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Abstract 

 

We develop a parsimonious liquidity-adjusted downside capital asset pricing model to investigate if 

phenomena such as downward liquidity spirals and flights to liquidity impact expected asset returns.  We 

find strong empirical support for the model.  Downside liquidity risk (sensitivity of stock liquidity to 

negative market returns) has an economically meaningful return premium that is ten times larger than its 

symmetric analogue.  The expected liquidity level and downside market risk are also associated with 

meaningful return premiums.  Downside liquidity risk and its associated premium are higher during 

periods of low market-wide liquidity, and for stocks that are relatively small, illiquid, volatile, and have 

high book-to-market ratios.  These results are consistent with investors requiring compensation for 

holding assets susceptible to adverse liquidity phenomena.  Our findings suggest that mitigation of 

downside liquidity risk can lower firms’ cost of capital. 
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1. Introduction 

Liquidity affects asset prices.  The level of liquidity affects expected returns because investors 

know that in relatively less liquid stocks, transaction costs will erode more of the realized return.  Thus 

less liquid stocks are priced to include an illiquidity premium.  Systematic variation in liquidity (liquidity 

risk) also affects expected returns because investors are concerned with how liquidity varies across states 

of the world.  Consequently, capital asset pricing models have been developed in which traditional market 

return risk is augmented with liquidity level and liquidity risk (e.g., Jacoby et al. (2000); Acharya and 

Pedersen (2005); Liu (2006)).   

Several important aspects of how liquidity risk impacts asset prices are not well understood.  

First, liquidity behaves differently in good and bad states of the world.   Pastor and Stambaugh (2003) are 

among the first to demonstrate this, reporting that the correlation between asset liquidity and market 

returns is around 0.5 in negative-return months and near zero in positive-return months.  The recent 

financial crisis provides a well-documented illustration.  Flights to liquidity (e.g., Acharya et al. (2013)) 

and downward liquidity spirals (e.g., Brunnermeier and Pedersen (2009)), create strong comovement 

between stock-level liquidity and market returns in bad states.  Extreme cases can result in an 

‘evaporation’ of liquidity (e.g., Nagel (2012)).  Given the asymmetric behavior of liquidity, how should 

liquidity risk be measured?  Are symmetric liquidity risk measures reasonable approximations?  Does 

asymmetry in the behavior of liquidity matter for asset pricing? 

Second, investors are more concerned with losses of liquidity in future bad states where the 

marginal rate of substitution is high.  Importantly, this is when flights to liquidity and downward liquidity 

spirals are most likely.  Do differences in investor risk aversion across good and bad states affect how 

liquidity risk is priced?   

Third, despite the intuitive appeal of theory articulating the effect of systematic liquidity risk on 

asset prices, the empirical support for the implied liquidity risk premium is mixed.  For example, Acharya 

and Pedersen (2005) find some evidence of a liquidity risk premium, yet other more recent studies find no 

evidence of a liquidity risk premium (e.g., Hasbrouck (2009)).  Is the mixed empirical evidence the result 

of mis-characterization of the nature of liquidity risk?  Is it a consequence of the symmetric treatment of 

both liquidity risk and investor risk aversion in existing models?  

This paper develops and tests an asset pricing model to investigate these issues.  We derive a 

parsimonious liquidity-adjusted downside capital asset pricing model (LD-CAPM).  The model 

disentangles a stock’s downside market risk from three downside liquidity risks.  The first downside 

liquidity risk involves the comovement of a stock’s liquidity with the market’s excess return during 

market declines. The second and third involve the comovement of a stock’s excess return and liquidity 
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with market-wide liquidity during market declines.  The distinguishing feature of our model is that it does 

not impose symmetry in the behavior of liquidity or investor risk aversion in good and bad states. 

We develop the LD-CAPM from the pricing kernel underpinning the downside-CAPM (D-

CAPM) of Hogan and Warren (1974) and Bawa and Lindenberg (1977).  Our approach is analogous to 

that of Acharya and Pedersen (2005) who liquidity-adjust the CAPM (Sharpe (1964); Lintner (1965)).  

We adjust gross excess asset returns for liquidity costs, and account for the effects of market-wide 

liquidity by adjusting the pricing kernel of the D-CAPM.  Our model bridges two strands of the asset 

pricing literature.  The LD-CAPM  is the downside analogue to the liquidity-adjusted CAPM (L-CAPM) 

of Acharya and Pedersen (2005), and it is the liquidity-adjusted version of the downside-CAPM (D-

CAPM) of Hogan and Warren (1974) and Bawa and Lindenberg (1977)—the last tile in a four-tile 

mosaic.     

The LD-CAPM’s risks are not subsumed by their symmetric counterparts in the L-CAPM, and 

thus downside liquidity risks contribute to explaining the cross-section of returns.  Our model fits the data 

better than other theory-driven asset pricing models and better than the empirically-driven Fama-French 

(Fama and French, 1993) three-factor model.  With the addition of a medium-term momentum control, 

the fit of the LD-CAPM is comparable with the Fama-French-Carhart (Fama and French (1993); Carhart 

(1997)) four-factor model.  The LD-CAPM risks are unique and do not proxy for previously documented 

risk factors or stock characteristics. 

We find that stocks with high downside liquidity risk (the comovement of a stock’s liquidity with 

excess market returns during market declines) compensate investors with an economically meaningful 

expected return premium; 6.34% p.a. (using the common approach of comparing the 10
th
 and 1

st
 deciles).  

This is consistent with investors disliking stocks that are more susceptible to liquidity spirals or 

abandonment during flights to liquidity.  We show that subsuming downside liquidity risks by assuming 

symmetry (as is implicit in the existing theoretical and empirical literature) leads to underestimation of 

the importance of liquidity risk in explaining cross-sectional returns.  Put succinctly, liquidity behaves 

asymmetrically and is priced asymmetrically. 

We determine that downside market risk (the comovement of a stock’s excess return with excess 

market returns during market declines) is associated with a statistically significant return premium of 

5.47% p.a. while expected illiquidity level has a highly statistically significant premium of around 8.44% 

p.a. (comparing the 10
th
 and 1

st
 deciles).  Using the more conservative comparison of 9

th
 and 2

nd
 deciles 

we estimate significant premiums of 1.26% p.a. for downside liquidity risk, 2.31% p.a. for illiquidity level 

and 3.12% p.a. for downside market risk.  These three return premiums are robust to controlling for a 

wide range of other characteristics and risks, including the market, size, and value factors, momentum and 

short-term reversal, co-skewness, volatility and idiosyncratic volatility, turnover variance, and lottery-like 
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features of stocks.  The return premiums are also robust to a range of alternative liquidity metrics, and 

different sub-periods.  Adding color to this picture, we find that the downside liquidity risk premium is 

typically higher when the market is in a relatively illiquid state.  It is also typically larger for stocks that 

are relatively small, illiquid, volatile, and exhibit characteristics of value stocks (high book-to-market 

ratio). 

This paper makes two main contributions to the literature.  The first is in aligning the theory of 

how liquidity affects asset prices with the empirical evidence.  Since the seminal theory on the asset 

pricing implications of liquidity risk (Jacoby et al. (2000); Acharya and Pedersen (2005); Liu (2006)), a 

large body of empirical evidence has emerged, providing a richer description of the behavior of liquidity.  

There is extensive empirical evidence of asymmetry in the behavior of liquidity (e.g., Chordia et al. 

(2001); Pastor and Stambaugh (2003); Roll and Subrahmanyam (2010); Hameed et al. (2010)) and on  a 

range of mechanisms that give rise to the asymmetric behavior, including flights to liquidity (e.g., 

Acharya et al. (2013)), feedback between market liquidity and funding liquidity (e.g., Brunnermeier and 

Pedersen (2009)), and inventory effects and funding constraints among market makers (e.g., Comerton-

Forde et al. (2010); Hameed et al. (2010); Nagel (2012)).  While the underlying mechanisms and ex-posts 

effects of asymmetry in liquidity have been widely studied, our paper provides insights about the ex-ante 

effects on asset prices.  There is also empirical evidence on the influence of extreme downside liquidity 

events on asset prices (Wu (2012); Ruenzi et al. (2013); Menkveld and Wang (2012)).  To the extent of 

our knowledge, this is the first characterization of downside liquidity risks in a partial equilibrium model.  

Our paper extends the existing theory to bring it in line with the broader collection of evidence on the 

behaviour of liquidity and asset prices. 

The second main contribution is in offering a solution to the puzzle of why existing empirical 

evidence on the liquidity risk premium is mixed.
1
  Our findings suggest misspecification of the form 

liquidity risk is part of the explanation.  Subsuming downside liquidity risk through the symmetry 

imposed by the CAPM pricing kernel obscures the behavior of liquidity in bad states of the world and 

conceals the associated premium.  To illustrate the consequences, we estimate the symmetric model of 

Acharya and Pedersen (2005) on our sample.  While the downside liquidity risk premium is large (6.34% 

p.a.) and highly statistically significant, the equivalent symmetric liquidity risk is not statistically 

significant and of a considerably smaller magnitude (0.56% p.a., which is the same order of magnitude 

reported by Acharya and Pedersen (2005) and Hagströmer et al. (2013)).  Similarly, the conservative 9
th
 

minus 2
nd

 decile premium for downside liquidity risk is 1.26% p.a., whereas the corresponding symmetric 

                                                           
1
 For example, Pastor and Stambaugh (2003) report a return premium of 7.5% p.a. (although part of this premium 

may be due to the liquidity level), Acharya and Pedersen (2005) report a premium of 1.1% p.a., and some studies 

find no evidence of a risk premium (e.g., Hasbrouck (2009)).   
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liquidity risk premium is 0.08% p.a..  Therefore, the return premium associated with downside liquidity 

risk is ten to 15 times larger than suggested by symmetric liquidity risk measures.  Although not a feature 

of our model, we explore the upside counterparts to our downside risks to further our understanding of the 

role asymmetry.  In contrast to downside liquidity risk, upside liquidity ‘risk’ attracts a negative premium.  

This finding reinforces the importance of asymmetry in characterizing liquidity risk and in accounting for 

its impact on asset prices. 

Our results have implications for firm investments and the real economy.  The large expected 

return premium associated with downside liquidity risk suggests that decision makers can lower their 

firm’s cost of capital by adopting practices that moderate the loss of their equity’s liquidity during market 

declines.  Reducing information asymmetry through increased disclosure during such times is one 

example (Balakrishnan et al., 2014).   

Delving deeper, we find that the downside liquidity risk premium is higher during periods of low 

market-wide liquidity.  While not identifying the mechanism, this result is consistent with the notion that 

adverse liquidity phenomena, such as liquidity spirals, flights to liquidity, and feedback between market 

and funding liquidity, have a substantial negative impact on firms’ cost of capital.  Thus, an additional 

channel by which these phenomena can impact the real economy is through the level of investment 

undertaken by firms that are sensitive to the cost of capital.  Market-wide illiquidity may be driven by low 

investor and consumer sentiment (Liu, 2015) and the business cycle (Næs et al., 2011).  This suggests that 

policy, regulation, and market design that mitigate downside liquidity risk and lower the cost of capital 

are likely to have greatest impact when the economy needs it most. 

Competition and financing constraints in provision of market liquidity can also contribute to 

downside liquidity risk.  Competition among liquidity providers increases the tendency for market 

liquidity to fall in bad states of the world.  This is because competition from informal liquidity providers 

(such as high-frequency traders) in good states erodes profits and thus the ability of designated market 

makers to subsidize their activities in bad states (Roll and Subrahmanyam, 2010).  Comerton-Forde et al. 

(2010) and Nagel (2012) provide evidence that the financing constraints of liquidity providers cause them 

to withdraw liquidity, particularly during market turmoil.  Finally, recent efforts to incorporate liquidity-

adjusted downside risk metrics into risk management procedures and capital standards reflect regulatory 

and practitioner concerns about downside liquidity risk (e.g., Angelidis and Benos (2006) and BIS 

(2012)).  These concerns are consistent with our finding of a significant downside liquidity risk premium.  

This paper proceeds as follows.  The next section reviews the theoretical and empirical findings 

that motivate our model.  Section 3 defines the LD-CAPM and derives the model’s expected return 

relation.  We interpret the model in a state-pricing context to build some economic intuition.  Section 4 

describes the data and construction of variables for the empirical tests, which are presented and discussed 



 6 

in Section 5.  Section 6 summarizes the conclusions on downside liquidity risk.  Additional supporting 

material can be found in the Internet Appendix. 

 

2. Liquidity spirals, market declines and risk aversion 

Several recent papers, in addition to Pastor and Stambaugh (2003), find evidence of asymmetry in 

the comovement of asset liquidity and returns.  Chordia et al. (2001) find that liquidity plummets in down 

markets and recovers relatively slowly in up markets.  Consistent with asymmetric comovement, return 

and liquidity distributions are left-skewed (Ang and Chen (2002); Roll and Subrahmanyam (2010)).
2
   

One explanation for this asymmetry is found in the model of Brunnermeier and Pedersen (2009), 

which links the liquidity of an individual asset with the funding liquidity of intermediaries.  Market 

liquidity and funding liquidity are mutually reinforcing and susceptible to negative ‘liquidity spirals’; 

deterioration in the balance sheets of financial intermediaries can induce collateral-driven security sales, 

which further exacerbate illiquidity.  Nagel (2012) provides empirical evidence consistent with this 

mechanism.  The feedback loop causes a non-linear response in asset liquidity to declines in the market.  

Similarly, Hameed et al. (2010) find that changes in liquidity demand are negatively related to market 

returns with large declines having the greatest impact.  They show empirically that the driver of the 

asymmetric relation is the deterioration of the balance sheets of financial intermediaries (see also 

Comerton-Forde et al. (2010)). 

Downward liquidity spirals can occur for other reasons.  In the model of Garleanu and Pedersen 

(2007), a decrease in market liquidity leads to tighter risk management, which in turn leads to lower 

liquidity, and so on.  In the model of Carlin et al. (2007), traders cooperate and provide liquidity to one 

another most of the time but occasionally, when stakes are high and a trader becomes distressed, they 

switch to predatory trading causing severe declines in liquidity across multiple assets.  In the model of 

Morris and Shin (2004), when asset prices fall, some traders approach their loss limits and are induced to 

sell, which increases incentives for other traders to sell, causing behavior analogous to a bank run.  The 

resulting ‘liquidity black holes’, like the mechanisms in previously mentioned studies, imply asymmetric 

comovements in liquidity and returns.  Similarly, asymmetry between good and bad states has been 

observed in the behavior of broader economic variables such as lending rates and defaults (Ordoñez, 

2013), and has been attributed to asymmetry in information diffusion speeds.  There are many non-

exclusive candidate causes of asymmetry; together they suggest that a symmetric treatment of liquidity 

risk in asset pricing will not adequately reflect the underlying economics. 

                                                           
2
 Roll and Subrahmanyam (2010) find that the distribution of bid-ask spreads (illiquidity) is right-skewed, 

suggesting the distribution of liquidity, like returns, is left-skewed. 
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Periods of macroeconomic and financial stress make investors more averse to liquidity shocks 

and can cause them to abandon illiquid assets in favor of relatively more liquid assets (Acharya et al., 

2013).  Such ‘flights-to-liquidity’ and ‘flights-to-quality’ can take place across asset classes, such as 

stocks and bonds, but also within asset classes.  In the cross-section, some stocks become relatively more 

attractive to investors during a period of stress and thus experience a relative increase in liquidity.  

Investor ‘flights’ are likely to coincide with sharp declines in the market and therefore, similar to liquidity 

spirals, cause asymmetric comovements between returns and liquidity, depending on the state of the 

market.  The degree of asymmetry is likely to depend on whether a stock becomes relatively more or less 

attractive during a period of stress.   

A second important source of asymmetry with regard to the pricing of liquidity risk presents in 

how investors view the uncertainty surrounding liquidity in future good and bad states.  It is unlikely that 

investors view positive shocks in the same way they view negative shocks (e.g., Kahneman and Tversky 

(1979); Veld and Veld-Merkoulova (2008); Levy and Levy (2009)).  This means that a pricing kernel 

with the same level of risk aversion across good and bad states will not represent investor preferences 

well.
3
  Empirical work on the shape of the pricing kernel using gross returns supports the notion that risk 

aversion is high in bad states (e.g., Bakshi et al. (2010); De Giorgi and Post (2008); Rosenberg and Engle 

(2002)). 

  

3. The model 

We develop our model parsimoniously through two liquidity-related modifications of the D-

CAPM of Hogan and Warren (1974) and Bawa and Lindenberg (1977).  The first modification accounts 

for liquidity costs within net asset returns.  The second adjusts the pricing kernel underpinning the D-

CAPM for market-wide liquidity.  In doing so we develop a direct downside analogue to the L-CAPM of 

Acharya and Pedersen (2005).   

