (ii) capacity constraints are met in expectation, and (iii) controls are allowed

to randomize. These approximations turn out to be reasonable when the number of impressions is

large. When an impression arrives, the publisher controls the reserve price submitted to AdX, and the

advertiser to whom the impression is assigned, if rejected by AdX. Alternatively, in this formulation

we state the controls in terms of total probabilities, where each control is a function from the quality

domain to [0,1]. Let ~s = {sn(·)}n=1,...,N and ~ı = {in(·)}n=1,...,N be vectors of functions from Ω to

R, such that when the nth impression arrives with quality Q the impression is accepted by AdX

with probability sn(Q), and with probability in,a(Q) it is assigned to advertiser a. The conditional

probability of an impression being assigned to advertiser a given that it has been rejected by AdX

is given by In,a(Q) = in,a(Q)/(1− sn(Q)). When it is clear from the context, we simplify notation by

eliminating the dependence on Q from the controls.

A control is feasible for the DAP if (i) it satisfies the contractual constraint in expectation, (ii) the

individual controls are non-negative, and (iii) for every realization of the qualities the probabilities

sum up to at most one. We denote by P the set of controls that satisfy the latter two conditions.

That is, P = {(s, i) :
∑

a∈A ia + s≤ 1, s≥ 0, i≥ 0}. The objective of the DAP is to find a sequence of

real-valued measurable functions that maximize the expected yield, or equivalently

JDN = max
(sn,in)∈P

N∑
n=1

E

[
r(sn) +

∑
a∈A

in,aQn,a

]

s.t.
N∑
n=1

E [in,a] =Nρa, ∀a∈A. (3a)

The first term of the objective accounts for the revenue from AdX, while the second accounts for

the quality perceived by the advertisers. Notice that in the DAP we wrote the total capacity as Nρa

instead of Ca to allow the problem to be scaled.

Alas, the problem is still hard to solve since the number of functions is linear in N . However,

exploiting the regularity of the revenue function, we can show that in the optimal solution to DAP,
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we can drop the dependence on n in the controls. This follows from the linearity of the constraints

together with the concavity of the objective. We formalize this discussion in the following proposition.

Proposition 2 Suppose that the revenue function is regular. Then, there exists a time-homogenous

optimal solution to the DAP, i.e. where sn(Qn) = s(Qn) for all n= 1, . . . ,N and in(Qn) = i(Qn) for

all n= 1, . . . ,N .

The previous proposition allows us scale the problem so that N = 1, and consider the maximum

expected revenue of one impression, denoted by JD1 . The total revenue for the whole time horizon

is then JDN =NJD1 . In order to compute the DAP’s optimal solution, we consider its dual problem,

which we informally derive next.

Derivation of the Dual to DAP. To find the dual, we introduce Lagrange multipliers v = {va}a∈A
for the capacity constraints (3a). The Lagrangian, denoted by L(s, i;v) is

L(s, i;v) =E

[
r(s) +

∑
a∈A

iaQa−
∑
a∈A

va (ia− ρa)

]
.

The dual function, denoted by ψ(v), is the supremum of the Lagrangian over the set P. Thus, we

have that

ψ(v) = sup
(s,i)∈P

L(s, i;v)

= sup
s≥0

{
E [r(s)] + sup

i≥0,
∑
a∈A ia≤1−s

E

[∑
a∈A

ia(Qa− va)

]}
+
∑
a∈A

vaρa

= sup
s≥0

E
[
r(s) + (1− s)max

a∈A0

{Qa− va}
]

+
∑
a∈A

vaρa

=ER
(

max
a∈A0

{Qa− va}
)

+
∑
a∈A

vaρa

where the first equation follows from partitioning the optimization between the AdX acceptance and

the assignment probability controls, the second from optimizing over the advertiser assignment con-

trols i, and the last equation from solving the AdX variational problem. Note that R is convex and

non-decreasing and the maximum is convex w.r.t v, hence the composite function within the expec-

tation is convex. Using the fact that expectation preserves convexity, we obtain that the objective

ψ(v) is convex in v.

Next, the dual problem is minv ψ(v). When the revenue function is regular, the DAP’s objective is

concave and bounded from above. Moreover, the constraints of the primal problem are linear, and the

feasible set P convex. Hence, by the Strong Duality Theorem (p.224 in Luenberger (1969)) the dual

problem attains the primal objective value. So, we have that dual problem is given by the following

convex stochastic problem

JD1 = min
v

{
ER
(

max
a∈A0

{Qa− va}
)

+
∑
a∈A

vaρa

}
. (4)
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Deterministic optimal control. When the distribution Q is known, the dual problem in (4) can

be solved using a Subgradient Descent Method. It is worth noting that in many applications the

distribution of Q is unknown and should be learned as impressions arrive. We postpone the discussion

of that problem until §6.2.

Once the optimal dual variables v are known, the primal solution can be constructed from plugging

the optimal Lagrange multipliers in L(s, i;v). Following the derivation of the dual, we obtain that

the optimal survival probability is s(Q) = s∗ (maxa∈A0
{Qa− va}). Hence, the impression has a value

of maxa∈A0
{Qa− va} for the publisher, and she picks the reserve price that maximizes her revenue.

From the optimization over the assignment controls, we see that an impression is assigned to an

advertiser a only if she maximizes the contract adjusted quality Qa− va. Thus the dual variables va

act as the bid-prices of the guaranteed contracts. Additionally, the impression can be discarded only

if the maximum is not verified by an advertiser (i.e. all contract adjusted qualities are non-positive).

Notice that optimizing the Lagrangian states that the impression should be assigned to an adver-

tiser maximizing the contract adjusted quality, but does not specify how the impression should be

assigned when –multiple– advertisers attain the maximum. In the case when the probability of a

tie occurring is zero, the problem admits a simple solution: assign the impression to the unique

maximizer of Qa− va. We formalize this discussion in the the following theorem.

Theorem 1 Suppose that the revenue function is regular, and there is zero probability of a tie occur-

ring, i.e. P{Qa−va =Q′a−v′a}= 0 for all distinct a,a′ ∈A0. Then, the optimal controls for the DAP

are s(Q) = s∗ (maxa∈A0
{Qa− va}), and Ia(Q) = 1{Qa− va >Qa′ − va′ ∀a′ ∈A0}, that is, the impres-

sion is assigned to the unique advertiser maximizing the contract adjusted quality. Furthermore, the

optimal dual variables solve the equations

E [(1− s∗(Qa− va))Ia(Q)] = ρa, ∀a∈A.

3.3. Our Stochastic Policy

The solution of the DAP suggests a policy for the stochastic control problem, but we must deal with

two technical issues: (i) when more than one advertiser maximizes Qa− va we need to decide how to

break the tie, and (ii) we are only guaranteed to meet the contracts in expectation, whereas we must

meet them exactly. We defer the first issue until §3.4, where we give an algorithm for generalizing

the controls Ia(Q) to the case where ties are possible.

We propose a static bid-price control extended with a pricing function for AdX given by p∗. The

policy, which we denote by µB, is defined in Policy 2. In there we let xn,a be the total number of

impressions left to assign to advertiser a to comply with the contract, m=N −n the total number

of impressions remaining to arrive, and v to be the optimal solution of (4).

Notice that impressions are only assigned to advertisers with contracts that have yet to be fulfilled.

When all contracts are fulfilled, impressions are sent to AdX with the revenue maximizing price p∗(0).

Moreover, when the total number of impressions left is equal to the number of impressions necessary

to fulfill the contracts, the price is set to p∞, and thus all incoming impressions are directly assigned

to advertisers. Hence, the stochastic policy µB satisfies the contracts with probability 1.
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Policy 2 Static Bid-Price Policy with Pricing µB.

Observe state (m,X) and the realization Qn.

Let An = {a∈A : xn,a > 0} be the set of ads yet to be satisfied.

Let a∗n = arg maxa∈An∪{0} {Qn,a− va}.
if
∑

a∈A xn,a <m then let pn = p∗(Qn,a∗n − va∗n), else let pn = p∞.

Submit to AdX with price pn.

if impression rejected by AdX and a∗n 6= 0 then

Assign to advertiser a∗n.

end if

The proposed stochastic policy shares some resemblance with the optimal dynamic programming

policy. The intuition is that, when the number of impressions is large, the actual state of the system

becomes irrelevant because ∆aJm−1(x) is approximately constant (for states in likely trajectories),

and equal to va. In that case both policies are equivalent.

3.4. Handling ties

Theorem 1 had an assumption that there would be no ties between advertisers verifying the maximum

Qa − va. In this section we show how to construct a primal optimal solution to the DAP and the

corresponding stochastic policy in the general case (for example, when the distribution of placement

quality is discrete or has atoms). Devenur and Hayes (2009) proposed introducing small random

and independent perturbations to the qualities, or smoothing the dual problem to break ties. We

provide an alternate method that directly attacks ties, and provides a randomized tie-breaking rule.

Computing the parameters of the tie-breaking rule requires solving a flow problem on a graph of size

2|A|; thus in some settings it may not be possible. In section EC.3, we show that in practice ties do

not occur frequently. However, for completeness we provide a full characterization of the problem.

For any non-empty subset S ⊆A0, we define a S-tie as the event when the maximum is verified

exactly by all the advertisers a∈ S, and the impression is rejected by AdX. Note that the tie may be

a singleton, in the case that exactly one advertiser verifies the maximum. Since the dual variables v

are known, the probability of such event can be written as

P(S-tie) =E
[(

1− s∗(λ(Q)
)
1
{
Qa− va = λ(Q) ∀a∈ S, Qa− va <λ(Q) ∀a /∈ S

}]
,

where λ(Q) = maxa∈A0
{Qa−va}. With some abuse of notation we define the ∅-tie as the event when

the impression is accepted by AdX, that is, P(∅-tie) =E[s∗(λ(Q))]. Note that the tie events induce a

partition of the quality space, and we have that
∑

S⊆A0
P(S-tie) = 1.

We look for a random tie-breaking rule that assigns an arriving impression to advertiser a∈ S with

conditional probability Ia(S) given that a S-tie occurs. Hence, the routing probabilities depend on

which advertisers tie, and not on the particular realization of the qualities (they are independent of

λ(Q)). Therefore, under such policy the total probability, originating from S-ties, of an impression

being assigned to advertiser a is ya(S) = P(S-tie)Ia(S). We can interpret ya(S) as the normalized flow
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of impression assigned to the advertiser originating from S-ties. We will show that, in terms of ya(S)

as decision variables, finding the tie-breaking rule amounts to solving a transportation problem.

First, in order for the publisher to fulfill the contract with an advertiser a ∈A the incoming flow

of impressions over all possible ties sums up to ρa. The previous constraint can be written as∑
S⊆A0:a∈S

ya(S) = ρa, ∀a∈A. (5)

Notice that we impose no constraints for a= 0 since any number of impressions can be discarded.

Alternatively, we could set ρeff
0 = 1−P(∅-tie)−

∑
a∈A ρa because the impressions effectively discarded

are those that are rejected by AdX and not assigned to an advertiser. Second, the outgoing flow

of impressions originating from a particular tie should sum up to the actual probability of that tie

occurring. Then, we have that ∑
a∈S

ya(S) = P(S-tie), ∀S ⊆A0. (6)

Third, we require that ya(S)≥ 0 for all S ⊆A0 and a∈ S. Finally, in order to obtain the tie-breaking

rule we need a non-negative flow satisfying constraints (5) and (6). Once a such solution is found,

the optimal controls can be computed as

Ia(Q) =

{
ya(S)/P(S-tie) if a∈ S, and Q is an S-tie,

0 otherwise,

with the pricing function as before.

