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Dual-sourcing inventory systems, in which one supplier is faster (i.e. express) and more costly, while the

other is slower (i.e. regular) and cheaper, arise naturally in many real-world supply chains. These systems

are notoriously difficult to optimize due to the complex structure of the optimal solution and the curse of

dimensionality, having resisted solution for over 40 years. Recently, so-called Tailored Base-Surge (TBS)

policies have been proposed as a heuristic for the dual-sourcing problem. Under such a policy, a constant

order is placed at the regular source in each period, while the order placed at the express source follows a

simple order-up-to rule. Numerical experiments by several authors have suggested that such policies perform

well as the lead time difference between the two sources grows large, which is exactly the setting in which

the curse of dimensionality leads to the problem becoming intractable. However, providing a theoretical

foundation for this phenomenon has remained a major open problem.

In this paper, we provide such a theoretical foundation by proving that a simple TBS policy is indeed

asymptotically optimal as the lead time of the regular source grows large, with the lead time of the express

source held fixed. Our main proof technique combines novel convexity and lower-bounding arguments, an

explicit implementation of the vanishing discount factor approach to analyzing infinite-horizon Markov deci-

sion processes, and ideas from the theory of random walks and queues, significantly extending the method-

ology and applicability of a novel framework for analyzing inventory models with large lead times recently

introduced by Goldberg and co-authors in the context of lost-sales models with positive lead times.

Key words : inventory, dual-sourcing, Tailored Base-Surge policy (TBS), lead time, asymptotic optimality,

convexity.
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1. Introduction

A common practice in the management of global supply chains is dual-sourcing (cf.

Rao, Scheller-Wolf and Tayur (2000)). Under a dual-sourcing strategy, the companies usually pur-

chase their materials from a regular supplier at a lower cost, but they are also able to obtain

materials from an expedited supplier at a higher cost under emergency circumstances. For exam-

ple, in the summer of 2003, Amazon used FedEx to deliver the new Harry Potter more promptly

and maintained regular shipping via UPS (cf. Kelleher (2003), Veeraraghavan and Scheller-Wolf

(2008)). Allon and Van Mieghem (2010) describes an example of a $10 billion high-tech U.S. com-

pany that has two suppliers, one in Mexico and one in China. The one in Mexico has shorter lead

time but higher per-unit ordering cost; the one in China has longer lead time (5 to 10 times longer)

but lower per-unit ordering cost. The company takes advantage of the dual-sourcing strategy to

meet the demand more responsively (from Mexico) as well as less expensively (from China).

Although dual-sourcing is attractive, and very relevant to practice, optimizing a dual-sourcing

inventory system is notoriously challenging. Such inventory systems have been studied now for

over forty years, but the structure of the optimal policy remains poorly understood, with the

exception of when the system is consecutive, i.e., the lead time difference between the two sources

is exactly one. More specifically, the earliest studies of periodic review dual-sourcing inventory

models include Barankin (1961), Daniel (1963), and Neuts (1964), which showed that base-stock

(also known as order-up-to) policies are optimal when the lead times of the two sources are zero

and one respectively. Fukuda (1964) extended the result to general lead time settings as long as

the lead time difference remains one. Whittmore and Saunders (1977) showed that the optimal

policy is no longer a simple base-stock policy when the lead time difference is beyond one and the

structure of the optimal policy can be quite complex. Furthermore, it is well known that a dual-

sourcing inventory system can be regarded as a generalization of a lost-sales inventory system (cf.

Sheopuri, Janakiraman and Seshadri (2010)). Indeed, the intractability of both the dual-sourcing

and lost-sales inventory models has a common source - as the lead time grows, the state-space of the



Xin and Goldberg: Asymptotic optimality of TBS policies in dual-sourcing inventory systems
3

natural dynamic programming (DP) formulation grows exponentially, rendering such techniques

impractical. This issue is typically referred to as the “curse of dimensionality” (cf. Karlin and Scarf

(1958), Morton (1969), Zipkin (2008)), and we refer the reader to Goldberg et al. (2015) and

Xin and Goldberg (2015) for a relevant discussion in the context of lost-sales inventory models.

There is a vast literature investigating periodic review dual-sourcing inventory models as well

as their variants, and we refer the interested reader to the survey of Minner (2003), as well as e.g.

the more recent works of Feng et al. (2006), Fox, Metters and Semple (2006), Chen, Xue and Yang

(2013), Huggins and Olsen (2010), Angelus and Özer (2015), Boute and Van Mieghem (2015),

Gong, Chao and Zheng (2014), Song and Zipkin (2009), and the references therein.

As an exact solution seems out of reach, the operations research and management com-

munities have instead investigated certain structural properties of the optimal policy (cf.

Hua et al. (2014)), and exerted considerable effort towards constructing various heuristic poli-

cies. Veeraraghavan and Scheller-Wolf (2008) proposed the family of dual index (DI) poli-

cies, which have two base-stock levels, one for the regular source and one for the express

source, and “orders up” to bring appropriate notions of inventory position up to these levels.

Scheller-Wolf, Veeraraghavan and van Houtum (2008) analyzed the closely related class of single

index (SI) policies, for which the relevant notions of inventory position are different. Both families

of policies seem to perform well in numerical studies. Sheopuri, Janakiraman and Seshadri (2010)

considered two generalized classes of policies: one with an order-up-to structure for the express

source, and one with an order-up-to structure for the regular source. Their numerical experiment

showed that such policies can outperform DI policies. In the presence of production capacity costs,

Boute and Van Mieghem (2015) studied dual-sourcing smoothing policies, under which the order

quantities from both sources in each period are convex combinations of observed past demands.

They analyzed such polices under normally distributed demand, and their numerical results showed

that these policies performed better for higher capacity costs and longer lead time differences

(between the two sources).
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A simple and natural policy that is implemented in practice, which will be the subject of our

own investigations, is the so-called Tailored Base-Surge (TBS) policy. It was first proposed and

analyzed in Allon and Van Mieghem (2010), where we note that closely related standing order poli-

cies had been studied previously (cf. Rosenshine and Obee (1976), Janssen and De Kok (1999)).

