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We study the allocation of heterogeneous services to agents without monetary transfers under incomplete

information. Agents have private, multi-dimensional utilities over services, drawn from commonly known

priors. The social planner’s goal is to maximize a possibly complex public objective. For tractability, we take

an “engineering” approach, in which we solve a large market approximation, and convert the solution into

a feasible finite market mechanism that still yields good results.

We apply this framework to real data from Boston to design a mechanism that assigns students to public

schools, to maximize a linear combination of utilitarian and max-min welfare, subject to capacity and trans-

portation constraints. We show how to optimally solve a large market model with over 868 types of students

and 77 schools, translate the solution into a finite market mechanism, which significantly outperforms the

baseline plan chosen by the city in terms of efficiency, equity, and predictability.
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1. Introduction

In many settings, goods or services are allocated to agents without the use of monetary transfers.

Examples include the allocation of seats in public schools, spaces in college dorms or courses, and

positions in medical residency programs. Social planners’ concerns are often multifaceted, including

possibly social welfare, equity and system costs.

One example of such a problem was faced by Boston in the 2012-2013 school assignment reform.

Seats in Boston Public Schools (BPS) have historically been allocated as follows: the city was

divided into three “zones” and each family submitted a ranked list of preferred schools within an

individualized menu of choices, which depended on which of three zones the family lived in and

which schools were within a one mile radius of the family’s home; a centralized algorithm allocated

based on priorities and lottery numbers. These large menus resulted in unsustainably high busing

costs, representing 10% of total school board budget (Russell and Ebbert (2011)). In 2012, a city

committee was charged with the task of reducing the choice menus, while maintaining sufficient

variety of choice and equity between various neighborhoods. The outcome of the reform was based

on a simulation analysis, which used historical choice data to fit a utility model, and evaluated
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a shortlist of proposed plans on a portfolio of metrics. However, the plans in the shortlist were

proposed based in an ad-hoc manner. This paper studies whether we can use the same inputs (the

utility model and the city’s objectives) to optimally design the allocation in a systematic way.

When agents’ preferences are publicly known, the allocation reduces to an optimization problem.

This paper studies how to allocate when preferences are privately known. There are multiple kinds

of services, and agents have private, multi-dimensional utilities over services, drawn from common

knowledge priors, which may depend on agents’ observable information. Since designing multi-

dimensional mechanisms is traditionally difficult especially with general objectives, we take an

“engineering” approach: first solve a simpler, large market model. Then convert it to a feasible

finite market mechanism and evaluate it by simulating with real data.

In the large market model, there are finitely many “types” of agents, and a continuum of agents

of each type. “Types” in this paper represent the public information of agents. For example in

school choice, a type may represent students from a certain neighborhood of a certain race or socio-

economic status. We require mechanisms to be incentive compatible and Pareto optimal among

agents with the same type, and we refer to such mechanisms as valid mechanisms. While agents

of the same type are treated symmetrically, agents of different types may be differentiated. The

goal is to find a valid mechanism that maximizes the social planner’s objective, which can be fairly

general.

We first characterize all valid mechanisms. Under mild assumptions over utility priors, we show

that any valid mechanism can be described as a collection of Competitive Equilibria with Equal

Income (CEEI), which we also refer to as “type-specific-pricing.” More precisely, agents of each type

are given “virtual prices” for probabilities to each service, and the allocation can be interpreted as

giving agents one unit of “virtual money” and allowing them to “purchase” their preferred bundle of

probabilities to services (a related mechanism was introduced by Hylland and Zeckhauser (1979)).

Prices for services may vary across types, but agents with the same type observe the same prices.

This characterization reduces the search for the optimal mechanism to a well defined non-linear

optimization problem with the decision variables being the virtual prices.

In many contexts, only relative preferences are elicited, but not preference intensities. For exam-

ple, in school choice systems in Boston and New York City, children submit rankings over schools,

but not how much they prefer a school over another. In the National Residency Matching Program,

doctors submit rankings over residency programs and vice versa. Such mechanisms are called ordi-

nal, as opposed to cardinal mechanisms, which have no information requirements. We also study

the design of ordinal mechanisms subject to incentive compatibility and a suitable definition of

Pareto optimality within type.
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Under mild regularity assumptions, we show that any valid ordinal mechanism can be described

as “lottery-plus-cutoff”: each agent receives a uniformly random lottery number between zero and

one. For each service and each type, there is a “lottery cutoff,” and an agent is “admitted” to

a service if her lottery number is below the cutoff. Each agent is allocated her most preferred

service for which she is admitted. This again simplifies the search of the optimal mechanism to a

well-defined optimization problem with the only variables being the lottery cutoffs.

These structural results give insights on the types of mechanisms observed in practice. In many

business schools, course allocation is done by a bidding process, in which students are given a

number of points and the highest bidders are assigned a seat.1 Given equilibrium prices, this

mechanism is akin to the type-specific-pricing mechanism described above. In Boston, New York

City, New Orleans and San Francisco, students submit preference rankings over schools, and a

centralized mechanism uses submitted preferences, pre-defined priorities and a random lottery

number given to each student to determine the assignment.2 Given ex-post lottery number cutoffs at

each school for each priority class of students, this is analogous to the lottery-plus-cutoff mechanism.

Notice, however that in contrast to our model all of these markets are finite.

A major technical contribution of this paper is to efficiently find the optimal large market ordinal

mechanism in an empirical relevant environment. By relying on the theoretical characterization,

one can encode the optimal ordinal mechanism in the large market model by an exponential sized

linear program. We show that this can be efficiently solved by considering the dual, which can

be decomposed into a collection of “optimal menu” sub-problems, which in turn can be solved

efficiently when utilities are based on a multinomial-logit discrete choice model.

To demonstrate the relevance of our large market model, we use our methodology to optimally

design school choice in Boston in a systematic way. We take the mechanism chosen by the city,

which we refer to as the Baseline mechanism, and compute its expected average busing distance

per student. Then we seek to optimize a linear combination of utilitarian welfare and max-min

welfare using the same amount of busing. All of the analyses use real data from Boston Public

Schools (BPS).

Although the school choice problem is defined as a finite market problem, we define a large

market approximation and use our theoretical and computational results to first find the optimal

mechanism in this large market model, which is encoded by a set of lottery cutoffs for each type

of students. Using these optimal (large market) cutoffs, we design the corresponding menus and

priorities and use the well-known Deferred Acceptance (DA) algorithm (Gale and Shapley (1962))

1 See, e.g., Sönmez and Ünver (2010) and Budish and Cantillon (2012).

2 For more information, see Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu et al. (2006) and Abdulkadiroğlu
et al. (2009).



4 Ashlagi, Shi: Optimal Allocation without Money

to define a feasible finite market mechanism that can be seen as “asymptotically optimal.”3 We

evaluate this mechanism in the finite market setting, and show by simulation that it significantly

improves upon the Baseline in all aspects. In terms of welfare, the improved mechanism increases

average utility by an amount equivalent to decreasing students’ average distance to schools by 0.5

miles, and it improves the minimum by about 2.5 miles. This is significant since the Baseline only

improves over the most naive plan in average utility by 0.6 miles and in minimum utility by 1.7

miles, so we effectively double the gains. Furthermore, the improved mechanism increases students’

chances of getting their first choice by an additive gain of 15%.

Our results yield several insights. The characterizations imply that when the market is large,

social planners may restrict attention to a few types of mechanisms observed in practice: “virtual

auctions” in the cardinal setting, or “Deferred Acceptance” with menus, priorities and lottery

numbers in the ordinal setting. Despite the lack of monetary transfers, a mechanism can still

optimize an allocation using differentiated priorities. Such optimization may yield large benefits:

in the school choice case we were able to simultaneously improve social welfare, max-min welfare,

and predictability, while staying within the same transportation budget. Examining the optimal

mechanism found in our empirical exercise shows that it exhibit a quality/quantity trade-off: the

optimized plan offers less popular schools to larger areas to attract idiosyncratic preferences, a

pattern also seen in the Baseline mechanism chosen by the city.

1.1. Related Literature

Our work connects three strands of previous research. The first is the matching literature, which

traditionally focuses on designing mechanisms that satisfy certain properties, such as Pareto effi-

ciency, various fairness conditions, and strategyproofness (see, e.g. Roth and Sotomayor (1990),

Abdulkadiroglu and Sönmez (2010)). These models are able to handle multiple types of goods and

services. Hylland and Zeckhauser (1979) study cardinal mechanisms that achieves Pareto efficiency

and propose Competitive Equilibrium with Equal Incomes (CEEI), which also arises in our charac-

terization of valid cardinal mechanisms. Bogomolnaia and Moulin (2001) study ordinal mechanisms

that satisfy an ordinal notion of Pareto optimality called ordinal efficiency, and propose a mecha-

nism called Probabilistic Serial, which Che and Kojima (2011) show is asymptotically equivalent in

the large market to the more widely known Random Serial Dictatorship (RSD), in which agents are

ordered uniformly randomly and take turns picking items. Liu and Pycia (2012) extend this result,

and show that in the large market all ordinal mechanisms that are asymptotically efficient, sym-

metric, and asymptotically strategyproof coincide with the Probabilistic Serial in the limit. This is

3 This solution is asymptotically optimal in the sense that if the market is scaled up with independent copies of itself,
then the finite market model converges to the large market model and the finite market solution also converges to
the large market optimum.
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analogous to our characterization of valid ordinal mechanisms in the large market, but we consider

a more general environment with heterogeneous agent types. Abdulkadiroğlu and Sönmez (2003),

Abdulkadiroğlu et al. (2009) and Abdulkadiroğlu et al. (2006) apply matching theory to school

choice, and their work has been influential in the adoption of strategyproof ordinal mechanisms over

non-strategyproof alternatives in cities such as New York, Boston, Chicago, New Orleans, and San

Francisco.4 However, the matching literature hardly assumes priors on agents utilities (especially

not asymmetric priors), and do not seek to optimize a global objective.5 Our work can be viewed

as bridging the matching literature and the mechanism design/auction literature.6 In particular,

considering prior information may have a significant impact on the design of the mechanism once

concerns other than efficiency are considered.

Another strand is optimal mechanism design without money in the finite market framework.7

Miralles (2012) tackles the multi-dimensional case by considering the Bayesian optimal cardinal

mechanism with two services and many symmetric bidders whose utility priors are symmetric

across the two services. He shows that under certain regularity conditions, the optimal ex-interim

allocation rules can be described as resulting from Competitive Equilibrium with Equal Incomes

(CEEI), and this can be implemented ex-post using a combination of lotteries, insurances, and

virtual auctions, in which agents use probabilities for the less desirable good as a virtual currency

to bid for the more desirable good. However, even with two services, the analysis is difficult, and

still requires reducing the valuation space to a single-dimension, by taking the ratio of each agent’s

utilities for the two services, so it is not “truly” multi-dimensional and does not generalize to more

than two services. Our work shows stronger results by leveraging a large market approximation.