It is not hard to see that the previous problem can be stated as a feasible flow problem in a bipartite

graph. We briefly describe how to construct such graph next. On the left-hand side of the graph we

include one node for each non-empty subset S ⊆A0, and in the right-hand side we add one node for

each advertiser a ∈A0. In the following we refer to nodes in the left-hand side as subset nodes, and

to those in the right-hand side as advertiser nodes. The supply for subset nodes is P(S-tie), while

the demand for advertiser nodes is ρa. Arcs in the graph represent the membership relation, i.e., the

subset node S and advertiser node a are connected if and only if a∈ S. Moreover, arc capacities are

set to infinity. In Figure 2 the resulting bipartite graph is shown.

An important question is whether the flow problem admits a feasible solution. The next result

proves that the answer is affirmative when the dual variables v are optimal for the dual problem

(4). The proof proceeds by casting the feasible flow problem as a maximum flow problem, and then

exploiting the optimality conditions of v to lower bound every cut in the bipartite graph.

Proposition 3 Suppose that v ∈ RA is an optimal solution for the dual problem (4). Then, there

exists a non-negative flow satisfying constraints (5) and (6).

We conclude this section by showing that the solution constructed is optimal for the primal prob-

lem. Notice that the solution is feasible because it satisfies constraints (5) and (6). In order to

prove optimality it suffices to show that it attains the dual objective value, or that it satisfies the

complementary slackness conditions. The latter follows trivially.
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Subset nodes
S ⊆ A0, S 6= ∅

Advertiser nodes
a ∈ A0

S1

S2

...

S2A

0

1

...

A

ρeff
0

ρ1

ρA

P(S1)

P(S2)

P(S2A)

Figure 2 Bipartite flow problem solved to obtain the tie-breaking rule. On the left-hand side of the graph we include

one node for each non-empty subset S ⊆A0 (subset nodes), and in the right-hand side we add one node

for each advertiser a∈A0 (advertiser nodes). The supply for subset nodes is P(S-tie), while the demand

for advertiser nodes is ρa. Arcs in the graph represent the membership relation, i.e., the subset node S

and advertiser node a are connected if and only if a∈ S. Arc capacities are set to infinity.

Once the optimal controls are calculated, we construct our stochastic policy as follows. We let

A∗n = arg maxa∈An∪{0} {Qn,a− va}, be the set of advertisers that attain the maximum. Now, if the

impression is rejected by AdX and A∗n 6= {0}, we assign it to advertiser a in A∗n with probability

Ia(Qn)/
∑

a′∈A∗n
Ia′(Qn). Notice that impressions are only assigned to advertisers with contracts that

have yet to be fulfilled. Additionally, as the contracts of some advertisers are fulfilled, these are

excluded of the assignment, and the routing probabilities Ia(·) of the remaining advertisers are scaled-

up and normalized.

4. Asymptotic Analysis

In this section we show that the heuristic policy constructed from the DAP is asymptotically optimal

for the stochastic problem when the number of impressions and capacity are scaled up proportionally.

We proceed in the following way. First, we formulate the problem as a stochastic control problem

(SCP). Though not practical, this abstract and equivalent formulation is useful from a theoretical

point of view. Second, we show that the optimal objective value of the DAP provides an upper bound

on the objective value of the SCP. Finally, we show that the upper bound is asymptotically tight.

Stochastic Control Problem. A stochastic control policy maps states of the system to control actions

(prices and target advertiser), and is adapted to the history up to the decision epoch. We restrict our

attention to policies that always submit the impression to AdX, which were argued to be optimal.

Recall that given the reserve price, the publisher knows the actual probability that the impression

is accepted by AdX. As before, we recast the problem in terms of the survival probability control.

Hence, the publisher picks the probability that the impression is accepted. Conversely, given a survival

probability the reserve price can be easily computed using F̄−1(·). We denote by sµn(Q) ∈ [0,1] the

target survival probability under policy µ at time n when an impression with quality Q arrives.

Similarly, we let Iµn,a(Q) ∈ {0,1} indicate whether the nth impressions is assigned to advertiser a or

not when policy µ is used. In particular, Iµn,a(Q) = 1 indicates that the impression should be assigned

to the advertiser if rejected by AdX.
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We let the binary random variable Xn(sµn) indicate whether the nth impression is accepted by

AdX or not when policy µ is used. Specifically, Xn(sµn) = 1 indicates that the impression is accepted

by AdX, and when Xn(sµn) = 0 the impression is rejected by AdX. Notice that, conditioning on

the quality of the impression and the history, Xn(sµn) is a Bernoulli random variable with success

probability sµn.

We denote by M the set of admissible policies, i.e. policies that are non-anticipating, adapting

and feasible. A feasible policy should satisfy the contractual obligations with each advertiser, or

equivalently
∑N

n=1 [1−Xn(sµn)] Iµn,a =Ca in an almost sure sense. Additionally, the target advertiser

controls should satisfy that
∑

a∈A I
µ
n,a ≤ 1, since the impression should be assigned to at most one

advertiser. Finally, the equivalent stochastic optimal control problem is

J∗N = max
µ∈M

E

[
N∑
n=1

r(sµn) + (1− sµn)
∑
a∈A

Iµn,aQn,a

]
, (7)

where J∗N denotes the optimal expected revenue over the set of admissible policiesM. The objective

follows from conditioning on the quality of the impression and the history. By the Principle of

Optimality it is the case that the dynamic program described in section 3.1 provides an optimal

solution to the SCP (Bertsekas 2000) and JN(C) = J∗N .

Analysis. Following a similar analysis to Gallego and van Ryzin (1994), Talluri and van Ryzin

(1998), Liu and van Ryzin (2008), we first show that the optimal objective value of the DAP provides

an upper bound to the objective value SCP, and then prove that this bound is tight. For the first

result, we proceed by taking the optimal stochastic control policy, and construct a feasible solution

for the DAP by taking expectations over the history. Later, we exploit the concavity of the objective

and apply Jensen’s inequality to show that this new solution attains a greater revenue in the DAP.

Proposition 4 The optimal objective value of the DAP provides an upper bound on the objective

value of the optimal policy, i.e. J∗N ≤ JDN .

Now we complete the analysis by lower bounding the yield of the stochastic policy in terms of the

DAP objective. In proving that bound, we look at N∗, the first time that any advertisers contract is

fulfilled or the point is reached where all arriving impressions need to be assigned to the advertisers.

We refer to the time after N∗ as the left-over regime. The first key observation in the proof is that

before time N∗, the controls of the stochastic policy behave exactly as the optimal deterministic

controls. The second key observation is that the expected number of impressions in the left-over

regime is O(
√
N), and the left-over regime has a small impact on the objective.

Theorem 2 Let JBN be the expected yield under the stochastic policy µB. Then,

JBN
J∗N
≥ JBN
JDN
≥ 1− 1√

N
K(ρ),

where K(ρ) =
√

A
A+1

∑
a∈A0

1−ρa
ρa

.
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Proof. The first bound follows from Proposition 4. We now prove the second bound.

Let Sµn,a =
∑n

i=1 (1−Xi(s
µ
i (Qi))) I

µ
i,a(Qi) be the total number of impressions assigned to advertiser

a by time n when following the stochastic policy µB. Additionally, we denote by Sµn = {Sµn,a}a∈A the

random vector of impressions assigned to advertisers. Then, xn,a =Ca−Sµn,a is the total number of

impressions left to assign to advertiser a to fulfill the contract, and m=N − n is the total number

of impressions remaining to arrive.

To simplify the proof, we let C0 =N −
∑

a∈ACa be the total number of impressions that are not

assigned to any advertiser (accepted by AdX and discarded), and we refer to Sµn,0 = n−
∑

a∈ASn,a as

total number of impressions not assigned to any advertiser by time n when following the stochastic

policy µB. Because C0 is the total number of impressions we can dispense of, when the point is

reached that Sn,0 =C0, then all remaining impressions need to be assigned to the advertisers.

Let the random time N∗ = inf
{

1≤ n≤N : xn,a = 0 for some a∈A or
∑

a∈A xn,a =m
}

be the

first time that any advertiser’s contract is fulfilled or the point is reached where all arriving impres-

sions need to be assigned to the advertisers. Clearly, N∗ is a stopping time with respect to the

stochastic process {Sµn}n=1,...,N .

In the following, let Rµ
n be the revenue from time n under policy µB. Similarly, we denote by Rn

the revenue from time n when the deterministic control are used in an alternate system with no

capacity constraints. Because the deterministic controls are time-homogeneous, and the underlying

random variables are i.i.d., then the random variables {Rn}n=1,...,N are i.i.d. too. Moreover, it is the

case that ERn = JD1 . Notice that when n <N∗, the controls of stochastic policy µB behave exactly

as the optimal deterministic controls. Thus, Rn =Rµ
n for n <N∗. Using this fact together with the

fact that N∗ is a stopping time we get that

JBN =E

[
N∑
n=1

Rµ
n

]
=E

[
N∗∑
n=1

Rn +
N∑

n=N∗+1

Rµ
n

]
≥E

[
N∗∑
n=1

Rn

]
=EN∗JD1 , (8)

where the inequality follows from the non-negativity of the revenues, and the last equality from

Wald’s equation. Then, we conclude that JBN/J
D
N ≥EN∗/N .

Next, we turn to the problem of lower bounding EN∗. Before proceeding we make some definitions.

We define by Sn,a the number of impressions assigned to advertiser a by time n when following the

deterministic controls in the alternate system with no capacity constraints. As for the revenues, it is

the case that Sn,a = Sµn,a for n<N∗. We define Sn,0 in a similar fashion.

Let Na = inf {n≥ 1 : Sn,a =Ca} be the time when the contract of advertiser a∈A is fulfilled, and

N0 = inf {n≥ 1 : Sn,0 =C0} be the point in time where all arriving impressions need to be assigned to

the advertisers. Even though these stopping times are defined with respect to the stochastic process

that follows the deterministic controls, it is the case that N∗ = mina∈A0
{Na}. In the remainder of

the proof we study the mean and variance of each stopping time, and then conclude with a bound

for EN∗ based on those central moments.

For the case of a ∈ A, the summands of Sn,a are independent Bernoulli random variables with

success probability ρa. The success probability follows from (3a). Hence, Na is a negative binomial

random variable with Ca successes and success probability ρa. The mean and variance are given by
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ENa = N , and Var[Na] = N 1−ρa
ρa

, where we used that ρa = Ca/N . Similarly, for the case of a = 0,

now the summands of Sn,0 are Bernoulli random variables with success probability ρ0. Hence, N0 is

a negative binomial random variable with C0 successes and success probability ρ0.

Finally, using the lower bound on the mean of the minimum of a number of random variables of

Aven (1985) we get that

EN∗ =E min
a∈A0

{Na} ≥ min
a∈A0

ENa−
√

A

A+ 1

∑
a∈A0

Var[Na]

=N −
√

A

A+ 1

√∑
a∈A0

N
1− ρa
ρa

=N −
√
NK(ρ). (9)

The result follows from combining (8) and (9). �

In terms of yield loss, our previous bound can be written as J∗N − JBN ≤
√
NK(ρ)JD1 , achieving

an O(
√
N) loss w.r.t the optimal online policy. In particular, we may fix the capacity to impression

ratio of each advertiser, and consider a sequence of problems in which capacity and impressions are

scaled up proportionally according to ρ. Then, the yield under policy µB converges to the yield of

the optimal online policy as N goes to infinity.

A key observation in proving the last theorem was that the number of impressions in the left-over

regime is O(
√
N). In fact, using a Chernoff bound, we may show that the probability that the number

of impressions in the left-over regime exceeds a fraction of the total impressions decays exponentially

fast.