Under such a TBS policy, a constant order is placed at the regular source in each period to meet

a base level of demand, while the orders placed at the express source follow an order-up-to rule

to manage demand surges. We refer to Mini-Case 6 in Van Mieghem (2008) for more about the

motivation and background of TBS policies. Note that dual-sourcing inventory systems in which

a constant-order policy is implemented for the regular source are essentially equivalent to single-

sourcing inventory systems with constant returns, which have been investigated in the literature

(cf. Fleischmann and Kuik (2003), DeCroix, Song and Zipkin (2005)).

Allon and Van Mieghem (2010) analyzed TBS policies in a continuous review model, and their

focus was to find the best TBS policy. Numerical results in Klosterhalfen, Kiesmüller and Minner

(2011) and Rossi, Rijpkema and van der Vorst (2012) showed that TBS policies are comparable to

DI policies, and outperformDI policies for some problem instances. Allon and Van Mieghem (2010)

conjectured that this policy performs more effectively as the lead time difference between the two

sources grows. Janakiraman, Seshadri and Sheopuri (2015) (henceforth denoted JSS) analyzed a

periodic review model and studied the performance of the TBS policy. They provided an explicit

bound on the performance of TBS policies compared to the optimal one when the demand had

a specific structure, and provided numerical experiments suggesting that the performance of the

TBS policy improves as the lead time difference grows large.

However, to date there is no theoretical justification for the good behavior of TBS policies as

the lead time difference grows large, and giving a solid theoretical foundation to this observed

phenomena remains a major open question. We note that until recently, a similar state of affairs

existed regarding the good performance of constant-order policies as the lead time grows large

in single-source lost-sales inventory models. However, using tools from applied probability, queue-

ing theory, and convexity, this phenomena was recently explained in Goldberg et al. (2015) and
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Xin and Goldberg (2015), in which it was proven that a simple constant-order policy is asymptot-

ically optimal in this setting as the lead time of the single source grows large. The intuition here

is that as the lead time grows large, so much randomness is introduced into the system between

when an order is placed and when that order is received, that it is essentially impossible for any

algorithm to meaningfully use the state information to make significantly better decisions. Thus a

policy which ignores the state information (i.e. constant-order policy) performs nearly as well as

an optimal policy. We note that the results of Xin and Goldberg (2015) further demonstrate that

the optimality gap of the constant-order policy actually shrinks exponentially fast to zero as the

lead time grows large, and provide explicit and effective bounds even for moderate-to-small lead

times.

1.1. Our contributions

In this paper, we resolve this open question by proving that, when the lead time of the express

source is held fixed, a simple TBS policy is asymptotically optimal as the lead time of the reg-

ular source grows large. Our results provide a solid theoretical foundation for the conjectures

and numerical experiments of Allon and Van Mieghem (2010) and JSS. Interestingly, the simple

TBS policy performs nearly optimally exactly when standard DP-based methodologies become

intractable due to the aforementioned “curse of dimensionality”. Furthermore, as the “best” TBS

policy can be computed by solving a convex program that does not depend on the lead time of

the regular source (cf. JSS), our results lead directly to very efficient algorithms (with complexity

independent of the lead time of the regular source) with asymptotically optimal performance guar-

antees. We also explicitly bound the optimality gap of the TBS policy for any fixed lead time (of

the regular source), and prove that this decays inverse-polynomially in the lead time of the regu-

lar source. Perhaps most importantly, since many companies are already implementing such TBS

policies (cf. Allon and Van Mieghem (2010)), our results provide strong theoretical support for the

widespread use of TBS policies in practice. Our main proof technique combines novel convexity and

lower-bounding arguments, an explicit implementation of the vanishing discount factor approach to
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analyzing infinite-horizon Markov decision processes (MDP), and ideas from the theory of random

walks and queues. Our methodology significantly extends the framework for analyzing inventory

models with large lead times recently introduced in Goldberg et al. (2015) and Xin and Goldberg

(2015) in the context of lost-sales models with positive lead times. Indeed, in the present work we

relate the performance of an optimal policy to a certain dynamic optimization problem by applying

the conditional Jensen’s inequality, while in Xin and Goldberg (2015) the relevant optimal policy

could be bounded by a static optimization problem after applying the (non-conditional) Jensen’s

inequality. The inherently dynamic nature of the resulting bounds introduce several additional

difficulties not encountered previously, and which we address in the present work.

1.2. Outline of paper

The rest of the paper is organized as follows. We formally define the dual-sourcing problem in

Section 2, and describe the TBS policy in Section 2.1. We state our main result in Section 2.2, and

prove our main result in Section 3. We summarize our main contributions and propose directions

for future research in Section 4. We also include a technical appendix in Section 5.

2. Model description, problem statement and assumptions

In this section, we formally define our dual-sourcing inventory problem, closely following the def-

initions given in Sheopuri, Janakiraman and Seshadri (2010). Let {Dt}t∈(−∞,∞),{D
′
t}t∈(−∞,∞) be

mutually independent sequences of nonnegative independent and identically distributed (i.i.d.)

demand realizations, distributed as the non-negative random variable (r.v.) D, which we assume

to have finite mean, and (to rule out certain trivial degenerate cases) to have strictly positive

(possibly infinite) variance. Here we have introduced two doubly indexed sequences to prevent any

possible confusion regarding dependencies of various demand realizations. Let Ĝ be an independent

geometrically distributed r.v., where P(Ĝ = k) = 2−k, k ≥ 1. As a notational convenience, let us

define all empty sums to equal zero, empty products to equal one, 1
∞

= 0, 0(1) denote the all zeros

(ones) vector, and I(A) denote the indicator of the event A. Let L≥ 1 be the deterministic lead

time of the regular source (R), and L0 ≥ 0 the deterministic lead time of the express source (E),
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where L > L0 + 1. Let cR, cE be the unit purchase costs of the regular and express sources, and

h, b be the unit holding and backorder costs respectively, with c, cE − cR > 0. In addition, let It

denote the on-hand inventory at the start of period t (before any orders or demands are received),

and qRt (q
E
t ) denote the order placed from R(E) at the beginning of period t. Note that due to

the leadtimes, the order received from R(E) in period t is qRt−L(q
E
t−L0

). As we will be primarily

interested in the corresponding long-run-average problem, and for simplicity (in later proofs), we

suppose that the initial conditions are such that (s.t.) the initial inventory is −
∑Ĝ

i=1D
′
−i, and no

initial orders have been placed from either R or E. Indeed, the associated system state will prove

convenient to use as a “regeneration point” when analyzing certain Markov chains which arise in

our proofs, where we note that the geometric distribution allows us to preclude certain kinds of

pathological periodic / lattice behavior which might otherwise interfere with proving the existence

of relevant stationary measures. We note that although assuming such a convenient randomized

initial condition simplifies several technical proofs along these lines, such an assumption is not

strictly necessary for our analysis, since the associated long-run average problem is insensitive to

the particular choice of initial conditions.