Hoppe et al. (2009), Hartline and Roughgarden (2008), Condorelli (2012) and Chakravarty and

Kaplan (2013) study models in which agents cannot pay money but may “burn money” or exert

costly effort to signal their valuation. Similar to our work, the social planner has priors on agents’

valuations, but their analyses only allows single-dimensional valuations. One insight from their

work is that if the tail of the utility prior is not too thick, or more precisely, if the priors satisfy

the commonly assumed Monotone Hazard Rate condition, then requiring agents to exert costly

effort is unnecessary and a lottery maximizes social welfare. However, their work cannot be easily

4 More recent work on school choice includes Pathak and Sethuraman (2011), Erdil and Ergin (2008), Abdulkadiroglu
et al. (2010), and Echenique and Yenmez (2012).

5 Some exceptions include Ehlers and Massó (2007), Niederle and Yariv (2009).

6 See e.g. Myerson (1981) who models agents’ preferences with Bayesian priors, and Budish (2012) who compares
matching and standard mechanism design. He emphasizes the absence of heterogeneous priors and the absence of
global objectives in the matching literature.

7 For a survey, see Schummer and Vohra (2007).
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extended to multi-dimensional preferences8, which is the more realistic assumption in settings such

as school choice, where there are multiple types of services. Gershkov et al. (2013) find the optimal

incentive compatible mechanism without transfers (or costly signals) in a social choice setting with

cardinal, single crossing utility functions. In their setting preferences are also single-dimensional.

A third strand of related research is concerned with large market models with a continuum of

agents. In many such models, the analysis greatly simplifies over the finite market analog, and

stronger, cleaner results may be possible, while still yielding empirically relevant insights. Such

models are common in the Industrial Organization literature. (Tirole (1988)) There is previous

work that have the flavor of our characterization for valid cardinal mechanisms, although they do

not imply our result. Aumann (1964) shows conditions in which with with a continuum of agents,

any Pareto efficient allocation is supported by equilibrium prices, although not necessarily from

equal incomes. His analysis crucially depends on the unboundedness of the space of allocations,

which in our cases is the bounded unit simplex. Zhou (1992) and Thomson and Zhou (1993) show

that under certain notions of Pareto efficiency and envy-freeness, the only possible mechanisms are

again CEEI. However, their analyses depend on the space of allocations being open, which in our

case is closed. Azevedo and Leshno (2012) study matching markets with a continuum of agents, but

contrary to our result they do not consider a global optimization. While continuum models often

provide cleaner results, computing the actual mechanism may still be hard. This paper contributes

to this literature by actually computing the optimal mechanism in an empirically relevant context.

2. Model

A social planner needs to allocate services to a continuum of agents. There is a finite set T of agent

types and a mass nt of agents for each type t∈ T . In contrast to mechanism design convention, our

notion of “type” does not denote the agent’s private information, but rather her public information.

For example, the type of an agent may be the neighborhood of the agent in school choice, the

program or year of study in course allocation, etc. There is a finite set S of services. Every agent

must be allocated exactly one service. (Outside options can be accommodated by including a “null

service” that represents the outside option.) However, allocations might be probabilistic, so the set

of possible allocations for each agent is the probability simplex,

∆ = {p∈R|S| : p≥ 0,
∑
s

ps = 1}.

8 Extending their analyses to multi-dimensional preferences requires a breakthrough in characterizing incentive com-
patibility in multi-dimensional domains, for which the currently known characterization of cyclic-monotonicity is
difficult to work with. (See Rochet (1987).)
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For agents of type t, their utilities for various services are distributed according to a continuous9

measure Ft over utility space U =R|S|. Each u∈U is a possible utility vector where each component

denotes utility for a service. Note that our valuation space is multi-dimensional. For any measurable

subset A⊆U , Ft(A) denotes the mass of agents having utilities in A. Since the total mass for type

t is nt, the total measure Ft(U) = nt. The distributions Ft’s are common knowledge, while the

exact utilities of each agent is private knowledge. The social planner must design a mechanism to

truthfully elicit this information.

A cardinal mechanism x is a collection of allocation rules xt for each type, where each xt is a

mapping from reported utilities to a possible allocation, xt :U →∆, and is measurable with respect

to Ft. An allocation rule is incentive compatible if it is in the agent’s best interest to report the

truth:

u∈ arg max
u′∈U

u ·xt(u′)

An allocation rule is Pareto efficient within type if the agents within this type cannot trade

among themselves to improve. Precisely speaking, xt is Pareto efficient if there does not exist

another function x′t :U →∆ such that x′t has the same average allocation,∫
U

x′t(u)dFt =

∫
U

xt(u)dFt

and x′t is weakly preferred by all agents

u ·x′t(u)≥ u ·xt(u)

and strictly preferred for a positive measure of agents A⊆U , such that Ft(A)> 0.

We call an allocation rule valid if it is both incentive compatible (IC) and Pareto efficient (PE)

within type. Requiring IC is without loss of generality by the revelation principle, as long as we

assume that agents’ plays are in equilibrium. We require PE as a “stability” criterion: our setup

implicitly assumes that the social planner must treat agents within a given type symmetrically,

without the ability to discriminate based on the exact identity of the agent; so it may be unrea-

sonable to enforce that agents of the same type cannot trade among themselves post-allocation.

Hence, we desire that the mechanism “foresees” any such trades and incorporates the non-existence

of Pareto improving trades within each type as a constraint.

The set of allocation rules for all types makes up the mechanism. The social planner’s goal is to

find a mechanism x that maximizes his own objective function W (x), subject to all the allocation

rules being valid. For now, we allow the objective function W (x) to arbitrarily depend on all the

allocation rules xt, hence allowing it to incorporate agents’ welfare, capacity constraints, differential

9 This assumption can be relaxed, but we choose to adopt it to simplify analysis.
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costs in providing various services to various types of agents, and other complex considerations.

As an examples of how such performance metrics can be represented in terms of the mechanism

x, observe that the expected utility of an agent of type t is

vt =
1

nt

∫
U

u ·xt(u)dFt.

So we can incorporate social welfare by including
∑

t ntvt in the objective function. As another

example, the total amount of service s allocated is

qs =
∑
t

∫
U

xts(u)dFt.

Using this we can model a hard capacity limitms on service s by settingW (x) to be negative infinity

when qs >ms. Alternatively, we can model a smooth penalty for exceeding capacity by subtracting

a penalty term C(max{0, qs−ms}) from the objective where C is a convex cost function.

2.1. Characterization of Valid Allocation Rules

We show that under mild regularity conditions on Ft, any incentive compatible and Pareto efficient

allocation rule xt corresponds to a Competitive Equilibrium from Equal Incomes (CEEI) of an

artificial “currency.” This means that there exist “prices” as ∈ (0,∞] (possibly infinite) in terms of

units of probability of a service for an unit of artificial currency, such that the allocation is what

agents would buy if they had 1 unit of artificial currency and were offered probabilities to various

services at these prices:

xt(u)∈ arg max
p∈∆
{u ·p : a ·p≤ 1}.

Figure 1 illustrates a CEEI with 3 services.

The price vector a is the same for all agents of this type, but may be different for agents of

different types. This result implies that the search for the optimal mechanism can be restricted to

searching over the set of price vectors for each type to optimize the induced objective. For each

type, the space of price vectors is only |S|-dimensional, as opposed to the space of allocation rules,

which is the space of all functions xt :U →∆.

Since everyone must be assigned somewhere, only relative preferences matter, and a utility report

u gives the same information if all coordinates were changed by the same additive constant. To

take away this extra degree of freedom, let D= {u∈Rn : u ·1 = 0}. This is the subspace normal to

the all one’s vector, and it represents the directions in which utility reports are informative. Given

a preference report u, we call the projection of u onto D the relative preference. Given any set

A⊆D, define U(A) to be the subset of U whose projections onto D is in A.

Our result requires one mild regularity condition on the distributions Ft, which says that a-priori,

an agent’s relative preference could with positive probability take any direction in D. This is used
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Figure 1 Illustration of Competitive Equilibrium from Equal Incomes (CEEI) with |S|= 3. The triangle represents

the space of possible allocations ∆. The shaded region is {p ∈ ∆ : a · p ≤ 1}. This represents the

“allowable allocations” for this type, which is the convex hull of {xt(u)}; she could obtain allocations

in the interior of this region by randomizing over several reports. For utility report u, the agent receives

an allocation p that maximizes expected utility u · p subject to p being in the “allowable region.”

This corresponds to having price vector a and budget 1, and the agent can “purchase” any allowable

allocation subject to the budget constraint.

in our analysis to guarantee “trade”: for any “trading direction,” there is a positive measure of

agents who would improve by moving in that direction.

Definition 1. (Full relative support) Let D be the set of relative preferences. Define the set of

normalized relative preferences, D̃= {d∈D,‖d‖= 1}, where ‖ · ‖ is the Euclidean norm. This is a

sphere in (|S| − 1)-dimensional space and can be endowed with the topology of a (|S| − 2)-sphere.

This induces a topology on the set of cones10 C ⊆D by defining C as open if and only if C ∩ D̃

is open in D̃. Distribution Ft has full relative support if for every non-empty open cone C ⊆D,

Ft(U(C))> 0.

Theorem 1. For a given type, suppose its utility distribution F over U is continuous and has full

relative support, then any incentive compatible and Pareto efficient allocation rule can be supported

as Competitive Equilibrium from Equal Incomes (CEEI) with some price vector a∈ (0,∞]|S|.

The full proof of this contains fairly technical steps and is deferred to the Appendix. However,

we explain the intuition behind the proof here.

In the standard mechanism design setup with monetary payments and quasi-linear utilities,

incentive compatibility with multi-dimensional utilities is difficult to work with.11 This is a major

impediment to the search for positive theoretical results in multi-dimensional mechanism design.

10 A cone is a set C in which x∈C implies λx∈C ∀λ∈ (0,∞).

11 The condition is called “cyclic monotonicity.” (Rochet (1987))
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However, in our setup without monetary payments, incentive compatibility simply becomes requir-

ing that the set Xt = {xt(u)} lies on the boundary of its convex hull, and moreover that xt(u)

maximizes the linear function u · x over this convex hull. This yields a correspondence between

an incentive compatible xt and a convex set. Any incentive compatible allocation rule maps to a

unique convex set, and any convex set corresponds to an incentive compatible rule, which is given

by the optimal solution of maximizing the linear functional u ·x over the set. Label the convex set

that corresponds to the allocation rule Xt.