Corollary 1 The probability that the number of impressions in the left-over regime exceeds a fraction

ε > 0 of the total impressions decays exponentially fast, as given by

P{N −N∗ ≥ εN} ≤
∑
a∈A0

exp(−2ε2ρaN).

Proof. We prove the complement, that is, the probability that N∗ ≥ (1− ε)N converges expo-

nentially fast to one. Notice that N∗ ≥ (1 − ε)N if and only if by time (1 − ε)N the contract of

each advertiser is not yet fulfilled (S(1−ε)N,a < Ca), and the point where all impressions need to

be assigned to advertisers has not been reached (S(1−ε)N,0 < C0). Combining De Morgan’s law and

Boole’s inequality we get that

P{N∗ ≥ (1− ε)N}= P{S(1−ε)N,a <Ca ∀a∈A0} ≥ 1−
∑
a∈A0

P{S(1−ε)N,a ≥Ca}.

Recall that S(1−ε)N,0 is the sum of (1− ε)N independent Bernoulli random variables with success

probability ρa. Hence, we conclude by applying Chernoff’s bound to the each summand to obtain

P{S(1−ε)N,a ≥Ca} ≤ exp(−2ε2ρaN). �

The policy described in 3.3 is static in the sense that it does not react to changes in supply:

the dual variables v are computed at the beginning and remain fixed throughout the horizon. To

address this issue, in practice, one would periodically resolve the deterministic approximation (4).

Recently, Jasin and Kumar (2010) showed that carefully chosen periodic resolving schemes together
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with probabilistic allocation controls can achieve bounded yield loss w.r.t. the optimal online policy.

It is worth noting that those results do not directly apply to our setting: they consider a network RM

problem with discrete choice, while our model deals with jointly distributed (and possibly continuous)

placement qualities and AdX. Nevertheless, by periodically resolving the DAP one should be able to

obtain similar performance guarantees for the yield loss of the control.

5. Data Model and Estimation

We have thus far assumed that any user could be potentially assigned to any advertiser. In practice,

however, advertisers have specific targeting criteria. For instance, a guaranteed contract may demand

for females with certain age range living in New York, while other contract may demand for males in

California. In this section we give a parametric model based on our observation of real data, which

takes into consideration that advertisers demand for particular user types in their contracts.

Instead of grouping user types according to their attributes, we aggregate user types that match

the criteria of the same subset of advertisers. This has the advantage of reducing the space of types

to a function of the number of advertisers (which is typically small in practice) rather then the

number of possible types (which is potentially large). Hence, a user type is characterized by the

subset of advertisers T ⊆A that are interested in it. In the following, we let T be the support of the

type distribution, and π(T ) the probability of an arriving impression being of type T . As before we

assume that, across different impressions, types are independent and identically distributed. Given a

particular type T , the predicted quality perceived by the advertisers within the type is modeled by

the non-negative random vector Q(T ) = {Qa(T )}a∈T .

Even if the total number of impressions suffices to satisfy the contracts, i.e.
∑

a∈A ρa ≤ 1, the

inventory may not be enough to satisfy the contracts targeting criteria. Our algorithm guarantees

that the total number of impressions Ca is always respected, yet some advertisers may be assigned

impressions outside of their criteria. If an impression of type T happens to be assigned to an advertiser

a 6∈ T , the publishers pays a nonnegative goodwill penalty τa. These penalties allow the publisher

to prioritize certain reservations, specially when the contracts are not feasible. Thus, the ex-ante

distribution of quality is given by the mixture of the types distribution with mixing probabilities π(T ).

Notice that all our previous results hold if we apply the same analysis to the mixture distribution.

5.1. Estimation

Although the number of types may be exponential in A, in practice we observe that a linear number

of them suffice to characterize 98% of the inventory. We observe that the predicted quality perceived

by the advertisers within a type is approximately log-normal. This can be seen in Figure 3, where

the empirical distribution of log-quality is graphically represented for a type with two advertisers

(data is log-transformed). The histograms on the diagonal show the marginal log-quality of each

advertiser, which approximately resemble a normal curve. On the off-diagonals, scatter plots show

the correlation between advertisers, which is strongly positive. In some sense this is expected, since

many advertisers have similar targeting criteria.
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Figure 3 Graphical representation of the empirical distribution of log-quality for a type with two advertisers (data

is log-transformed).

Given a particular type T , we assume that quality follows a multivariate log-normal with mean

vector µT and covariance matrix ΣT for the advertisers in the type, and takes a value of −τa for

advertisers not in the type. The total distribution of quality is given by the mixture of these types

distribution with mixing probabilities π(T ). Thus, we have that

Q∼

{
lnN (µT ,ΣT ), for a∈ T,
−τa, for a 6∈ T,

w.p. π(T ).

To perform the estimation we analyzed data from four different publishers for a consecutive period

of seven days. First, the capacities of the reservations were used to compute the ratios ρ. Second, logs

were analyzed to estimate the types’ frequencies, and the parameters of the underlying log-normal

distributions (using maximum likelihood estimation).

Bidding data from the same period of time was used to estimate the primitives of the AdX. With

multiple bidders, AdX runs a sealed bid second-price auction. In this first approach to the problem,

we assume that bids are independent of the quality of the impressions. We analyze the first and

second highest bids for the inventory submitted to AdX. We denote by {(Bm
1 ,B

m
2 )}m=1,...,M the

sampled highest and second highest bids from the exchange. Sample data is used to compute the two

primitives of our model: (i) the complement of the quantile of the highest bid p(s), and (ii) the revenue

function of r(s). Both functions are estimated on a uniform grid {sj}100
1 of survival probabilities in

the [0,1] range.

First, for each point in the grid j, the price pj = p(sj) is estimated as the (1− sj)-th population

quantile of the highest bid. Then, using sampled bids, we estimate the revenue function w.r.t. to

prices at the grid points as

r(pj) =
1

M

M∑
m=1

1{Bm
1 ≥ pj}max{Bm

2 , pj} (10)

Finally, the revenue function is obtained by composing (10) and p(s). AdX data is available only for

the first two publishers.
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Types

Advertisers

T1

T2

T3

T4

1

2

3

ρ1 = 0.4

ρ2 = 0.1

ρ3 = 0.3

π(T1) = 0.2

π(T2) = 0.3

π(T3) = 0.1

π(T4) = 0.4

(a) User type-advertiser graph.
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(b) Estimated survival probability and revenue func-

tion for AdX.

Type Ads π(T ) µT ΣT

T1 {1,2,3} 0.2
(

7.8155
7.8155
7.8155

) (
0.3 0.1 0.1
0.1 0.3 0.1
0.1 0.3 0.1

)
T2 {1,2} 0.3 ( 6.6755

7.0655 ) ( 0.3180 0.1649
0.1649 0.3602 )

T3 {2,3} 0.1 ( 6.6355
7.8055 ) ( 0.4347 0.2357

0.2357 0.4367 )

T4 {1,3} 0.4 ( 7.2155
6.9155 ) ( 0.23 0.05

0.05 0.40 )

(c) Parameters of the distribution of log-quality.

Figure 4 Description of Instance 1.

Figure 4a describes Instance 1, a publisher with 4 types and 3 advertisers. The estimated survival

probability and revenue function for the publisher is shown in Figure 4b. The parameters for the

remaining publishers are available at the webpage of the first author.

6. Experimental Results

Two experiments were conducted to study our algorithm. First we study the impact of introducing

an AdX on the publisher’s yield. Second, we compare the previously known primal-dual approach to

ad allocation that is non-parametric to our approach here which is parametric.

6.1. Impact of AdX

This first experiment explores the potential benefits of introducing an AdX, and how the publisher

can take advantage of it. We study the impact of the trade-off parameter γ on both objectives, that

is, the quality of the impressions assigned to the advertisers, and the revenue from AdX. The limiting

choices of γ = 0, and γ =∞ are of particular interest. The first choice represents the case where

the publisher disregards the quality of the impressions assigned to the advertisers, and strives to

maximize the revenue extracted from AdX. Here the publisher strategically picks the reserve price so

that just enough impressions are rejected to satisfy the contracts. In the second choice, the publishers

prioritizes the quality of the impressions assigned, and submits the remanent inventory to AdX. We

use this case as the baseline to which we compare our method.
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Figure 5 Figure 5a plots the quality and revenue relative to the case γ =∞, as a function of γ. Figure 5b plots, in

a quality vs. revenue graph, the objective values of the optimal solutions for the different choices of γ,

together with the Pareto frontier. Both plots are for Instance 2, given in §6.

Instance 1
γ 0 0.001 0.01 0.05 0.075 0.1

Yield 110.94 112.78 128.81 202.46 249.11 296.95
Quality 1107.32 1779.07 1801.00 1864.95 1891.19 1913.78

Revenue 110.94 111.00 110.80 109.21 107.27 105.57

γ 0.25 0.5 0.75 1 10 ∞
Yield 590.54 1098.43 1608.80 2122.99 20764.82 ∞

Quality 1998.31 2044.89 2055.72 2061.33 2072.22 2075.52
Revenue 90.97 75.98 67.00 61.66 42.61 38.48

Instance 2
γ 0 0.001 0.01 0.05 0.075 0.1

Yield 428.73 429.02 434.22 459.57 477.39 495.66
Quality 483.02 545.27 573.23 676.34 720.31 752.35

Revenue 428.73 428.47 428.49 425.75 423.37 420.42

γ 0.25 0.5 0.75 1 10 ∞
Yield 617.04 834.39 1056.05 1279.88 9425.63 ∞

Quality 843.47 880.69 891.49 896.89 906.46 907.05
Revenue 406.17 394.05 387.43 382.99 360.99 356.11

Table 2 Expected yield, advertisers’ quality and revenue from AdX for two instances, and different choices of γ.

The experiment was conducted as follows. First, we set up a grid on the trade-off parameter γ.

Then, we solve the publisher’s problem as given in (4). The resulting policies are evaluated using a

fluid limit (see EC.4). Table 2 reports the expected quality and revenue for different choices of γ.

Figure 5a plots the quality, and revenue relative to the baseline case; as a function of γ. In Figure 5b

we plot, in a quality vs. revenue graph, the objective values of the optimal solutions for the different

choices of γ, together with the Pareto frontier.
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Discussion. Results confirm that, as we increase the trade-off parameter γ, the quality of the

impressions assigned to the advertisers increases, while the revenue from AdX subsides. Interestingly,

starting from the baseline case that disregards AdX (γ =∞), we observe that the revenue from AdX

can be substantially increased by sacrificing a small fraction of the overall quality of the impressions

assigned. For instance, by exploiting strategically the AdX, the publisher can increase AdX’s revenue

by 8% by giving up only 1% quality. Conversely, starting from the case that disregards the advertiser’s

quality (γ = 0), the publisher can raise the quality in a large amount at the expense of a small

decrease in AdX’s revenue.

Alternatively, the previous analysis can be understood in terms of the Pareto frontier. Results show

that the Pareto frontier is highly concave, relatively horizontally flat around γ =∞, and vertically

flat around γ = 0. This explains the huge marginal improvements at the extremes. There are several

advantages to the quality vs. revenue representation. First, the Pareto frontier allows for quick grasp

of the nature of the operation. When the publisher’s current operation is sub-optimal, its performance

point should lie in the interior of the frontier. In this case, the Pareto frontier allows the publisher to

measure its efficiency, and quantify the potential benefits an optimal policy may introduce. Second,

when the choice of the trade-off parameter is not clear, the publisher may impose a lower bound

on the overall quality of the impressions, and instead maximize the total revenue from AdX. The

efficient frontier provides the maximum attainable revenue, and the proper γ to achieve the quality

constraint.