It is well-known that the CAPM can be derived by either (i) assuming quadratic utility, or (ii) 

assuming returns are elliptically symmetric and that investor’s possess increasing and concave utility 

(Berk, 1997).  Acharya and Pedersen (2005) incorporate time-varying liquidity costs into the CAPM by 

following the second approach; however, there is strong evidence that the distributions of both liquidity 

costs and gross returns are left skewed (Ang and Chen (2002); Roll and Subrahmanyam (2010)).  The 

Acharya and Pedersen model can also be derived for arbitrary distributions under the assumption of 

quadratic utility.  This approach replaces the conflict arising from evidence on skewed liquidity/return 

                                                           
3
 Markowitz (1959) acknowledges that it is natural to view risk as concern for adverse deviations and only proceeds 

to work with symmetric risk measures such as variance and covariance due to their mathematical convenience. 
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distributions with violations of the non-satiation and no-arbitrage preference regularity conditions.  Hogan 

and Warren (1974) and Bawa and Lindenberg (1977) address these issues through arguments underpinned 

by a utility function for the representative investor that is linear on the upside and quadratic on the 

downside.
4
   

This utility function has several attractive features.  First, its characterization of risk is consistent 

with several studies on investor preferences (Unser (2000); Veld and Veld-Merkoulova (2008); Levy and 

Levy (2009)).  Second, the change in the functional form around a reference point, such as the risk-free 

rate, is supported by a large body of literature (e.g., Hogan and Warren (1972); Fishburn (1977); Bawa 

(1978); Kahneman and Tversky (1979); Holthausen (1981); Post and Levy (2005)).  Third, this utility 

function is linked to the partial ordering of investment choices under  stochastic dominance (Porter, 

1974).  Fourth, it provides a pricing model free of distributional assumptions while maintaining 

consistency with basic preference regularity conditions (such as non-satiation).  Given these advantages, 

we develop our model from the pricing kernel, 𝑀𝑡+1
𝐷 , associated with the D-CAPM (Anthonisz, 2012):  

𝑀𝑡+1
𝐷 = 𝜅𝑡 − Θ𝑡𝟏𝑡+1

− 𝑅𝑚,𝑡+1
𝑒  

 (1) 

𝟏𝑡+1
− = {

0      𝑖𝑓 𝑅𝑚,𝑡+1
𝑒 ≥ 0 

1      𝑖𝑓 𝑅𝑚,𝑡+1
𝑒 < 0.

 (2) 

Here 𝜅𝑡 is a constant and Θ𝑡 > 0 is the coefficient of risk aversion.  De Giorgi and Post (2008) find 

empirical support for the D-CAPM kernel.  The shape of the kernel reported in many empirical studies 

(e.g., Bakshi et al. (2010); Rosenberg and Engle (2002)) can be reasonably approximated by this kernel; 

however, this literature works with gross returns and does not account for liquidity costs.  Adjusting this 

kernel for market-wide liquidity yields the pricing kernel for our base model: 

𝑀𝑡+1
𝐿𝐷 = 𝜅𝑡 − Θ𝑡𝟏𝑡+1

− (𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1) (3) 

𝟏𝑡+1
− = {

0      𝑖𝑓 𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 ≥ 0 

1      𝑖𝑓 𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 < 0.

 (4) 

The indicator function, 𝟏𝑡+1
− , separates the state space, Ω, into a positive subspace, Ω+, where the 

liquidity-adjusted excess market return (in excess of the risk-free rate) is positive, and a negative 

subspace, Ω−, where the liquidity-adjusted excess market return is negative.  With this kernel, the 

representative investor is risk averse across Ω− and risk neutral over Ω+.
5
   

                                                           
4
 To be precise, Hogan and Warren (1974) motivate the D-CAPM from Markowitz’s observation that semivariance 

better represents risk than variance.  In contrast, Bawa and Lindenberg (1977) motivate the D-CAPM through the 

connection between stochastic dominance and selection rules involving expected returns and lower-partial moments.  

The utility function underpinning the D-CAPM is 𝑈𝑡+1(𝑅𝑡+1
𝑒 ) = 𝑎𝑡 + 𝑏𝑡𝑅𝑡+1

𝑒 − 𝑐𝑡(−𝑅𝑡+1
𝑒 )+2

 where 𝑅𝑡+1
𝑒  is the 

return in excess of the risk-free rate at time 𝑡 + 1 and (𝑥)+ = max (𝑥, 0).   
5
 To aid comparison of our model with that of Acharya and Pedersen (2005) we note that the pricing kernel for the 

L-CAPM (in the absence of  strong distributional assumptions) can written as 𝑀𝑡+1
𝐿 = 𝜈𝑡 − 𝛫𝑡(𝑅𝑚,𝑡+1

𝑒 − 𝐶𝑚,𝑡+1) 
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In the absence of arbitrage, the pricing kernel framework of Ross (1978), Harrison and 

Kreps (1979), and Kreps (1981) is 

 𝔼𝑡[𝑀𝑡+1𝑅𝑖,𝑡+1|Ι𝑡] = 1 ,                 ∀ 𝑖, 𝑡 (5) 

where 𝑀𝑡+1 is the pricing kernel at time 𝑡 + 1, 𝑅𝑖,𝑡+1 is the gross return of the 𝑖𝑡ℎ asset at time 𝑡 + 1 

(𝑅𝑖,𝑡+1 = 1 + 𝑟𝑖,𝑡+1) and Ι𝑡 is the information set at time 𝑡.
6
  Assuming the risk-free asset has no liquidity 

cost, we re-express equation (5) in terms of excess returns (𝑅𝑖,𝑡+1
𝑒 = 𝑅𝑖,𝑡+1 − 𝑅𝑓,𝑡+1) and incorporate the 

cost of liquidity: 

𝔼𝑡[𝑀𝑡+1(𝑅𝑖,𝑡+1
𝑒 − 𝐶𝑖,𝑡+1)] = 0,  (6) 

where 𝐶𝑖,𝑡+1 is the liquidity cost of the 𝑖𝑡ℎ asset.  Considering the covariance of the pricing kernel first 

with the liquidity-adjusted excess return of an individual stock and then that of the market leads to: 

 
𝔼𝑡[𝑅𝑖,𝑡+1

𝑒 − 𝐶𝑖,𝑡+1] =
Cov𝑡[𝑀𝑡+1, 𝑅𝑖,𝑡+1

𝑒 − 𝐶𝑖,𝑡+1]

Cov𝑡[𝑀𝑡+1, 𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1]

𝔼𝑡[𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1] . (7) 

The state pricing interpretation of equations (6) and (7) is that the marginal rate of substitution is high in 

bad states of the world and thus assets that have relatively larger negative returns and/or relatively less 

liquidity in such states should, as compensation, provide a higher expected return.   

 Placing the LD-CAPM pricing kernel (equation (3)) into the covariance identity (equation (7)) 

gives the model in the beta framework for asset pricing.  Using a conditional version of Theorem 1 in 

Anthonisz (2012) we re-express the model in terms of conditional moments and co-moments.  The 

theorem, a proof, and the derivation of the model are in Appendix A.  To avoid confusion and assist 

exposition we represent the downside betas as downside gammas and refer to them as such.  Downside 

gammas involve the asymmetric measures of conditional co-moments and conditional moments.  In 

contrast, traditional betas involve covariance and variance. 

 

𝔼𝑡[𝑅𝑖,𝑡+1
 ] = 𝑅𝑓,𝑡+1

 + 𝔼𝑡[𝐶𝑖,𝑡+1] + 𝛾𝑖,𝑟
𝑅 λ 

 + 𝛾𝑖,𝑙
𝑅 λ 

 + 𝛾𝑖,𝑟
𝐿 λ 

 + 𝛾𝑖,𝑙
𝐿 λ 

  (8a) 

𝛾𝑖,𝑟
𝑅 =

𝔼𝑡[𝑅𝑖,𝑡+1
𝑒 𝑅𝑚,𝑡+1

𝑒 |𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 < 0]

𝔼𝑡 [(𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1)

2
| 𝑅𝑚,𝑡+1

𝑒 − 𝐶𝑚,𝑡+1 < 0]
 (8b) 

𝛾𝑖,𝑙
𝑅 =

𝔼𝑡[−𝐶𝑖,𝑡+1
 𝑅𝑚,𝑡+1

𝑒 |𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 < 0]

𝔼𝑡 [(𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1)

2
| 𝑅𝑚,𝑡+1

𝑒 − 𝐶𝑚,𝑡+1 < 0]
 (8c) 

                                                                                                                                                                                           

where νt and Κt are constants.  This L-CAPM kernel applies the same degree of risk aversion (Κt > 0) across good 

and bad states and violates the preference regularity conditions of non-satiation and no arbitrage. 
6
 To simplify notation we drop the conditioning information (Ι𝑡) from subsequent expressions, treating it as implicit 

in the expectation operator, 𝔼𝑡[. ]. 
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𝛾𝑖,𝑟
𝐿 =

𝔼𝑡[−𝑅𝑖,𝑡+1
𝑒 𝐶𝑚,𝑡+1

 |𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 < 0]

𝔼𝑡 [(𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1)

2
| 𝑅𝑚,𝑡+1

𝑒 − 𝐶𝑚,𝑡+1 < 0]
 

(8d) 

𝛾𝑖,𝑙
𝐿 =

𝔼𝑡[𝐶𝑖,𝑡+1
 𝐶𝑚,𝑡+1

 |𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 < 0]

𝔼𝑡 [(𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1)

2
| 𝑅𝑚,𝑡+1

𝑒 − 𝐶𝑚,𝑡+1 < 0]
 

(8e) 

λ 
 = 𝔼𝑡[𝑅𝑚,𝑡+1

𝑒 − 𝐶𝑚,𝑡+1] (8f) 

  

 The LD-CAPM implies that the expected return of a stock is equal to the risk-free rate, 𝑅𝑓,𝑡+1
 , 

plus a return premium for the expected level of liquidity costs, 𝔼𝑡[𝐶𝑖,𝑡+1], plus return premiums for the 

stock’s return and liquidity risks.  The gammas (𝛾𝑖,𝑟
𝑅 , 𝛾𝑖,𝑙

𝑅 , 𝛾𝑖,𝑟
𝐿 , 𝛾𝑖,𝑙

𝐿 ) measure the amount of each 

systematic risk in stock 𝑖.  Lambda (λ) measures the ‘price’ of each risk (the additional expected return 

per unit of the risk).  Within the gammas, the superscripts ‘𝑅’ and ‘𝐿’ refer to the excess market return 

and market-wide liquidity respectively.  The subscripts ‘𝑟’ and ‘𝑙’ refer to stock 𝑖’s excess return and 

liquidity. 

 The four (downside) gammas correspond to the four (symmetric) betas within the L-CAPM of  

Acharya and Pedersen (2005).  The main difference is that gammas measure comovement between a 

stock’s returns/liquidity and the market returns/liquidity in bad states (when liquidity-adjusted excess 

market returns are negative), whereas the Acharya and Pedersen (2005) betas do not distinguish between 

good and bad states.  This is an economically meaningful difference in the way risk is characterized.  A 

second difference, which is less economically meaningful and more technical in nature, is that the 

gammas are conditional co-moments (normalized by a conditional moment), whereas the Acharya and 

Pedersen (2005) betas are covariances (normalized by variance).  Both betas and gammas measure the 

degree of comovement and are similar in scale. 

 The first gamma, downside market risk (𝛾𝑖,𝑟
𝑅 ), measures the sensitivity of a stock’s excess returns 

to the market’s excess returns within the negative subspace (Ω−) defined by 𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1 < 0.  This 

gamma is equivalent to the downside beta of the D-CAPM developed in Hogan and Warren (1974) and 

Bawa and Lindenberg (1977), but with a downside threshold involving market-wide liquidity.  The other 

three gammas involve liquidity. 

 The second gamma, downside liquidity risk (𝛾𝑖,𝑙
𝑅 ), measures the sensitivity of a stock’s liquidity to 

the market’s excess returns within the negative subspace.  For example, stocks that tend to experience 

large declines in liquidity during falls in the market will have large positive values of 𝛾𝑖,𝑙
𝑅 .  Thus, 𝛾𝑖,𝑙

𝑅  can 

be interpreted as a measure of a stock’s susceptibility to downward liquidity spirals and abandonment 

during a flight-to-liquidity or flight-to-quality.  If investors demand a return premium to entice them to 
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hold such stocks, we would expect to find a positive cross-sectional premium associated with 𝛾𝑖,𝑙
𝑅 . 

Acharya and Pedersen (2005) find that the corresponding (symmetric) beta of the L-CAPM accounts for 

80% of a 1.1% p.a. liquidity risk premium.  Therefore, a comparison of this premium with that of 𝛾𝑖,𝑙
𝑅  

provides a comparison of the L-CAPM’s and LD-CAPM’s characterizations of liquidity risk. 

 The third gamma, downside aggregate liquidity risk (𝛾𝑖,𝑟
𝐿 ), measures the sensitivity of a stock’s 

excess returns to market-wide liquidity within the negative subspace.  This is a downside form of the risk 

termed ‘aggregate liquidity risk’ by Pastor and Stambaugh (2003) who interpret market-wide liquidity as 

a state variable.  Under this interpretation, investors will demand a return premium to hold stocks that 

tends to have large negative returns when market-wide liquidity falls (positive 𝛾𝑖,𝑟
𝐿 ). 

 Similarly, the fourth gamma, downside liquidity commonality risk (𝛾𝑖,𝑙
𝐿 ), measures the sensitivity 

of a stock’s liquidity to market-wide liquidity within the negative subspace (Ω−).  This gamma measures a 

downside form of the commonality in liquidity risk first explored by Chordia et al. (2001), Hasbrouck and 

Seppi (2001), and Huberman and Halka (2001). 

 

4. Data and method 

4.1 Sample 

Our sample spans the period January 1, 1962 to December 31, 2011 and consists of all common 

stocks listed on the New York Stock Exchange (NYSE) and the American Exchange (AMEX).
7
  Similar 

to Acharya and Pedersen (2005), we exclude stock-month observations in which the median stock price is 

below $5 or above $1,000.  We exclude stock-year observations with negative book-to-market values.  

We use daily return, price and volume data from the Centre for Research in Security Prices (CRSP), 

balance sheet data (used to compute book values) from Compustat and daily data on the Fama-French-

Carhart factors from the Fama-French data library. 

 

4.2 Measures of liquidity  

Our primary liquidity measure is the price impact measure (ILLIQ) of Amihud (2002), 

transformed as per Acharya and Pedersen (2005) so that it approximates the dollar trading cost per dollar 

traded (in robustness tests we examine other measures).  Amihud (2002) shows that this measure is 

strongly positively related to the bid-ask spread, price impact, and fixed trading costs.  Goyenko et al. 

(2009) compare how closely various daily and monthly liquidity proxies relate to high-frequency 

                                                           
7
 Consistent with Acharya and Pedersen (2005), we do not include Nasdaq-listed stocks because their volume is 

overstated in the CRSP data due to the inclusion of inter-dealer trades (and only commences in 1982).  The results 

are very similar when the crisis of 2008-2009 is omitted. 
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measures of transaction costs and find that ILLIQ is a relatively good proxy for liquidity.  Similarly, 

Hasbrouck (2009) finds that among several daily proxies, ILLIQ is most strongly correlated with trade-

and-quote based measures of price impact. 

At a daily frequency, ILLIQ is computed as: 

 
𝐼𝐿𝐿𝐼𝑄𝑖,𝜏 =

|𝑟𝑖,𝜏|

$𝑉𝑜𝑙𝑖,𝜏
  (9) 

where 𝑟𝑖,𝜏 is the return on stock 𝑖 on day 𝜏, and $𝑉𝑜𝑙𝑖,𝜏 is the dollar volume of trading in stock 𝑖 on day 

𝜏 measured in millions of dollars.
8
  Following Acharya and Pedersen, we truncate and normalize 𝐼𝐿𝐿𝐼𝑄𝑖,𝜏 

to obtain daily liquidity cost, 𝐶𝑖,𝜏: 

 𝐶𝑖,𝜏 = min
 

(0.25 + 0.30 𝐼𝐿𝐿𝐼𝑄𝑖,𝜏 𝑃𝜏−1 , 30.00) /100  (10) 

where 𝑃𝜏−1 is the ratio of the aggregate market capitalizations on day 𝜏 − 1 and January 1, 1962, and the 

constants 0.25 and 0.30 are chosen by Acharya and Pedersen to give 𝐶𝑖,𝜏 approximately the same level 

and variance as the effective half-spread.  The truncation and normalization step serves several purposes: 

(i) it converts the liquidity cost into ‘dollar cost per dollar invested’ consistent with the theoretical model; 

(ii) it removes the effects of inflation in nominal prices, which would otherwise affect 𝐼𝐿𝐿𝐼𝑄𝑖,𝜏; and (iii) it 

imposes realistic bounds on the liquidity cost.
9
  We aggregate to weekly and monthly frequencies by 

taking the simple average of 𝐶𝑖,𝜏 across days in the week or month, as is common for 𝐼𝐿𝐿𝐼𝑄𝑖,𝜏.  