Now, any convex set can be specified by a family of supporting hyperplanes. If there is one

and only one supporting hyperplane that intersects Xt in the interior of the feasibility simplex,

then we are done since this hyperplane can be represented by a price vector. If there are two such

hyperplanes that yield different points of tangency with Xt, then we show that there is a “trading

direction” d by which some positive measure of agents may move allocations in direction d and

others in direction −d and all these agents strictly improve in utility, while maintaining the same

average allocation for this type, thus contradicting Pareto efficiency. The existence of such positive

measures of agents to carry out the trade is guaranteed by the full relative support assumption,

which can be interpreted as a “liquidity” criterion.

3. Ordinal Mechanism

Many allocation mechanisms in practice do not elicit preference intensities but only relative rank-

ings over preferences. Such mechanisms are called ordinal mechanisms (as opposed to cardinal

mechanisms which elicit preference intensities). We develop a formulation and characterization of

optimal ordinal mechanisms in a large market environment, analogous to our theory for cardinal

mechanisms in section 2.

As before, there is a finite set S of services. The space of allocations is the unit simplex ∆, the

space of probability vectors over the |S| services. There is a finite set T of agent types, and for

each type t∈ T there is a measure Ft describing the mass of agents with various utilities. Ft’s are

common knowledge, while each agent’s utilities are private knowledge. Since we assumed that Ft

is continuous, preference rankings are strict with probability one.

Let Π be the set of permutations of S. Every π ∈Π represents a strict preference ranking over

S. Let U(π)⊆U be the set of utilities consistent with ranking π, in the sense that the utilities are

ranked according to the permutation:

uπ(1) >uπ(2) > · · ·>uπ(|S|).

Let Ft(π) = Ft(U(π)) be the measure of agents of type t that adhere to the strict preference ranking

π.
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An ordinal allocation mechanism is a mapping between preference rankings and distributions

over services, xt : Π→∆. xt is incentive compatible if truth-telling maximizes utility: ∀u∈U(π),

xt(π)∈ arg max
π′∈Π

u ·xt(π′).

xt is ordinal efficient within type if agents within this type cannot trade probabilities and all

improve in the sense of first-order stochastic dominance. This is the ordinal analog to Pareto

efficiency within type. Precisely speaking, xt is ordinal efficient if there does not exist another

function x′t : Π→∆ with the same average allocation∫
Π

x′tdFt =

∫
Π

xtdFt,

but x′t always first-order stochastically dominates xt, which means that ∀π ∈Π, ∀1≤ k≤ |S|,
k∑
j=1

x′tπ(j)(π)≥
k∑
j=1

xtπ(j)(π),

and the inequality is strict for some k and some π of positive measure, Ft(π)> 0.

As before, we call an ordinal allocation rule valid if it is incentive compatible and ordinal efficient.

The collection of ordinal allocation rules for all types makes up an ordinal mechanism x. The

objective is to optimize an arbitrary function of the mechanism, W (x), subject to each xt being

valid.

3.1. Characterization of Valid Ordinal Allocation Rules

We show that in the large market model, any valid ordinal allocation rule can be represented as

“lottery-plus-cutoff”: agents are given lottery numbers distributed as Uniform[0,1], and there is

a type-specific lottery cutoff for each service; an agent is “admitted” to a service if and only if

her lottery number does not exceed the cutoff. An agent chooses her most preferred service among

those that she is admitted to. This is illustrated in Figure 2.

Definition 2. An ordinal allocation rule x : Π→∆ is lottery-plus-cutoff if there exists “cutoffs”

as ∈ [0,1] such that

xπ(k)(π) =
k

max
j=1

aπ(j)−
k−1
max
j=1

aπ(j).

Analogous to full relative support, we define a regularity condition on the utility distribution,

which says that every choice ranking π ∈Π is possible.

Definition 3. (Full ordinal support) Ft satisfies full ordinal support if Ft(π) > 0 for every

preference ranking π ∈Π.

Theorem 2. For a given type, suppose its utility prior F induces strict preference rankings with

probability one and has full ordinal support, and let x(π) be any incentive compatible and ordinal

efficient allocation rule, then x(π) is lottery-plus-cutoffs for some cutoffs a∈ [0,1]|S|.
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Figure 2 Illustration of “lottery-plus-cutoff”. The vertical axis represents lottery numbers, which are uniformly

distributed from 0 to 1. The dotted lines are lottery cutoffs for this type. The columns represent various

preference reports. For preference report π1, the allocation probability for service 3 is the difference

a3 − a1, which represents lottery numbers for which the agent is not admitted to her first choice of

service 1 but is admitted to her second choice of service 3.

The proof is given in Appendix C.12 Recall that ihe intuition behind it is similar to Theorem 1. In

the cardinal case, incentive compatible allocation rules are associated with arbitrary convex subsets

of ∆. Here in the ordinal case, instead of a convex set we have a polymatroid. More precisely,

for any incentive compatible ordinal allocation rule xt, the set {xt} is the vertex set of the base

polymatroid of a monotone submodular function f , and any monotone submodular f induces an

incentive compatible allocation rule. Using this characterization, we show that subject to incentive

compatibility, the full ordinal support condition implies that unless the allocation rule is lottery-

plus-cutoff, there are agents who can trade with each other and yield allocations that first-order

stochastically dominate their current allocations, which implies that the only ordinal efficient rules

are lottery-plus-cutoff.

To give additional intuition on what lottery-plus-cutoff looks like, consider a given type and

cutoffs a. Relabel the services so that

a1 ≤ a2 ≤ · · · ≤ a|S|.

This sorts the services in increasing order of cutoffs, which can be intuitively interpreted as increas-

ing order of “accessibility.” Let Mk = {k, · · · , |S|} denote the list of services from the kth in this

12 A similar theorem appears in Ashlagi and Shi (2013), but the setting is slightly different here and we give a different
proof.
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order to the last. Note that S =M1 ⊇M2 ⊇ · · · ⊇M|S|. Lottery-plus-cutoff can be interpreted as

follows: if an agent of this type gets the best lottery numbers [0, a1), then she is given the largest

menu of choices M1 = S, and can get any service she wants. Similarly, if her lottery number is in

(ak−1, ak], she chooses her most preferred service in menu Mk. It is straightforward to show that

this implements the same assignment probabilities as in lottery-plus-cutoff. Hence, we also give

lottery-plus-cutoff the name randomized menus with nested menus.

3.2. Comparing Cardinal and Ordinal Mechanisms

The proofs of Theorems 1 and 2 yield intuition on the nature of valid cardinal and ordinal mech-

anisms: in a valid cardinal mechanism, agents of the same type can trade probabilities of various

services at different ratios, hence expressing their preferences not only for which service but also

how much they value each. In a valid ordinal mechanism, agents of the same type can also trade

probabilities, but they must trade services one-for-one, hence they can only express preference

rankings. Intuitively, the value of a cardinal mechanism over an ordinal mechanism lies in its abil-

ity to differentiate agents with extreme preference intensities. So if agents’ preferences for various

services are of similar relative intensities, then we would expect ordinal to perform well compared

to the cardinal; if preferences exhibit extremely heterogeneous relative intensities, then we would

expect the cardinal to outperform.

We give an example in Appendix C.3 that shows with unrestricted utilities, the ratio between the

optimal social welfare achievable from a valid cardinal mechanism and the optimal social welfare

achievable from a valid ordinal mechanism may be arbitrarily large.

4. Empirical Application: Public School Assignment

We demonstrate how the framework developed in this paper can be applied to a real world problem

and yield empirically relevant results. The problem we examine is based on the 2012-2013 Boston

school assignment reform, which was based on simulating a list of potential plans and evaluating

based on a given portfolio of metrics. In this section, we ask the reverse question: given the objective

function and constraints, what the optimal plan might have been like. Although we use real data,

the problem presented here has been simplified for conceptual clarity.13 We recognize that in order

to produce implementable recommendations, the precise objective function and constraints must

be scrutinized and debated over by all stakeholders and constituents, which has not yet taken place.

13 In the actual problem faced by the city committee, one needs to consider several additional complications: grand-
fathering of the previous plan for students in the transitional period, handling specialized programs for English
Language Learners (ELL) and disabled students, accommodating continuing students, and allowing special status
for students who have older siblings already attending a school. In this paper, we ignore grandfathering, specialized
programs, continuing students, and whether or not students have older siblings at a school. However, all of these
complications could in principle be accommodated in our approach, and we leave more refined modeling to future
work.
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Hence, the purpose of this section is not to give concrete policy recommendations for Boston, but

to serve as a proof of concept and to showcase how our large market framework can be applied in

a real world setting.

We first give a finite market formulation of the problem that the city committee faced during

the reform. This is an asymmetric, multi-dimensional mechanism design problem with a complex

objective and additional constraints, for which an exact optimal solution remains elusive. As a

baseline, we describe the actual plan adopted by Boston Public Schools (BPS), which can be seen as

an intuitive and relatively simple heuristic solution to the original problem. To apply the techniques

in this paper, we first consider a large market approximation of the original problem, for which we

can use the characterization results in this paper to efficiently solve for the optimal solution. We

then define a finite market analog of this large market solution, which is a feasible mechanism in

the original, finite market model, and is asymptotically optimal in the sense that it becomes the

large market optimum as the finite market model is scaled up. We compare this “asymptotically

optimal” solution with the baseline, quantify the improvements, and discuss insights.

4.1. Finite Market Formulation

About 4000 students each year apply to Boston Public Schools (BPS) for the grade of Kindergarten

2 (K2), which is the main entry grade to elementary schools. The social planner (the city in

this case) is charged with designing an assignment system for K2 that is efficient, equitable, and

that respects certain institutional, capacity, and budget constraints. The social planner partitions

Boston into 14 neighborhoods. Based on historical data in 2010-2013 (4 years of data), the social

planner estimates that the number of K2 applicants from each neighborhood is the product of two

normally distributed random variables. The first term is common across neighborhoods, and has

mean 4294 and standard deviation 115. This intuitively captures the overall number of applicants.14

The second term is specific for each neighborhood, and captures neighborhood specific variation

in application rates. The mean and standard deviation for each neighborhood is estimated using

historical data, and is shown in Table 4 in Appendix B.