6.2. Comparison with the Primal-Dual Approach

In this second experiment we study the performance the our algorithm, and contrast it with a Primal-

Dual (PD) method. This experiment is discussed in detail in §EC.1, but we give the full experiments

and discussion here for the benefit of the reader. Since no existing PD method is known yet for the

AdX problem, we consider instead the case with no AdX. The Primal-Dual approach (Devenur and

Hayes 2009), uses a sample from data to estimate the dual variables and uses it in a bid-price control

policy. In contrast, our algorithm, as stated, assumes the parameters of the quality distribution are

known, and uses that to estimate the dual variables. So we do not need to use a sample. Of course

in practice, the parameters need to be learned, and so we would need to use a sample of the data in

order to learn them; but in many settings (including online advertising) it is reasonable to assume

that we at least know the form of the distribution (e.g., normal, exponential, Zipf), albeit not the

specific parameters (mean, variance, covariance, etc.). The techniques in Devenur and Hayes (2009)

are powerful because they don’t need to assume anything about the distribution, but it is important

to ask what can be gained from knowing the form of the distribution, which is what we do in the

remainder of this section.

In order to objectively assess the performance of our algorithm we adopt the user type model

described in §5 as a generative model. The generative model is used to generate sample data on which

both our algorithm and a PD method are tested. The advantages of adopting a generative model are

twofold. First, it allows us to compute the truly optimal policy µOPT. Second, the true performance

of any policy can be evaluated efficiently using a fluid limit (see Section EC.4).
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Figure 6 Average (a) and standard deviation (b) of yield as a function of training set sample size; results are shown

for the parametric method (EST) based on our policy µ and the primal-dual method (PD) as in Devenur

and Hayes (2009). Both policies converge to the optimal yield, but EST converges faster, and with less

variance.

The computational experiment is conducted as follows. First, a training data set of M impressions

is generated. We denote the sampled quality vectors by {qm}Mm=1. Then, we estimate the parameters

of the model on the training set as follows. For each type we estimate the type probabilities π̂T ; and

mean µ̂T , and covariance matrix Σ̂T of the logarithm of the qualities. Next, the dual problem (4) is

solved on the estimated parametric model using a Gradient Descent Method as described in §EC.3.

Note that, since no AdX is considered, the maximum expected revenue function R(·) is the identity.

Using the optimal solution vEST we construct a policy, which be refer as µEST.

Simultaneously, we employ the PD method on the training data. The PD method amounts to

solving a sample average approximation of problem (4), which results in the following linear program

min
v,λ

1

M

M∑
m=1

λm +
∑
a∈A

ρava (11)

s.t. λm + va ≥ qm,a, ∀m,a

λm ≥ 0 ∀m.

The linear program is solved using CPLEX 12. Again, using the dual optimal solution vPD we

construct a policy µPD.

Afterwards, we assess the performance of both policies using a fluid limit. These steps are replicated

on 50 different training sets. Table 3 reports the average results over the training sets for different

sizes of training sets, and instances. Plots of the results for a given instance are shown in Figure 6.

Discussion. Results show that for both algorithms, as the size of the training set increases, the

optimality gap decreases at a rate of O(M
1
2 ). However, the parametric method performs uniformly

better that the non-parametric PD method. Additionally, the variability across different training sets

diminishes as the size of the training set increases. Indeed, we observe that the standard deviation

over training sets converges to zero for both methods, but the convergence is faster for the parametric
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Instance 1 (A = 3, T = 4, OPT = 2075.09)
Training
Set Size

EST PD
mean std.dev. mean. std.dev

100 2004.16 (3.42%) 33.978 1990.32 (4.08%) 37.552
1000 2053.41 (1.04%) 10.008 2047.92 (1.31%) 12.365
2500 2065.12 (0.48%) 4.956 2062.76 (0.59%) 5.838
5000 2068.44 (0.32%) 3.681 2066.99 (0.39%) 4.224

Instance 2 (A = 6, T = 10, OPT = 907.44)
Training
Set Size

EST PD
mean std.dev. mean. std.dev

1000 889.58 (1.97%) 8.861 882.77 (2.72%) 12.829
2500 894.43 (1.43%) 7.485 887.64 (2.18%) 10.418
5000 898.59 (0.98%) 5.231 892.51 (1.65%) 7.625
10000 901.13 (0.70%) 3.588 897.42 (1.10%) 4.692
25000 904.69 (0.30%) 1.712 901.97 (0.60%) 2.720
50000 905.03 (0.27%) 1.267 903.44 (0.44%) 1.567

Instance 3 (A = 17, T = 15, OPT = 894.82)
Training
Set Size

EST PD
mean std.dev. mean. std.dev

2500 859.83 (3.91%) 9.937 849.44 (5.07%) 14.615
5000 868.61 (2.93%) 5.870 861.06 (3.77%) 7.954
10000 877.59 (1.92%) 5.226 873.46 (2.39%) 6.577
25000 884.04 (1.20%) 2.585 881.13 (1.53%) 3.747
50000 887.34 (0.84%) 1.926 885.11 (1.08%) 2.728

Instance 4 (A = 14, T = 10, OPT = 928.76)
Training
Set Size

EST PD
mean std.dev. mean. std.dev

2500 892.55 (3.90%) 12.886 888.88 (4.29%) 13.427
5000 903.04 (2.77%) 8.537 901.79 (2.90%) 10.277

10000 911.25 (1.88%) 6.951 909.96 (2.02%) 6.935
25000 917.30 (1.23%) 3.353 915.81 (1.39%) 3.705
50000 921.36 (0.80%) 2.668 920.11 (0.93%) 2.716

Table 3 Experimental results comparing the performance of our parametric method (EST) with the

non-parametric primal-dual method (PD). No AdX present in this experiment.

one. In some sense this is expected, since the true data model follows exactly the distributional

assumptions. However, the PD method is expected to be more robust to model misspecification.

Another experiment, though results are not reported, was conducted to test the strength of the

parametric method on real data. We observed that, when the training set is small (around thousands),

the parametric method performs better than the non-parametric one. However, as the sample size

increases the non-parametric method outperforms the other. The rationale for this behavior is that,

when data is scarce, the parametric method can exploit the distributional assumptions to reconstruct
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a fair representation of the data. However when the training set is larger, the fit of our model to real

data is not perfect, and the non-parametric method can withstand deviations more robustly.

7. Extensions

In this section we consider a number of extensions of the model and policy from the previous section.

7.1. Target Quality Constraints

In section 2.1 we discussed an alternate formulation in which the publisher imposes a minimum

overall quality for the impressions assigned to the advertisers. This might be more natural for some

publishers; they might feel more comfortable specifying target quality constraint than picking a

Lagrange multiplier to weight the impact of quality in the objective. Additionally, in some settings

the advertisers themselves might demand that certain level of quality is guaranteed.

In the following, we impose that the average quality of the impressions assigned to advertiser a is

larger or equal than a threshold value `a. Now, the publisher would strive to maximize the revenue

from AdX, while complying with the target quality constraints, and the contractual obligations. The

one-impression DAP would be similar, except that the objective only accounts for AdX’s revenue,

and the inclusion of the constraints

E [ia(Q)Qa]≥ `a, ∀a∈A. (12)

We attack the problem, as done before, by considering its dual. Let γa ≥ 0 be the Lagrange

multiplier associated to (12). As a side note, problem (3) can be interpreted as the Lagrange relaxation

of our new problem w.r.t. the target quality constraints, and the dual variables γ as the shadow price

of the target quality constraints. The new constraints preserve the convexity of the program, and

strong duality still holds. Following the same steps, we obtain the new dual problem

min
γ≥0,v

{
ER
(

max
a∈A0

{γaQa− va}
)

+
∑
a∈A

vaρa− γa`a

}
,

which still is a convex minimization problem. The publisher might now jointly optimize over v, and

γ to construct a provably good policy. Additionally, in a similar fashion to Proposition 6, we may

compute the directional derivative of the objective w.r.t. the dual variables γ.

Regarding the performance the bid-price control µB, Theorem 2 still holds, and the policy asymp-

totically attains the optimal revenue from AdX, while complying with the delivery targets. However,

we still need to argue about the expected average quality assigned to the advertisers. Unfortunately,

for those advertisers whose constraint (12) is binding, our algorithm might not attain the desired

quality target. Nevertheless, from our asymptotic analysis we may show that the expected average

quality is lower bounded by

E

[
1

N

N∑
n=1

[1− sµn(Qn)] Iµn,a(Qn)Qn,a

]
≥ EN∗

N
E [i∗a(Q)Qa]≥

(
1− 1√

N
K(ρ)

)
`a.

Hence, for advertisers with binding constraint (12), albeit not feasible, the expected average quality

becomes arbitrary close to the threshold value as the number of impressions in the horizon increases.
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On the other hand, for the remaining advertisers whose target quality constraint is not binding, the

expected average quality will surpass the threshold for suitably large N .

7.2. AdX with Multiple Bidders

Here we generalize our results to the case where multiple buyers participate in the Ad Exchange.

We model AdX as an auction with K risk neutral buyers. The publisher believes that individual

valuations are drawn independently from the same distribution with c.d.f F (·), density f(·), and

support [p0, p∞]. Moreover, we assume that the distribution of the values have increasing failure rates,

are absolutely continuous and strictly monotonic. The publisher must choose the reservation price p

that maximizes her expected revenue given that her value for the impression is c≥ 0. As before, we

denote by R(c) the optimal expected revenue of the publisher.

Myerson (1981) argued that under our assumptions the optimal mechanism is a Vickrey or second-

price sealed-bid auction. Moreover, it is known that in such auctions bidding the true valuation is a

dominant strategy for the buyers, and that the optimal reservation price p∗(c) is independent of the

number of buyers (Laffont and Maskin 1980).

Let B1:K and B2:K be the order statistics which denote the highest and the second highest bid

respectively. Given a reserve price p, the item is sold if B1:K ≥ p, i.e., there is some bid higher than

the reserve price. The winning buyer pays the second highest bid, or alternatively max{B2:K , p},
since the seller should receive at least the reserve price p. Therefore, the publisher’s maximization

problem is

R(c) = max
p≥0

E [1{B1:K ≥ p}max{B2:K , p}+ 1{B1:K < p}c] .

Notice that the setup of Section 2.2 can be consider as a particular case of a second-price auction in

which we have only one bidder and B2:K = 0.

Recall that, instead of reserve prices, we casted our problem in terms of survival or winning

probabilities. Then, letting s be the probability than the impression is sold, we have that s= P{B1:K ≥
p}= 1−FK(p) since valuations are i.i.d. Conversely, the reserve price as a function of the survival

probability is given by p(s) = F̄−1(1− (1−s)1/K), which is well-defined due to the strict monotonicity

of the c.d.f. In terms of survival probabilities, the problem is now

R(c) = max
0≤s≤1

r(s) + (1− s)c,

where we defined the revenue function as r(s) = r(p(s)), and r(p) =E [1{B1:K ≥ p}max{B2:K , p}].
The next proposition shows that the revenue function is regular, and as a consequence all previous

results hold for the case with multiple bidders.

Proposition 5 Under the previous assumption, the revenue function r(s) is regular. Moreover, the

optimal reserve price p∗(c) solves

F̄ (p)

f(p)
= p− c,
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when c ∈ [p0 − 1/f(p0), p∞]. When the opportunity cost is higher than the null price (c > p∞), the

publisher bypasses the exchange (p∗(c) = p∞). Finally, when the opportunity cost is low enough (c <

p0− 1/f(p0)), the impression is kept by the highest bidder (p∗(c) = p0).