 One final step associated with the liquidity cost measure is decomposing it into an expected 

component and innovations.  In the LD-CAPM, expected liquidity cost is a stock characteristic that 

affects expected returns, and innovations in liquidity costs are used to compute downside liquidity risks.
10

  

Similar to Acharya and Pedersen (2005), we use the residuals from an autoregressive regression model 

(an AR(20) model of 𝐶𝑖,𝜏 for each stock holding the value of 𝑃𝜏−1 fixed for all lags) as innovations in 

liquidity costs, 𝐶𝑖,𝜏
𝑒 .  We use two proxies for the expected liquidity cost: (i) the average of the past six 

                                                           
8
 Similar to Amihud (2002), we reduce the influence of outliers by winsorising 𝐼𝐿𝐿𝐼𝑄𝑖,𝜏 at the top 1% of the cross-

sectional distribution on every day and top 1% of the time-series distribution for every stock. 
9
 Acharya and Pedersen (2005) use two approaches to make liquidity costs comparable in scale to returns.  The first 

is freeing up the coefficients in their tests of the model, allowing them to absorb differences in scale.  The second is 

scaling liquidity costs by a parameter 𝜅, which is calibrated to average monthly turnover in their main specification.  

For consistency, we also use these two approaches.  In most of our tests, coefficients are free to absorb differences in 

scale.  When identifying the negative subspace (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏 < 0), we follow the second approach and scale 𝐶𝑚,𝜏 

using the coefficient derived by Acharya and Pedersen (2005) from monthly turnover converted to daily units by 

diving by 22. 
10

 The use of innovations in liquidity when computing liquidity risks is important because liquidity is persistent and 

shocks rather than predictable changes could be priced.  See, for example, Acharya and Pedersen (2005), Pastor and 

Stambaugh (2003), Sadka (2006), Liu (2006), and Bongaerts et al. (2011).  
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months of normalized liquidity costs for that stock (𝔼𝑡[𝐶𝑖,𝑡+1
𝐴𝑣𝑔

]); and (ii) the fitted value of an AR(2) 

model of monthly liquidity costs (𝔼𝑡[𝐶𝑖,𝑡+1
𝐴𝑅 ]), as per Acharya and Pedersen (2005). 

In robustness tests we use various alternative measures of liquidity: (i) log of Amihud’s ILLIQ; 

(ii) log of a modified ILLIQ, calculated using the daily high/low range instead of close-to-close returns; 

(iii) a turnover based price impact metric proposed by Brockman et al. (2008); and (iv) the actual quoted 

bid-ask spread using a more recent sub-period.  

 

4.3 Estimation of gammas 

 The gammas implied by the LD-CAPM are the conditional co-moments defined in equations (8b-

8e) above.  We estimate these four gammas using daily observations in rolling six-month windows ending 

at the end of the portfolio formation month: 

 
𝛾𝑖,𝑟

𝑅 ≅
∑  𝑅𝑖,𝜏

𝑒 𝑅𝑚,𝜏
𝑒 

𝜏∈Ω−

∑  (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 )
2 

𝜏∈Ω−

 (11a) 

𝛾𝑖,𝑙
𝑅 ≅

∑ −𝑅𝑖,𝜏
𝑒 𝐶𝑚,𝜏

𝑒 
𝜏∈Ω−

∑  (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 )
2 

𝜏∈Ω−

 (11b) 

𝛾𝑖,𝑟
𝐿 ≅

∑  −𝐶𝑖,𝜏
𝑒

 

 
𝑅𝑚,𝜏

𝑒 
𝜏∈Ω−

∑  (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 )
2 

𝜏∈Ω−

 (11c) 

𝛾𝑖,𝑙
𝐿 ≅

∑  𝐶𝑖,𝜏
𝑒 𝐶𝑚,𝜏

𝑒 
𝜏∈Ω−

∑  (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 )
2 

𝜏∈Ω−

 (11d) 

 

where 𝑅𝑚,𝜏
𝑒  is the daily value-weighted market return in excess of the daily return implied by one-month 

Treasury bills and 𝐶𝑚,𝜏
𝑒  is the daily innovation in market liquidity cost (innovations from an AR model of 

daily value-weighted mean normalized liquidity costs (𝐶𝑖,𝜏
 ) across all stocks).  Recall that the negative 

subspace (Ω−) is defined by 𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏 < 0.  In our sample, 5,461 days (43.4% of all days) are in the 

negative subspace and 7,120 (56.6% of all days) are in the positive subspace.
11

  We require at least 15 

negative subspace days in the estimation window for the gamma estimates to be valid.   

The decision to use daily observations in rolling six-month windows to estimate the four gammas 

in our main analysis is driven by several considerations.  First, using a higher sampling frequency (than 

say monthly observations) provides more precise estimates (e.g., Bollerslev and Zhang (2003); Barndorff‐

Nielsen and Shephard (2004)).  Second, there is considerable evidence that stocks’ systematic risks and 

factor loadings are time-varying, and using relatively short rolling windows allows us to capture this 

                                                           
11

 The mean and standard deviation of 𝑅𝑚,𝜏
𝑒  are 5.43 bps and 97.75 bps, respectively.  The mean and standard 

deviation of 𝐶𝑚,𝜏 (in daily units) is 0.27 bps and 0.10 bps, respectively. 



 14 

feature.  Consequently, we are able to examine how downside liquidity risks vary across market 

conditions.  In robustness tests we examine different length windows and a lower (weekly) sampling 

frequency (which minimizes microstructure phenomena and non-synchronous trading issues) and find 

similar results.  

 

4.4 Control variables and other asset pricing models  

In examining the cross-sectional relation between the gammas emerging from our model and 

returns, we employ a large set of control variables, including stock characteristics and risk factor loadings 

found in previous studies to determine cross-sectional returns.  Unless otherwise specified the control 

variables, like the gammas, are measured at the end of the portfolio formation month.  To maintain 

consistency with the estimates of our model’s gammas, we use six-month rolling windows of daily 

observations to estimate control variables that are betas.  

 We estimate the four betas from the Acharya and Pedersen (2005) L-CAPM in rolling six-month 

windows of daily observations:
 12

 

 
𝛽𝑖,1

𝐴𝑃 =
Cov𝑡[𝑅𝑖,𝑡+1

𝑒 , 𝑅𝑚,𝑡+1
𝑒 ]

Var𝑡[𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1

𝑒 ]
≅

∑ (𝑅𝑖,𝜏
𝑒 − �̅�𝑖,𝜏

𝑒 )(𝑅𝑚,𝜏
𝑒 − �̅�𝑚,𝜏

𝑒 ) 
𝜏∈Ω 

∑ (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 − (�̅�𝑚,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 ))
2

 
𝜏∈Ω 

     (12a) 

 
𝛽𝑖,2

𝐴𝑃 =
Cov𝑡[𝐶𝑖,𝑡+1

𝑒 , 𝑅𝑚,𝑡+1
𝑒 ]

Var𝑡[𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1

𝑒 ]
≅

∑ (𝐶𝑖,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 )(𝑅𝑚,𝜏
𝑒 − �̅�𝑚,𝜏

𝑒 ) 
𝜏∈Ω 

∑ (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 − (�̅�𝑚,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 ))
2

 
𝜏∈Ω 

     (12b) 

 
𝛽𝑖,3

𝐴𝑃 =
Cov𝑡[𝑅𝑖,𝑡+1

𝑒 , 𝐶𝑚,𝑡+1
𝑒 ]

Var𝑡[𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1

𝑒 ]
≅

∑ (𝑅𝑖,𝜏
𝑒 − �̅�𝑖,𝜏

𝑒 )(𝐶𝑚,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 ) 
𝜏∈Ω 

∑ (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 − (�̅�𝑚,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 ))
2

 
𝜏∈Ω 

     (12c) 

 
𝛽𝑖,4

𝐴𝑃 =
Cov𝑡[𝐶𝑖,𝑡+1

𝑒 , 𝐶𝑚,𝑡+1
𝑒 ]

Var𝑡[𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1

𝑒 ]
≅

∑ (𝐶𝑖,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 )(𝐶𝑚,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 ) 
𝜏∈Ω 

∑ (𝑅𝑚,𝜏
𝑒 − 𝐶𝑚,𝜏

𝑒 − (�̅�𝑚,𝜏
𝑒 − 𝐶�̅�,𝜏

𝑒 ))
2

 
𝜏∈Ω 

   . (12d) 

   

In comparing the Acharya and Pedersen (2005) betas with the LD-CAPM betas it is important to 

note the opposite signs for two of the four betas.  Specifically, 𝛾𝑖,𝑙
𝑅  measures comovement between a 

stock’s liquidity and the market’s excess returns, whereas the symmetric analogue, 𝛽𝑖,2
𝐴𝑃, measures 

comovement between a stock’s illiquidity (liquidity cost) and the market’s excess returns.  Similarly, 𝛾𝑖,𝑟
𝐿  

measures comovement between a stock’s excess return and market-wide liquidity, whereas the symmetric 

                                                           
12

 Our estimation of 𝛽𝑖,1
𝐴𝑃 to 𝛽𝑖,4

𝐴𝑃 differs from Acharya and Pedersen (2005) in the following ways.  We use a daily 

sampling frequency and rolling estimation window in contrast to their monthly observations and unconditional (full 

sample) estimation.  We present the Acharya and Pedersen betas in a different order to that of their paper. 
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analogue, 𝛽𝑖,3
𝐴𝑃, measures comovement between a stock’s excess return and market-wide illiquidity 

(liquidity cost). 

We estimate the conventional CAPM market beta (𝛽𝑖
𝑀𝐾𝑇) from the following time-series 

regression for each stock 𝑖 in a rolling six-month window of daily observations: 

 𝑅𝑖,𝜏
𝑒 = 𝛼𝑖 + 𝛽𝑖

𝑀𝐾𝑇𝑅𝑚,𝜏
𝑒 + 𝜀𝑖,𝜏 (13) 

where 𝑅𝑖,𝜏
𝑒  is the daily return of stock 𝑖 in excess of the daily return implied by one-month Treasury bills 

and 𝑅𝑚,𝜏
𝑒  is the daily return on the CRSP value-weighted index in excess of the daily return implied by 

one-month Treasury bills.  We also calculate market betas corrected for non-synchronous trading using 

the Dimson (1979) method with four lags and a lead of the excess daily market return.  The results are 

qualitatively similar so we report results using the simple market beta as our baseline. 

We obtain loadings on the Fama-French-Carhart factors by estimating the following time-series 

regression for each stock 𝑖 in a rolling six-month window of daily observations: 

 𝑅𝑖,𝜏
𝑒 = 𝛼𝑖 + 𝛽𝑖

𝑀𝐾𝑇𝑅𝑚,𝜏
𝑒 + 𝛽𝑖

𝑆𝑀𝐵𝑆𝑀𝐵𝜏 + 𝛽𝑖
𝐻𝑀𝐿𝐻𝑀𝐿𝜏 + 𝛽𝑖

𝑈𝑀𝐷𝑈𝑀𝐷𝜏 + 𝜀𝑖,𝜏 . (14) 

𝑆𝑀𝐵𝜏 and 𝐻𝑀𝐿𝜏 are the daily Fama and French (1993) size and value factors, and 𝑈𝑀𝐷𝜏 is the Carhart 

(1997) momentum factor (winners minus losers portfolio), and 𝛽𝑖
𝑆𝑀𝐵, 𝛽𝑖

𝐻𝑀𝐿, and 𝛽𝑖
𝑈𝑀𝐷 are stock 𝑖’s 

loadings on the size, value and momentum factors.  We estimate each stock’s idiosyncratic volatility 

(IVOL) in the spirit of Ang et al. (2006) by taking the standard deviation of the residuals of the four-factor 

model above.  A stock’s total (realized) volatility (TVOL) is simply the standard deviation of daily 

returns, 𝑅𝑖,𝜏
 , during the rolling past six-month interval. 

 We estimate co-skewness (Rubinstein (1973); Kraus and Litzenberger (1976); Harvey and 

Siddique (2000)), 𝛽𝑖
𝐶𝑂𝑆𝐾𝐸𝑊, from the following time-series regression for each stock 𝑖 in a rolling six-

month window of daily observations: 

 𝑅𝑖,𝜏
𝑒 = 𝛼𝑖 + 𝛽𝑖

𝑀𝐾𝑇𝑅𝑚,𝜏
𝑒 + 𝛽𝑖

𝐶𝑂𝑆𝐾𝐸𝑊(𝑅𝑚,𝜏
𝑒 )

2
+ 𝜀𝑖,𝜏 (15) 

Other control variables are calculated following the conventions in the asset pricing literature.  A 

firm’s size (SIZE) is the natural log of its market capitalization (in $ millions).  The natural log of the 

equity book to market ratio (BM) is calculated as per Fama and French (1993).  Short-term reversal (REV) 

is estimated following Jegadeesh (1990) as the stock’s return over the prior month (i.e., the month ending 

at the point of portfolio formation).  Following Jegadeesh and Titman (1993), momentum (MOM) is the 

stock’s cumulative return over an 11-month period ending one month prior to the point of portfolio 

formation.  Following Chordia et al. (2001), the volatility of turnover (SDTURN) is calculated as the 

standard deviation of monthly turnover over the prior 12 months.  Following Bali et al. (2011), a proxy 

for lottery features of a stock (MAX) is calculated as the stock’s maximum daily return during the prior 

month. 
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5. Empirical analysis  

5.1 Descriptive statistics and characterization of gammas 

 Table 1 reports descriptive statistics and correlations between the key variables in the LD-CAPM, 

as well as the Acharya and Pedersen (2005) L-CAPM, using the pooled sample of stock-month 

observations.  The mean liquidity cost (0.019) is considerably larger than the median (0.003), consistent 

with a right-skewed distribution of liquidity costs (illiquidity) as documented by Roll and Subrahmanyam 

(2010).  The gammas and betas involving liquidity have considerably smaller magnitude than those 

involving only returns (𝛾𝑖,𝑟
𝑅  and 𝛽𝑖,1

𝐴𝑃) due to the different scale of liquidity.
13

  Therefore, Table 1 provides 

a reference point for interpretation of later results.  Downside market risk (𝛾𝑖,𝑟
𝑅 ), as well as its symmetric 

analogue (𝛽𝑖,1
𝐴𝑃), have means and medians close to one, similar to beta in the CAPM.     

 

< TABLE 1 > 

 

The correlations between the LD-CAPM gammas are all close to zero, as are the correlations 

between the L-CAPM betas.  Downside liquidity commonality risk, 𝛾𝑖,𝑙
𝐿 , has a moderate positive 

correlation (0.25) with the level of liquidity costs.  This suggests that relatively illiquid stocks are more 

susceptible to becoming even more illiquid during declines in market-wide liquidity.  The absolute 

correlations between the gammas and their symmetric analogues range between 0.58 and 0.88, indicating 

that symmetric betas capture some downside risk, but are far from perfect proxies.
14

 

 The interrelations between the LD-CAPM gammas and their relations with other stock-level 

characteristics may be nonlinear, in which case simple correlations will not adequately describe the 

relations.  The Internet Appendix uses decile sorts to allow non-linearity to present and reaches similar 

conclusions while detailing somewhat U-shaped interrelations between some of the gammas and betas 

(e.g., downside liquidity commonality risk, 𝛾𝑖,𝑙
𝐿 , and its symmetric analogue). 

 

5.2 Univariate portfolio-level relation between gammas and returns 

 We begin empirically analyzing the relation between the gammas and returns by examining 

returns for deciles of the LD-CAPM gammas.  For comparison, we also report returns for deciles of the 

                                                           
13

 The signs and magnitudes are similar to those reported by Acharya and Pedersen (2005), noting that the 

numbering of the betas differs. 
14

 The negative correlation between downside liquidity risk and its symmetric analogue is explained by the fact that 

𝛾𝑖,𝑙
𝑅  is defined in terms of liquidity, whereas 𝛽𝑖,2

𝐴𝑃, following Acharya and Pedersen (2005), is defined in terms of 

illiquidity. 
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Acharya and Pedersen (2005) betas.  Each month, 𝑡, we form deciles of the gammas/betas measured using 

a rolling six-month window [𝑡 − 5, 𝑡].  For each decile portfolio in each month, we calculate equal-

weighted and value-weighted means of the portfolio’s next six-month return in excess of the risk-free 

rate, and alpha from a Fama-French-Carhart four-factor model estimated on the next six months of daily 

returns.  To be clear, the gamma/beta estimation windows and the return/alpha measurement windows are 

sequential and non-overlapping (gammas/betas are estimated using months [𝑡 − 5, 𝑡] and returns/alphas 

are measured for the period [𝑡 + 1, 𝑡 + 6]).  For each month, we also compute the differences between 

decile 10 and decile 1 returns/alphas (D10-D1).  Finally, we calculate time-series means across all months 

in the sample period.  These means are reported in Table 2 as annualized percentages together with the t-

statistic for D10-D1 using Newey-West standard errors with 36 lags. 