Each of the 14 neighborhoods is broken down further into geocodes. The geocodes partition the

city into 868 small contiguous blocks. The social planner uses geocodes to model student types,

so there are 868 types. As an approximation, we use each geocode’s centroid as the reference

location for all students in that geocode. Given the number of students from each neighborhood,

we assume that these students are distributed among the geocodes of that neighborhood according

a multinomial distribution with probabilities matching the historic average in years 2010-2013.

14 In 2010-2013, the average number of applicants to K2 in BPS for round 1 is about 4294 and the sample standard
deviation is about 115.
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Each student is to be assigned to one of 77 schools. The distribution of students across geocodes

and the capacities of schools are plotted in Figure 4a. The capacities are the actual numbers from

2013.

Using historical choice data, the social planner estimates the following utility model for student

i in geocode t and school s:

uis = qualitys−Distancets +ωWalkts +βεis

where qualitys represents “school quality,” which encapsulates all common propensities that fami-

lies have to choose a school, such as facilities, test scores, teachers’ quality, and school environment.

Distancets is the distance from geocode t to school s in miles, estimated using Google Maps walk

distance. The coefficient of −1 before the distance allows us to measure utility in the unit of miles,

so that one additional unit of utility can be interpreted as the equivalent of “moving schools one

mile closer.” Walkts is an indicator for whether geocode t is within the walk-zone of school s,

which is an approximately 1-mile radius around the school in which students do not require bus

transportation to the school.15 ω represents additional utility for walk-zone schools, since these

schools are in the immediate neighborhood and students do not have to deal with the sometimes

unpleasant experience of busing. εis is an idiosyncratic taste shock assumed to be i.i.d. standard

Gumbel distributed, and β represents the strength of the idiosyncratic taste shock.16 Variables

starting with capital letters, Distancets and Walkts, are directly from data, while variables in lower

case, qualitys, ω, and β are estimated via maximum likelihood using historical choices. We plot

the school qualities in Figure 4b and tabulate the other coefficients in Table 1. Although more

sophisticated demand models are possible, in this mechanism optimization exercise, we use the

above as the “true” utility distribution.

The social planner’s objective, W , is to maximize a linear combination of average welfare and

minimum welfare,

W = α
∑
t

wtvt + (1−α)min
t
vt,

where vt is the expected utility of a student from geocode t, wt is the proportion of all students

who live in geocode t (taking the expected number of students from each geocode and normalizing

so the weights sum to 1), and α is a parameter specifying the desired trade-off between efficiency

15 In practice, there is a slight difference between bus ineligibility and being inside the walk-zone, as the walk-zone
includes the whole geocode even if only a part of it is within 1-mile, while bus ineligibility only includes the part of
the geocode strictly within the mile. However, this difference is small as geocodes are small, so for conceptual clarity
we ignore it in this exercise.

16 The Gumbel distribution is chosen because it makes the model easy to estimate via maximum likelihood, as the
likelihood function has a closed form expression.
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Table 1 Parameters of the random utility model estimated using 2013 choice data, using grade K1-2

non-continuing, regular education students. (We use K1 data in fitting the utility model as well as K2 data since

families face similar choices in the two grades and more data allows greater precision.) The values can be

interpreted in units of miles: how many miles a student is willing to travel for one unit of this variable.

Parameter Value Interpretation
qualitys 0–6.29 Quality of schools. For a school of ∆q additional quality, holding fixed other com-

ponents, a student would be willing to travel ∆q miles further. These values are
graphically displayed in Figure 4b. We normalize the smallest value to be 0.

ω 0.86 Additional utility for going to a school within walk-zone.
b 1.88 Standard deviation of idiosyncratic taste shock.

and equity. α= 1 represents maximizing the average expected utility; α= 0 represents maximizing

the expected utility for the worst-off geocode; α= .5 represents an equal weighting of the two.

For each school s, there is a capacity limit ms, which is the number of seats available at the

school for K2 students. Moreover, for a certain set of schools Sc ⊆ S, which we call capacity schools,

there is additional capacity available for students who live in the school’s catchment region. We

assume that the catchment region of a capacity school s∈ Sc is exactly the geocodes for which s is

the closest capacity school. For capacity school s, the limit ms only applies to students outside of

its catchment region, and we assume that it can accept an unlimited number of students inside its

catchment region. This guarantees that even if no capacity is available elsewhere, each student can

at least be assigned to the closest capacity school.17 There are 19 such capacity schools distributed

across the city.

In addition to capacity constraints, the social planner faces a busing constraint. Let

Bts =

{
Distancets if geocode t is not in school s’s walk-zone.

0 otherwise.

This represents the travel distance on a bus for a student from geocode t to school s (busing is

needed only for students outside a 1-mile walk-zone). Suppose that the social planner budgets C

miles of busing per student in expectation, then the busing constraint is∑
t

wtBtspts ≤C

where pts is the probability that a random student in geocode t is assigned to school s.18 In reality,

busing cost is much more complicated, having to do with the routing, the number of buses used,

17 This is only approximately true in reality. Although BPS has committed to expanding the capacity schools as
needed by adding hiring new teachers and adding modular classrooms, in reality there are hard space constraints
and BPS uses a more complicated, ad-hoc system for guaranteeing that each student is assigned, which is based on
distance and many other factors. In BPS literature, capacity schools were later renamed “option schools.”

18 Note that this is a “soft” budget constraint in that the budget only has to be satisfied in expectation. We choose
this because typically in school board operations the initial budget is only a projection but may be revised later if
needed.
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the kinds of buses used, and legal requirements for more expensive door-to-door busing for certain

Special Education students. We leave finer modeling of transportation costs in Boston to future

work.

The institutional constraint is that the social planner must design a mechanism that is incentive

compatible, “ex-post Pareto efficient” within type, and only requires eliciting preference rankings,

rather than preference intensities. The reason we limit to preference rankings is that the system

has used rankings from 1988 to 2012, so families are used to gathering and submitting this infor-

mation. The reason we require incentive compatibility is that in 2006, a non-incentive compatible

mechanism was rejected by the Boston School Committee in favor of an incentive compatible one,

and since then BPS has committed to having a mechanism that allows families to submit truth-

ful preferences without worrying that it might negatively affect their chances.19 Ex-post efficiency

within type means that after the assignment of students to schools, students in the same type

(geocode) should not be able to trade with one another and improve in utility. This is to mitigate

public discontentment with the mechanism, as students in the same geocodes are likely to compare

assignments with one another.

In the following section, we describe a feasible solution to the above problem, which is the one

actually adopted by the city after the reform. This is a baseline for comparison. The goal is to find

a mechanism that uses the same transportation budget as the baseline, but improves significantly

in efficiency and equity, as measured by utilitarian welfare and max-min welfare.

4.2. Baseline: Actual Implementation

The actual plan adopted by BPS for 2014 is called the Home Based Plan. It is based on a proposal

in Shi (2013), although there are significant deviations. An input to this plan is a classification of

BPS schools into 4 tiers using standardized test scores, with Tier 1 being the best and Tier 4 being

the worst. Each student’s choice menu consists of any school within 1 mile, plus a certain number

of closest schools of various types, as well as some idiosyncratic additions. For details of the Home

Based Plan, see Appendix A. In this paper, we call this the “Baseline.”

The priority structure is as follows.20 One of the 14 neighborhoods is East Boston. In the assign-

ment plan, East Boston students get priority for East Boston schools, while non-East Boston

students get priority for non-East Boston schools.21 We encode this using auxiliary variable hts,

which is an indicator for whether geocode t and school s are both in East Boston or both outside

of East Boston.

19 For more details of that reform, see Abdulkadiroğlu et al. (2006).

20 The actual plan also contains priorities for continuing students, students with siblings to a school, and students
wait-listed from previous rounds. Since we do not model these complexities, our priority structure is simpler.

21 The reason is that East Boston and the rest of Boston are separated by water, and only connected by a few bridges
and tunnels, so it may be inconvenient to traverse across.
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Each student i is given a random lottery number distributed Uniform[0,1]. Her score to school s

is defined as σis = ri−hts, where ri is a Uniform[0,1] random variable, independently drawn across

i’s. This encodes the student’s priority to school s, with lower scores having higher priority.

Having defined the choice menu and priorities, the plan computes the assignment by the (student-

proposing) Deferred Acceptance (DA) algorithm. which is as follows,

1. An arbitrary student i applies to her top choice s within her menu.

2. School s tentatively accepts the student.

3. If this acceptance causes the capacity of school s to be exceeded, then the school finds the

tentatively accepted student with the highest (worst) score and bumps her out. This school is

then removed from that student’s choice ranking and the student applies to her next choice

within her menu.

4. Iterate steps 1-3 until all unassigned students have empty choice rankings.22

It is well known that this algorithm does not depend on the order of students’ application in step

1, and that the result is strategyproof, which means that it is a dominant strategy for all students

to report their truthful preference rankings.23

We simulate this plan 10000 times according to the assumptions described in Section 4.1, and

tabulate the plan’s transportation burden, average expected utility, expected utility of the worst-off

type, and predictability measures in Table 3, under the column “Baseline.”

4.3. Solving the Large Market Approximation

We define the large market approximation to the model in Section 4.1 as follows. Replace each

agent with a continuum of infinitesimal agents of mass 1. Instead of a stochastic mass of students

of each type, approximate the scenario with a deterministic mass nt of students, setting nt to be

the expected value.

This yields exactly the setting in Section 3, since the capacity constraints and the busing con-

straint can be incorporated into the objective function by setting regions for which any constraint

is violated to be negative infinity. Moreover, ex-post Pareto efficiency is equivalent to ordinal effi-

ciency in the large market setting.24

By the characterization result in Section 3.1, it suffices to consider mechanisms that are ran-

domized menu with nested menus, and as a relaxation it suffices to consider randomized menu

mechanisms. (Such mechanisms offer menu M ⊆ S to type t with probability zt(M). Given her

menu, an agent picks her most preferred school in her menu.) For a menu of services M ⊆ S, abuse

22 Note that if every student includes in her ranking her closest capacity school, then in the end no student will be
unassigned.

23 See Roth and Sotomayor (1990) and Abdulkadiroğlu and Sönmez (2003)

24 For works that study this equivalence, see Che and Kojima (2011) and Liu and Pycia (2012).
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notation slightly and let vt(M) denote the expected utility of the best service in this menu for an

agent of type t,

vt(M) =
1

nt

∫
U

max
s∈M

usdFt(u).

Let pt(s,M) denote the probability that an agent of type t would choose service s to be her most

preferred in menu M ⊆ S,

pt(s,M) = P{s∈ arg max
s′∈M

us′ |u∼ Ft}.