As a notational convenience, we define qRk = qEk = 0, k ≤ 0. For t= 1, . . . , T , the events in period

t are ordered as follows.

• Ordering decisions from R and E are made (i.e. qEt , q
R
t are chosen);

• New inventory qRt−L+ qEt−L0
is delivered and added to the on-hand inventory;

• The demand Dt is realized, costs for period t are incurred, and the inventory is updated.

Note that the on-hand inventory is updated according to It+1 = It+ qRt−L+ qEt−L0
−Dt, and may be

negative since backorder is allowed.

We now formalize the family of admissible policies Π, which will determine the new orders placed.

An admissible policy π consists of a sequence of measurable maps {fπ
t , t≥ 1}, where each fπ

t is a

deterministic measurable function with domain R
L+L0+1 and range R

+,2. In that case, for a given

policy π, the regular order placed in period t equals fπ
R,t(q

R
t−L, . . . , q

R
t−1, q

E
t−L0

, . . . , qEt−1, It); while
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the express order placed in period t equals fπ
E,t(q

R
t−L, . . . , q

R
t−1, q

E
t−L0

, . . . , qEt−1, It), and Π denotes the

family of all such admissible policies π.

Let G(y) be the sum of the holding and backorder costs when the inventory level equals y in

the end of a time period, i.e. G(y)
∆
= hy++ by−, where x+ ∆

=max(x,0), x− ∆
=max(−x,0). Here we

note that G is convex and Lipschitz, and for x, y ∈R,

|G(x)−G(y)| ≤max(b,h)|x− y| , |G(x)| ≥min(b,h)|x|. (1)

For t≥L0+1, let Ct be the sum of the holding and backorder costs incurred in time period t, plus

the ordering cost incurred for orders placed in period t−L0, i.e. Ct
∆
= cRq

R
t−L0

+ cEq
E
t−L0

+G(It +

qRt−L+qEt−L0
−Dt). We note that charging in period t for orders placed in period t−L0 is a standard

“accounting trick” in the inventory literature to simplify various notations (cf. Zipkin (2008a)),

and for the problems considered without loss of generality (w.l.o.g.). To denote the dependence

of the cost on the policy π, we use the notation Cπ
t . Let C(π) denote the long-run average cost

incurred by a policy π, i.e. C(π)
∆
= limsupT→∞

∑T
t=L0+1 E[Cπ

t ]

T
, where we again note that starting

the relevant sum at t= L0 + 1 (as opposed to t= 1) is w.l.o.g. for the problems considered. The

value of the corresponding long-run average cost dual-sourcing inventory optimization problem is

denoted by OPT(L)
∆
= infπ∈ΠC(π).

Before proceeding, it will be useful to apply certain well-known reductions to the problem

at hand, where we note that similar reductions are known to hold for many classical inven-

tory problems with backlogging (cf. Karlin and Scarf (1958), Scarf (1960)). First, as stated in cf.

Sheopuri, Janakiraman and Seshadri (2010), for the long-run average cost problems which will be

the focus of our analysis, any problem with cR > 0 can be transformed into an equivalent prob-

lem with cR = 0. As such we assume throughout that cR = 0. Let us define the so-called expedited

inventory position at time t≥ 1 as Ît
∆
= It +

∑t−1

k=t−L0
qEk +

∑t−L+L0

k=t−L
qRk , which corresponds to the

net inventory at the start of period t plus all orders to be received in periods t, . . . , t+L0 (which

were placed before period t), and the truncated regular pipeline at time t as the (L − L0 − 1)-

dimensional vector Rt ∆
= (qRt−L+L0+1, . . . , q

R
t−1), with Rt

k = qRt−L+L0+k, k = 1, . . . ,L− L0 − 1. Let Π̂
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denote those policies belonging to π with the additional restriction that the new orders qRt , q
E
t are

measurable functions of only Ît,R
t. More formally, π ∈ Π̂ if there exists a sequence of measurable

maps {f̂π
t , t≥ 1}, where each f̂π

t is a deterministic measurable function with domain R
L−L0 and

range R+,2, s.t. the regular order placed in period t equals f̂π
R,t(R

t, Ît) and the express order placed

in period t equals f̂π
E,t(R

t, Ît).

Note that Î1 = −
∑Ĝ

i=1D
′
−i, and R1 = 0. Also, for any policy π ∈ Π̂ and t ≥ 1, it holds that

Ît+1 = Ît + qEt +Rt
1 −Dt, R

t+1
k = Rt

k+1 for k ∈ [1,L − L0 − 2], and Rt+1
L−L0−1 = qRt . Furthermore,

for all t ≥ L0 + 1, Cπ
t = G(Ît−L0

+ qEt−L0
−
∑t

i=t−L0
Di) + cqEt−L0

. Then the following is proven in

Sheopuri, Janakiraman and Seshadri (2010).

Lemma 1 (Sheopuri, Janakiraman and Seshadri (2010) Lemma 2.1). infπ∈ΠC(π) =

infπ∈Π̂C(π), i.e. one may w.l.o.g. restrict oneself to policies belonging to Π̂.

For the remainder of the paper, we thus consider the relevant optimization only over policies

belonging to Π̂, i.e.

OPT(L) = inf
π∈Π̂

C(π). (2)

For a given policy π ∈ Π̂, let Rπ,t(Îπt ) denote a r.v. distributed as the truncated regular pipeline

(expedited inventory position) at the start of period t under policy π. Similarly, let qπ,Et (qπ,Rt ) denote

the expedited (regular) order placed in period t, and suppose that all these r.v.s are constructed on

a common probability space, and have the appropriate joint distribution induced by the operation

of π over time.