 

< TABLE 2 > 

 

We see no pronounced trends in the value-weighted or equal-weighted realized future returns 

across deciles of downside market return risk (𝛾𝑖,𝑟
𝑅 ) nor deciles of downside aggregate liquidity risk (𝛾𝑖,𝑟

𝐿 ).  

In contrast, returns for deciles of downside liquidity risk (𝛾𝑖,𝑙
𝑅 ) and downside liquidity commonality risk 

(𝛾𝑖,𝑙
𝐿 ) display strong (somewhat U- or J-shaped) patterns.  Comparing the 1

st
 and 10

th
 deciles, the realized 

return for equal (value) weighted portfolios with high levels of downside liquidity risk is 10.61% (8.10%) 

above that of portfolios with low levels of this risk, with a t-statistic of 10.88 (7.04).  For downside 

liquidity commonality risk this return difference for equal (value) weighted portfolios is 3.61% (4.39%) 

with a t-statistic of 3.41 (4.26).  The non-monotonicity is likely to be the result of other priced factors 

(such as other gammas) being correlated with the gamma being used to form deciles.
15

 

The Fama-French-Carhart four-factor model alphas assist the interpretation of these risk-return 

relations.  The difference in the alphas across deciles of 𝛾𝑖,𝑙
𝑅  and 𝛾𝑖,𝑙

𝐿  represent the realized returns 

associated with these risks, purged of the premiums associated with stocks’ exposure to the risks captured 

by the market, size, value, and momentum factors.  The results in Table 2 indicate that downside liquidity 

risk (𝛾𝑖,𝑙
𝑅 ) and downside liquidity commonality risk (𝛾𝑖,𝑙

𝐿 ) both have a strong positive relation with future 

                                                           
15

 Non-monotonicity in these decile portfolio results is not inconsistent with the LD-CAPM because the LD-CAPM 

implies linear conditional relations between gammas and expected excess returns (i.e., holding other gammas fixed), 

whereas the decile sorts test unconditional (univariate) relations.  The Internet Appendix provides examples of how 

non-monotonicity can result from correlations among gammas (or correlations between gammas and the level of 

liquidity).  In robustness tests we find no evidence of non-linearity in the conditional relations between gammas and 

returns in multivariate tests. 
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alphas.  This result suggests the return premiums associated with these two gammas are not subsumed by 

risks associated with the Fama-French-Carhart factors. 

The symmetric Acharya and Pedersen (2005) counterparts to the LD-CAPM gammas show 

smaller magnitude relations with returns and alphas, and also display non-linearity in the relations.  Of the 

four betas, the strongest relation with returns is for symmetric liquidity risk (𝛽𝑖,2
𝐴𝑃).

16
  For example, stocks 

in 𝛽𝑖,2
𝐴𝑃 decile 1 earn an average equal-weighted realized return that is 1.62% larger than stocks in decile 

10, and the difference has a t-statistic of 2.79.  The relatively stronger relation between the LD-CAPM 

gammas and returns/alphas suggests that the LD-CAPM more accurately characterizes how investors 

view liquidity risk.  

 

5.3 Multivariate firm-level cross-sectional tests of the LD-CAPM 

The analysis of decile portfolios in the previous subsection has the advantages of being 

nonparametric and not imposing a functional form on the relation between risks and returns.  It does not, 

however, lend itself to simultaneously controlling for multiple stock-level characteristics and risks.  In 

order to do so, we turn to cross-sectional Fama-MacBeth regressions to test the equilibrium relations 

implied by the LD-CAPM.  Relaxing the model-implied constraints on the prices of the risks in equation 

(8a) gives: 

 𝔼𝑡[𝑅𝑖,𝑡+1
 ] = 𝑅𝑓,𝑡+1

 + 𝜆 
𝐶𝔼𝑡[𝐶𝑖,𝑡+1] + 𝜆𝑟

𝑅𝛾𝑖,𝑟
𝑅 + 𝜆𝑙

𝑅𝛾𝑖,𝑙
𝑅 + 𝜆𝑟

𝐿𝛾𝑖,𝑟
𝐿 + 𝜆𝑙

𝐿𝛾𝑖,𝑙
𝐿   . (16) 

This step separates the four risks allowing the data to speak on how the associated premiums contribute to 

expected returns.
17

 

We first test the expected return relations given by the LD-CAPM with and without the model-

implied constraints, with different permutations of the gammas and with alternative methods of estimating 

the variables.  We then compare the LD-CAPM to its symmetric counterpart and examine its incremental 

contribution to explaining returns.  Next, we throw an extensive set of control variables and other model 

risk factors at the LD-CAPM tests to see which risks are unique and which are subsumed by other effects.  

Finally, we estimate other well-known asset pricing models for the sake of comparison. 

We use a consistent approach through all of these tests.  Each month, 𝑡, we estimate an equal-

weighted stock-level cross-sectional regression of realized future six-month returns (return during the 

                                                           
16

 This result is consistent with Acharya and Pedersen (2005) who report that 80% of the total premium associated 

with the three liquidity betas is due to 𝛽𝑖,2
𝐴𝑃.  It is also consistent with the results of Hagströmer et al. (2013). 

17
 In the empirical tests of Acharya and Pedersen (2005), liquidity costs are scaled by a parameter 𝜅.  The model is 

then estimated using various values of 𝜅: calibrated to average monthly turnover; a free parameter; 𝜅 = 0; and lastly 

𝜅 = 1 to reflect the sale and repurchase of entire portfolios every holding period.  We leave the equivalent parameter 

in our model, 𝜆 
𝐶 , as a free parameter. 
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months [𝑡 + 1, 𝑡 + 6]) on a set of characteristics, risk measures, and control variables.
18

  We then 

calculate and report the time-series averages of the intercepts and slope coefficients from the monthly 

cross-sectional regressions and test statistical significance using Newey-West standard errors with 36 

lags.  In robustness tests we find very similar results when using non-overlapping observations 

(estimating a cross-sectional regression every six months instead of every month).  Like Da et al. (2012),  

Bali et al. (2011), and others, we use stocks as the units of observation in the cross-sectional regressions 

rather than forming portfolios.  This avoids biasing the results in favor of (or against) a particular model 

as a result of the arbitrary but necessary choice of a sorting variable(s) in the portfolio formation.  

Furthermore, Lewellen et al. (2010) show that the use of the 25 Fama and French (1993) size-B/M sorted 

portfolios gives a low hurdle in empirical asset pricing tests because of the strong factor structure created 

in the construction of the portfolios.     

There is a large body of evidence on momentum effects in stock prices.  If medium-term 

momentum is independent of return and liquidity risks then failure to control for it could bias our 

estimates of the returns from bearing return and liquidity risks.  This is particularly important in our 

setting because errors in estimation of the gammas could correlate with return momentum (e.g., stocks for 

which downside return risk is overestimated are likely to have had a negative average returns during the 

estimation window, which in the presence of medium-term momentum gives them an increased 

probability of low medium-term future returns).  Therefore, in addition to the LD-CAPM explanatory 

variables, in most tests of the LD-CAPM we include the stock’s return during the six-month gamma 

estimation window as a control for medium-term momentum.   

 

< TABLE 3 > 

 

Table 3 reports estimates of various permutations of the LD-CAPM expected return relation.  

Model 1 imposes the constraint implied by the LD-CAPM that the prices of all downside risks are the 

same (𝜆𝑟
𝑅 = 𝜆𝑙

𝑅 = 𝜆𝑟
𝐿 = 𝜆𝑙

𝐿).  The results indicate a statistically significant return premium for the total 

downside risk (coefficient of +0.0127 with t-statistic of 3.62).  The coefficient on the expected liquidity 

cost level (𝔼𝑡[𝐶𝑖,𝑡+1
 ]) is positive and statistically significant suggesting that less liquid stocks earn a 

return premium for their liquidity cost level, independent of any premium associated with downside 

                                                           
18

 The choice of window length for future returns (six months) is a compromise.  If the window is made too short, 

we run the risk of predominantly measuring return adjustments to the recently observed characteristics/risks rather 

than equilibrium expected returns corresponding to those characteristics/risks, particularly if the adjustment process 

takes time (e.g., Hoberg and Welch (2009); Bali et al. (2012)).  Shorter return horizons also introduce more noise 

into realized returns.  On the other hand, when betas/gammas are time-varying longer return windows introduce 

error in the risk measures relative to the returns to which they are related. 
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liquidity risk.  These results seem intuitively sound and are consistent with existing evidence that: (i) 

downside risks are associated with return premiums (e.g., Ang et al. (2006)); and (ii) the level of 

illiquidity is associated with a return premium (e.g., Amihud and Mendelson (1986); Amihud (2002)).   

To examine the contribution of the four risks to the downside risk premium we relax the 

theoretical constraint on the prices of risk and allow them to take on distinct values.  Model 2 shows that 

the return premium for total downside risk is driven mainly by downside liquidity risk, 𝛾𝑖,𝑙
𝑅 .  This risk has 

a large and statistically significant coefficient (t-statistic greater than four).  This is consistent with the 

notion that investors require a return premium to hold stocks that are more susceptible to the negative 

effects of liquidity spirals and flights-to liquidity/quality.  There is also a marginally statistically 

significant premium associated with downside market risk (𝛾𝑖,𝑟
𝑅 ). This supports the D-CAPM of Hogan 

and Warren (1974) and Bawa and Lindenberg (1977) and the empirical findings of Ang et al. (2006), and 

is consistent with the pricing kernel shapes seen in De Giorgi and Post (2008) and Rosenberg and Engle 

(2002).  The coefficients of the other two gammas involving market-wide liquidity are not statistically 

distinguishable from zero.  The results are similar when testing the effects of each of the gammas 

separately (reported in the Internet Appendix).  The return premium on the expected illiquidity level 

(𝔼𝑡[𝐶𝑖,𝑡+1
 ]) remains positive and highly statistically significant in all of these specifications. 

Model 3 examines the effect of excluding the medium-term momentum control variable.  The 

coefficients on the four risks remain largely unchanged as does the premium for the expected illiquidity.  

Model 4 replaces the expected illiquidity level calculated as the average of the liquidity cost during the 

past six months (𝔼𝑡[𝐶𝑖,𝑡+1
𝐴𝑣𝑔

]) with the predicted value from an autoregressive model (𝔼𝑡[𝐶𝑖,𝑡+1
𝐴𝑅 ]).  The 

results are consistent across the two alternative measures of expected liquidity costs. 

While the premium associated with downside liquidity risk (𝛾𝑖,𝑙
𝑅 ) is large and statically significant, 

it is natural to question its economic meaningfulness.
19

  To answer this, we compute the return premium 

(implied by Model 2 of Table 3) for stocks with high levels of 𝛾𝑖,𝑙
𝑅  (decile 10) relative stocks with low 

levels of 𝛾𝑖,𝑙
𝑅  (decile 1).  Measuring the implied 10

th
 minus 1

st
 decile return premium is a common 

approach in the empirical asset pricing literature.  Using the decile results contained in the Internet 

Appendix we estimate the return premium for downside liquidity risk as 0.0099 × (1.625 − (−1.528)) 

per six months or approximately 6.34% p.a..  Using a similar approach, the premium for the expected 

liquidity cost level, 𝔼𝑡[𝐶𝑖,𝑡+1
 ], is 8.44% p.a., and for downside market risk, 𝛾𝑖,𝑟

𝑅 , it is 5.47% p.a..  

                                                           
19

 Harvey et al. (2013) argue that statistical significance criteria in cross-sectional asset pricing tests should be 

tightened owing to historical data mining by researchers.  They suggest using a t-statistic critical value of three.  Our 

main results clear this higher hurdle; for example, the return premiums associated with the liquidity level and with 

liquidity risk have t-statistics around four to six. 
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Given that outliers are likely to influence the means of characteristics/risks in the top and bottom 

deciles, a more robust and conservative way of computing the magnitude of the return premium is to 

compare 9
th
 and 2

nd
 decile stocks.  Using this method, the return premium for downside liquidity risk is 

approximately 1.26% p.a., for the expected liquidity cost level it is 2.31% p.a., and for downside market 

risk it is 3.12%.  Another way to interpret the magnitudes is the implied return premium for a one 

standard deviation change in the gamma or characteristic.  Using this approach, the premium for 

downside liquidity risk is 2.12% p.a., for the expected liquidity cost level it is 3.04% p.a., and for 

downside market risk it is 1.65%.  While an evaluation of the risk premium depends on how one defines 

high and low levels of risk, the calculations above indicate that even conservative definitions result in 

economically meaningful premiums. 

The adjusted R
2
 for the LD-CAPM with disaggregated gammas (Model 2) is 4.22%.  When 

interpreting this, one must keep in mind that our cross-sectional regressions use stocks not portfolios.  

This almost certainly leads to significantly lower R
2
 because portfolios possess little idiosyncratic return 

variation.  The adjusted R
2
 for the LD-CAPM (4.22%) is comparable to the model fits seen in cross-

sectional studies using stocks (e.g., Da et al. (2012) obtain adjusted R
2
s between 0.83% and 5.67% for the 

various models they examine, which include the Fama-French factors).  We place the adjusted R
2
 for the 

LD-CAPM into context by presenting estimates of alternative models below. 

 

5.4 Comparisons of the LD-CAPM and the L-CAPM 

Next, we compare the LD-CAPM to its symmetric analogue (the model developed by Acharya 

and Pedersen (2005)) and examine the incremental contribution of the downside gammas in explaining 

returns.  Model 5 in Table 3 estimates the Acharya and Pedersen (2005) L-CAPM, and Models 6 and 7 

pool the symmetric betas and downside gammas (with and without the momentum control).  Estimates in 

Model 5 are broadly consistent with Acharya and Pedersen (2005), despite the differences in estimation 

procedure (e.g., using daily rather than monthly observations, using individual stocks rather than 

portfolios).  The signs of the return premiums correspond to those documented by Acharya and Pedersen 

(2005), and the premiums are statistically significant for the illiquidity level (𝔼𝑡[𝐶𝑖,𝑡+1
 ]), symmetric 

market risk (𝛽𝑖,1
𝐴𝑃), and symmetric liquidity commonality risk (𝛽𝑖,4

𝐴𝑃).  Interestingly, the model fit is 

approximately the same as for the LD-CAPM (3.12% compared to 3.08%, without momentum controls).  

Given the LD-CAPM gammas are estimated using only a subset (bad states) of the data used in the L-

CAPM (good and bad states), the similarity in model fits suggests that most of the explanatory power 

stems from the relation between stock and market variables during bad states.  Thus, the LD-CAPM is a 

parsimonious way to characterize the main effects of return and liquidity risks. 
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Combining the betas and downside gammas in Models 6 and 7 provides further insights about the 

characteristics of liquidity risks.  In these models, the downside gammas measure the incremental 

premium associated with downside risks, above that captured by symmetric betas.  Similarly, by 

controlling for the downside gammas, the premiums to the symmetric betas in these models are purged of 

the downside premium and therefore pick up the premium associated with comovement in good states.  

The results in Models 6 and 7 show an increase (doubling) of the premium associated with downside 

liquidity risk (𝛾𝑖,𝑙
𝑅 ), which remains highly statistically significant (t-statistics above five).  This result 

suggests investors view downside liquidity risk differently from symmetric or upside liquidity risk and 

require an additional return premium to hold stocks with high levels of this risk.  Furthermore, the 

coefficient on symmetric liquidity risk (𝛽𝑖,2
𝐴𝑃) flips sign, suggesting a return discount (negative premium) 

for symmetric liquidity risk, holding downside liquidity risk fixed.
20

  Given the premium associated with 

symmetric liquidity risk in Models 6 and 7 is purged of the premium associated with downside liquidity 

risk, the return discount suggests investors view comovement between a stock’s liquidity and excess 

market returns in good states as a desirable characteristic rather than a risk.   

To more directly confirm the observation that investors view comovement in good states as a 

desirable characteristic rather than a risk, we estimate an upside version of our model, replacing the 

downside gammas with upside counterparts labelled zetas.  The upside zetas are computed in the same 

way as the downside risks but in good rather than bad states.
21

   

The results, reported in Models 8 and 9 of Table 3, confirm that upside liquidity risk (𝜁𝑖,𝑙
𝑅 ) is 

associated with a significant premium that is opposite in sign to that of downside liquidity risk (𝛾𝑖,𝑙
𝑅 ).  The 

decile 10 minus decile 1 implied upside liquidity risk return premium is -6.14% p.a. which is similar in 

magnitude to the premium associated with downside liquidity risk.  This finding reinforces the 

importance of asymmetry in characterizing liquidity risk and accounting for its impact on asset prices.  