Let zt(M) denote the probability an agent of type t is shown menu M ⊆ S. Let Ts denote the

set of geocodes for which the capacity limit for school s applies. For capacity schools, this is all

geocodes that are not in its catchment region; for other schools, this is all geocodes. The optimal

randomized menu mechanism is encoded by the following LP:

(LargeMarketLP) max W = α
∑
t,M

wtvt(M)zt(M) + (1−α)y

s.t. y−
∑
M

vt(M)zt(M)≤ 0 ∀t∈ T∑
M

zt(M) = 1 ∀t∈ T∑
t∈Ts,M

ntpt(s,M)zt(M)≤ms ∀s∈ S∑
s,t,M

ntpt(s,M)Btszt(M)≤C

zt(M)≥ 0 ∀t∈ T,M ⊆ S

Since there are 2|S|− 1 possible menus M ⊆ S, the number of variables of this LP is exponential

in |S|. However, it turns out that if the utility distribution has a special structure, then an optimal

solution to this LP can be found in time polynomial in |T | and |S|.

Definition 4. Utility prior Ft is multinomial-logit if the utilities can be written as

uis = ūts + btεis,

where bt > 0 and ūts are given parameters, and εis’s are i.i.d. standard Gumbel distributed.

Note that the utility distribution in our model is multinomial-logit. This implies that vt(M) =

bt log(
∑

s∈M exp( ūts
bt

)), and pt(s,M) =
exp(

ūts
bt

)∑
s′∈M exp(

ūts′
bt

)
.

Theorem 3. Suppose that utility distributions Ft’s are all multinomial-logit, and α > 0, and

weights wt > 0 for all t, then an optimal solution to the exponential sized LargeMarketLP can be

found in time polynomial in |T | and |S|.

The computation involves taking the dual of the LP, which has a small number of variables

but an exponential number of constraints. This dual can be decomposed into a master problem

that is polynomial sized and convex, and |T | independent sub-problems that have a small number

of variables but exponentially many constraints. The multinomial-logit assumption allows each of
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these sub-problems to be solved in |S| log |S| time, so the whole dual can be solved in polynomial

time. Having solved the dual, we can efficiently find a polynomial subset of constraints that are

tight, and discard all the other variables in the the original LP. This yields an optimal feasible

solution to the original problem. The full proof is in Appendix C.

From the optimal solution to LargeMarketLP, we can infer the optimal cutoffs for each school

and each geocode. For each school, students in geocodes that have cutoff 0 are those that should

not be able to rank s; students in geocodes with cutoff 1 should always be able to get into the

school if they choose it; students in geocodes with intermediate cutoffs can be admitted to s if and

only if they get a good enough lottery number.

For the transportation budget, we use 0.6 miles, which is just under the 0.63 used in the Baseline

(see Table 3). For the objective, we consider α= 1 (utilitarian welfare), α= 0 (max-min welfare)

and α= 0.5 (equal weighting). We evaluate the optimal plan in the large market model and tabulate

the results in Table 2. As seen, setting α= 0.5 yields near optimal utilitarian welfare and max-min

welfare, so for the remainder of this paper we use α= 0.5.

Table 2 Performance in the large market model of the optimal plans under various choices of α.

α= 1 α= 0.5 α= 0

Utilitarian welfare 7.78 7.66 7.39
Max-min welfare 2.52 7.39 7.39

4.4. Converting the Optimal Large Market Mechanism to a Feasible Finite Market
Mechanism

To convert the optimal large market mechanism to a feasible finite market mechanism, we simply

use the Deferred Acceptance (DA) algorithm and use the optimal large market cutoffs to guide the

priorities.

Let ats be the cutoffs from any large market mechanism which incorporates the capacity con-

straints. For a student in type t, define her menu to be schools for which her cutoff ats is positive.

For schools in her menu, define her score to school s as σis = ri − ats, where ri is Uniform[0,1]

random variable, independent across the i’s. We use these menus and scores in the DA algorithm

as defined in Section 4.2. We call this the DA analog to the optimal large market mechanism.

In the limit in which the students and school capacities are duplicated with many independent

copies, after running the DA analog described above, a student i is assigned to school s if and

only if her score is negative. In this case, each student’s assignment probabilities become identical

to the probabilities she would have gotten in the large market approximation. Thus, this finite

market mechanism is “asymptotically optimal” as the market is scaled up independently. (The

independent scaling also removes the stochasticity in number of students of each type.)
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Observe that the converted mechanism remains incentive compatible and ex-post Pareto-efficient

within type. It is incentive compatible because Deferred Acceptance is strategyproof for the stu-

dents when the priorities are exogenous, not depending on students’ preference submissions. (Note

that the cutoffs are estimated using previous years’ choice data and a-priori demand modeling and

thus students cannot manipulate the cutoffs.) Ex-post Pareto efficiency within type follows from

the priorities ats being the same for students of each type, and from our using for each student the

same random number ri at all schools.25

4.5. Numerical Results

Let ApproximateOpt1 denote the DA analog to the optimal large market mechanism with α= 0.5

and a busing budget of 0.60 miles. We simulate 10000 times and compare its performance to

Baseline in Table 3. It turns out that this plan evaluated in the finite market model uses 0.71 miles

of busing, which exceeds the 0.63 miles of Baseline. So we let ApproximateOpt2 denote the DA

analog to the optimal large market mechanism with α= 0.5 and a busing budget of 0.50. Evaluated

in the finite market model, ApproximateOpt2 stays within the busing budget of Baseline, and

significantly improves over it in terms of average utility, utility of worst-off type, and % of getting

top 1 or top 3 choices. To give a frame of reference for the magnitude of the improvement, we also

evaluate what we call the “Most Naive” plan, which has no priorities, and only includes in the

menu for each type the capacity school and schools with zero transportation cost (schools in the

walk-zone).

As seen, while the Baseline uses 0.29 miles of additional busing per student over the Most Naive,

it improves the average utility by 0.64 miles and the utility of the worst type by 1.67 miles. In

offering these additional options it sacrifices slightly on predictability. However, ApproximateOpt2

uses less miles of busing per student than the Baseline, while improving average utility over the

Most Naive by 1.18 miles (almost twice the improvement from Baseline), and improving expected

utility of worst-off type by 4.16 miles (more than twice the improvement from Baseline). It also

significantly improves students’ chances of getting into top 1 and top 3 choices.

To gain intuition on what ApproximateOpt2 is doing, we compute for each school its “availability

area” in each plan. This is the total area of the geocodes for which this school shows up in the

25 Ex-post Pareto efficiency means there cannot be improvement cycles within the same type. For a fixed type,
consider all students of this type and all the schools they are assigned to (counting multiplicity of seats) from Deferred
Acceptance. Consider the student of the best (smallest) random number ri out of these, then this student must be
assigned to her most preferred of these schools, otherwise there would be instability (in the two sided matching sense)
as all schools prefer this student to others of the same type by the score structure. Hence, this student would take
part in any improvement cycle. Removing this seat from our list of schools seats, the student with the second best
random number must be assigned to her most preferred of the remaining seats. She cannot get the first student’s
seat, and so she cannot participate in any improvement cycle. Continuing in this way, we rule out all improvement
cycles and get that the final assignment is ex-post Pareto efficient within type.
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Table 3 Evaluating a variety of plans in the finite market model using 10000 independent simulations.

Minimum Baseline ApproximateOpt1 ApproximateOpt2

Miles of busing/student 0.35 0.64 0.71 0.63
Average expected utility 6.31 6.95 7.62 7.49
Expected utility for worst off type 2.86 4.53 7.05 7.02
% getting top 1 choice 0.66 0.64 0.80 0.79
% getting top 3 choice 0.88 0.85 0.94 0.93

Figure 3 Comparison of availability areas for schools of various quality in Baseline and ApproximateOpt2. Q1 is

the best quartile in quality, Q4 is the worst.

menu. We then divide schools into quartiles by their quality score (the term that shows up in

the utility model), with Q1 being the best and Q4 being the worst. We compare the average

availability areas for different quality quartiles in Baseline and ApproximateOpt2 in Figure 3. As

seen, ApproximateOpt2 offers lower quality schools to larger areas. The intuition is that the higher

quality schools already have high demand from nearby areas, so it is more efficient in terms of

transportation to restrict access to them to the nearby areas. However, to compensate the students

who do not live near high quality schools, the plan offers them further away lower quality schools,

in hope that the student will have high idiosyncratic tastes for them. Interestingly, the Baseline

mimics the same behavior for Q1, Q2, Q3 schools, but not for Q4 schools, which makes sense in

retrospect because some of the Q4 schools may be at risk of being closed.

5. Discussion

This paper studies the allocation of services to agents with private information and without mon-

etary transfers. Priors over agents’ utilities are known to the social planner who is interested in

maximizing a public objective function. The approach in this paper sacrifices exact analysis of a

finite market situation by a continuum approximation, in order to gain analytical tractability to

handle large-scale applications with complex objectives and many types of agents and many kinds

of services. In some sense, the thrust of this paper is to take mechanism design further into the

“engineering realm,” focusing on tractable and useful approximations rather than complex, exact

analysis.
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We provide characterizations of incentive compatible mechanisms that are Pareto-optimal within

each type in large markets and show how to compute the optimal ordinal mechanism in an empir-

ically relevant special case. An open question is the efficient computation of the optimal ordinal

mechanism with other distributions26, and the efficient computation of the optimal cardinal mech-

anism.27

In our empirical exercise, we use past demand patterns to inform the city on how to allocate

the limited amount of busing between various neighborhoods to maintain efficient and equitable

access to schools. (The busing budget is justified as the cost eventually comes back to tax payers,

so a limit on busing is needed to control the negative externalities of a family using city resources

to travel to far away schools.) If one were to implement this in practice, the optimization of menus

and priorities should not be done more often than once every 5-10 years, in order to maintain

predictability for families.

One question is whether to conduct an ordinal or cardinal mechanism. We find in a simplified

settings that the type of mechanism, whether ordinal or cardinal, may results in a significant

different social welfare. Understanding the tradeoff for various distributions of preferences may lead

to design implications (see Abdulkadiroglu et al. (2011) and Che and Tercieux (2013) who study

the impact of various ordinal mechanisms on efficiency). Even broader is the question of when to

conduct centralized mechanisms or allow agents to exert effort, for example by maintaining a queue

as often is a given mechanism in the operations literature.