2.1. TBS policy

In this section, we formally introduce the family of TBS policies, and characterize the “best” TBS

policy. A TBS policy πr,S with parameters (r,S) is defined (cf. JSS) as the policy that places a

constant order r from R in every period, and follows an order-up-to rule from E which in each

period raises the expedited inventory position to S (if it is below S), and otherwise orders nothing.

More formally, under this policy qRt = r, and qEt =max(0, S− Ît), for all t.
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Let Ir∞
∆
= supj≥0

(

jr−
∑j

i=1Di

)

. In that case, it follows from the results of JSS that

C(πr,S) = c(E[D]− r)+E

[

G

(

Ir∞ +S−

L0+1
∑

i=1

D′
i

)]

. (3)

Note that for each r, the minimization problem infS∈RC(πr,S) is equivalent to a standard one-

period newsvendor problem. Furthermore, defining F∞(r)
∆
= infS∈RC(πr,S), it is proven in JSS that

F∞(r) is convex in r on (−∞,E[D]). Combining the above with standard results for single-server

queues (cf. Asmussen (2003)) and (1), we conclude that there exists at least one pair (r∗, S∗) s.t.

r∗ ∈ argmin0≤r≤E[D]F
∞(r) and S∗ ∈ argminS∈R

C(πr∗,S); that this pair defines the TBS policy with

least long-run-average cost; and that this pair can be computed efficiently by solving a convex

program which is independent of the larger lead time L.

2.2. Main result
2.3. Additional definitions and notations

Before stating our main result, we will need several additional definitions and notations to describe

various relevant quantities which will appear in our bounds on the optimality gap. For θ ≥ 0 and

ǫ∈
(

0,E[D]
]

, let us define

φǫ(θ)
∆
= exp

(

θ(E[D]− ǫ)
)

E[exp(−θD)] , γǫ
∆
= inf

θ≥0
φǫ(θ),

and ϑǫ ∈ argminθ≥0φǫ(θ) denote the supremum of the set of minimizers of φǫ(θ), where we define

ϑǫ to equal ∞ if the above infimum is not actually attained. Note that φǫ(θ) is a continuous and

convex function of θ on (0,∞), and right-continuous function of θ at 0. In addition, it follows

from Folland (1999) Theorem 2.27 that φǫ(θ) is right-differentiable at zero, with derivative equal

to −ǫ. We conclude from the definition of derivative and a straightforward contradiction argument

that ϑǫ > 0 and γǫ ∈ [0,1). Let g
∆
= infx∈RE

[

G
(

x−
∑L0+1

i=1 D′
i

)]

> 0, and U
∆
= C(π0,0) = cE[D] +

E[G(−
∑L0+1

i=1 D′
i)], in which case it is easily verified that g ≤OPT(L)≤ U for all L> L0 +1. We

also make the following additional definitions:

p0
∆
= P(D<E[D])∈ (0,1) , p̂0

∆
=
(1

2
p0(1−p0)

)
1
2 ∈ (0,1) , Q0

∆
= inf{x∈R

+ : P(D≤ x)≥
1

2
p0} ∈ [0,E[D]),
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η0
∆
= inf

z∈R

E[|z−D|]> 0 , c0
∆
=

1

240
min(b,h)p̂0η0 , U0

∆
= 64(L0+1)

max2(b,h)

min(b,h)
E[D],

ǫ0
∆
=min

(

E[D]−Q0,
1

4
(η0p̂0)

2,1− 2−
p̂2
0

400 ,
1

625
c20
(

U02
L0 + η0 +U +1

)−2
)

∈ (0,1− 2−
1

400 )⊂ (0, .002),

Y0
∆
= 25g−2

(

U02
L0 +max(b,h)γǫ0ϑ

−1
ǫ0
(1− γǫ0)

−2
)2

+L0 +1.

Our main result proves that the best TBS policy is asymptotically optimal as L→∞, and provides

explicit bounds on the optimality gap.

Theorem 1. For all L0 ≥ 0, ǫ∈ (0,1), and L> ǫ−2
0 +Y0ǫ

−2, it holds that
C(πr∗,S∗)

OPT(L)
< 1+ ǫ.

Corollary 1. limL→∞
C(πr∗,S∗ )

OPT(L)
= 1.

3. Proof of Theorem 1
3.1. Lower bound for the optimal cost

In this section, we prove a lower bound for OPT(L) by extending the steady-state/convexity

approach of Xin and Goldberg (2015) to the dual-sourcing setting. We note that here our lower

bound will involve a non-trivial optimization over measurable functions, in contrast to the bounds

used in Xin and Goldberg (2015) which were of a static nature. As in Xin and Goldberg (2015), we

will proceed by relating the “long-run behavior” of “an optimal policy” to a certain TBS policy. At

a high level, we will combine convexity and the conditional Jensen’s inequality with the fact that

the r.v.s corresponding to (appropriately defined stationary versions of) the different components

of the truncated regular pipeline vector (under the optimal policy) have the same mean, which will

(approximately) coincide with the constant order from R in our TBS policy. Furthermore, when we

apply the conditional Jensen’s inequality to certain terms corresponding to (appropriately defined

stationary versions of) the expedited orders under the same optimal policy, the resulting terms

will be suitably measurable functions of past demands, which will (approximately) coincide with

the amount of inventory ordered from E in our TBS policy.