Interestingly, the premium associated with the upside counterpart of market risk (𝜁𝑖,𝑟
𝑅 ) is similar to that of 

downside market risk (𝛾𝑖,𝑟
𝑅 ).  The similarity in these upside and downside premiums suggests that, in 

contrast to liquidity risk, there is not a great deal of asymmetry in the characteristics of market risk or in 

how investors price this risk.  The Internet Appendix reports further tests of the upside zetas. 

                                                           
20

 Recall that, in contrast to downside liquidity risk, 𝛽𝑖,2
𝐴𝑃 is the comovement of a stock’s liquidity cost (illiquidity) 

with the market’s excess return.  Stocks with high liquidity risk tend to increase in illiquidity when the market 

declines and consequently have negative 𝛽𝑖,2
𝐴𝑃.  Therefore, a positive coefficient suggests a negative premium (return 

discount) to stocks that have a high level of symmetric liquidity risk. 
21

 This upside version of the LD-CAPM is inconsistent with conventional investor preferences; it requires a pricing 

kernel that is flat across losses and decreasing across gains, in other words, a representative investor possessing risk-

neutrality across losses and risk aversion across gains.   
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The joint tests of the LD-CAPM and L-CAPM, and the tests of the upside counterpart to our 

model, suggest an explanation for the mixed empirical findings in previous studies about the importance 

of liquidity risk.
22

  Namely, investors care differently about the degree of comovement between a stock’s 

liquidity and excess market returns in bad states compared to that of good states—they require a positive 

return premium to hold stocks with downside liquidity risk, yet are willing to accept a lower rate of return 

for stocks with upside liquidity ‘risk’.  Symmetric liquidity risk measures obtain from imposing 

symmetry, effectively forcing the upside and downside premiums to be equal.
23

  This restriction causes 

much of the upside and downside premiums to cancel out and leads to underestimation of the importance 

of liquidity risk.  Imposing symmetry in estimating the liquidity risk premium is akin to regressing a 

dependent variable on two determinants (one positively related to the dependent variable and the other 

negatively related) and imposing the constraint that the two coefficients must take the same sign (are 

linearly related via a positive constant).  While the upside and downside liquidity risk premiums offset 

each other in mis-specified estimations that impose symmetry, they do not offset each other in asset 

returns because upside and downside liquidity risks are almost entirely uncorrelated (correlation of -

0.025).  Stocks with high downside liquidity risk do not tend to have a corresponding high level of upside 

risk, which would be required for the premiums to offset each other. 

Our results support the hypothesis that symmetric liquidity risk models mis-estimate the liquidity 

risk premium through mis-characterization of liquidity risk.  The premium associated with downside 

liquidity risk (𝛾𝑖,𝑙
𝑅 ) is highly statistically significant with a t-statistic around five, whereas the premium for 

symmetric liquidity risk, (𝛽𝑖,2
𝐴𝑃), is not statistically distinguishable from zero, with an absolute t-statistic 

around 0.6.  The magnitudes tell the same story.  Previously we calculated that the 10
th
 minus 1

st
 decile 

cross-sectional return premium for downside liquidity risk is 6.34% p.a..  Performing the same calculation 

on symmetric liquidity risk, 𝛽𝑖,2
𝐴𝑃, we get a cross-sectional return premium of only 0.56% p.a. (same order 

of magnitude as the 0.82% p.a. found by Acharya and Pedersen for the difference between portfolios 25 

and 1), illustrating the mis-estimation caused by the assumption of symmetry.  For the more conservative 

9
th
 minus 2

nd
 decile premiums, we get a downside liquidity risk premium of 1.26% p.a., whereas for 𝛽𝑖,2

𝐴𝑃, 

we get a cross-sectional return premium of only 0.08% p.a..  Therefore, the return premium associated 

with downside liquidity risk is ten to 15 times larger than suggested by symmetric liquidity risk measures. 
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 For example, Hasbrouck (2009) finds no evidence of a liquidity risk premium, in contrast to earlier studies. 
23

 In the absence of strong distributional assumptions, the kernel underpinning the Acharya and Pedersen (2005) 

model (see footnote 5) can be obtained from a combination of the LD-CAPM kernel and its upside counterpart.  To 

recover the Acharya and Pedersen (2005) kernel from the upside and downside kernels without making strong 

distributional assumptions requires assuming equal risk aversion in good and bad states.  In the beta/gamma 

representation of the models, this assumption translates to the restriction that the premium associated with upside 

risks is equal to that of downside risks. 
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5.5 Comparisons with other empirical asset pricing models 

It is natural to ask whether the LD-CAPM risks are unique or instead proxy for previously 

documented factors.  To answer this question we extend the previous tests by taking the unconstrained 

LD-CAPM (Table 3, Model 2) as the base and progressively adding control variables and other known 

risk factors.  In the process we also estimate other asset pricing models on our sample for comparison.  

Table 4 reports these results. 

 

< TABLE 4 >  

 

Model 1 is the standard CAPM of Sharpe (1964) and Lintner (1965).  Consistent with the 

findings of other empirical studies, the market beta is not statistically significant.  Model 2 augments the 

LD-CAPM with the addition of the (symmetric) CAPM market beta.  Interestingly, the premium on 

downside market risk (𝛾𝑖,𝑟
𝑅 ) increases sharply in both magnitude and statistical significance, while the 

premium on symmetric market beta becomes negative.  This mirrors our observations from the previous 

subsection when adding symmetric liquidity risk to our tests of downside liquidity risk and suggests that 

asymmetry also plays an important role in how investors view market risk. 

Model 3 splits the market beta into upside and downside betas (𝛽𝑖
+ and 𝛽𝑖

−) following the Ang et 

al. (2006) downside CAPM.  Consistent with the findings of Ang et al. (2006) and the notion that 

asymmetry in risk measures matters, downside market beta is associated with a statistically significant 

return premium, but upside beta is not.  When we combine the upside and downside market betas with the 

LD-CAPM gammas in Model 4, we find that the premium associated with downside liquidity risk 

remains large and significant, while the premium associated with downside market beta, 𝛽𝑖
−, drops by 

one-third in magnitude and is no longer statistically distinguishable from zero.  The LD-CAPM subsumes 

the Ang et al. (2006) downside CAPM. 

Models 5 and 6 are the Fama and French (1993) three-factor model, and the Fama-French-Carhart 

(Carhart, 1997)  our-factor model.  Model 7 adds the Fama-French-Carhart factors to the LD-CAPM.  

Consistent with other studies, we see that the coefficients of size and value factors are positive and 

statistically significant.  The results on LD-CAPM variables are essentially the same as the base case in 

Model 1; the premiums associated with expected liquidity cost level and downside liquidity risk remain 

statistically significant and appear distinct to the risks captured by the Fama-French-Carhart factors. 

A battery of additional control variables and risk factors tells a similar story.  In Model 9, we 

augment the LD-CAPM with the Fama-French-Carhart factors, Jegadeesh (1990) short-term reversal 

(REV), Harvey and Siddique (2000) co-skewness (𝛽𝑖
𝐶𝑂𝑆𝐾𝐸𝑊), and idiosyncratic volatility (IVOL) in the 
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spirit of Ang et al. (2006).  In Model 10 we further add total volatility (TVOL), the volatility of turnover 

(SDTURN) following Chordia et al. (2001), and a proxy for lottery features of a stock (MAX) following 

Bali et al. (2011).  Regardless of how many and what combination of these additional variables we 

include, the LD-CAPM coefficients do not change considerably.  In particular, expected liquidity cost 

level and downside liquidity risk maintain highly significant return premiums.  The coefficients on most 

control variables and other risk factors are consistent with previous studies.  For example, stocks with 

high size and value factor loadings, and high past 12-month returns earn high future returns, whereas 

lottery stocks, recent winners (high past one-month return), and stocks with high turnover volatility tend 

to earn low future returns.  The conclusion from these tests is that the LD-CAPM gammas are not 

subsumed by previously documented risk factors and characteristics.  Downside liquidity risk, along with 

the expected liquidity level, contributes incrementally to an explanation of the cross-section of stock 

returns. 

The use of stocks rather than portfolios as the cross-sectional units of observation allows us to use 

adjusted R
2
 (which accounts for differences in the number of explanatory variables) to compare the extent 

to which alternative asset pricing models explain the total cross-sectional return variation.  The adjusted 

R
2
s of the existing asset pricing models estimated in Table 4 range from 1.96% for the Ang et al. (2006) 

downside CAPM (Model 3), 2.01% for the CAPM (Model 1), 2.37% for the Harvey and Siddique (2000) 

three-moment conditional CAPM (Model 8), 3.44% for the Fama-French three-factor model (Model 5) 

and finally 4.38% for the Fama-French-Carhart four-factor model (Model 6).  From Table 3, the 

unconstrained LD-CAPM has an adjusted R
2
 of 4.22% (3.08% omitting the medium-term momentum 

control) suggesting that the LD-CAPM explains a similar amount of the cross-sectional variation in stock 

returns as the leading existing empirical asset pricing models.  The Fama-French-Carhart model is 

empirically motivated; however, the LD-CAPM, CAPM, downside CAPM, Harvey-Siddique three-

moment conditional CAPM, and the Acharya-Pedersen L-CAPM arise from economic theory.  Of these 

theory-driven models both the LD-CAPM and L-CAPM have equivalent adjusted R
2
s (3.08% and 

3.12%), suggesting that the LD-CAPM performs well against its theory-driven peers. 

In summary, the Fama-MacBeth tests of the cross-sectional expected return relation implied by 

the LD-CAPM reveal the following.  First, downside liquidity risk and liquidity level are associated with 

return premiums that are highly statistically significant and economically meaningful in magnitude.  

Second, downside liquidity risk is robust to controlling for the Fama-French market, size and value 

factors, momentum, short-term reversal, co-skewness, volatility, idiosyncratic volatility, turnover 

variance, and lottery-like features of stocks.  Third, downside liquidity risk is not subsumed by symmetric 

liquidity risk (its premium increases when controlling for symmetric liquidity risk) suggesting investors 

care differently about liquidity ‘risk’ in bad states compared to good states.  Fourth, the LD-CAPM fits 
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the data as well as the L-CAPM and both these models explain a larger proportion of the total variation in 

cross-sectional returns than the other theory-driven models.  Fifth, symmetric liquidity risk measures 

underestimate the premiums associated with liquidity risk.     

 

5.6 Determinants of downside liquidity risk 

 Given that downside liquidity risk is associated with a large and robust return premium, in this 

section we investigate what types of stocks possess high levels of downside liquidity risk and whether the 

premium associated with downside liquidity risk is amplified or attenuated by other stock characteristics.  

In Table 5, we sort stocks into deciles of downside liquidity risk each month.  We compute the means of 

various characteristics (liquidity costs, size, book-to-market, idiosyncratic and total volatility, market 

beta, and co-skewness) in each decile portfolio and then each decile’s mean across all months. 

 

< TABLE 5 >  

 

Table 5 shows that stocks with high downside liquidity risk (the 10
th
 decile) tend to be less liquid 

and smaller than the median, are more often value stocks (have higher book-to-market ratios), have lower 

market beta and strong negative co-skewness, but do not differ significantly in idiosyncratic or total 

volatility.  Downside liquidity risk and co-skewness may be driven by common sources of asymmetry and 

thus a relation between them is not surprising.  There is, however, fairly pronounced non-linearity in how 

downside liquidity risk relates to other stock characteristics.  While stocks with high downside liquidity 

risk tend to be smaller, less liquid and so on, so too are stocks with very low downside liquidity risk.  In 

untabulated results, we find that this non-linearity is not unique to downside liquidity risk; it is also 

observed for symmetric liquidity risk.  

The last two columns of Table 5 examine the distribution of downside liquidity risk in different 

market states.  As a first step, we take the time-series of market-wide liquidity costs and, in each decade, 

sort six-month periods into quintiles by market-wide liquidity costs.  We refer to six-month periods that 

fall within the top (bottom) quintile of market-wide liquidity costs as illiquid (liquid) ‘states’.  Next, for 

liquid and illiquid states separately, we form deciles of downside liquidity risk each month, compute the 

mean of downside liquidity risk in each decile, and take the time-series mean.  This procedure gives an 

indication of the distribution of downside liquidity risk in times of high/low market-wide liquidity.  The 

results show that downside liquidity risk is typically higher during illiquid states.  Furthermore, there is 

greater cross-sectional dispersion in downside liquidity risk during illiquid states.  For example, the 

difference in liquidity risk in the 10
th
 and 1

st
 decile is three times greater during illiquid states compared to 

liquid states.  Consequently, the largest values of downside liquidity risk in our sample are likely to occur 
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during illiquid states.  These results are consistent with the tendency for downward liquidity spirals and 

flights to liquidity to coincide with low market-wide liquidity (e.g., Acharya et al. (2013) Brunnermeier 

and Pedersen (2009)); Nagel (2012))).  Recent work has found that market-wide illiquidity is driven by 

sentiment (Liu, 2015) and is strongly related to the business cycle (Næs et al., 2011).  This suggests that 

the impact of actions that lower the downside liquidity risk of a stock will most beneficial during bad 

states of the world (periods of low sentiment, entering recessions, and during crises). 

If the relation between downside liquidity risk and excess returns is a simple linear function, the 

foregoing characterization of the types of stocks and time periods that have strongest downside liquidity 

risk also informs about where the premiums associated with downside liquidity risk are largest: small, 

illiquid, value stocks, with low CAPM betas, during periods of market-wide illiquidity.  However, it is 

possible that premiums associated with downside liquidity risk (the ‘price’ of downside liquidity risk) are 

amplified or attenuated by other stock characteristics or the state of the market.  To investigate this 

possibility, we use two-way sorts.  As a first step, in each month, 𝑡, we sort stocks into quintiles of a stock 

characteristic (liquidity costs, size, book-to-market, idiosyncratic volatility, and CAPM beta).  For each 

quintile in each month, we further sort stocks into quintiles of downside liquidity risk, giving us 25 

portfolios each month.
24

  We compute the equal-weighted average realized excess return for each 

portfolio over the six months after the portfolio formation month (i.e., the period [𝑡 + 1, 𝑡 + 6]).  Finally, 

we take the time-series means of the six-month realized returns for each portfolio, computing Newey-

West standard errors on the 5
th
 minus 1

st
 quintile return differences.   

 

< TABLE 6 >  

 

 Table 6 reports the results from the two-way sorts.  Panel A shows that the premium associated 

with downside liquidity risk is present in all quintiles of liquidity level and is not only confined to illiquid 

stocks.  The premium (measured by the return differential between the 5
th
 and 1

st
 downside liquidity risk 

quintiles, reported in the second-to-last column) is largest for the second-to-least liquid quintile of stocks 

(𝐶𝑖 quintile 4) and is larger on average for the least liquid two quintiles compared to the most liquid two, 

despite being relatively smaller for the very least liquid stocks.  Therefore, there is a tendency for less 

liquid stocks to have a larger downside liquidity risk premium.  The premium associated with the liquidity 

level is large and significant for all quintiles of liquidity risk. 

                                                           
24

 Sorting on downside liquidity risk second (after a pre-sort on a different characteristic) is a conservative way to 

investigate the premium associated with downside liquidity risk because it maximises the variation in the other 

characteristic across its quintiles, at the expense of some variation in downside liquidity risk across its quintiles.   
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Panel B shows that the premium associated with downside liquidity risk is larger in smaller 

stocks—the return differential between the 5
th
 and 1

st
 downside liquidity risk quintiles is twice as large in 

the smallest stocks (10.18% p.a.) than in the largest stocks (5.23% p.a.).
25

  The downside liquidity risk 

premium is nevertheless still present in all size quintiles.  Smaller stocks earn higher returns on average 

than larger stocks in all quintiles of downside liquidity risk. 

In Panel C we see that that the premium associated with downside liquidity risk is present in all 

book-to-market quintiles and is considerably larger in value stocks, i.e., those with low book-to-market 

ratios.  The value premium (higher average returns for stocks with high book-to-market ratios) is 

significant across all quintiles of downside liquidity risk. 

The results in Panel D are striking—they show that of all the characteristics examined, the 

premium associated with downside liquidity risk is most closely related to the level of idiosyncratic 

volatility.  Stocks with high levels of idiosyncratic volatility have substantially greater (by a factor of ten) 

return premiums associated with downside liquidity risk.  Furthermore, the premium associated with high 

idiosyncratic volatility is small and not statistically distinguishable from zero for stocks with low 

downside liquidity risk, but in the top two quintiles of downside liquidity risk it becomes large and 

significant.  It appears a combination of high idiosyncratic volatility and high downside liquidity risk 

attracts a very large return premium. 