One difficulty in actually implementing optimal mechanism design without money is in estimating

the utility distributions. With transfers, valuation estimation becomes simpler as the social planner

may infer willingness to pay from past transactional data. However, without money, it is harder

to infer preferences, especially preference intensities. The demand modeling used in our empirical

application assumes a particular functional form for the utilities, but the underlying utilities are not

observable, so one may question its validity. A fundamental question is whether human behavior

can indeed be captured with such models.28 Nevertheless, if a utility model can be estimated and

trusted, the methods used in this paper can be used to compute the optimal mechanism.

26 Our current techniques reduce this to solving an “optimal-menu subproblem.”

27 Our current techniques reduce this to a polynomial sized non-linear program, and we have not found any interesting
distributions for which the structure significantly simplifies.

28 One project that examines the validity of utility models in Boston school choice, compared to an alternative model
based on marketing or salience, is Pathak and Shi (2014), in which the authors uses various methods to predict how
families will choose schools after the 2012-2013 reform, pre-commit to the predictions before the new choice data is
collected, and evaluate the prediction accuracy.
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Abdulkadiroğlu, A., P. A. Pathak, A. E. Roth. 2009. Strategy-proofness versus efficiency in matching with

indifferences: Redesigning the nyc high school match. American Economic Review 99(5) 1954–1978.
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Appendix A: Details of the Home Based plan

In the Home Based Plan implemented in 2014, a student’s choice menu is the union of the following sets.

• any school within 1 mile straight line distance;

• the closest 2 Tier 1 schools;

• the closest 4 Tier 1 or 2 schools;

• the closest 6 Tier 1, 2 or 3 schools;

• the closest school with Advanced Work Class (AWC);

• the closest Early Learning Center (ELC);29

• the 3 closest capacity schools;30

• the 3 city-wide schools, which are available to everyone in the city.

Furthermore, for students living in parts of Roxbury, Dorchester, and Mission Hill, their menu includes the

Jackson/Mann school in Allston/Brighton.

Appendix B: Additional Tables and Figures

Table 4 shows the forecasted proportion of students applying from each neighborhood. Figure 4a and 4b

give a big picture view of the distribution of supply and demand for schools and of inferred school quality

in Boston.

Table 4 Means and standard deviations of the proportion of K2 applicants from each neighborhoods. This is

estimated using 4 years of historical data.

Neighborhood Mean Standard Deviation

Allston-Brighton 0.0477 0.0018
Charlestown 0.0324 0.0024
Downtown 0.0318 0.0039
East Boston 0.1335 0.0076
Hyde Park 0.0588 0.0022
Jamaica Plain 0.0570 0.0023
Mattapan 0.0759 0.0025
North Dorchester 0.0522 0.0047
Roslindale 0.0771 0.0048
Roxbury 0.1493 0.0096
South Boston 0.0351 0.0014
South Dorchester 0.1379 0.0065
South End 0.0475 0.0022
West Roxbury 0.0638 0.0040

29 ELCs are extended-day kindergartens.

30 Recall that capacity schools are those which BPS has committed to expanding capacity as needed to accommodate
all students. In the 2014 implementation of the Home Based Plan, for elementary schools, capacity schools are exactly
the Tier 4 schools.
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(a) Supply and Demand (b) School Quality

Figure 4 The left shows the distribution of students and capacities of schools. Each blue circle represents a

geocode, with its area proportional to the expected number of students from that geocode. Each

yellow circle represents a school, with its area proportional to the number of K2 seats available. The

distribution of students is based on 4 years of real data. The capacities are based on data from 2013.

The right shows estimates of qualitys (inferred quality) from the 2013 data. The size of the circle is

proportional to the estimated qualitys, with higher quality schools having larger circles.

Appendix C: Omitted Proofs

C.1. Characterization for Cardinal Mechanisms

Proof of Theorem 1. The proof uses a series of lemmas. For clarity of exposition, we first show the main

proof, and prove the lemmas later.

Recall that D= {u∈U : u ·1 = 0} is the space of relative utilities. This is the space of informative utilities

since everyone must be assigned somewhere.

Lemma 1. A cardinal allocation rule is incentive compatible if and only if there exists a closed convex set

X ⊆∆ such that x(u) ∈ arg maxy∈X{u · y}, ∀u ∈ U . We call X the closed convex set that corresponds to

incentive compatible allocation rule x.

Lemma 1 says that any incentive compatible allocation rule can be represented by a closed convex set X

in which y = x(u) is a maximizer to the linear objective u ·y subject to y ∈X. This is illustrated in Figure 5.

We proceed to prove the theorem by induction on |S| . For |S|= 1, there is nothing to prove as ∆ is one

point. Suppose we have proven this theorem for all smaller |S|. Let X be the convex set that corresponds to
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Figure 5 An incentive compatible allocation rule with |S| = 3. X is an arbitrary closed convex subset of the

feasibility simplex ∆. y = x(u) is maximizer of the linear objective u ·y with y ∈X.

allocation rule x. Suppose X does not intersect the relative interior of ∆, int(∆) = {y ∈R|S| : y> 0,
∑

s
ys =

1}, then some component of x must be restricted to zero, so we can set the price for that service to infinity,

ignore that service, and arrive at a scenario with a smaller number of services, for which the theorem is true

by induction. Thus, it suffices to consider the case X ∩ int(∆) 6= ∅.
Let H(u, α) denote the |S| − 1 dimensional hyperplane {y ∈ R|S| : u · y = α}. Let H−(u, α) denote the

half-space {y : u ·y≤ α}, and H+(u, α) denote {y : u ·y≥ α}. Let aff(∆) denote the affine hull ∆, aff(∆) =

{y ∈R|S| :
∑

s
ys = 1}. Note that X is a convex subset of aff(∆). The following lemma allows us to express

tangents of X in aff(∆) in terms of a price vector a∈ (0,∞)|S|.

Lemma 2. If X ⊆ ∆, any tangent hyperplane of X in aff(∆) can be written as H(a,1) ∩ aff(∆), for

some a∈ (0,∞)|S|, with a pointing outward from X and not co-linear with 1. (a ·y≤ 1, ∀y ∈X, and a 6= λ1

for any λ∈R.)

For any set A⊆D, let U(A) = {u∈U : ProjD(u)∈A}. This is the set of utilities for which the projection

in D is in A. The average allocation of agents with relative preference in A is

x̄(U(A)) =

∫
U(A)

x(u)dF (u).

Since type-specific-pricing without infinite prices is the same as having X = H−(a,1) ∩∆, it suffices to

show that the convex set X has only one tangent in int(∆). Intuitively, if it has two different tangents

H(a,1) and H(a′,1), with non-zero and unequal unit projections onto D, then we can find a unit vector

d∈D s.t. d ·a> 0> d ·a′. Since a and a′ are tangent normals, we can perturb x(u) in direction d for u near

a, and perturb x(u) in direction −d for u near a′, thus Pareto improving x(·) but keeping average x̄(U)

fixed. This is illustrated in Figure 6. However, defining a feasible move with positive measure in all cases is

non-trivial, as prior F and closed convex set X are general. To do this, we prove the following lemma.

Lemma 3. Suppose that H(a0,1) is an outward pointing supporting hyperplane of X that intersects X in

the relative interior of the feasibility simplex, int(∆). Then for any unit vector d ∈D such that d · a0 > 0,

there exists δ0 > 0 such that for all δ ∈ (0, δ0), there exists allocation rule x′ that strictly dominates x, with

x̄′(U) = x̄(U) + δd.
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Figure 6 Exchange argument to Pareto improve the allocation rule by expanding X along opposite directions,

when there is more than one supporting hyperplane of X intersecting int(∆).

Using this, we can rigorously carry out the above argument: suppose that H(a,1) and H(a′,1) are two

outward-pointing supporting hyperplanes of X that intersect X in int(∆), with different non-zero unit

projections onto U , ã 6= ã′. Take any unit vector d ∈ int(H+(a,0) ∩H−(a′,0)) ∩D (Such d exists since

ã 6= ã′.) Then d · a> 0> d · a′. Using Lemma 3, there exists allocation rule x′ and x′′ which both strictly

dominate x, one of which has average allocation x̄(U)+δd, and the other x̄(U)−δd. Taking x′′′ = 1
2
(x′+x′′),

we have that x′′′ also strictly dominates x, but x̄′′′(U) = x̄(U), contradicting the cardinal efficiency of x(·).
Therefore, X has only one supporting hyperplane in ∆ that intersects it in the interior int(∆). �

Proof of Lemma 1 Suppose cardinal allocation rule x(u) is incentive compatible. Let X be the convex

closure of its range. Then since u · x(u)≥ u · x(u′) ∀u′ ∈ U , we have u · x(u)≥ u · y ∀y ∈X. So x(u) ∈
arg maxy∈X{u ·y}.

Conversely, if for some closed convex set X, for any u ∈ U , x(u) ∈ arg maxy∈X{u · y}, then ∀u′ ∈ U ,

x(u′)∈X, so u ·x(u)≥ u ·x(u′). So x is incentive compatible. �

Proof of Lemma 2 Any tangent hyperplane Y of X in aff(∆) is a |S|−2 dimensional affine subset of the

|S| − 1 dimensional affine set aff(∆). Take an arbitrary point z ∈∆ on the same side of Y as X. Consider

the |S| − 1 dimensional hyperplane H passing through Y and (1 + ε)z. For some sufficiently small ε > 0, by

continuity, H has all positive intercepts, so H = {y : a ·y≤ 1} for some a> 0, and by construction, a is not

co-linear with 1. Now, a · z = 1
1+ε

< 1, so a points outward from X. �

In carrying out the exchange argument in Figure 6, we need to guarantee that a positive measure of

agents benefit from the perturbation in the set X. If the points x(a) and x(a′) occur at a vertex, meaning

that a positive measure of agents obtain each of these allocations, then there is nothing additional to show.

The difficulty is if X is “smooth” at a and a′, so we need to do an exchange for agents with utilities in a

neighborhood of a and a′, but in that case it is not clear that we can move in directions d and −d without

going past the boundary of the feasibility simplex and it is not clear that we can obtain utility improvements

for all these agents. For example, if the neighborhood is too large, then the move would not work. Lemma 3

is needed to guarantee that we can do this exchange with a positive measure of agents.

The proof of Lemma 3 uses the following rather technical lemma, which guarantees that for any δ > 0,

and any u0 ∈D, we can find a small open neighborhood of A of u0 such that the average allocation x̄(A) is
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Figure 7 Illustration of the construction of cone A′ in which any u∈A′ has x(u) in the open half space H+
2 , so

any convex combination of such u cannot be in closure(X̄).