Proof. The joint distribution of B1:K and B2:K has a density function (Laffont and Maskin 1980)

f(b1, b2) =

{
K(K − 1)F (b2)K−2f(b1)f(b2) if b1 ≥ b2

0 otherwise
.

Then, we have that

r(p) =E [1{B2:K ≥ p}B2:K + p1{B1:K ≥ p,B2:K < p}]

=

∫ ∞
p

∫ b1

p

b2f(b1, b2) db2 db1 + p

∫ ∞
p

∫ p

0

f(b1, b2) db2 db1

=K(K − 1)

∫ ∞
p

b2F (b2)K−2f(b2)(1−F (b2)) db2 +KpF (p)K−1(1−F (p))

Continuity of r(s) follows because the p.d.f. is continuous, and p(s) is continuous (if F not strictly

monotone, the inverse may have jumps). Additionally, we may bound the revenue by

r(p)≤E [1{B1:K ≥ p}B1:K ]≤KE [1{B ≥ p}B]≤KEB <∞,

the first inequality follows because B1:K is the maximum, the second because any order statistic

is upper bounded by the sum of the bids, and the fourth because bids are integrable. Moreover,

integrability of B implies that limp→∞ r(p) = 0.

Next, we turn to the concavity of r(s). Differentiating w.r.t to p we get

dr

dp
=KF (p)K−1(F̄ (p)− pf(p)).

Then, using the fact that ds
dp

=−KF (p)1−k/f(p) we get from the composition rule that

dr

ds
=
dr

dp

∣∣∣∣
p(s)

dp

ds
= p(s)− 1

h(p(s))
,

where h(p) = f(p)/F̄ (p) is the hazard rate of the bidder’s valuation. Because p(s) is non-increasing

in s and the h(p) is non-decreasing in p, we conclude that dr
ds

is non-increasing. Thus, the revenue

function is concave.

Finally, notice that the that derivative of the objective w.r.t to s is

p(s)− 1

h(p(s))
− c, (13)

which is non-increasing. When c > p∞ we have that (13) is negative, so s∗(c) = 0 and p∗(c) = p∞.

Similarly, when c < p0− 1/h(p0) we that (13) is positive, so s∗(c) = 1 and p∗(c) = p0. �
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7.3. AdX with User Information

In most systems, the publisher shares some user information with the exchange. In turn, the exchange

may partially disclose the user information to their advertisers. The advertisers may react to this

information, and bid strategically (Muthukrishnan 2009). In this section we extend our model to the

case when the bids from AdX are correlated with the quality of the impression (a surrogate for user

information). For simplicity we consider the case of one bidder. Nevertheless, our analysis can be

easily extended to the general case.

Let F̄ (p|Q) = P{B ≥ p |Q} be the conditional probability that the bid from AdX is greater than

p given that the impression quality vector is Q. Additionally, we define the conditional revenue

function as r(s|Q) = sF̄−1(s|Q). The publisher can exploit the correlation between user information

and bids to update his prior on AdX bids. Conditioning on the impression quality, we obtain that

the maximum expected revenue under opportunity cost c, denoted by R(c|Q), is now

R(c|Q) = max
0≤s≤1

r(s|Q) + (1− s)c. (14)

In order to apply the results from the previous sections we require that the conditional revenue

function r(·|Q) is regular for all qualities Q almost surely.

The rest of the analysis follows in a straightforward way by conditioning on the impression quality.

The dual problem (4) now reads

min
v

{
ER
(

max
a∈A0

{Qa− va} |Q
)

+
∑
a∈A

vaρa

}
,

where we replaced the maximum expected revenue by R(·|Q). It is worth noting that now the optimal

reserve price to be submitted to AdX depends both on the maximum contract adjusted quality, and

the actual realization of the quality vector.

8. Conclusion

Ad Exchanges are an emerging market for the real-time sale of online ad slots on the Internet.

Despite the popularity of this emerging market, many publishers are currently not jointly optimizing

their inventory over AdX and their traditional reservations. Instead they first aim to fulfill their

reservations and then submit their remnant inventory to the exchange. In this work, we show that

there are considerable advantages for the publishers from jointly optimization over both channels.

Publishers may increase their revenue streams without giving away the quality of service of their

reservations contracts, which still represents a significant portion of their advertising yield. Our

approach helps publishers determine when and how to access AdX to complement their contract sales

of impressions. In particular, we model the publishers problem as a stochastic control program and

derive an asymptotically optimal policy with a simple structure: a bid-price control extended with a

pricing function for the exchange. We also hope our insights here will help understand ad allocation

problems more deeply.

Internet advertising, and in particular AdX, is likely to prove to be a fertile area of research.

There are several promising directions of research stemming from this work. One intuitive approach
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to improve the performance of a control, which is appealing for its simplicity, consist on resolving

the deterministic approximation periodically throughout the horizon. In a follow-up work we intend

to show that one can indeed improve on the static control and obtain sharper bounds by resolving

the DAP. Another problem that needs further study is that of learning in the case of unknown

distributions, which is of great importance given the fast-paced and changing nature of the Internet.

There exists independent research on online algorithms for capacity allocation and online pricing for

repeated auctions, but none on the joint optimization problem. Finally, as more publishers reach

out for AdX, advertisers will have the opportunity to buy their inventory from either market. The

existence of two competing channels, the exchange as a spot market and the reservations as future

market, introduces several interesting research questions. For example, how should publishers price

their contracts and allocate their inventory, and how should advertisers hedge their campaign between

these two markets. We hope that this work pave the way for further research on this important topic.
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Appendix A: Proofs of Statements

Proof of Proposition 1. First, observe that for all c the objective function of (1) is concave and continuous

in s, and the feasible set is compact. Hence, by Weierstrass Theorem the set of optimal solutions is non-empty

and compact. Thus, both R(c) and s∗(c) are well-defined.

Second, R(c)≥ c follows from letting s= 0. To see that R(c) is non-increasing, let c < c′, and s∗ be the optimal

solution under cost c. Then, R(c) = r(s∗) + (1 − s∗)c ≤ r(s∗) + (1 − s∗)c′ ≤ R(c′) where the first inequality

follows because s∗ ≤ 1, and the second because no solution is better than the optimal. To see that R(c)− c is

non-increasing, let c′ < c, and s∗ be the optimal solution under cost c. Then, by a similar argument we get that

R(c′)− c′ ≥ r(s∗)− s∗c′ ≥ r(s∗)− s∗c=R(c)− c. Convexity follows in a similar way (this is a standard result).

Third, observe that the objective function of (1) is jointly continuous in s and c. Thus, by the Maximum

Theorem R(c) is continuous in c, and s∗(c) is upper-hemicontinuous.

Finally, because r(s)+(1−s)c has decreasing differences in (s, c) and the feasible set is a lattice, by Topkis’s

Theorem s∗(c) is non-increasing in c. The result for p∗(c) follows from the fact that F̄−1(s) is non-increasing

in s. �

Proof of Theorem 1. The optimality conditions of v for problem (4) imply that the directional derivative

of ψ(v) along any direction is greater or equal to zero. In particular for each advertiser a∈A it should the case

that ∇1aψ(v)≥ 0, and ∇−1aψ(v)≥ 0. Applying proposition 6 to both directions, together with the fact that

there is zero probability of a tie occurring, we get that

E [(1− s∗ (Qa− va))1{Qa− va >Qa′ − va′ ∀a′ ∈A0}] = ρa,

and the result follows. �

Proof of Proposition 2. Let ~s = {sn(·)}n=1,...,N and ~ı = {in(·)}n=1,...,N be any feasible vectors of controls.

Let s̄ be the mean of the controls (in terms of prices p̄ would be the generalized F̄ -mean), which is defined

point-wise s̄= 1
N

∑N

n=1 sn. Similarly, let ı̄ be such that ı̄a = 1
N

∑N

n=1 in,a point-wise for all a∈A. We will show
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that solution in which (s̄, ı̄) are used for all impressions is a feasible control with greater or equal revenue than

the original one.

First, for the feasibility of (s̄, ı̄) observe that for each advertiser a∈A

Ca =EQ

[
N∑
n=1

in,a

]
=NEQ [̄ıa] ,

where the first equation follows from the feasibility of (~p,~ı) and the linearity of expectation, and the second

from substituting ı̄a pointwise for Q. Clearly, from the convexity of P it follows that (s̄, ı̄)∈P.

Second, we denote by JD(~s,~ı) and JD(s̄, ı̄) the objective value of the solutions (~s,~ı) and (~s,~ı) respectively.

We have that

JD(~s,~ı) = E

[
N∑
n=1

r (sn) +
∑
a∈A

Qa

N∑
n=1

in,a

]
≤E

[
Nr

(
1

N

N∑
n=1

sn

)
+
∑
a∈A

Qa

N∑
n=1

in,a

]

=NE

[
r (s̄) +

∑
a∈A

Qa ı̄a

]
= JD(s̄, ı̄),

where the inequality follows from the concavity of the revenue function, and the second equality from substi-

tuting s̄ and ı̄ pointwise for all Q. �

Given a subset of the quality space D⊆Ω, we define the measure PR(D) as the probability that the quality

vector belongs to that subset and the impression is rejected by the Ad Exchange when the optimal survival

probability is used. More formally,

PR(D) = E
[(

1− s∗
(

max
a∈A0

{Qa− va}
))

1{Q∈D}
]
.

Notice that the latter is not a probability measure since PR(Ω)≤ 1. Proposition 6 characterizes the directional

derivative of the objective function of the dual along some directions that, as we will show later, are of particular

interest. Results are given in terms of the measure PR.

Proposition 6 Given a subset α ∈ A, the directional derivative of the objective function of the dual w.r.t.

directions 1α and −1α are respectively

∇1αψ(v) =−PR
{

max
a∈α
{Qa− va}> max

a∈A0\α
{Qa− va}

}
+
∑
a∈α

ρa,

∇−1αψ(v) = PR
{

max
a∈α
{Qa− va} ≥ max

a∈A0\α
{Qa− va}

}
−
∑
a∈α

ρa.

Proof of Proposition 6. We consider first the direction 1α. Notice that the random function

R (maxa∈A0
{Qa− va}) is convex, and thus directionally differentiable. We first show that ψ(v) is finite. From

Assumption 1 we have that the revenue function is bounded by r(s)≤M , and thus R(c)≤M + max(c,0)≤
M + |c|. Therefore, using the triangle inequality we obtain that

φ(v)≤M +E|max
a∈A0

{Qa− va}| ≤M +
∑
a∈A

E|Qa|+ |va|<∞

We can now apply Theorem 7.46 in Shapiro et al. (2009) and obtain that ψ(v) is directionally differentiable at

v and that one can exchange expectation and directional derivative. Putting all together we get that

∇1αψ(v) = E
[
∇1αR

(
max
a∈A0

{Qa− va}
)]

+
∑
a∈α

ρa

=E
[
R′
(

max
a∈A0

{Qa− va}
)
∇1α

{
max
a∈A0

{Qa− va}
}]

+
∑
a∈α

ρa,
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where the second equation follows from the chain rule. We conclude by the fact that R′(c) =

1 − s∗(c) and ∇1α {maxa∈A0
{Qa− va}} = −1{maxa∈α{Qa− va}>maxa∈A0\α{Qa− va}}. A simi-

lar result follows for the opposite direction −1α from the fact that ∇−1α {maxa∈A0
{Qa− va}} =

1{maxa∈α{Qa− va} ≥maxa∈A0\α{Qa− va}}. �

Proof of Proposition 3. The proof proceeds by contradiction, that is, we assume that there is no feasible

flow. First, we cast the feasible flow problem as a maximum flow problem. Feasibility would imply the existence

of a flow with value 1−P(∅-tie). But since we assume that no such feasible flow exists, by the max-flow min-cut

theorem there should exists a cut with value strictly less than 1−P(∅-tie). The contradiction arises because the

optimality conditions of v for the dual problem (4) imply that the every cut is lower bounded by 1−P(∅-tie).