What about systematic risk as captured by CAPM beta?  Panel E indicates that high CAPM beta 

stocks also have a larger downside liquidity risk premium (by a factor of four, comparing top and bottom 

beta quintiles), although the effect of systematic risk on the downside liquidity risk premium is not as 

strong as the effect of idiosyncratic volatility.  Thus, volatile stocks, irrespective of whether the source is 

systematic or idiosyncratic, attract a larger downside liquidity risk premium.   

Fama and French (1992) demonstrate that average stock returns are not related to CAPM beta.  In 

Panel E the relation between CAPM beta and average returns is positive in stocks with high downside 

liquidity risk (consistent with an upward sloping security market line (SML)), but is negative (as 

documented by Black et al. (1972) and Baker et al. (2011)) for stocks with low downside liquidity risk.  

This result is consistent with the model of Frazzini and Pedersen (2014) in which leverage and margin 

constraints vary across investors and time.  Their model attributes the relatively flat (or negative) relation 

between beta and average returns/alpha to funding constraints—investors unable to borrow tilt their 

portfolios towards high-beta stocks, which flattens the SML.  Sophisticated investors that are able to 

borrow offset this effect by buying low-beta stocks on margin (and possibly shorting high-beta stocks) 

                                                           
25

 The magnitudes of the premiums reported in Table 6 are not directly comparable with those inferred from the 

earlier multivariate Fama-MacBeth tests of the LD-CAPM, which isolated the premium associated with downside 

liquidity risk holding other factors constant.  
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thereby pushing the SML to have a positive slope.  However, a side-effect of margin buying is that when 

the market declines, leveraged investors receive margin calls and a contraction of funding liquidity, 

leading to forced liquidations, and amplified downside liquidity risk.  Panels E and F of Table 6 indicate 

that downside liquidity risk (which tends to be higher at times of low market-wide liquidity), and its 

connection with leverage constraints, margin trading, and sentiment, may have some part in explaining 

the documented time-varying nature of the SML. 

Finally, in Panel F, we examine how the downside liquidity risk premium varies with market-

wide liquidity, or liquid and illiquid ‘states’ of the market.  Rather than initially sorting on a stock 

characteristic, we sort six-month periods into quintiles each decade based on market-wide liquidity and 

examine the future six-month returns to quintiles of downside liquidity risk in these five market ‘states’.  

The premium associated with downside liquidity risk is present in all market states and is largest during 

the most illiquid states (𝐶𝑚 quintile 5).  These results provide further support for the notion that 

downward liquidity spirals and flights to liquidity tend to coincide with low market-wide liquidity (e.g., 

Acharya et al. (2013) Brunnermeier and Pedersen (2009)); Nagel (2012))).  During such times, investors 

require a higher premium to hold stocks with high downside liquidity risk because of the increased risk 

that the stock is abandoned during a flight-to-liquidity or is affected by a downward liquidity spiral. 

 In summary, the evidence in this section shows that relatively illiquid, small, value stocks have 

high levels of downside liquidity risk and a large downside liquidity risk premium.  The downside 

liquidity risk premium is also much larger for volatile stocks, both high beta and high idiosyncratic 

volatility stocks.  Finally, downside liquidity risk and the associated premium are larger during periods of 

low market-wide liquidity. 

 

5.7 Robustness tests 

We subject our empirical analysis of the LD-CAPM to a battery of robustness tests, including: (i) 

value-weighting vs. equal-weighting; (ii) sub-period analysis; (iii) overlapping vs. non-overlapping 

estimation windows; (iv) alternative liquidity measures; (v) inclusion of non-linear terms; (vi) different 

thresholds to define downside; (vii) demeaning the variables in gamma estimation; (viii) different rolling 

window lengths; and (ix) aggregation of observations to a weekly frequency to reduce the influence of 

microstructure phenomena and non-synchronous trading issues.  These tests all produce consistent results.  

For brevity we report the results of tests (i) to (iv) for the main specification of our model in Table 7.  The 

other robustness tests are reported in the Internet Appendix. 

 

< TABLE 7 > 
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Model 1 in Table 7 is the baseline specification with disaggregated gammas (same as Model 2 in 

Table 3) and is included for comparison.  Model 2 uses value weighting instead of equal weighting 

(weighting stocks by their market capitalization in the cross-sectional Fama-MacBeth regressions).  The 

value-weighted model fits the data better (R
2
 of 8.17% compared to 4.22% under equal weighting) but the 

estimated effects of liquidity level and downside liquidity risk remain largely unchanged.  Models 3 and 4 

are estimated on sub-periods corresponding to the first and second halves of the sample.  The premium on 

the illiquidity level has decreased through time (the coefficient of 𝔼𝑡[𝐶𝑖,𝑡+1
 ] is 0.540 during 1962-1986 

but only 0.198 during 1986-2011) but the premiums associated with liquidity risks, in particular downside 

liquidity risk, are similar in magnitude and highly statistically significant in the first and second halves of 

the sample.  Interestingly, the premium associated with downside market return risk (𝛾𝑖,𝑟
𝑅 ) is about twice 

as large in the second half of the sample.  Model 5 uses non-overlapping observations in the Fama-

MacBeth regressions rather than the rolling windows (a cross-sectional regression is estimated every six 

months, rather than every month).  Compared to the baseline specification, the premium associated with 

𝛾𝑖,𝑙
𝑅  is greater and its statistical significance is almost triple. 

Models 6 to 9 use different liquidity proxies.  Model 6 uses log of Amihud’s ILLIQ as per Karolyi 

et al. (2012), winsorised at the 5
th
 and 95

th
 percentiles to limit the influence of outliers.  In addition to the 

log transformation and winsorisation, this proxy differs from our primary liquidity measure in that it does 

not use the normalization, truncation and scaling applied to the primary measure.  Model 7 uses log of a 

modified ILLIQ involving the high-low range as the measure of price impact.  Model 8 uses log of a 

modified ILLIQ replacing dollar volume with turnover as per Brockman et al. (2008).  Finally, Model 9 

uses the actual quoted bid-ask spreads (expressed relative to the midquote) calculated from CRSP closing 

bid and ask quotes.  Because the closing quotes for NYSE and AMEX stocks are only available 

continuously from 1993 onwards, Model 10 is tested with a shorter sample period (1993-2011) and 

therefore the tests are likely to have lower statistical power.  We find consistent results using all of the 

alternative liquidity measures, in many cases with improved model fit. 

 

6. Conclusions 

We develop and test a liquidity-adjusted downside capital asset pricing model (LD-CAPM).  The 

key innovation of the model, the extraction of downside liquidity and return risks from their symmetric 

analogues, is motivated by (i) the growing evidence on asymmetries in the comovement between stock-

level liquidity and market returns, and (ii) the evidence suggesting investors view risk as the risk of loss.   

 The empirical evidence indicates that disentangling downside risk from symmetric risk is 

important—investors attach a significant expected return premium to stocks with high levels of downside 

liquidity risk.  This premium is not apparent in studies involving symmetric risk.  Symmetric 
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representations mis-characterize the role of liquidity risk in determining asset prices and consequently 

underestimate the importance of liquidity risk.  The downside liquidity risk premium is consistent with 

investors requiring higher expected returns from stocks with greater susceptibility to downward liquidity 

spirals and greater likelihood of abandonment during a flight-to-quality/liquidity.  Our findings suggest 

that adverse liquidity phenomena can affect the real economy via firms’ cost of capital.  Our model also 

confirms a premium for the level of illiquidity and downside market risk, consistent with the existing 

literature. 

 The LD-CAPM fits the data well compared to other asset pricing models and explains a larger 

proportion of the total variation in cross-sectional returns than other theory-driven models.  The return 

premiums associated with downside liquidity risk and the liquidity level are robust to controlling for a 

wide range of characteristics and risks, including the market, size, and value factors, momentum, short-

term reversal, co-skewness, total volatility, idiosyncratic volatility, turnover variance and lottery-like 

features of stocks. 

There are many alternatives to the pricing kernel of the LD-CAPM; however, the size and 

statistical significance of the premium attached to the downside liquidity risk isolated by our kernel 

suggests that alternatives should not be chosen on the basis of pricing flexibility alone—they should be 

capable of representing downside liquidity effects.  Taken together, the statistically insignificant 

premiums associated with the two downside risks involving market-wide liquidity (𝛾𝑖,𝑟
𝐿  and 𝛾𝑖,𝑙

𝐿 ) suggest 

that market-wide liquidity may not be a feature of the pricing kernel (not a state variable as in Pastor and 

Stambaugh (2003)).  Investors care about a stock’s downside liquidity risk because they are loss-averse 

and care about realizable after-cost returns.  To this end we extend the final question posed by Dittmar 

(2002): what sort of pricing kernel is globally decreasing, flexible enough to price assets well, and  

capable of correctly characterizing the asymmetry inherent in liquidity risk? 

 Our finding of a significant downside liquidity risk premium affirms recent efforts to develop 

liquidity-adjusted Value-at-Risk and Expected Shortfall metrics.  These metrics incorporate downside 

liquidity risk into risk management procedures.  Another practical implication is that a company’s cost of 

capital can be reduced (and its value increased) by minimizing its stocks’ downside liquidity risk.  Recent 

work suggests that the structure of secondary markets, in particular the degree of competition among 

liquidity providers and the nature of their funding arrangements, impacts downside liquidity risk (e.g., 

Roll and Subrahmanyam (2010); Comerton-Forde et al. (2010); Nagel (2012)), and by extension of our 

findings, affects company valuations.  Furthermore, companies may be able to ‘shape’ their stocks’ 

downside liquidity risk, for example, by increasing transparency during market downturns thereby 

supporting liquidity when it matters most (Balakrishnan et al. (2014); Lang and Maffett (2011); Lang et 

al. (2012)).   
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Our work also has implications for firm capital structure choices and financing decisions.  Lipson 

and Mortal (2009) show that firms with more liquid equity adopt lower leverage and prefer equity over 

debt financing.  McLean (2011) finds evidence that firms engage in an interesting form of precautionary 

saving—they issue equity and save cash during good times, thereby avoiding equity issuance during times 

of low liquidity.  This is particularly so for small and unprofitable firms.  We find that the downside 

liquidity risk premium is typically larger for stocks that are relatively small, illiquid, volatile, and have 

high book-to-market ratios.  Policy or market design targeting this risk, therefore, has capital structure 

implications for such firms.  More broadly, if market-wide illiquidity is driven by falling sentiment and 

the business cycle (Liu (2015); Næs et al. (2011)), and, as we have found, downside liquidity risk and its 

associated premium are higher during these times, then policy or regulation addressing adverse liquidity 

phenomena will likely have greatest impact when the economy needs it most.   
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Appendix A 

In this appendix, we present a theorem on how asset pricing models involving conditional 

gammas arise from pricing kernels involving min functions.  The theorem is proved using a result 

on conditional expectations.  Lastly, the LD-CAPM is derived by substitution and mapping the 

coefficients of the kernel into the final result of the theorem. 

 

Theorem:  Let 𝑋, 𝑌, and 𝑍, be random variables and let 𝜀 and 𝜅 be constants.  Let 𝑋∗ = 𝑋 − 𝜀, 𝑌∗ = 𝑌 −

𝜀, and  𝑍∗ = 𝑍 − 𝜀.  Lastly, let 𝟏 
− be an indicator function on 𝑋∗ defined as 

𝟏 
− = {

0      𝑖𝑓 𝑋∗ ≥ 0 
1      𝑖𝑓 𝑋∗ < 0 

. (A1) 

If the following identity holds 

 Cov[𝑀∗, 𝑌∗]

Cov[𝑀∗, 𝑍∗]
=

𝔼[𝑌∗]

𝔼[ 𝑍∗]
 (A2) 

with 

 𝑀∗ =  𝜅 − 𝟏 
−𝜃𝑋∗  (A3) 

then 

𝔼[𝑌∗] = 𝛾𝔼[𝑍∗] (A4) 

where 

    𝛾 =
  𝔼[𝑌∗𝑋∗|𝑋∗ < 0]

  𝔼[𝑍∗𝑋∗|𝑋∗ < 0]
    . (A5) 

 

Proof:  We first set down an important result on conditional expectations.  Let 𝑔(𝑥) be a function of 

𝑥 ∈ Ω and let A ⊆ Ω.  Now let 𝟏𝐴 be an indicator function defined as 

𝟏𝐴 = {
1   𝑖𝑓 𝑥 ∈ A
0   𝑖𝑓 𝑥 ∉ A

 . (A6) 

The conditional expectation of 𝑔(𝑥), where the condition is that 𝑥 ∈ A, can be written as 

𝔼[𝑔(𝑥)|𝑥 ∈ A] =
𝔼[𝟏𝐴𝑔(𝑥)]

𝔼[𝟏𝐴]
   (A7) 

and thus 

𝔼[1𝐴𝑔(𝑥)] = 𝔼[𝟏𝐴]𝔼[𝑔(𝑥)|𝑥 ∈ A] . (A8) 

In words, the expectation of the product of a function and an indicator function of 𝑥 is equal to the 

product of the conditional expectation and the probability that the condition is met  (see Winkler et 

al. (1972) for example).   

 Substituting equation (A3) into equation (A2) followed by some rearrangement gives  

𝔼[−𝑌∗𝟏 
−𝜃𝑋∗]𝔼[𝑍∗] − 𝔼[−𝟏 

−𝜃𝑋∗]𝔼[𝑌∗]𝔼[𝑍∗] = 𝔼[−𝑍∗𝟏 
−𝜃𝑋∗]𝔼[𝑌∗] − 𝔼[−𝟏 

−𝜃𝑋∗]𝔼[𝑍∗]𝔼[𝑌∗]  ,  
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which with cancellation becomes 

 𝔼[𝑌∗𝟏 
−𝜃𝑋∗]𝔼[𝑍∗] = 𝔼[𝑍∗𝟏 

−𝜃𝑋∗]𝔼[𝑌∗]  . (A9) 

This can be expressed as 

 
𝔼[𝑌∗] =

𝔼[𝟏 
−𝑌∗𝑋∗]

𝔼[𝟏 
−𝑍∗𝑋∗]

𝔼[𝑍∗]  . (A10) 

This can be re-expressed in terms of conditional expectations using the result in equation (A8) and the 

expectation of the indicator function can be cancelled. 

𝔼[𝑌∗] =
𝔼[𝑌∗𝑋∗|𝑋∗ < 0]

𝔼[𝑍∗𝑋∗|𝑋∗ < 0]
𝔼[𝑍∗] 

∎ 

To apply the theorem and derive the LD-CAPM we make the following replacements that represent the 

liquidity adjustments made to net asset returns and the D-CAPM pricing kernel: 

𝑋∗ = 𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1   ,   𝑌∗ = 𝑅𝑖,𝑡+1

𝑒 − 𝐶𝑖,𝑡+1   ,   𝑍∗ = 𝑅𝑚,𝑡+1
𝑒 − 𝐶𝑚,𝑡+1  . 
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Table 1 

Descriptive statistics and correlations 

This table reports descriptive statistics and correlations between the key variables in the LD-CAPM: 𝐶𝑖 (normalized liquidity cost), 

𝛾
𝑖,𝑟
𝑅  (downside co-moment of a stock’s excess returns with the market’s excess returns), 𝛾

𝑖,𝑙
𝑅  (downside co-moment of a stock’s 

liquidity with the market’s excess returns), 𝛾
𝑖,𝑟
𝐿  (downside co-moment of a stock’s excess returns with the market’s liquidity), and 

𝛾
𝑖,𝑙
𝐿  (downside co-moment of a stock’s liquidity with the market’s liquidity).  It also reports statistics and correlations for the 

Acharya and Pedersen (2005) betas, 𝛽𝑖,1
𝐴𝑃 to 𝛽𝑖,4

𝐴𝑃, which are the symmetric analogues of the LD-CAPM downside risks.  The 

statistics and correlations are calculated using the pooled sample of stock-month observations.  The sample consists of NYSE and 

AMEX stocks between 1962 and 2011. 