δ within x(u0). Note that for any u ∈A\{u0}, x(u) itself may not be close to x(u0), because u0 could be

normal to the convex set X along a linear portion of X, in which case x(u) would veer off from x(u0) until

it reaches the end of the linear portion. But this lemma shows that by taking a convex combination of such

u∈A, we can have x(A) arbitrarily close to x(u0).

Lemma 4. Given any bounded closed convex set X ⊆ Rn, any non-empty open cone C ⊆ Rn and any

measurable function x : C → Rn such that x(u) ∈ arg maxy∈X u · y. Let F be an atomless measure with

F (C)> 0 and such that for any non-empty open cone A⊆C, F (A)> 0. Define

X̄ = {x̄(A) =

∫
A

x(u)dF (u)

F (A)
: F (A)> 0,A⊆C}.

Then ∀u∈C, arg maxy∈X{u ·y} ⊆ closure(X̄).

Proof of Lemma 4 We first show that X̄ is convex following the proof of Lemma 3.3 in Zhou (1992). For

any A⊆C, define the n+ 1 dimensional measure

m(A) = (

∫
A

x(u)dF (u), F (A)).

By Lyapunov’s convexity theorem, since F is atomless, the range of this measure, denoted M , is convex.

Therefore, the cone generated by M , cone(M) = {λx : x ∈M,λ> 0}, is convex, and so its intersection with

the hyperplane (·,1) is convex (last component restricted to 1). This intersection is non-empty since F (C)> 0.

Moreover, this intersection, restricted to first n components is exactly X̄, so X̄ is convex.

The proof of the lemma proceeds by contradiction. Suppose on the contrary that there exists u0 ∈C and

y0 ∈ arg maxy∈X{u0 ·y} but y0 6∈ closure(X̄). We will exhibit some open subset A⊆C such that x̄(A) 6∈ X̄,

which contradicts the definition of X̄. The construction is geometric and we refer readers to Figure 7 for an

illustration.
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Since closure(X̄) is closed, convex and bounded, there exists a strictly separating hyperplane H(u1, α1)

such that for some δ1 > 0,

u1 ·y0 ≥ α1 + δ1 >α1− δ1 ≥ u1 ·y ∀y ∈ closure(X̄).

Since every point of X̄ is a convex combination of points in X and since X is closed and convex,

closure(X̄)⊆X, so by construction,

u0 ·y0 ≥ u0 ·y ∀y ∈ closure(X̄).

Let α0 = u0 ·y0. Since C is open, by taking (u2, α2) = (u0, α0) + ε(u1, α1) for some sufficiently small ε > 0,

we can ensure that u2 ∈C, and by construction, H2 =H(u2, α2) is a strictly separating hyperplane with

u2 ·y0 ≥ α2 + δ2 >α2− δ2 ≥ u2 ·y ∀y ∈ closure(X̄),

where δ2 = εδ1.

Now, let R= supy∈X{‖y−y0‖}. R is finite because X is bounded. Let H−2 be the closed half-space on the

non-positive side of H2. If y ∈X
⋂
H−2 , then y ∈B(y0,R)

⋂
H−2 , where B(y0,R) is the Euclidean closed ball

of radius R centered at y0. Define A to be the open normal cone to B(y0,R)
⋂
H−2 , namely,

A′ =

{
u∈Rn :

u ·u2

‖u‖‖u2‖
>

√
R2− δ2

2

R

}
.

This construction is illustrated in Figure 7. Note that u2 ∈ A′. Moreover, ∀u ∈ A′, x(u) · u ≥ y0 · u >

y ·u ∀y ∈X
⋂
H−2 . Thus x(u) 6∈H−2 . Let A=A′

⋂
C, then A is open since it’s the intersection of two open

sets, and A is non-empty since u2 ∈A by construction. By the assumption on F , F (A)> 0, but x̄(A) 6∈H−2
(since it’s a convex combination of points not in this half-space), so x̄(A) 6∈ X̄ since X̄ ⊆H−2 . This contradicts

the definition of X̄. �

Proof of Lemma 3 The goal is to show that we can find a small neighborhood A⊆D for which we can

perturb the average allocation in direction d and yield a strict improvement for each u∈A.

Let ã0 = ProjDa0, the projection of a0 onto D. We wish to construct our desired open neighborhood by

taking a neighborhood A of ã0 in D such that for every u∈U(A) (recall that U(A) is the subset of U whose

projection on D is in A), the agent prefers the allocation y1 = x̄(U(A))+ εd rather than x(u). Moreover, the

neighborhood has to be sufficiently small so that y1 remains feasible, that is, y1 ∈∆. To do this, we make

use of Lemma 3 and construct A from an open cone C ⊆D that by construction will guarantee the above

properties.

Let y0 ∈ X ∩ H(a0,1) ∩ int(∆). (∆ is the feasibility simplex.) Let γ be the distance from y0 to the

boundary of ∆, then γ > 0 since y0 is in the interior of ∆. Define ε= 3
4
γ. Define r= ã0·d

6‖ã0‖
ε. Define the cones

C1 = {a∈D :
a

‖a‖
· (y0−x(a))>−r}

C2 = {a∈D :
a

‖a‖
·d> ã0

2‖ã0‖
·d = 3

r

ε
}

Note that ã0 ∈C1 and ã0 ∈C2. C1 and C2 are cones because the expressions that define them depend only

on a
‖a‖ . (Note also that a ·x(a) = a ·x(λa) for any λ> 0 by incentive compatibility.) They are open because
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the LHS of the inequalities that define them are continuous functions of a. (Note that g(a) = a · x(a) is a

continuous function of a as this is the objective of the linear maximizer over convex set X.)

Therefore, the set

C =C1

⋂
C2

is a non-empty open cone. Moreover, by continuity and full relative support of F , F (U(·)) is an atomless

measure on C such that F (U(C)) > 0 and for every open cone A ⊆ C, F (U(A)) > 0. Finally X and x(·)

satisfy the assumptions of Lemma 4, so by the lemma, ∃A⊆C, F (U(A))> 0, such that ‖x̄(U(A))−y0‖ ≤ r.

Now, define y1 = x̄(U(A))+ εd, then y1 ∈∆ since ‖y1−y0‖ ≤ ε+δ≤ 7
8
γ. Consider the alternative allocation

rule

y(u) =

{
y1 if u∈U(A)

x(u) otherwise.

Then y strictly Pareto improves over x because ∀a∈A,

a ·y1−a ·x(a)

=a · (x̄(U(A)) + εd)−a ·x(a)

=a · (x̄(U(A))−y0) + a · (y0−x(a)) + εa ·d

≥− r‖a‖− r‖a‖+ 3r‖a‖

>0

Now, let δ0 = εF (U(A)), for any δ ∈ (0, δ0), if we set

x′(u) =
δ

δ0
y(u) + (1− δ

δ0
)x(u).

Then x′ still strictly Pareto improves over x but x̄′(U) = x̄(U) + δd, which is what we needed. �

C.2. Characterization for Ordinal Mechanisms

Proof of Theorem 2. The proof is similar to that of Theorem 1 in that we first find an equivalent descrip-

tion of incentive compatibility and then use an exchange argument to derive the lottery-plus-cutoffs structure.

The difference is that instead of a closed convex set as in the proof of Theorem 1, we have the base polytope

of a polymatroid. The exchange argument is also simpler because the space of permutations Π is discrete

and every member has positive probability due to full relative support.

As before, we first apply a series of lemmas and prove them later.

Lemma 5. An ordinal allocation rule x(π) is incentive compatible if and only if there exists monotone

submodular set function f : 2|S|→ [0,1] s.t. for every permutation π ∈Π and for every k (1≤ k≤ |S|),

xπ(k)(π) = f({π(1), · · · , π(k)})− f({π(1), · · · , π(k− 1)}).

We call f the monotone submodular set function that corresponds to x.
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If X is the range of x, then the above lemma says that x is incentive compatible if and only if X is the

vertex set of the base polytope of polymatroid defined by f :∑
s∈M

xs ≤ f(M) ∀M ⊆ S∑
s∈S

xs = 1

x≥ 0

The following lemma embodies the exchange argument.

Lemma 6. Let f be the monotone submodular set function that corresponds to incentive compatible allo-

cation rule x. If x is ordinal efficient, then for any M1,M2 ⊆ S,

f(M1 ∪M2) = max{f(M1), f(M2)}.

Given this lemma, let as = f({s}). An easy induction using Lemma 6 yields ∀M ⊆ S, f(M) = maxs∈M as,

which together with Lemma 5 implies that x is lottery-plus-cutoffs. �

Proof of Lemma 5. If x(π) is an incentive compatible ordinal allocation rule, then for any M ⊆ S, define

f(M) =

|M|∑
j=1

xπ(j)(π), where {π(1), π(2), · · · , π(|M |)}=M.

This is well-defined because incentive compatibility requires each agent’s chances of getting a service in M ,

conditional on ranking these first in some order (ranking all of M before all of S\M), to be fixed, regardless

of the relative rank between services in M and betewen services in S\M . If this were not the case, then for

some large b > 0 and small ε > 0, consider an agent with utilities us = 1(s∈M)b+ εs, where 1(s∈M) equals

one if s∈M and zero otherwise, and εs’s are distinct numbers to be defined later, with |εs| ≤ ε. If the agent’s

chance of getting one of the service in M can be altered by changing relative order in M and the relative

order in S\M , while she ranks M before S\M , then the agent would for some {εs}’s gain b times a positive

number and lose at most |S|ε, so for sufficiently large b
ε

she has incentive to mis-report.

We now show that f is submodular. Suppose on the contrary that f is not submodular, then there exists

M1 ⊆M2, and s 6∈M2, such that

f(M1 ∪{s})− f(M1)< f(M2 ∪{s})− f(M2).

However, let us = 1(s∈M1∪{s})b with some b > 0 to be specified later. Her true ranking is M1∪{s} before

M2\M1. But reporting this true ranking gives her expected utility of bf(M1 ∪{s}). However, if she instead

ranked M1, then M2\M1, then s, she would get b(f(M1) +f(M2∪{s})−f(M2))> bf(M1∪{s}). So she has

incentive to misreport. This contradicts incentive compatibility.

Now, the construction of f implies f is monotone, and by the definition of f , we have that ∀π ∈ Π and

1≤ k≤ |S|, xπ(k)(π) = f({π(1), · · · , π(k)})− f({π(1), · · · , π(k− 1)}).
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Conversely, if f is a monotone submodular set function. We show that if we define x so that xπ(k)(π) =

f({π(1), · · · , π(k)})−f({π(1), · · · , π(k−1)}), then x is incentive compatible. Note that the range of x defined

this way is simply the vertex set of the base polytope of the polymatroid defined by f :∑
s∈M

xs ≤ f(M) ∀M ⊆ S∑
s∈S

xs = 1

xs ≥ 0 ∀s∈ S.