In order to write the feasible flow problem as a maximum flow problem, we first add a source s and a sink t.

Second, we add one arc from s to each node associated to a non-empty subset S ⊆A0 (left-hand side nodes)

with capacity P(S-tie). Third, we add one arc from each advertiser a ∈ A0 (right-hand side nodes) to t with

capacity ρa. Lastly, we set the capacity of arcs from S to a∈ S to infinity.

Now, since no feasible flow exists, by the max-flow min-cut theorem there should be a cut with value strictly

less than 1− P(∅-tie). Let α⊆A0 be the advertiser nodes (right-hand) belonging to the t side of a minimum

cut. Figure 7 shows the minimum cut. Next we argue that subset nodes in the s side verify that S ∩ α = ∅,
while those in the t side verify that S∩α 6= ∅. First, because the cut has minimum value, there is no arc from a

subset node to an advertiser node crossing the cut (those arcs have infinity capacity). Equivalently, within the

s side of the cut, all subsets nodes S ⊆A0 should verify that S ∩α= ∅. Second, observe that any subset node

with S ∩α= ∅ in the t side of the cut could be moved to the s side of the cut without increasing the value of

the cut. Hence, with no loss of generality we can assume that all subset nodes in the t side of the cut verify

that S ∩α 6= ∅.
As a consequence, the only arcs crossing the cut are those from the source to the subsets S ∩ α 6= ∅, and

those from advertisers A0 \α to the sink. The value of this cut is∑
S⊆A0:S∩α 6=∅

P(S-tie) +
∑

a∈A0\α

ρa.

Because the value is strictly less than 1−P(∅-tie) we get that∑
S⊆A0:S∩α6=∅

P(S-tie)<
∑
a∈α

ρa, (15)

where we used that
∑

a∈A ρa + ρeff
0 = 1−P(∅-tie).

Next, we look at the optimality conditions of v for the dual problem (4). We distinguish between the case

that 0 /∈ α and 0 ∈ α. First suppose that 0 /∈ α, and consider the direction −1α that has a −1 if a ∈ α and 0

elsewhere. According to proposition 6 the directional derivative of the objective at v is

∇−1αψ(v) = PR
{

max
a∈α
{Qa− va} ≥ max

a∈A0\α
{Qa− va}

}
−
∑
a∈α

ρa

=
∑

S⊆A0:S∩α 6=∅

P(S-tie)−
∑
a∈α

ρa,

where we have written the event that the maximum is verified non-exclusively by some advertiser a∈ α as all

S-ties in which some advertiser a ∈ α is involved. The optimality of v implies that the directional derivative

along that direction is greater or equal to zero, contradicting equation (15).

When 0∈ α we consider the direction 1A\α that has a 1 if a /∈ α and 0 elsewhere. The direction derivative is

now

∇1A\αψ(v) =−PR
{

max
a∈A\α

{Qa− va}> max
a∈α∪{0}

{Qa− va}
}

+
∑
a∈A\α

ρa,

=−
∑

S⊆A0:S⊆A\α

P(S-tie) +
∑
a∈A\α

ρa =
∑

S⊆A0:S∩α6=∅

P(S-tie)−
∑
a∈α

ρa,
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Subset nodes
S ⊆ A0, S 6= ∅

Advertiser nodes
a ∈ A0

s t

S ∩ α 6= ∅

S ∩ α = ∅

α

A0 \ α

P(S
-ti

e)

ρa

∞

min-cut

Figure 7 The flow problem in the bipartite graph with a minimum cut. A source s connected to the subset nodes

and a sink t connected to the advertisers nodes was included. α⊆A0 is the subset of advertiser nodes

(right-hand) belonging to the t side. Note that no there is no arc from a subset node to an advertiser

node crossing the cut.

where in the second equation we have written the event that the maximum is verified exclusively by some

advertiser a ∈ α as all S-ties in which only advertisers in α are involved. Again, the optimality of v implies

that the directional derivative along that direction is greater or equal to zero, contradicting equation (15). �

Proof of Proposition 4. Let µ∗ be the optimal policy for the stochastic control problem. Let ŝ =

{ŝn(·)}n=1,...,N and ı̂= {ı̂n(·)}n=1,...,N be deterministic vectors of controls defined as

ŝn(Q) = EFn
[
sµ
∗

n (Q) |Q
]

∀Qpointwise,

ı̂n,a(Q) = EFn
[
(1− sµ∗n (Q))Iµ

∗

n,a(Q) |Q
]

∀Qpointwise, a∈A,

where the expectation is taken over the history of the system until n, which is denoted by Fn, and conditional

on a particular realization of Q. The resulting controls are independent of the history, and dependent only on

the realization of Q and the impression number n. Thus, they fulfills the first approximation and they are valid

deterministic vectors of controls. We will show that (ŝ, ı̂) is feasible for the DAP, and that its objective value (in

the DAP) dominates the optimal objective value of the SCP. Then, we may conclude that J∗N ≤ JDN (ŝ, ı̂)≤ JDN ,

because no feasible solution is better than the optimal.

First, for the contract fulfillment constraint we have that for each advertiser a∈A

Ca =E

[
N∑
n=1

(1−Xn(sµ
∗

n (Qn)))Iµ
∗

n,a(Qn)

]

=

N∑
n=1

E
[
EFn

[
(1− sµ∗n (Qn))Iµ

∗

n,a(Qn) |Qn

]]
=

N∑
n=1

E [̂ın,a(Q)] ,

where the first equality follows from taking expectations to the almost sure contract fulfillment constraint of

µ∗, the second from the tower rule, and the third from substituting ŝ and ı̂ pointwise for all Q and the fact

that impressions are i.i.d. Non-negativity of the controls follows trivially. Additionally, is it not hard to show

that
∑

a∈A ı̂n,a(·) + sn(·)≤ 1 for all n. Thus, (ŝ, ı̂) is a feasible deterministic control.

Second, the objective value of the optimal stochastic control is bounded by

J∗N =E

[
N∑
n=1

EFn
[
r
(
sµ
∗

n (Qn)
)
|Qn

]
+
∑
a∈A

Qn,aEFn
[
(1− sµ∗n (Qn))Iµ

∗

n,a(Qn) |Qn

]]

≤E

[
N∑
n=1

r (ŝn(Qn)) +
∑
a∈A

Qn,a ı̂n,a(Q)

]
= JDN (ŝ, ı̂),
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where the first equality follows from the tower rule and because Qn is measurable w.r.t. the conditional

expectation, and the inequality from applying Jensen’s inequality to the concave revenue function. �

Proof of Proposition 7. Because B = 0, then it is not hard to show that F̄−1(s) = 0, and that the revenue

function is r(s) = 0. Hence, the revenue function is regular and satisfies Assumption 1. Moreover, the optimal

survival probability is s∗(c) = 0, and R(c) = c. The result follows from substituting these functions in Theorem

1. �
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Appendix EC.1: Comparison to the Primal-Dual Method

Consider the allocation problem faced by a publisher in display advertising in which arriving impres-

sions need to be assigned to advertisers, and there is no option of sending to an exchange. This

problem is a particular case of our model where the winning bid random variable is identically

zero, i.e. B = 0. The following proposition shows that the optimal controls admit simple analytical

expressions.

Proposition 7 Suppose that ties have zero probability. Then, in the case without AdX the optimal

controls are Ia(Q) = 1{Qa− va ≥Qa′ − va′ ∀a′ ∈A0} where v= {va}a∈A0
satisfies v0 = 0 and

P{Qa− va ≥Qa′ − va′ ∀a′ ∈A0}= ρa ∀a∈A.

The resulting decision rule arg maxa{Qa − va} is identical to the rule studied in previous work

(e.g., Devenur and Hayes (2009)), where va is an optimal dual variable resulting from solving an

assignment problem on a sample of the data, where the distribution is unknown. Roughly speaking,

in Devenur and Hayes (2009) (and similarly in other work Feldman et al. (2010), Vee et al. (2010),

Agrawal et al. (2009)), it is shown that as long as the sample is of size ≈ εn, the overall assignment

will be ≈ ε close to the optimal offline solution.

In our model, the parameters of the quality distribution are known, so we do not need to use a

sample. Of course in practice, the parameters need to be learned, and so we would need to use a

sample of the data in order to learn them; but in many settings (including online advertising) it is

reasonable to assume that we at least know the form of the distribution (e.g., normal, exponential,

Zipf), albeit not the specific parameters (mean, variance, covariance, etc.). The techniques in Devenur

and Hayes (2009) are powerful because they don’t need to assume anything about the distribution,

but it is important to ask what can be gained from knowing the form of the distribution, which is

what we do in the remainder of this section, both analytically and experimentally.

More formally, suppose the distribution of quality is not known with certainty, but we have at our

disposal a sample of M quality vectors {qm}Mm=1 that may be used to pin-down the distribution. Addi-

tionally, it is known that the qualities are drawn independently from a population with continuous

density g(x|θ), where θ is an unknown parameter to be estimated. Let G(x|θ) be the c.d.f. which we

assume to be strictly monotonic. For simplicity, we deal with the case of one advertiser with capacity

to impression ratio of ρ. From Proposition 7 the optimal DAP control is the (1− ρ)-quantile of Q,

that is, v = Ḡ−1(ρ|θ). We compare the asymptotic efficiency of a parametric and a non-parametric

estimation of the model.

Parametric estimation method. Let θ̂mle
M be the maximum likelihood estimator (MLE) of the

unknown parameter θ. That is, θ̂mle
M is an optimal solution of the program maxθ

∑M

m=1 log g(qm|θ).
Once we have our estimator, we plug-in the estimated distribution in the dual problem, and solve

for the optimal dual variable v̂mle
M . Again, from Proposition 7 we have that the optimal dual variable,

given our maximum likelihood estimation, is given by v̂mle
M = Ḡ−1(ρ|θ̂mle

M ).

In turn, by the invariance property of the MLE, it is the case that v̂mle
M is the maximum likeli-

hood estimator of the true optimally dual variable v (see, e.g., Casella and Berger (2002)). As a
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consequence, under some regularity conditions, we have that our new estimator is consistent, asymp-

totically efficient, and asymptotically normal

√
M(v̂mle

M − v)⇒N (0, u(θ)),

where the u(θ) is the Cramér-Rao lower bound on the variance of any unbiased estimator. The

Cramér-Rao lower bound is u(θ) =
(
∂Ḡ−1

∂θ
(ρ|θ)

)2

I(θ)−1, where I(θ) =E
[(

∂
∂θ

lng(Q|θ)
)2
]

is the Fisher

information of parameter θ.

Non-parametric estimation method. Considering the Sample Average Approximation (SAA) of the

dual problem (4) we can obtain a non-parametric estimator of the truly optimal dual variable (see

Chapter 5 from Shapiro et al. (2009) for a review of the topic). In a SAA the expected value of the

stochastic program is approximated by the sample average function over the observations {qm}Mm=1.

In our case, we have that

v̂M = arg min
v

1

M

M∑
m=1

max{qm− v,0}+ ρv.

Equivalently, the previous problem can be stated as a linear program, and in this case one obtains

the training-based Primal-Dual method as described in Devenur and Hayes (2009). It can be shown

that, under some conditions, the non-parametric estimator v̂M is consistent and asymptotically nor-

mal (Shapiro et al. 2009). As we shall see, this estimator is not necessarily efficient. It is not hard to

prove that the sample (1− ρ)-quantile is an optimal solution to the SAA problem. Hence, from the

asymptotic distribution of the (1− ρ)-quantile we have that

√
m(v̂M − v)⇒N (0, u′(θ)),

where the variance is u′(θ) = ρ(1−ρ)
g(v|θ)2 .