3.1.1. Connecting to a stationary problem. As in Xin and Goldberg (2015), our pro-

gram immediately encounters a technical problem. Namely, the natural way to analyze the “long-

run behavior” of an optimal policy is through the steady-state distribution of the Markov chain
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induced by this policy. However, it is not obvious that this steady-state exists. Actually, it is not

even obvious that there exists a stationary optimal policy (so that the dynamics even define a

Markov chain), nor even that there even exists an optimal policy at all (as opposed to it only

being approached). Although such questions have been rigorously analyzed for simpler inven-

tory models in Huh, Janakiraman and Nagarajan (2011), such questions have not been rigorously

answered for the setting of more complicated dual-sourcing models. We note that although in

Sheopuri, Janakiraman and Seshadri (2010) it is stated in passing that many of the same results

should extend to the dual-sourcing setting, no proofs are provided, and the explicit assumptions

needed for such a transference are not clarified. A similarly terse exposition on related ques-

tions is provided in Hua et al. (2014). Furthermore, in none of these works is the question of

existence of and convergence to relevant stationary measures discussed. To overcome this, as in

Xin and Goldberg (2015), we first observe that we will not actually need a random vector which

is truly the steady-state of the aforementioned Markov chain (which in principle may not exist),

but only need to demonstrate the existence of a random vector which has several properties that

we would want such a steady-state (if it existed) to have. We now show the existence of such a

random vector. We note that although closely related questions have been studied in the MDP

literature (cf. Arapostathis et al. (1993)), and perturbative approaches similar to the approach

we take in our own proof are in general well-known (cf. Filar (2007)), to the best of our knowl-

edge the desired result does not follow directly from any results appearing in the literature. As

such, we include a proof for completeness in the technical appendix Section 5. We note that

here the relevant analysis is considerably more challenging than that given in Xin and Goldberg

(2015), due to the fact that in the dual-sourcing setting the inventory level is unbounded from

below, and the associated ordering levels are not known to be uniformly bounded (in contrast

to the setting considered in Xin and Goldberg (2015) for which such bounds were already proven

in Zipkin (2008a)). Furthermore, although several bounds exist in the dual-sourcing literature

relating order levels under an optimal policy to the inventory level at the time of ordering (cf.
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Sheopuri, Janakiraman and Seshadri (2010), Hua et al. (2014)), it seems that due to the inventory

being unbounded below none of those bounds are suitable for our purposes. It is also worth noting

that our approach is able to side-step many of the complexities and additional assumptions (e.g.

finite second moment or bounded support) often required when analyzing inventory models which

are unbounded from below.

We defer all relevant proofs to the technical appendix Section 5. For two r.v.s X,Y , let X ∼ Y

denote equivalence in distribution. Before stating our result, for the sake of building intuition, we

first describe what the various r.v.s appearing in our result would correspond to “if we were to

assume” (which we do not, i.e. it is not an assumption of our main results) that there exists an

optimal policy which is stationary, and whose corresponding Markov chain converges to a steady-

state distribution, i.e. the truncated regular pipeline and expedited inventory position converge

in distribution under the operation of this optimal stationary policy. In that case, our theorem

contains an (L−L0 − 1)-dimensional random vector χ∗,L, an (L−L0)-dimensional random vector

q∗,L, and a r.v. I∗,L, which may be interpreted as follows. Suppose one has been operating under

this stationary optimal policy for a long time, say up to some very large time T , at which time the

system is essentially in steady-state (again we note that this discussion is purely for the sake of

building intuition, and our main results do not actually assume this). Then χ∗,L corresponds to the

steady-state truncated regular pipeline vector under this optimal policy (at time T ), i.e. χ∗,L
i is the

regular order which enters the expedited inventory position in period T + i− 1. q∗,L corresponds

to the steady-state vector of expedited orders to be placed over the next L−L0 periods under this

optimal policy, i.e. q∗,L
i is the expedited order which enters the expedited inventory position in

period T + i− 1. Finally, I∗,L corresponds to the steady-state expedited inventory position under

this optimal policy (at time T ).

Theorem 2. For all L0 ≥ 0 and L > L0 + 1, one may construct an L − L0 − 1-dimensional

random vector χ∗,L, an L− L0-dimensional random vector q∗,L, and a random variable I∗,L, as

well as {Di, i≥ 1}, on a common probability space s.t. the following are true.
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(i) W.p.1 (χ∗,L,q∗,L) is non-negative. Also, (χ∗,L,I∗,L) is independent of {Di, i≥ 1}, and q∗,Li is

independent of {Dj, j ≥ i} for i∈ [1,L−L0].

(ii) χ∗,L
i ∼ χ∗,L

1 for i∈ [1,L−L0 − 1], and q∗,Li ∼ q∗,L1 for i∈ [1,L−L0].

(iii) For all k ∈ [1,L−L0],

I∗,L+
k−1
∑

i=1

(q∗,Li +χ∗,L
i −Di)+ q∗,Lk −

k+L0
∑

i=k

Di ∼I∗,L+ q∗,L1 −

L0+1
∑

i=1

Di.

(iv) (χ∗,L,q∗,L,I∗,L) has finite mean.

(v) E[χ∗,L
1 ] +E[q∗,L1 ] =E[D].

(vi)

OPT(L)≥ c
(

E[D]−E[χ∗,L
1 ]
)

+E

[

G

(

I∗,L+ q∗,L1 −

L0+1
∑

i=1

Di

)]

.

3.1.2. Vanishing discount factor approach. Although Theorem 2.(vi) relates OPT(L) to

a certain expectation, this expectation (as written) is not immediately amenable to analysis. To

remedy this, we introduce a discount factor α to implement the so-called “vanishing discount

factor” approach to analyzing infinite-horizon MDP (cf. Huh, Janakiraman and Nagarajan (2011)),

which will allow for a simpler analysis when we pass to the limit as L→∞. Indeed, this discount

factor will help us to analyze the lower bound which arises when we apply the conditional Jensen’s

inequality, as this lower bound will itself involve the solution to a non-trivial multi-stage dynamic

optimization problem. We note that the lower bound which arose when related techniques were

applied to single-sourcing systems with lost sales in Xin and Goldberg (2015) only involved a static

optimization problem, and thus no such discount factor was introduced. In particular, Theorem 2

immediately implies the following corollary. Let rL
∆
=E[χ∗,L

1 ].