Now, the agent’s utility u ·x is linear in x, so using the fact that the greedy algorithm optimizes a linear

objective over a polymatroid (and also the base polytope), we get that for any u, if we re-label S so that

u1 ≥ u2 ≥ · · · ≥ u|S|.

Then an optimal point of the base polytope simply sets x1 to f({1}), and x2 to f({1,2})−f({1}) and so on,

which is exactly how we defined x. Thus, x(π)∈ arg maxπ′∈Π u ·x(π′), and x is incentive compatible. �

Proof of Lemma 6. By monotonicity of f , f(M1 ∪M2) ≥max{f(M1), f(M2)}. What we need to show

is that f(M1 ∪M2) ≤max{f(M1), f(M2)}. By monotonicity, it suffices to show this for the case in which

M1 ∩M2 = ∅.

Suppose that on the contrary that f(M1 ∪M2)>max{f(M1), f(M2)}, M1 ∩M2 = ∅. Consider two pref-

erence rankings, π1 and π2: π1 ranks services in M1 first, followed by M2, followed by other services in

arbitrary order; π2 ranks services in M2 first, followed by M1, followed by others. By Lemma 5, since x is

incentive compatible,
∑

s∈M2
x(π1) = f(M1∪M2)−f(M1)> 0, and

∑
s∈M1

x(π2) = f(M1∪M2)−f(M2)> 0.

Thus, agents with preference ranking π1 can trade probabilities with agents with preference ranking π2 and

mutually improve in the first-order stochastic dominance sense. (Agents preferring M1 get additional prob-

abilities for services in M1 in place of equal probabilities for M2, while agents preferring M2 get additional

probabilities for M2 in place of M1.) By full ordinal support, there exist positive measures of both kinds of

agents, so x is not ordinal efficient, contradiction. �

C.3. Comparing Cardinal and Ordinal Mechanisms

We show an example in which the optimal social welfare from a cardinal mechanism is arbitrarily many

times larger than the optimal social welfare from an ordinal mechanism. This examples uses the intuition

that the value of a cardinal mechanism lies mostly in its ability to distinguish between agents that have an

extremely large relative preferences for a services over another and agents that have only a weak preference.

Let M and N be two positive real numbers with M ≥min(3,N3) and N ≥ 1. Suppose that there are three

services. Service 1 has capacity 1
N2 , while services 2 and 3 have capacity 1 each. Suppose there is only one

type of mass 1, and 1
N

of the agents have utilities (M,1,0) and the remaining agents have utilities (2,1,0).31

The objective is to maximize the social welfare. An optimal cardinal mechanism charges price vector (p,1,0),

where p > 2 to differentiate the two types of agents. Agents have virtual budget 1. The 1
N

of agents would

31 Although this does not satisfy full relative support, we can trivially modify it to satisfy by having ε mass of agents
with utilities (u1, u2, u3), where the uj ’s are distributed i.i.d. standard Normal.
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purchase the bundle ( 1
N
,0,1− 1

N
), while the other agents will opt for (0,1,0). Hence, the social welfare is

M
N2 + (1− 1

N
)> M

N2 . However, with an ordinal mechanism, one cannot distinguish between the two groups of

agents, and the best a lottery-plus-cutoff mechanism can do is to have cutoffs ( 1
N2 ,1,1) for the services, and

every gets allocation ( 1
N2 ,1− 1

N2 ,0). The social welfare is 1
N

( M
N2 + 1− 1

N2 ) + (1− 1
N

)( 2
N2 + 1− 1

N2 )≤ 3M
N3 . So

the ratio between the best cardinal and the best ordinal in this example is at least N
3

, which we can make

arbitrarily large.

C.4. Computation Results

Proof of Theorem 3 Define dual variables for (LargeMarketLP) as follows: let γ be the dual variable for

the cost constraint, λs for the capacity constraint of school s, µt for the constraint of menu probabilities

summing to one for type t, and νt be the constraint enforcing the minimum constraint for type t. The dual

is as follows.

(Dual) min Cγ+ m ·λ+
∑
t∈T

µt

µt ≥ (αwt + νt)vt(M)−nt
∑
s

pt(s,M)(1(t∈ Ts)λs + γBts) ∀t∈ T,M ⊆ S∑
t∈T

νt ≥ 1−α

γ,λ,µ,ν ≥ 0

Label the right hand side of the first inequality as ft(γ,λ,ν,M). This can be interpreted as follows:

suppose that one unit of expected utility for the agent of type t contributes αwt + νt “credits” to the city,

while assigning her to school s costs the city 1(t ∈ Ts)λs + γBts credits, then ft(γ,λ,ν,M) is the expected

number of credits an agent of type t who is given menu M contributes to the city, taking into account both

her expected utility and the negative externalities of her occupying a slot of a service. Maximizing this over

menus M is thus an “optimal-menu” problem.

Definition 5. Given γ, λ, ν, the optimal menu sub-problem is to find the solution set

arg max
M⊆S

ft(γ,λ,ν,M).

Denote the optimal objective value µt(γ,λ,ν) = maxM⊆S ft(γ,λ,ν,M).

Lemma 7. µt(γ,λ,ν) is convex.

Proof of Lemma 7. This follows from ft(γ,λ,ν,M) being linear in γ, λ and ν for fixed M . So µt is the

upper envelope of a family of linear functions, and is therefore convex. �

Therefore, the dual can be written as a convex program with 2|T |+ |S|+ 1 non-negative variables, with

objective Cγ + m · λ +
∑

t∈T µt(γ,λ,ν) and a single linear constraint
∑

t∈T νt ≥ 1 − α. One difficulty is

that the optimal menu sub-problem needs to optimize over all possible exponentially many menus M ⊆ S.

However, when preferences are multinomial-logit, we can efficiently solve the sub-problem.

Lemma 8. Under multinomial-logit utility priors, if αwt + νt > 0, then the number of optimal solutions

for the optimal menu sub-problem is at most |S|, and can all be found in time |S| log |S|.
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Proof of Lemma 8. Recall that multinomial-logit utilities means that uis = ūts+ btεis where the εis’s are

standard Gumbel distributed idiosyncratic shocks. Fix a type t. Let hs = nt(1(t∈T−s)λs+γBts)

(αwt+νt)bt
, zs = exp( ūts

bt
).

The optimal menu sub-problem is equivalent to finding all solutions to

max
M⊆S

log(
∑
s∈M

zs)−
∑

s∈M hszs∑
s∈M zs

.

Consider the continuous relaxation of this, in which ys is a continuous variable constrained to be in [0, zs]

and there are |S| such variables:

max
ys∈[0,zs]∀s

log(
∑
s∈S

ys)−
∑

s∈S hsys∑
s∈S ys

.

Now if hs < hs′ and ys′ > 0 but ys < zs, then by decreasing ys′ by δ and by increasing ys by δ, for small

δ > 0, we can decrease
∑

s
hsys while keeping

∑
s
ys the same, so this cannot occur at an optimum. Relabel

services so that

h1 ≤ h2 ≤ · · · ≤ h|S|.

We first consider the case in which the {hs} are all distinct. In this case, by the above, an optimal solution

of the continuous relaxation must be of the form: for some 1≤ k≤ |S|.

ys = zs ∀s < k, yk ∈ [0, zk], ys = 0 ∀s > k.

We show that at an optimal solution, it must be that yk ∈ {0, zk}. Suppose on the contrary that yk ∈ (0, zk).

Now, let d1 =
∑

s<k
zs, d2 = hkd1 −

∑
s<k

hszs. As a function of yk, the objective and its first and second

derivatives are

g(yk) = log(d1 + yk) +
d2

d1 + yk
−hk,

g′(yk) =
1

d1 + yk

(
1− d2

d1 + yk

)
,

g′′(yk) =
1

(d1 + yk)2

(
2d2

d1 + yk
− 1

)
.

Since yk is an interior optimum, d2
d1+yk

= 1, and so the second derivative g′′(yk) = 1
(d1+yk)2

> 0, which

implies that yk is a strict local minimum, which contradicts our assumption. Therefore, the objective is

maximized when yk ∈ {0, zk}.

This implies that all optimal solutions are restricted to be of the form Mk = {1, · · · , k} (the services are

sorted in increasing order of hs), and so we only need to search through 1 ≤ k ≤ |S|. This can be done in

|S| log |S| time as it is a linear search after sorting services in non-decreasing order of hs. This also implies

that the number of optimal solutions is at most |S|.

Now if some of the {hs} are equal, then if we collapse them into one service in the continuous relaxation,

and the above argument implies that an optimal menu M either contains all of them or none of them.

Thus, arbitrarily breaking ties when sorting hs in non-decreasing order and searching through the Mk’s for

k ∈ {1, · · · , |S|} still yields all optimal solutions. �
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The proof of Lemma 8 reveals insight on what the optimal solution looks like with a multinomial-logit

utility model: based on the shadow cost vector γ for the budgets and shadow cost λs for capacity of service

s, the algorithm places a virtual “allocation cost” 1(t ∈ Ts)λs + γBts on allocating an agent of type t to

service s. Services are put into the agent’s menu starting from the cheapest “allocation costs,” so that an

agent is never able to access a service with higher allocation cost (the more over-demanded, “expensive”

services) without being able to access a service with lower allocation cost (the less over-demanded, “cheaper”

services). For type t, there is an “optimal” k number of services to include, and this is chosen by balancing

expected allocation costs with expected utility, with the weight on expected utility αwt+νt
nt

depending on how

“important” this type is for the objective. The essence of the optimization is finding a set of choice menus

that are desirable for the agent but that cause low strain to the system in terms of the capacity and budget

limits.

Since the sub-problems are efficiently solvable, we can efficiently solve the dual. If Mt is the solution set

to the optimal menu sub-problem using optimal dual variables, then an optimal primal feasible solution can

be recovered using complementary slackness by finding a feasible solution to the polynomial sized LP:

∑
M∈Mt

vt(M)zt(M)≥ y ∀t∈ T with equality if νt > 0∑
M∈Mt

zt(M) = 1 ∀t∈ T∑
t∈Ts

∑
M∈Mt

ntpt(s,M)zt(M)≤ms ∀s∈ S with equality if λs > 0∑
s,t

∑
M∈Mt

ntpt(s,M)Btszt(M)≤C with equality if γ > 0

zt(M)≥ 0 ∀t∈ T,M ∈Mt

�
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