Analysis. Both the parametric and the non-parametric estimators converge, as the number of sam-

ples increases, to the true optimal solution. However, the non-parametric estimator is not as efficient

as the parametric counterpart. Indeed, this is expected since the maximum likelihood estimator is

known to be asymptotically efficient. We measure the relative efficiency as the ratio of asymptotic

variance of the non-parametric estimator to parametric one, i.e. ε(θ) = u′(θ)
u(θ)

.

Until now, our analysis has been in terms of the optimal dual solution. The rationale is that the

closer the dual variable is to the true value v, the better the performance of the policy should be. Next,

we quantify analytically how does a deviation from the optimal solution impacts the performance of

the policy. To assess the performance of the policy we look at the fluid limit as described in Section

EC.4. The next proposition shows that the relative efficiency in terms of the performance is exactly

equal to ε(θ). Hence, there is no loss in looking at the relative efficiency of the estimators instead.

Proposition 8 The relative efficiency of the non-parametric estimator is

ε(θ) = ρ(1− ρ)I(θ)

(
∂Ḡ

∂θ
(v|θ)

)−2

≥ 1, (EC.1)

which is exactly equal to the relative efficiency in terms of the policies’ performance.
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Proof of Proposition 8. For (EC.1), we use that ∂Ḡ−1

∂θ
(ρ|θ) = ∂Ḡ

∂θ
(v|θ)/g(v|θ), which follows from

the implicit function theorem. In view of Cramér-Rao lower bound, we have that ε(θ)≥ 1.

Next, we look at the average yield of the policy as the number of impressions grows to infinity

when a bid price of u is employed, denoted by J̄(u). The limiting performance is given by

J̄(u) =

{
ρEθ[Q|Q≥ u], if u< v,

Eθ[Q]− (1− ρ)Eθ[Q|Q≤ u], if u≥ v.

Under our assumptions, the performance function is continuous u. One would be tempted to apply

the Delta Method to derive the asymptotic distribution of the performance. Unfortunately, J̄(·) is

not differentiable at v. However, it is the case that the performance function is semi-differentiable at

v with finite right-derivative J̄ ′+(v)≥ 0 and left-derivative J̄ ′−(v)≤ 0. Thus, we can apply an extension

of the Delta Method for directionally differentiable functions proved by Shapiro (1991), and obtain

√
m(J̄(v̂M)− J̄(v))⇒ dJ̄

(
v;N (0, u′(θ))

)
,

√
m(J̄(v̂mle

M )− J̄(v))⇒ dJ̄
(
v;N (0, u(θ))

)
,

where dJ̄(v; ξ) is the Gâteaux derivative of J̄ at the point v along the direction ξ, which is given by

dJ̄(v; ξ) = J̄ ′+(v)ξ when ξ ≥ 0, and dJ̄(v; ξ) = J̄ ′−(v)ξ when ξ < 0. Note that the asymptotic variance of

the performances are u′(θ) ·K, and u(θ) ·K respectively, where the performance scale factor is given

by K = 1
2
(J̄ ′+(v)2 + J̄ ′−(v)2)− 1

2π
(J̄ ′+(v)− J̄ ′−(v))2. Thus, the relative efficiency of the performance is

identical to ε(θ). �

Examples. To fix ideas we consider two simple examples. First, suppose that Q∼ exp(θ). The max-

imum likelihood estimator is given by θ̂mle
M =

(
1
M

∑M

m=1 qm

)−1

, and the Fisher information is I(θ) =

θ−2. The optimal dual variable is v=−θ−1 lnρ. Hence, the relative efficiency is ε(θ) = (1− ρ)/(ρ ln2 ρ).

In this case, the relative efficiency is lower bounded by ε(θ)≥ 1.544. The lower bound is tight, and

attained at ρ ≈ 0.2032. The relative efficiency as a function of the capacity to impression ratio is

plotted in Figure EC.1. As shown in the figure, the relative efficiency may be arbitrarily bad as the

capacity to impression ratio gets close to zero or one.

For the next example we assume that qualities are normal with known variance σ2 and unknown

mean, that is, Q ∼ N (θ,σ2). The maximum likelihood estimator is the sample mean, θ̂mle
M =

1
M

∑m

m=M qm, and the Fisher Information is I(θ) = σ−2. In this case the relative efficiency is given

by ε(θ) = 2πρ(1−ρ) exp (Φ−1(1− ρ)2), with Φ−1 being the inverse of the standard normal c.d.f. Here

the relative efficiency is lower bounded by ε(θ)≥ π/2, with the minimum attained at ρ= 1/2. Inter-

estingly, the relative efficiency is invariant under monotonic transformations of any random variable.

Hence, the previous result holds too for the log-normal distribution.

Experiments. The previous analysis was in terms of a single advertiser; in Section 6.2 we show

experimentally that the advantage of parametric estimation extends to multiple advertisers as well.

Appendix EC.2: Incorrect Assignments in the User Type Model

In Section 5 we introduced a user-type model with good-will penalties to accommodate the fact

that advertisers have specific targeting criteria. If the contracts are feasible, that is, there is enough
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Figure EC.1 Relative efficiency as a function of the capacity to impression ratio ρ for the exponential distribution,

and the normal distribution with known variance.

inventory to satisfy the targeting criteria; one would expect our policy to assign only impressions

within the criteria. In this section we formalize the concept of a feasible operation, and give sufficient

conditions under which the stochastic control policy does not assign any impressions outside of the

targeting criteria.

It is straightforward to state the problem of determining whether contracts can be satisfied or not,

as a feasible flow problem on a bipartite graph. The problem can be formulated on an graph with one

node for each user type T with a supply of π(T ), on the left side; and one node for each advertisers

a ∈ A0 with a demand ρa, on the right side. Then, we say that the operation is feasible if the user

type-advertiser graph admits a feasible flow.

The feasibility of the operation, albeit necessary, does not suffice to guarantee that no impressions

outside the targeting criteria are assigned to the advertisers. When advertisers compete for the same

type, and one of them obtains a potentially unbounded reward for that type; it may be optimal

to allow the latter advertiser to cannibalize the user type, and force the others advertisers to take

types outside of their criteria. This may occur, surprisingly, for all conceivable penalties. However,

if qualities are bounded, and penalties are set high enough, then the optimal policy would not

recommend the assignment of impressions outside the targeting criteria. Even in this case some

impressions may be incorrectly assigned in the left-over regime, but the probability of this event

decays exponentially fast. We formalize this discussion in the following proposition.

Proposition 9 Suppose that the user type-advertiser graph admits a feasible flow, and that qualities

and bids from AdX are bounded by 1
A

mina τa. Then, the stochastic control policy does not assign any

impressions outside of the targeting criteria, except perhaps for the left-over regime.

Proof Sketch of Proposition 9. For simplicity we consider the case without AdX. Let i be an

optimal solution to the DAP, and suppose that some advertisers are assigned some types outside of
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Figure EC.2 Example with two user types, and two advertisers.

their targeting criteria. We will construct another solution with greater or equal yield in which no

incorrect assignments are made.

An optimal solution to the DAP is a vector of functions iT,a : ΩT → [0,1] for a∈A0 and T ∈ T such

that ∑
T∈T

EiT,a(Q) = ρa, ∀a∈A0,∑
a∈A0

iT,a(Q) = π(T ), (a.s.) ∀T ∈ T ,

We refer to each of the functions in a solution as components.

Next, we construct a feasible solution i0 to the DAP from a feasible flow of the user type-advertiser

graph. Take the difference ∆i= i0− i, which is a circulation in the user type-advertiser graph. The

circulation ∆ may have components of mixed signs. Because i0 has no incorrect assignments, if

advertiser a is assigned a type T 63 a not in her criteria, then the circulation verifies that ∆iT,a(Q) =

−iT,a(Q). Hence, the components with incorrect assignments are negative.

Let a be an advertiser that is assigned a type T 63 a not in her criteria, that is, E[iT,a(Q)]> 0. We

may find an augmenting cycle w containing the incorrect assignment, such that if we push some flow

along this cycle, we construct another solution i+w with fewer incorrect assignments. The cycle w

has at most A+ 1 positive components, and at most A+ 1 negative components. The cost associated

to the negative components is at most A 1
A

mina′ τa′ − τa ≤ 0. All positive components arcs have a

cost of at least zero, and the total cost of this cycle is positive. Thus, the new solution i+w has

greater or equal yield. Moreover, E[(i+w)T,a(Q)]<E[iT,a(Q)], and no new incorrect assignments are

introduced. Repeating this procedure, we may construct a solution with no incorrect assignments. �

Note that since the left-over regime is vanishingly small in proportion to the length of the horizon

(Cor. 1) this implies that the number of unassigned impressions is small. Thus in practice, a publisher

may set C ′a = Ca + ε, discard any impressions assigned by the policy outside the targeting criteria,

and ensure that contracts are filled properly.

Next, we prove by example that the requirement that qualities are bounded is necessary for the

previous result to hold. Consider a publisher who contracts with two advertisers, and agrees to deliver

one half of the arriving impressions to each one of them. Additionally, there are two impression types,

denoted by T1 and T2, each occurring 50% of the time. The first advertiser only cares about the first

type. She obtains a reward of zero for T1, and the advertisers pays a positive penalty τ each time a T2
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impression is assigned to her. The second advertisers admits both types, but only obtains a positive

reward Q∼ exp(1) for the first type. The setup is shown in Figure EC.2.

A feasible policy could assign all T1 impressions to the first advertiser, and T2 impressions to the

second advertiser. However, such policy is not optimal. Notice that both advertisers compete for the

T1 impressions, and the first advertiser could extract a potentially high quality from them. It is not

hard to see that the optimal dual variables are v1 =−τ , and v2 = 0; and the optimal objective value is
1
2
E[Q− τ ]+ = 1

2
e−τ . Hence, it is optimal to assign those T1 impressions with quality greater than τ to

the second advertiser. Thus, no matter the value of the penalty, a fraction e−τ of the total impression

assigned to the first advertiser are undesired.

Appendix EC.3: Computation

In this section we describe show to compute the optimal policy for our data model. The main problem

resides in the computation of the dual objective in (4) and its gradient given a vector of dual variables.

Objective. The first term of the objective can be written as

ER
(

max
a∈A0

{Qa− va}
)

=
∑
∀T

π(T )E
[
R

(
max
a∈A0

{Qa− va}
)
| T
]

=
∑
∀T

π(T )
∑

a∈T∪T c
E [R (Qa− va)1{Qa− va ≥Qa′ − va′ ∀a′ 6= a} | T ]

=
∑
∀T

π(T )

(
IT,0(v) +

∑
a∈T

IT,a(v)

)
where the first equation follows by conditioning on the type, and the second because the events are

a partition of the sample space. Next, we show to compute the expectations IT,a(v).

Let MT (v) = maxa∈A0\T{−τa − va} be the maximum contract adjusted quality of the advertisers

(including the outside option) that are not in the type, and αT (v) the set of advertisers that verify

the maximum. Then, we have that

IT,0(v) =R (MT (v))P{Qa− va ≤MT (v) ∀a′ ∈ T}

=R (MT (v))GT (MT (v) + vT ),

where GT (·) is the c.d.f. of QT , and vT is the vector of dual variables for the advertisers in the type.

For a ∈ T , we compute the expectation by conditioning on the continuous random variable Qa.

Further, suppose that we partition the mean vector and covariance matrix in a corresponding manner.