Corollary 2. For all L0 ≥ 0,L > L0 +1, and α∈ (0,1),

OPT(L) ≥ c (E[D]− rL)+
1−α

1−αL

L
∑

k=1

αk−1
E

[

G

(

I∗,L+ q∗,L1 −

L0+1
∑

i=1

Di

)]

≥ c (E[D]− rL)+ (1−α)

L−L0
∑

k=1

αk−1
E

[

G

(

I∗,L+
k−1
∑

i=1

(q∗,Li +χ∗,L
i −Di)+ q∗,Lk −

k+L0
∑

i=k

Di

)]

.
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3.1.3. Applying the conditional Jensen’s inequality and relating to a single-source

inventory model. We now apply the conditional Jensen’s inequality to Corollary 2, which will

allow us to lower-bound OPT(L) by the optimal value of a certain finite-horizon single-source

inventory model with backlogged demand. We will then relate this finite-horizon problem to an

associated infinite-horizon problem, which has an optimal stationary policy. Furthermore, we will

connect the behavior of such an optimal stationary policy to the performance of an associated TBS

policy, ultimately allowing us to prove our main results. In particular, it follows from Theorem 2

and the independence structure of the relevant r.v.s that for k ∈ [1,L−L0],

E

[

I∗,L+
k−1
∑

i=1

(q∗,Li +χ∗,L
i −Di)+ q∗,Lk −

k+L0
∑

i=k

Di

∣

∣

∣

∣

D[k+L0]

]

equals

E[I∗,L] +
k−1
∑

i=1

(E[q∗,Li |D[i−1]] + rL −Di)+E[q∗,Lk |D[k−1]]−

k+L0
∑

i=k

Di.

Further combining with Corollary 2, the convexity of G, and Jensen’s inequality for conditional

expectations, we obtain the following result.

Proposition 1. For any α ∈ (0,1) and L>L0 +1, OPT(L)− c (E[D]− rL) is at least

(1−α)

L−L0
∑

k=1

αk−1
E

[

G

(

E[I∗,L]− (L0 +1)rL +
k−1
∑

i=1

(

E[q∗,Li |D[i−1]]− (Di− rL)
)

+E[q∗,Lk |D[k−1]]−

k+L0
∑

i=k

(Di− rL)

)

]

.

(4)

Note that (4) is the discounted cost incurred (during periods L0+1, . . . ,L) by the policy ordering

E[q∗,Li |D[i−1]] in period i, of a single-sourcing L-period backlog inventory problem with unit holding

cost h, backorder cost b, zero ordering cost, discount factor α, i.i.d. demand distributed as D− rL

(which we note can be positive or negative), lead time L0, and initial inventory position (initial net

inventory plus all entries of the initial pipeline vector) E[I∗,L]− (L0 + 1)rL (cf. Karlin and Scarf

(1958)), multiplied by (1−α). Such models, and their optimal policies, have been studied in-depth

in the literature (cf. Karlin and Scarf (1958), Zipkin (2000), Fleischmann and Kuik (2003)), and

are well-understood (especially for the case of non-negative demand, cf. Zipkin (2000)). Let Π
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denote the family of all feasible non-anticipative policies for the aforementioned inventory problem

(as it is typically defined, cf. Zipkin (2000)). For π ∈Π, initial inventory position x∈R, r ∈R, and

i≥ 1, let Cπ
i (r,x) denote the cost incurred by policy π in the aforementioned inventory problem

in period i+L0, if the demand in each period is i.i.d. distributed as D− r (with the leadtime L0

and costs b,h as above). For x∈R, r ∈R, α∈ (0,1), n≥ 1, let us define

V n
α (r,x)

∆
= inf

π∈Π
E

[

n
∑

i=1

αi−1Cπ
i (r,x)

]

; (5)

and

V ∞
α (r,x)

∆
= inf

π∈Π
E

[

∞
∑

i=1

αi−1Cπ
i (r,x)

]

. (6)

As a notational convenience, we define V 0
α (r,x) = 0, V n

α (r,−∞)
∆
= infx∈R V

n
α (r,x), V ∞

α (r,−∞)
∆
=

infx∈R V
∞
α (r,x). Then combining the above, we derive the following lower bound for OPT(L).

Lemma 2. For all L0 ≥ 0,L> L0 +1, and α ∈ (0,1),

OPT(L)≥ c(E[D]− rL)+ (1−α)V L−L0
α (rL,−∞). (7)

3.1.4. Overview of remainder of the proof of our main results. The remainder of

the proof involves a careful analysis of the right-hand-side (r.h.s.) of (7) as L→∞, and we now

sketch an outline of our approach. First, we will prove that if rL is bounded away from E[D], then

V ∞
α (rL,−∞)− V L−L0

α (rL,−∞) can be suitably bounded by a function of L which converges to 0

as L→∞. We then observe that the infinite-horizon problem associated with V ∞
α (rL,−∞) has an

optimal policy which is stationary, Markov, and of order-up-to type. Furthermore, the stochastic

process induced by this optimal policy will be equivalent to that induced by a corresponding

TBS policy, but possibly initialized not according to the stationary distribution of the associated

inventory process. Then we prove that rL is indeed bounded away from E[D], since otherwise we

can use the theory of random walks to derive a contradiction (as OPT(L) would be strictly greater

than U). Finally, we combine these facts to bound various error terms under a suitable choice

of α (which converges to 1 as L → ∞), including a term resulting from the difference between

the performance of the same TBS policy under different initializations, to prove our main result

Theorem 1.
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3.2. Proof of Theorem 1

We now complete the proof of Theorem 1 by formalizing the argument sketched at the end of

Section 3.1. Such arguments are standard in the literature on MDP and infinite-horizon inven-

tory control problems (cf. Iglehart (1963), Sennott (1989), Schäl (1993), Fleischmann and Kuik

(2003), Feinberg (2011), Huh, Janakiraman and Nagarajan (2011)). We note that the somewhat

non-standard aspect here is that the demand in each period is distributed as D− rL, and thus may

be negative. As such, the original arguments typically used to analyze the relevant quantities and

prove related interchange-of-limits results (cf. Iglehart (1963)) do not directly apply. The possibility

of negative demand also makes the verification of the conditions of general theorems which validate

such bounds and interchange-of-limits (cf. Sennott (1989), Schäl (1993)) somewhat involved, even

when these theorems are customized to the inventory setting (cf. Parker and Kapuscinski (2004),

Huh, Janakiraman and Nagarajan (2011)). We note that the verification of closely related results

have arisen recently in the context of analyzing inventory systems with returns, which reduce to

standard inventory systems where demand can be positive or negative (cf. Fleischmann and Kuik

(2003)). However, those results (which verify the technical conditions of Sennott (1989)) do not

seem to extend immediately to our case, and further seem to require that the demand and ordering

quantities take integer values. In light of the above, and for the sake of clarity and completeness, we

now provide a self-contained proof of all necessary bounds, which (combined with Lemma 2) will

complete the proof of our main result Theorem 1. We defer most proofs to the technical appendix

Section 5.