 

Statistic 

 

𝐶𝑖 𝛾
𝑖,𝑟
𝑅  𝛾

𝑖,𝑙
𝑅  𝛾

𝑖,𝑟
𝐿  𝛾

𝑖,𝑙
𝐿  𝛽𝑖,1

𝐴𝑃 𝛽𝑖,2
𝐴𝑃 𝛽𝑖,3

𝐴𝑃 𝛽𝑖,4
𝐴𝑃 

Mean 

 

0.019 0.999 -0.038 -0.005 0.080 0.877 -0.031 -0.019 0.089 

Median 

 

0.003 0.926 -0.001 -0.006 0.000 0.812 -0.001 -0.016 0.001 

Standard deviation 

 

0.041 0.721 1.066 0.169 0.500 0.572 0.567 0.107 0.325 

Correlation 𝐶𝑖 1 

  

      

Correlation 𝛾
𝑖,𝑟
𝑅  -0.27 1 

 

      

Correlation 𝛾
𝑖,𝑙
𝑅  0.16 -0.03 1       

Correlation 𝛾
𝑖,𝑟
𝐿  0.02 0.01 -0.02 1      

Correlation 𝛾
𝑖,𝑙
𝐿  0.25 -0.10 0.09 0.01 1     

Correlation 𝛽𝑖,1
𝐴𝑃 -0.31 0.88 -0.05 0.04 -0.12 1    

Correlation 𝛽𝑖,2
𝐴𝑃 -0.04 0.00 -0.70 0.02 -0.07 0.01 1   

Correlation 𝛽𝑖,3
𝐴𝑃 0.04 -0.01 -0.02 0.58 0.00 0.01 0.04 1  

Correlation 𝛽𝑖,4
𝐴𝑃 0.37 -0.15 0.05 0.02 0.62 -0.18 -0.05 0.01 1 
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Table 2 

Univariate decile-sorted returns and four-factor alphas 

This table reports mean realized returns (excess of risk-free rate) and four-factor model alphas during six-month periods [𝑡 + 1, 𝑡 + 6] for deciles of the four LD-

CAPM gammas and the four Acharya and Pedersen (2005) betas.  Each month, 𝑡, we form deciles of the gammas/betas (𝛾
𝑖,𝑟
𝑅 , downside comovement of a stock’s 

excess returns with the market’s excess returns; 𝛾
𝑖,𝑙
𝑅 , downside comovement of a stock’s liquidity with the market’s excess returns; 𝛾

𝑖,𝑟
𝐿 , downside comovement of 

a stock’s excess returns with the market’s liquidity; and 𝛾
𝑖,𝑙
𝐿 , downside comovement of a stock’s liquidity with the market’s liquidity; 𝛽𝑖,1

𝐴𝑃 to 𝛽𝑖,4
𝐴𝑃 are the Acharya 

and Pedersen (2005) symmetric analogues of the downside risks).  For each decile portfolio in each month, we calculate the equal-weighted (Panel A) and value-

weighted (Panel B) mean of the portfolio’s next six-month return in excess of the risk-free rate, and alpha from a Fama-French-Carhart four-factor model 

estimated on the next six months of daily returns.  We then calculate each decile’s time-series mean across all months, as well as the mean for decile 10 minus 

decile 1 (D10-D1).  The means are reported in the table in annualized percentages together with the t-statistic for D10-D1 using Newey-West standard errors.  

The sample consists of NYSE and AMEX stocks between 1962 and 2011, with an average of 151 stocks per decile. 

Panel A: Equal weighted                

  Realized excess return  Four-factor model alpha 

 Decile 𝛾
𝑖,𝑟
𝑅  𝛾

𝑖,𝑙
𝑅  𝛾

𝑖,𝑟
𝐿  𝛾

𝑖,𝑙
𝐿  𝛽𝑖,1

𝐴𝑃 𝛽𝑖,2
𝐴𝑃 𝛽𝑖,3

𝐴𝑃 𝛽𝑖,4
𝐴𝑃  𝛾

𝑖,𝑟
𝑅  𝛾

𝑖,𝑙
𝑅  𝛾

𝑖,𝑟
𝐿  𝛾

𝑖,𝑙
𝐿  𝛽𝑖,1

𝐴𝑃 𝛽𝑖,2
𝐴𝑃 𝛽𝑖,3

𝐴𝑃 𝛽𝑖,4
𝐴𝑃 

 1=low 11.92 10.25 13.80 13.72 11.84 17.52 13.71 13.57  9.13 7.12 7.49 9.58 9.70 13.65 6.60 9.10 

 2 10.73 9.45 11.85 10.48 10.65 15.55 11.63 8.39  6.68 4.18 5.23 4.03 6.96 9.02 4.90 2.94 

 3 10.98 8.52 10.55 7.94 10.38 12.44 11.20 7.12  6.18 2.23 4.32 1.91 5.99 4.98 4.69 1.63 

 4 11.26 6.93 10.37 7.64 11.01 10.03 10.87 8.28  5.68 1.50 4.56 1.96 5.75 2.73 4.54 1.65 

 5 11.71 7.08 10.79 8.38 11.62 8.71 10.63 9.13  5.71 2.03 4.60 2.58 5.54 2.10 4.45 1.96 

 6 11.62 8.51 10.98 10.00 11.67 7.56 10.94 10.72  5.03 2.75 4.90 2.75 5.12 1.77 4.94 3.01 

 7 11.87 11.51 10.92 11.69 11.78 7.79 11.08 12.29  4.79 3.76 4.86 3.81 4.79 1.79 5.30 4.52 

 8 12.32 14.92 11.46 13.80 12.43 10.07 11.68 14.59  4.57 5.99 5.40 6.52 4.51 3.06 5.76 7.97 

 9 12.32 19.73 12.42 16.72 12.84 12.39 11.83 16.50  4.09 11.52 6.39 10.93 3.98 6.55 6.24 11.51 

 10=high 12.16 20.86 13.95 17.33 12.86 15.89 13.62 17.26  4.69 16.46 8.71 13.36 4.27 12.05 9.13 13.33 

 D10-D1 0.25 10.61 0.15 3.61 1.02 -1.62 -0.09 3.69  -4.44 9.34 1.21 3.78 -5.43 -1.61 2.53 4.23 

 t-stat (0.09) (10.88) (0.07) (3.41) (0.37) (-2.79) (-0.05) (5.13)  (-1.86) (10.89) (1.27) (4.61) (-2.19) (-2.77) (2.49) (3.92) 

Panel B: Value weighted                

 1=low 4.64 6.69 5.96 8.16 4.49 12.40 6.95 8.92  2.45 2.63 1.15 3.60 3.28 7.38 1.17 4.22 

 2 5.55 5.12 5.53 6.30 5.49 11.63 6.87 6.46  1.66 -0.10 1.26 0.78 2.21 5.13 1.51 2.44 

 3 5.97 4.88 6.05 5.05 5.54 9.68 5.74 5.55  1.63 -0.34 2.07 0.47 1.86 2.84 1.15 1.72 

 4 6.43 3.28 5.38 5.17 6.37 7.93 6.04 7.20  2.58 -0.29 1.39 1.30 2.74 1.74 2.04 1.32 

 5 6.43 3.66 5.98 6.21 5.48 6.84 5.66 7.49  1.84 0.82 1.75 2.37 1.36 1.39 1.53 1.27 

 6 6.16 6.27 6.96 7.66 6.05 5.81 6.49 9.39  2.09 2.07 2.38 2.01 1.92 1.60 2.09 2.41 

 7 6.71 9.49 7.05 9.48 6.45 6.13 6.55 10.26  1.74 3.13 2.23 2.41 1.64 1.48 2.29 2.95 

 8 6.44 11.69 7.35 10.71 6.28 7.97 6.39 10.98  1.80 3.74 2.28 3.73 1.69 2.16 1.87 4.41 

 9 6.34 15.07 6.55 12.23 6.95 9.07 6.10 11.91  0.85 7.29 1.74 5.85 0.69 3.57 2.02 6.29 

 10=high 6.53 14.79 7.13 12.55 7.27 11.14 6.69 11.75  0.47 9.15 2.62 7.86 0.67 6.79 2.73 7.23 

 D10-D1 1.89 8.10 1.18 4.39 2.78 -1.27 -0.26 2.83  -1.98 6.52 1.47 4.26 -2.62 -0.58 1.56 3.01 

 t-stat (0.66) (7.04) (0.49) (4.26) (0.94) (-1.51) (-0.11) (2.42)  (-0.88) (5.46) (1.67) (5.20) (-1.07) (-0.99) (1.48) (2.51) 
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Table 3 

Cross-sectional Fama-MacBeth regressions 

Each month, 𝑡, we estimate an equal-weighted stock-level cross-sectional regression of realized future six-month excess returns (excess 

return during the months [𝑡 + 1, 𝑡 + 6]) on various characteristics, risk measures, and control variables.  The table reports the time-

series averages of the intercepts and slope coefficients from the monthly cross-sectional regressions.  The LD-CAPM gammas are 𝛾
𝑖,𝑟
𝑅  

(downside co-moment of a stock’s excess returns with the market’s excess returns), 𝛾
𝑖,𝑙
𝑅  (downside co-moment of a stock’s liquidity 

with the market’s excess returns), 𝛾
𝑖,𝑟
𝐿  (downside co-moment of a stock’s excess returns with the market’s liquidity), and 𝛾

𝑖,𝑙
𝐿  (downside 

co-moment of a stock’s liquidity with the market’s liquidity).  𝔼𝑡[𝐶𝑖,𝑡+1
 ] is expected liquidity cost, measured as the simple average of 

the stock’s past six-month liquidity cost realizations in all models except Model 4, and the predicted value from an autoregressive 

model in Model 4.  𝑅𝑖,[𝑡−5,𝑡]
𝑒  is the stock’s excess return during the past six months.  𝛽𝑖,1

𝐴𝑃 to 𝛽𝑖,4
𝐴𝑃 are the Acharya and Pedersen (2005) L-

CAPM betas (the symmetric analogues of the four downside risks).  𝛽𝑖,1
𝐴𝑃 measures the comovement of a stock’s excess returns with the 

market’s excess returns; 𝛽𝑖,2
𝐴𝑃 measures the comovement of a stock’s liquidity with the market’s excess returns; 𝛽𝑖,3

𝐴𝑃 measures the 

comovement of a stock’s excess returns with the market’s liquidity; and 𝛽𝑖,4
𝐴𝑃 measures the comovement of a stock’s liquidity with the 

market’s liquidity.  The zetas (𝜁𝑖,𝑟
𝑅 , 𝜁𝑖,𝑙

𝑅 , 𝜁𝑖,𝑟
𝐿 , 𝜁𝑖,𝑙

𝐿 ) are the upside analogues of the downside gammas.  T-statistics using Newey-West 

standard errors are in parentheses.  ***, **, and * indicate statistical significance at 1%, 5% and 10% levels.  The sample consists of 

NYSE and AMEX stocks between 1962 and 2011, with an average of 1,508 stocks per cross-sectional regression. 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Intercept 0.0299 

(3.09)*** 

0.0311 

(3.41)*** 

0.0339 

(3.49)*** 

0.0325 

(3.58)*** 

0.0301 

(3.26)*** 

0.0294 

(3.26)*** 

0.0298 

(3.16)*** 

0.0294 

(3.25)*** 

0.0291 

(3.22)*** 

𝑅𝑖,[𝑡−5,𝑡]
𝑒   0.0209 

(1.35) 

0.0200 

(1.31)  

0.0202 

(1.32)  

0.0144 

(0.92)  

0.0052 

(0.33) 

0.0114 

(0.75) 

𝔼𝑡[𝐶𝑖,𝑡+1
 ]  0.341 

(5.64)*** 

0.368 

(4.91)*** 

0.361 

(4.65)*** 

0.295 

(4.55)*** 

0.368 

(6.00)*** 

0.323 

(4.52)*** 

0.329 

(4.47)*** 

0.387 

(5.45)*** 

0.326 

(4.36)*** 

(
𝛾𝑖,𝑟

𝑅 + 𝛾𝑖,𝑙
𝑅 

+𝛾𝑖,𝑟
𝐿 + 𝛾𝑖,𝑙

𝐿 )  
0.0127 

(3.62)***         

𝛾𝑖,𝑟
𝑅  

 

0.0114 

(1.87)* 

0.0138 

(1.78)* 

0.0106 

(1.75)*  

0.0043 

(0.54) 

0.0099 

(0.49)  

0.007  

(1.20) 

𝛾𝑖,𝑙
𝑅   

 

0.0099 

(4.43)*** 

0.0106 

(5.37)*** 

0.0107 

(5.04)***  

0.0209 

(5.53)*** 

0.0208 

(5.30)***  

0.0105 

(4.77)*** 

𝛾𝑖,𝑟
𝐿   

 

-0.0097  

(-0.20) 

-0.0057  

(-0.13) 

-0.0094  

(-0.19)  

0.0892 

(1.44) 

0.0354 

(0.85)  

0.0066 

(0.16) 

𝛾𝑖,𝑙
𝐿   

 

0.0016 

(0.13) 

-0.0044  

(-0.27) 

0.0155 

(1.27)  

-0.0800  

(-1.41) 

-0.0749  

(-1.43)  

0.009  

(0.73) 

𝛽𝑖,1
𝐴𝑃  

    

0.0159 

(2.08)** 

0.0112  

(1.40) 

0.0116 

(0.68) 

 

 

𝛽𝑖,2
𝐴𝑃  

    

-0.0016  

(-0.55) 

0.0233 

(3.79)*** 

0.0228 

(3.69)*** 

 

 

𝛽𝑖,3
𝐴𝑃  

    

-0.150  

(-0.95) 

-0.159  

(-1.22) 

-0.0408  

(-0.66) 

 

 

𝛽𝑖,4
𝐴𝑃  

    

0.0655 

(1.93)* 

0.179 

(1.60) 

0.173  

(1.63) 

 

 

𝜁𝑖,𝑟
𝑅  

       

0.011 

(1.92)* 

0.0075 

(2.09)** 

𝜁𝑖,𝑙
𝑅   

       

-0.0106  

(-3.34)** 

-0.0115  

(-3.62)** 

𝜁𝑖,𝑟
𝐿   

       

-0.107  

(-1.13) 

-0.0844  

(-1.19) 

𝜁𝑖,𝑙
𝐿   

       

0.0863 

(1.56) 

0.0915 

(1.60) 

          

Adj. R
2
 (%) 2.99 4.22 3.08 4.19 3.12 4.86 4.08 4.00 4.91 
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Table 4 

Comparison with other asset pricing models using cross-sectional Fama-MacBeth regressions  

Each month, 𝑡, we estimate an equal-weighted stock-level cross-sectional regression of realized future six-month excess returns (excess 

return during the months [𝑡 + 1, 𝑡 + 6]) on various characteristics, risk measures, and control variables.  The table reports the time-

series averages of the intercepts and slope coefficients from the monthly cross-sectional regressions.  The LD-CAPM gammas are 𝛾
𝑖,𝑟
𝑅  

(downside co-moment of a stock’s excess returns with the market’s excess returns), 𝛾
𝑖,𝑙
𝑅  (downside co-moment of a stock’s liquidity 

with the market’s excess returns), 𝛾
𝑖,𝑟
𝐿  (downside co-moment of a stock’s excess returns with the market’s liquidity), and 𝛾

𝑖,𝑙
𝐿  (downside 

co-moment of a stock’s liquidity with the market’s liquidity).  𝔼𝑡[𝐶𝑖,𝑡+1
 ] is expected liquidity cost, measured as the simple average of 

the stock’s past six-month liquidity cost realizations.  𝑅𝑖,[𝑡−5,𝑡]
𝑒  is the stock’s excess return during the past six months.  𝛽𝑖

𝑀𝐾𝑇, 𝛽𝑖
𝑆𝑀𝐵, 

𝛽𝑖
𝐻𝑀𝐿 and 𝛽𝑖

𝑈𝑀𝐷 are loadings on the market, size, value, and momentum factors in a Fama-French-Carhart factor model.   
𝛽𝑖

+ and 𝛽𝑖
− are Ang et al. (2006) upside and downside betas.  Other control variables are short-term reversal (REV), co-skewness 

(𝛽𝑖
𝐶𝑂𝑆𝐾𝐸𝑊), idiosyncratic volatility (IVOL), total volatility (TVOL), turnover volatility (SDTURN), and the stock’s maximum return in 

the previous month (MAX).  T-statistics using Newey-West standard errors are in parentheses.  ***, **, and * indicate statistical 

significance at 1%, 5% and 10% levels.  The sample consists of NYSE and AMEX stocks between 1962 and 2011, with an average of 

1,508 stocks per cross-sectional regression. 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Intercept 0.0503 

(5.39)*** 

0.0320 

(3.50)*** 

0.0465 

(5.35)*** 

0.0313 

(3.40)*** 

0.0422 

(4.71)*** 

0.0441 

(5.12)*** 

0.0290 

(3.29)*** 

0.0496 

(5.34)*** 

0.0124 

(1.15) 

-0.0098 

(-0.54) 

𝑅𝑖,[𝑡−5,𝑡]
𝑒    0.0282 

(1.98)** 

 0.0180 

(1.25) 

  0.0100 

(0.78) 

 0.0276 

(2.09)** 

0.0278 

(2.14)** 

𝔼𝑡[𝐶𝑖,𝑡+1
 ]   0.356 

(5.12)*** 

 0.359 

(4.93)*** 

  0.335 

(4.95)*** 

 0.270 

(4.67)*** 

0.222 

(3.75)*** 

𝛾𝑖,𝑟
𝑅   0.0322 

(2.46)** 

 0.0081 

(0.72) 