That is, µT = (
µa
µ−a ), and ΣT =

(
Σa,a Σa,−a

Σ−a,a Σ−a,−a

)
. For instance, µ−a gives the means for the variables in

T \ {a}, and Σ−a,−a gives variances and covariances for the same variables. The matrix Σ−a,a gives

covariances between variables in T \ {a} and set a (as does matrix Σa,−a). Because the marginal

distribution of a multivariate normal is an univariate normal, we have that Qa ∼ lnN (µa,Σa,a). We

denote by gT,a(·) the p.d.f. of Qa. Similarly, let Q−a be the vector of qualities for advertisers in

T \ {a}. Conditioning on Qa = qa, the distribution of Q−a is log-normal with mean vector µ−a −
Σ−a,a(qa−µa)/(Σa,a), and covariance matrix Σ−a,−a − (Σ−a,aΣa,−a)/(Σa,a). We denote its c.d.f. by

GT,−a(·). Putting all together, we have that

IT,a(v) =E [R (Qa− va)P{Qa′ − va′ ≤Qa− va ∀a′ 6= a |Qa} | T ]
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=

∫ ∞
va+MT (v)

R(qa− va)GT,−a(qa− va + v−a)gT,a(qa) dqa,

where v−a is the vector of dual variables for advertisers in T \ {a}.
Gradient. The forward derivative of the dual objective can be written as

∇aψ(v) =−PR
{
Qa− va > max

a∈A0\a
{Qa′ − v′a}

}
+ ρa

=−
∑
∀T

π(T )E
[
(1− s∗(Qa− va))1

{
Qa− va > max

a∈A0\a
{Qa′ − v′a}

}
| T
]

+ ρa

=−
∑
T :a∈T

π(T )PT,a(v)−
∑
T :a6∈T

a∈αT (v),|αT (v)|=1

π(T )PT,a(v) + ρa,

where the contributing types for the forward derivative are those where a is in, and those where a is

not in but verifies exclusively the maximum of the types not in (MT (v)). If two or more advertisers

verify the maximum MT (v), then increasing va does not have an impact of the type’s contribution

to the objective. When a 6∈ T , the expectation is given by

PT,a(v) =
(
1− s∗(MT (v))

)
GT (MT (v) + vT ).

Similarly to the objective, when a∈ T we have that

PT,a(v) =

∫ ∞
va+MT (v)

(
1− s∗(qa− va)

)
GT,−a(qa− va + v−a)gT,a(qa) dqa.

The backward derivative is computed in a similar fashion. The only exception is that, when a 6∈ T ,

and a verifies the maximum MT (v),the advertiser always contributes to the derivative regardless of

the number of advertisers that attain the maximum. Hence,

∇−aψ(v) =
∑
T :a∈T

π(T )PT,a(v) +
∑
T :a 6∈T
a∈αT (v)

π(T )PT,a(v)− ρa.

Optimization. We solve the dual problem (4) using a Gradient Descent Method. At each step

the objective and its objective are computed as described previously. Notice that, when multiple

advertisers verify a tie, the objective is not differentiable. In this case a descent direction is constructed

using the forward and backward derivatives (if possible).

Ties. For the following, we assume that the instance is not degenerate, that is, the variances within

the types are positive, and no two advertisers are perfectly correlated. Then, within each type, non-

trivial ties can only occur between the advertisers that are not in the type (we refer to the non-trivial

ties as those in which multiple advertisers attain the same contract adjusted quality). Moreover, there

can be at most one tie within each type, and this happens when the maximum MT (v) is verified by

many advertisers, that is |αT (v)|> 1. With some abuse of notation, the probability of such a tie is

given by π(T )PT,αT (v) and it should be split among the advertisers αT (v). Note that the number of

non-trivial ties is O(T ), and the tie-breaking rule can be computed efficiently by solving a feasible

flow problem.
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Appendix EC.4: Fluid Limit

Exploiting our generative model we can construct a fluid model, and obtain the limiting performance

of an arbitrary bid-price policy as the number of impressions grows to infinity. We first describe

the fluid equations governing the dynamics of the fluid model, then we construct a solution to such

system, and then prove that the stochastic algorithm satisfies the fluid equation in the limit.For

simplicity, we focus our analysis on the case with no AdX, and no ties; though, a similar analysis

applies to the more general case.

In the following we analyze the performance of the stochastic control policy when implementing

some (sub-optimal) bid-prices v. Let ω be a sample path, Jn(ω) be the cumulative yield collected

up to impression n, and Sn,a(ω) the number of impressions assigned to advertiser a up to time n.

We extended the previous definitions for an arbitrary time, by taking their linear interpolations,

so that they are continuous. The previous functions are random elements on C[0,∞). We shall

construct the fluid limit by scaling capacity and time proportionally to infinity, and considering

a continuous flow of impressions arriving during an horizon of length 1. More formally, we define

S̄a(t) = limN→∞N
−1StN,a(ω), which can be interpreted as the fraction of impressions assigned to

advertiser a by time t. Similarly, we define J̄(t) = limN→∞N
−1JtN(ω) as the cumulative yield up to

time t. We are interested in computing J̄(1), the total limiting yield of the algorithm under bid-prices

v.

When capacity is scaled, each advertiser has a capacity of ρa, and the fluid model should satisfy

the following differential equations

J ′(t) =
∑
a∈A(t)

E
[
Qa1

{
a= arg max

a′∈A(t)

{Qa′ − va′}
}]
, (EC.2a)

S′a(t) = P
{
a= arg max

a′∈A(t)

{Qa′ − va′}
}
, ∀a∈A0 (EC.2b)

A(t) =
{
a∈A0 : S̄a(t)<ρa

}
, (EC.2c)

with the initial conditions Sa(0) = 0, and J(0) = 0. In (EC.2c), A(t) is the set of advertisers that

are yet to be fulfilled (including advertiser 0, which is fulfilled when the time comes all impressions

should be assigned directly to the advertisers), and (EC.2b) determines the rate at which impressions

are assigned to each advertiser. When one advertiser is fulfilled and the fraction of impressions S̄′a(t)

reaches its capacity ρa, it is excluded from A(t), and its rate is driven to zero. Finally, (EC.2a)

determines the rate at which yield is generated.

It is not hard to see that the solution to the fluid equations (EC.2) is piecewise linear, and continu-

ous. We construct a solution as follows. Let an epoch, denoted by tk, be the time in which the contract

of any advertiser is fulfilled (including advertiser 0). The horizon [0,1] is partitioned in consecutive

pieces, each culminating with an epoch. The kth piece spans the interval [tk, tk+1), and has a length

of ∆k = tk+1− tk. Since one advertiser is fulfilled at each epoch, there are at most A+ 1 pieces.

Let Ak be set of advertisers yet to be satisfied at the beginning of stage k as given by (EC.2c),

rka be the service rate for advertiser a during stage k as given by (EC.2b), and yk be the yield rate

during stage k as given by (EC.2a). The length of a stage is determined by the advertiser that is first
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fulfilled. Once determined, the solution is constructed recursively as follows

∆k = min
a∈Ak

{
ρa−Sa(tk)

rka

}
, (EC.3a)

tk+1 = ∆k + tk,

Sa(t
k+1) = Sa(t

k) + rka∆k,

J(tk+1) = J(tk) + yk∆k,

Ak+1 =Ak \ ak,

where ak is the advertiser that verifies the minimum in (EC.3a), and initially t0 = 0, and A0 =A0.

The functions Sa and J are obtained as the linear interpolation of the values at the endpoints of

the interval. Fortunately, the rates can be easily obtained by evaluating the dual objective and its

gradient. Let ψk(v) be the objective in (4) when restricting to the set of advertisers Ak. Then, we

have that rk = ρ−∇ψk(v), and yk =ψk(v)− v · ∇ψk(v).

We conclude by showing that functions obtained are actually the fluid limit of the stochastic

process induced by the algorithm.

Proposition 10 The fluid limits S̄a(t), and J̄(t) are a solution to the fluid equations (EC.2).

Proof. Consider the sequence of random elements S̄N,a(t,ω) = N−1StN,a(ω), and J̄N(t,ω) =

N−1JtN(ω). We would like to show that the previous sequences are tight. By Theorem 8.3 in Billings-

ley (1968), a sequence of random elements {XN} in C[0,∞) is tight iff (i) {XN(0)} is tight, and (ii) for

all ε > 0 and η > 0, there is a δ > 0 and an integer N0 such that P{supt≤t′≤t+δ |XN(t′)−XN(t)| ≥ ε} ≤ η
for N ≥N0.

The first condition is trivially satisfied for both sequences. Disregarding integrality issues, which

are not important in the analysis, and using the fact that the processes are non-decreasing, we have

that

sup
t≤t′≤t+δ

|S̄N,a(t′)− S̄N,a(t)| ≤
1

N

(
S(t+δ)N,a−StN,a

)
≤ δ.

Thus, by picking δ < ε the second condition is satisfied for the number of impressions assigned. For

the yield processes, employing Markov’s inequality, and the bound ER2
n ≤ A2 maxa{EQ2

a} for the

yield in any single period, we obtain

1

δ
P
{
J(t+δ)N −JtN ≥Nε

}
≤ 1

δN 2ε2
E
[ (t+δ)N∑
n=tN

Rn

]2

≤ δA
2 maxa{EQ2

a}
ε2

,

which can be bounded from above by η by picking a small enough δ, and N > 1/δ.

Next, we show that the fluid limit converges to the solution of the equation (EC.2b). Before

proceeding we state some definitions. Let the stopping time nkN = inf{n : Sn,a ≥Ca for some a∈Ak−1
N }

be the time in which the contract of the kth advertisers is fulfilled. In our previous terminology, nkN

is the kth epoch and the beginning of the kth piece. Similarly, we let AkN = {a ∈A0 : Snk
N
,a <Ca} to

be the set of advertisers that are active during the kth piece. The initial values are given by n0
N = 1

and A0
N =A0.
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We intend to show that N−1nkN → tk, AkN →Ak, and N−1Snk
N
,a→ Sa(t

k) as N →∞ in an almost

sure sense. We proceed by induction in k. The base case follows trivially. Suppose that our claim

holds for k, we intend to show that it holds for k+1. By the definition of the (k+1)th epoch, it should

be the case that S
nk+1
N
−1,a

< Ca for all a ∈ AkN and S
nk+1
N

,a
≥ Ca for exactly one advertiser a ∈ AkN .

Notice that the number of impressions assigned to ad a up to the stopping time can be written as

S
nk+1
N

,a

N
=
Snk

N
,a

N
+
nk+1
N −nkN
N

∑nk+1
N

n=nk
N

+1
In,a

nk+1
N −nkN

, (EC.4)

where the summands on the right-hand size are i.i.d. bernoulli random variables with success prob-

ability P
{
a = arg maxa′∈Ak

N
{Qa′ − va′}

}
. From the induction hypothesis, together with the Trian-

gular Strong Law of Large Numbers, we get that (EC.4) goes to Sa(t
k) + (limN−1nk+1

N − tk)rka
since the success probability converges to rka. It is not hard to see that the same limit holds for

N−1S
nk+1
N
−1,a

. Thus, we have that for all advertisers yet to be satisfied it should be the case that

Sa(t
k)+(limN−1nk+1

N − tk)rka ≤ ρa, and for at least one advertiser Sa(t
k)+(limN−1nk+1

N − tk)rka ≥ ρa.
Combining this expressions we get that in the limit the stopping time should satisfy

lim
nk+1
N

N
= tk + min

a∈Ak

{
ρa−Sa(tk)

rka

}
= tk+1.

In turn this implies that N−1S
nk+1
N

,a
→ Sa(t

k+1) and Ak+1
N →Ak+1, thus concluding the inductive

step.
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