We begin by stating some well-known properties of V n
α (r,x) and V ∞

α (r,x), which follow from

the results of JSS, Karlin and Scarf (1958) and Scarf (1960). We note that although in some

cases the proofs there are only explicitly given for the case of non-negative demand, as noted

in Heyman and Sobel (1984) and Fleischmann and Kuik (2003), the arguments carry over to the

general case (in which demand may be negative) with only trivial modification.

Lemma 3 (JSS, Scarf (1960)). For all α∈ (0,1), r, x∈R, and n≥ 1,

V n
α (r,x) = inf

y≥x

(

E

[

G
(

y−

L0+n
∑

k=n

(Dk − r)
)

]

+αE
[

V n−1
α

(

r, y− (DL0+n − r)
)]

)

.
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Furthermore, V n
α (r,x) is: a convex (and thus also continuous) function of x on R for each fixed n, r;

a continuous function of r on R for each fixed n,x; an increasing function of x on R for each fixed

n, r; and an increasing function of n on Z+ for each fixed x, r. In addition, the infinite-horizon

problem stated in the r.h.s. of (6) admits an optimal stationary Markov policy.

Next, we bound V ∞
α (r,x) − V n

α (r,x), and combine our bounds with Lemma 3 to derive some

useful properties of V ∞
α (r,x) and the associated optimization problem. We defer all proofs to the

technical appendix Section 5. Let Sα(r)
∆
=4(L0 +1)max(b,h)

min(b,h)
(|r|+E[D])(1−α)−2.

Lemma 4. For α ∈ (0,1), r,x ∈R, and n≥ 1,

0≤ V ∞
α (r,x)−V n

α (r,x)≤max(b,h)
(

Sα(r)+ |x|+ |r|+E[D]
)

(1+L0 +n)(1−α)−2αn, (8)

and V ∞
α (r,x) = limn→∞ V n

α (r,x). Furthermore, for α∈ (0,1) and r ∈R, V ∞
α (r,x) is a finite-valued,

convex, and non-decreasing function of x on R. Letting S∞
α (r) denote the supremum of the set

of minimizers (in x) of V ∞
α (r,x), it holds that |S∞

α (r)| ≤ Sα(r), and the infinite-horizon problem

stated in the r.h.s. of (6) admits an optimal stationary base-stock policy, with order-up-to level

S∞
α (r). In addition, for L0 ≥ 0, L>L0 +1, and α∈ (0,1),

OPT(L)≥ c(E[D]− rL)+ (1−α)V ∞
α

(

rL, S
∞
α (rL)

)

−U0(1−α)−3LαL−L0 . (9)

We now formally define the Markov process representing the inventory position process under

such an optimal stationary base-stock policy, initialized in state S∞
α (rL). Let Sα,L

∆
= S∞

α (rL). For

r ∈ [0,E[D]] and y ∈R, let {Xr,y
k , k ≥ 1} denote the following Markov process. Xr,y

1 equals y. For

all k ≥ 1, Xr,y
k+1 = max

(

Xr,y
k + r −Dk, y

)

. Let W r
k

∆
=
∑k

j=1(r −Dj), Z
r
k

∆
= maxi∈[0,k−1]W

r
i , Z

r
∞

∆
=

supi≥0W
r
i , M

r
k

∆
= E[Zr

k ], M
r
∞

∆
= E[Zr

∞]. It follows from the well-known analysis of the single-server

queue using Lindley’s recursion (cf. Asmussen (2003)) that Xr,y

k ∼ y+Zr
k ; and Xr,y

∞

∆
= limk→∞Xr,y

k

(in the sense of weak convergence) is a well-defined r.v. distributed as y+Zr
∞.

Combining these definitions with Lemmas 3 and 4, we conclude the following.
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Corollary 3. For L0 ≥ 0,L> L0 +1, and α ∈ (0,1),

OPT(L)≥ c(E[D]− rL)+ (1−α)
∞
∑

k=1

αk−1
E
[

G
(

Sα,L+ZrL
k −

L0+1
∑

i=1

(D′
i− rL)

)]

−U0(1−α)−3LαL−L0 .

We now briefly review some useful properties of Zr
k , which we will use to complete the proof of

our main results. These properties follow by combining generally well-known results for generating

functions, large deviations, single-server queues, and recurrent random walks (cf. Spitzer (1956),

Kingman (1962), Folland (1999), Asmussen (2003), Xin and Goldberg (2015)), and we omit the

details.

Lemma 5. For all r > 0, {M r
k , k≥ 1} is non-decreasing, M r

∞ = limk→∞M r
k , and for all i≥ j ≥ 1,

M r
i −M r

j =
∑i−1

k=j
k−1

E[max(0,W r
k )]. If there exists ǫ ∈ (0,E[D]) s.t. r ≤ E[D]− ǫ, then M r

∞ <∞,

and M r
∞ −M r

n ≤
(

ϑǫ(1− γǫ)
)−1

γn
ǫ for all n≥ 1.

Finally, we will also need the following corollary (of Lemma 5), which shows that rL is uniformly

bounded away from E[D] in an appropriate sense, and whose proof we again defer to the technical

appendix Section 5.

Corollary 4. For all L> ǫ−2
0 +L0 +1, it holds that rL <E[D]− ǫ0.

We now complete the proof of our main results.

Proof of Theorem 1 It follows from (3) that for all α ∈ (0,1),

C(πrL,Sα,L+(L0+1)rL) = c(E[D]− rL)+E

[

G

(

Sα,L +ZrL
∞ +(L0 +1)rL−

L0+1
∑

i=1

D′
i

)]

= c(E[D]− rL)+ (1−α)
∞
∑

k=1

αk−1
E

[

G

(

Sα,L+ZrL
∞ −

L0+1
∑

i=1

(D′
i− rL)

)]

.