  0.0002 

(0.02) 

 -0.0023 

(-0.46) 

-0.0010 

(-0.21) 

𝛾𝑖,𝑙
𝑅    0.0101 

(4.68)*** 

 0.0102 

(4.83)*** 

  0.0109 

(5.85)*** 

 0.0106 

(5.21)*** 

0.0111 

(6.08)*** 

𝛾𝑖,𝑟
𝐿    -0.0138 

(-0.33) 

 -0.0552 

(-0.67) 

  -0.0113 

(-0.33) 

 -0.0018 

(-0.06) 

0.0010 

(0.03) 

𝛾𝑖,𝑙
𝐿    -0.0010 

(-0.08) 

 -0.0016 

(-0.12) 

  -0.0199 

(-0.82) 

 -0.0164 

(-0.75) 

-0.0197 

(-0.83) 

𝛽𝑖
𝑀𝐾𝑇  0.0035 

(0.50) 

-0.0207 

(-1.82)* 

  0.0025 

(0.36) 

-0.0008 

(-0.13) 

0.0083 

(0.90) 

0.0032 

(0.45) 

  

𝛽𝑖
+   -0.0002 

(-0.11) 

-0.0003 

(-0.10) 

      

𝛽𝑖
−   0.0085 

(1.89)* 

0.0038 

(0.62) 

      

𝛽𝑖
𝑆𝑀𝐵     0.0125 

(3.71)*** 

0.0123 

(3.44)*** 

0.0127 

(3.59)*** 

 0.0065 

(2.07)** 

0.0063 

(2.07)** 

𝛽𝑖
𝐻𝑀𝐿      0.0040 

(1.64) 

0.0074 

(3.87)*** 

0.0072 

(3.75)*** 

 0.0067 

(3.61)*** 

0.0064 

(3.37)*** 

𝛽𝑖
𝑈𝑀𝐷       -0.0043 

(-0.84) 

-0.0028 

(-0.80) 

 -0.0035 

(-1.06) 

-0.0031 

(-0.96) 

𝛽𝑖
𝐶𝑂𝑆𝐾𝐸𝑊        -0.0004 

(-1.46) 

-0.0001 

(-1.40) 

-0.0001 

(-1.29) 

REV         -0.0674 

(-6.30)*** 

-0.0498 

(-3.95)** 

IVOL         1.42 

(3.44)*** 

1.92 

(5.26)*** 

TVOL          -0.0578 

(-0.52) 

SDTURN          -0.0049 

(-2.18)** 

MAX          -0.106 

(-2.58)** 

Adj. R2 (%) 2.01 4.59 1.96 4.62 3.44 4.38 6.12 2.37 7.07 7.58 
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Table 5 

Characteristics of downside liquidity risk 

This table reports means of stock characteristics for deciles of downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ).  Each month, we sort stocks into 

deciles of 𝛾
𝑖,𝑙
𝑅 .  For each decile portfolio in each month, we calculate the equal-weighted mean of the portfolio’s stock-level 

characteristics/factor loadings.  We then calculate each decile’s mean across all months, as well as the mean for the 10
th
 

minus 1
st
 decile (D10-D1).  T-statistics for D10-D1 use Newey-West standard errors.  𝐶𝑖 is normalized liquidity cost, SIZE is 

the natural log of market capitalization (in $ millions), BM is the natural log of the book-to-market ratio, IVOL is 

idiosyncratic volatility (standard deviation of residuals from a Fama-French-Carhart model), TVOL is total realized volatility 

(standard deviation of daily excess returns), 𝛽𝑖
𝑀𝐾𝑇  is CAPM beta, and 𝛽𝑖

𝐶𝑂𝑆𝐾𝐸𝑊  is co-skewness.  The last two columns report 

means of downside liquidity risk for each decile portfolio, calculated during the most liquid six-month periods (lowest 

quintile of market-wide illiquidity, labeled “liquid states”) and the least liquid (highest quintile of market-wide illiquidity, 

labeled “illiquid states”).  The sample consists of NYSE and AMEX stocks between 1962 and 2011, with an average of 151 

stocks per decile. 

 

 

 

 

𝛾
𝑖,𝑙
𝑅  decile 𝐶𝑖 SIZE BM IVOL TVOL 𝛽𝑖

𝑀𝐾𝑇 𝛽𝑖
𝐶𝑂𝑆𝐾𝐸𝑊 

𝛾
𝑖,𝑙
𝑅  liquid 

states 

𝛾
𝑖,𝑙
𝑅  illiquid 

states 

1=low 0.052 3.884 -0.297 0.023 0.023 0.590 -6.502 -1.059 -1.933 

2 0.018 4.746 -0.443 0.023 0.024 0.862 -6.000 -0.315 -0.561 

3 0.010 5.235 -0.530 0.023 0.024 0.968 -5.660 -0.144 -0.181 

4 0.006 5.880 -0.587 0.021 0.022 0.967 -3.831 -0.072 -0.032 

5 0.004 6.748 -0.652 0.018 0.020 0.952 -1.334 -0.028 -0.001 

6 0.003 7.318 -0.631 0.017 0.019 0.987 -0.411 -0.007 0.008 

7 0.004 7.094 -0.534 0.018 0.020 1.041 -1.731 -0.001 0.028 

8 0.006 6.149 -0.444 0.020 0.022 1.033 -5.596 0.001 0.117 

9 0.018 4.992 -0.324 0.023 0.024 0.925 -7.944 0.008 0.668 

10=high 0.072 3.789 -0.115 0.022 0.023 0.557 -6.120 0.574 2.917 

D10-D1 0.02 -0.09 0.18 0.00 0.00 -0.03 0.38 1.63 4.85 

t-stat (5.87) (-1.12) (5.50) (-1.22) (-0.46) (-1.11) (0.73) (4.35) (4.76) 
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Table 6 

Two-way sorts 

This table reports mean realized returns during six-month periods [𝑡 + 1, 𝑡 + 6] for portfolios of stocks.  The portfolios 

are formed each month, 𝑡, by first sorting stocks into quintiles of a characteristic (liquidity costs (𝐶𝑖), market 

capitalization (SIZE), book-to-market (BM), idiosyncratic volatility (IVOL), CAPM market beta (𝛽𝑖
𝑀𝐾𝑇)) and then, 

within each quintile, sorting stocks into quintiles by downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ).  For each of the 25 portfolios in each 

month, we calculate the equal-weighted mean of the portfolio’s next six-month return in excess of the risk-free rate.  

We then calculate each portfolio’s time-series mean across all months, as well as the mean for the 5
th

 minus 1
st
 quintile 

(Q5-Q1).  The means are reported in the table in annualized percentages together with the t-statistic for Q5-Q1 using 

Newey-West standard errors.  In Panel F, rather than initially sorting on a stock characteristic, we sort six-month 

periods into quintiles based on market-wide liquidity and examine the returns to quintiles of downside liquidity risk in 

these five market ‘states’.  The sample consists of NYSE and AMEX stocks between 1962 and 2011, with an average 

of 60 stocks per portfolio. 

 

Panel A: Initial sort on liquidity costs, 𝐶𝑖 

 Downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ) quintile   

𝐶𝑖 quintile 1=low 2 3 4 5=high Q5-Q1  t-stat 

1=low 2.62 4.95 6.51 8.36 10.85 8.23 (7.04) 

2 3.82 5.03 9.20 11.56 13.82 10.00 (6.52) 

3 4.84 8.11 9.53 14.36 18.62 13.77 (9.73) 

4 6.95 10.08 14.98 19.93 20.91 13.96 (11.05) 

5=high 11.61 16.01 18.95 21.06 19.30 7.69 (7.25) 

Q5-Q1 8.99 11.06 12.44 12.70 8.46 
  

t-stat (4.16) (4.47) (4.90) (5.44) (5.76) 
  

Panel B: Initial sort on market capitalization, SIZE 

 Downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ) quintile   

SIZE quintile 1=low 2 3 4 5=high Q5-Q1  t-stat 

1=low 13.29 17.64 21.74 26.12 23.47 10.18 (9.05) 

2 5.96 9.11 14.02 19.20 17.66 11.70 (11.33) 

3 5.40 6.91 9.76 15.40 14.76 9.36 (8.15) 

4 4.90 5.87 9.46 11.83 11.81 6.91 (7.27) 

5=high 3.55 4.91 6.69 8.15 8.78 5.23 (6.51) 

Q5-Q1 -9.74 -12.73 -15.05 -17.98 -14.70 
 

 t-stat (-3.72) (-4.16) (-4.47) (-6.72) (-6.05) 
 

 
Panel C: Initial sort on book-to-market, BM 

 Downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ) quintile   

BM quintile 1=low 2 3 4 5=high Q5-Q1  t-stat 

1=low 5.58 5.06 6.62 8.57 18.04 12.47 (7.90) 

2 7.94 6.60 5.44 9.84 15.35 7.41 (6.55) 

3 8.84 7.90 6.95 11.49 15.74 6.89 (5.18) 

4 11.77 8.92 8.73 13.93 17.71 5.95 (6.30) 

5=high 15.04 12.20 15.03 21.11 23.01 7.96 (9.42) 

Q5-Q1 9.47 7.14 8.41 12.54 4.96 
  

t-stat (4.31) (3.32) (3.20) (4.65) (2.26) 
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Table 6 (continued) 

 

Panel D: Initial sort on idiosyncratic volatility, IVOL 

 Downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ) quintile   

IVOL quintile 1=low 2 3 4 5=high Q5-Q1  t-stat 

1=low 8.87 6.85 6.43 8.45 10.74 1.87 (3.21) 

2 9.50 7.51 8.22 10.63 13.10 3.60 (6.10) 

3 9.21 8.31 8.50 12.05 17.19 7.98 (9.22) 

4 9.80 8.71 9.48 14.92 21.50 11.70 (10.75) 

5=high 12.53 10.00 10.92 20.54 31.60 19.06 (10.23) 

Q5-Q1 3.66 3.15 4.49 12.09 20.85 
  

t-stat (1.49) (1.01) (1.28) (3.33) (7.63) 
  

Panel E: Initial sort on CAPM market beta, 𝛽𝑖
𝑀𝐾𝑇 

 Downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ) quintile   

𝛽𝑖
𝑀𝐾𝑇 quintile 1=low 2 3 4 5=high Q5-Q1  t-stat 

1=low 11.49 10.10 7.00 13.58 16.26 4.77 (5.76) 

2 10.56 7.82 7.19 11.53 18.61 8.06 (10.38) 

3 9.71 8.33 7.77 12.06 20.13 10.42 (9.09) 

4 8.78 8.52 7.90 12.87 22.52 13.74 (11.60) 

5=high 6.78 7.16 8.48 14.63 24.33 17.56 (10.61) 

Q5-Q1 -4.72 -2.94 1.48 1.05 8.07 
 

 t-stat (-2.03) (-1.28) (0.58) (0.45) (3.36) 
 

 
Panel F: Initial sort on market-wide liquidity costs, 𝐶𝑚 

 Downside liquidity risk (𝛾
𝑖,𝑙
𝑅 ) quintile   

𝐶𝑚 quintile 1=low 2 3 4 5=high Q5-Q1  t-stat 

1=low 6.31 4.88 7.21 11.32 17.50 11.19 (10.80) 

2 6.13 5.00 5.72 7.16 15.72 9.59 (5.21) 

3 13.27 10.85 6.15 12.29 22.32 9.05 (6.80) 

4 12.72 8.56 8.63 16.05 22.64 9.92 (19.99) 

5=high 10.59 8.99 11.34 19.24 23.01 12.41 (10.37) 

Q5-Q1 4.28 4.11 4.14 7.92 5.50 
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Table 7 

Robustness tests 

This table reports cross-sectional Fama-MacBeth regression results for several variations of the LD-CAPM.  Each month, 𝑡, we estimate an equal-weighted stock-level cross-

sectional regression of realized future six-month excess returns (excess return during the months [𝑡 + 1, 𝑡 + 6]) on various characteristics and risk measures.  The table reports 

the time-series averages of the intercepts and slope coefficients from the monthly cross-sectional regressions.  The LD-CAPM gammas are 𝛾
𝑖,𝑟
𝑅  (downside co-moment of a 

stock’s excess returns with the market’s excess returns), 𝛾
𝑖,𝑙
𝑅  (downside co-moment of a stock’s liquidity with the market’s excess returns), 𝛾

𝑖,𝑟
𝐿  (downside co-moment of a 

stock’s excess returns with the market’s liquidity), and 𝛾
𝑖,𝑙
𝐿  (downside co-moment of a stock’s liquidity with the market’s liquidity).  𝔼𝑡[𝐶𝑖,𝑡+1

 ] is expected liquidity cost, 

measured as the simple average of the stock’s past six-month liquidity cost realizations.  𝑅𝑖,[𝑡−5,𝑡]
𝑒  is the stock’s excess return during the past six months.  Model 1 is the full-

sample equal-weighted base case specification (Table 3, Model 2) and is included for comparison.  Model 2 uses value weighting instead of equal weighting (weighting stocks 

by their market capitalization in the cross-sectional Fama-MacBeth regressions).  Models 3 and 4 are estimated on sub-periods corresponding to the first and second half of the 

sample.  Model 5 uses non-overlapping observations for the Fama-Macbeth regression instead of the rolling windows.  Models 6 to 9 use different liquidity proxies: log of 

Amihud’s ILLIQ; modified ILLIQ using the high-low range as the measure of price impact; modified ILLIQ using turnover in place of dollar volume; and the actual quoted 

bid-ask spreads from CRSP (expressed relative to the midquote).  The actual quoted bid-ask spread is only available for the period to 1993-2011.  T-statistics using Newey-

West standard errors are in parentheses.  ***, **, and * indicate statistical significance at 1%, 5% and 10% levels.  

 

 Model 1: Model 2: Model 3: Model 4: Model 5: Model 6: Model 7: Model 8: Model 9: 

 Base case 
Value 

weighted 

Subsample 

1962-1986 

Subsample 

1987-2011 

Non-

overlapping  
ln(ILLIQ) 

Range 

ILLIQ 

Turnover 

ILLIQ 

Quoted spread, 

1993-2011 

Intercept 0.0311 

(3.41)*** 

0.0171 

(1.98)** 

0.0354 

(2.61)*** 

0.0269 

(2.11)** 

0.0331 

(5.50)*** 

0.0250 

(2.71)*** 

0.0192 

(2.03)** 

0.0195 

(1.67)* 

0.0209 

(1.36) 

𝑅𝑖,[𝑡−5,𝑡]
𝑒   0.0200  

(1.31) 

0.0363 

(2.19)** 

0.0432 

(2.53)** 

-0.0028  

(-0.12) 

0.0096 

(1.11) 

0.0232 

(1.52) 

0.0247 

(1.62) 

0.0198 

(1.35) 

0.0125 

(0.42) 

𝔼𝑡[𝐶𝑖,𝑡+1
 ]  0.368 

(4.91)*** 

0.280 

(1.99)** 

0.540 

(5.25)*** 

0.198 

(3.17)*** 

0.379 

(3.74)*** 

0.0510 

(4.90)*** 

0.0507 

(5.43)*** 

0.0255 

(3.41)*** 

1.81 

(2.61)*** 

𝛾
𝑖,𝑟
𝑅  0.0114 

(1.87)* 

0.0042 

(0.55) 

0.0075 

(0.72) 

0.0153 

(2.49)** 

0.0117 

(2.84)*** 

0.0128 

(1.86)* 

0.0134 

(2.13)** 

0.0104 

(1.24) 

0.0177 

(0.99) 

𝛾
𝑖,𝑙
𝑅   0.0099 

(4.43)*** 

0.0087 

(2.08)** 

0.0104 

(4.41)*** 

0.0094 

(2.59)** 

0.0127 

(11.14)*** 

0.0019 

(7.31)*** 

0.0017 

(7.53)*** 

0.0013 

(2.95)*** 

0.168 

(1.88)* 

𝛾
𝑖,𝑟
𝐿   -0.0097  

(-0.20) 

0.0405 

(0.83) 

-0.0067  

(-0.62) 

-0.0126  

(-0.13) 

0.0850 

(2.12)** 

0.0040 

(0.87) 

-0.0079  

(-1.00) 

0.0015 

(1.01) 

-0.0605  

(-0.21) 

𝛾
𝑖,𝑙
𝐿   0.0016 

(0.13) 

0.0004 

(0.02) 

0.0125 

(2.23)** 

-0.0090  

(-0.37) 

-0.0513  

(-0.70) 

-0.0005  

(-1.58) 

0.0002  

(1.00) 

-0.0004  

(-1.71)* 

-0.750  

(-1.01) 

          

Adj. R
2
 (%) 4.22 8.17 4.79 3.66 4.24 4.72 4.90 4.11 5.54 

 