Combining with Corollaries 3 and 4, Lemma 5, (1), and the fact that L> ǫ−2
0 +L0+1, we conclude

that for all α ∈ (0,1), C(πr∗,S∗)−OPT(L)−U0(1−α)−3LαL−L0 is at most

(1−α)
∞
∑

k=1

αk−1

(

E

[

G

(

Sα,L+ZrL
∞ −

L0+1
∑

i=1

(D′
i− rL)

)]

−E

[

G

(

Sα,L +ZrL
k −

L0+1
∑

i=1

(D′
i− rL)

)])

≤ max(b,h)(1−α)
∞
∑

k=1

αk−1
(

ϑǫ0(1− γǫ0)
)−1

γk
ǫ0

= max(b,h)γǫ0
(

ϑǫ0(1− γǫ0)
)−1 1−α

1− γǫ0α

≤ (1−α)max(b,h)γǫ0ϑ
−1
ǫ0
(1− γǫ0)

−2.
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We conclude that for all α ∈ ( 1
2
,1), C(πr∗,S∗)−OPT(L) is at most

U02
L0(1−α)−3LαL +(1−α)max(b,h)γǫ0ϑ

−1
ǫ0
(1− γǫ0)

−2.

As L> ǫ−2
0 +L0 +1 implies L> 100, which itself may be shown to imply that 5 log(L)

L
< 1

2
, we may

set α= 1− 5 log(L)

L
. Then applying the fact that 1−α≤ exp(−α), we conclude that

C(πr∗,S∗)−OPT(L)≤ 5
log(L)

L

(

U02
L0 +max(b,h)γǫ0ϑ

−1
ǫ0
(1− γǫ0)

−2
)

.

As log(L)

L
<L− 1

2 for all L≥ 1, combining with the fact that OPT≥ g and a straightforward calcu-

lation completes the proof. �.

4. Conclusion

In this paper, we proved that when the lead time of the express source is held fixed, a simple TBS

policy is asymptotically optimal for the dual-sourcing inventory problem as the lead time of the

regular source grows large. Our results provide a solid theoretical foundation for several conjectures

and numerical experiments appearing previously in the literature regarding the good empirical

performance of such policies. Furthermore, the simple TBS policy performs nearly optimally exactly

when standard DP-based methodologies become intractable due to the curse of dimensionality. In

addition, since the “best” TBS policy can be computed by solving a convex program that does not

depend on the lead time of the regular source, and is easy to implement, our results lead directly to

very efficient algorithms with asymptotically optimal performance guarantees. We also explicitly

bound the optimality gap of the TBS policy for any fixed lead time (of the regular source), and

prove that this decays inverse-polynomially in the lead time of the regular source. Perhaps most

importantly, since many companies are already implementing such TBS policies, our results provide

strong theoretical support for the widespread use of TBS policies in practice.

This work leaves many interesting directions for future research. First, it would be interesting

to further investigate the rate of convergence to optimality of TBS policies as the lead time grows

large, especially in light of their use in practical settings. Although we have not optimized the
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explicit bounds which we have proven on the optimality gap, we suspect that proving significantly

stronger (e.g. exponentially decaying) bounds will require the development of new techniques. For

example, when we apply the conditional Jensen’s inequality to lower bound the optimal value by

a certain single-sourcing problem in Section 3.1.3, our current approach does not incorporate the

fact that E[q∗,Li ] is the same for all i, instead only using the fact that E[q∗,Li |D[i−1]] is a measurable

function of D[i−1]. It seems plausible that incorporating this “stationary expectations” property

may be a promising approach here. Previous bounds from the literature on the rate of conver-

gence of finite horizon inventory optimization problems to their infinite horizon counterparts, e.g.

Hordijk and Tijms (1974, 1975), may also be helpful.

Second, and related to the aforementioned discussion as regards the rate of convergence to opti-

mality of TBS policies, it would be interesting to identify other more sophisticated algorithms

which perform better for small-to-moderate lead times, yet remain efficient to implement. Indeed,

it remains an interesting open question to better understand the trade-off between algorithmic

run-time and acheivable performance guarantees in this context, i.e. how complex an algorithm is

required to “exploit” the weak correlations which persist even as the lead time grows large. In the

context of dual-sourcing, potential algorithms here include: the so-called dual-sourcing smooth-

ing policies recently studied in Boute and Van Mieghem (2015); affine policies more generally (cf.

Bertsimas, Iancu and Parrilo (2010)), of which dual-sourcing smoothing policies are a special case;

the single index and dual index policies discussed earlier; or the dual-balancing policies analyzed in

Levi, Janakiraman and Nagarajan (2008). It would also be quite interesting to analyze “hybrid”

algorithms, which could e.g. solve a large dynamic program when the lead time is small, and

gradually transition to using simpler heuristics as the lead time grows large; or combine different

heuristics depending on the specific problem parameters. In the context of the above conversation

on optimality gaps, we do remind the reader that for any fixed regular lead time a TBS policy is

not exactly optimal except in some very special cases (cf. JSS), and that our results (and associated

insights) should always be applied with care.
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On a final note, combined with the results of Goldberg et al. (2015) and Xin and Goldberg

(2015), our methodology lays the foundations for a completely new approach to analyzing inventory

models with large lead times. So far, this approach has been successful in yielding key insights and

efficient algorithms for two settings previously believed intractable: lost sales models with large

lead times, and dual-sourcing models with large lead time gap. We believe that our techniques have

the potential to make similar progress on many other difficult supply chain optimization problems

of practical relevance in which there is a lag between when policy decisions are made and when

those decisions are implemented. This includes both more realistic variants of the lost-sales and

dual-sourcing models considered so far (e.g. models with distributional dependencies, parameter

uncertainty, complex network structure, and more accurate modeling of costs), as well as funda-

mentally different models (e.g. inventory systems with remanufacturing when the manufactured

and remanufactured lead times differ, cf. Zhou, Tao and Chao (2011); multi-echelon systems with

lost sales and positive lead times, cf. Huh and Janakiraman (2010); or models with perishable

goods). In closing, we note that our approach can more generally be viewed as a methodology

to formalize the notion that when there is a high level of uncertainty and randomness in one’s

supply chain, even simple policies perform nearly as well as very sophisticated policies, since no

algorithm can “beat the noise”. Exploring this concept from a broader perspective may be fruitful

in yielding novel algorithms and insights for a multitude of problems in operations management

and operations research.
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5. Technical Appendix
5.1. Proof of Theorem 2

5.1.1. Overview of proof. Before providing a formal proof, we first provide an intuitive

overview, noting that our proof is similar to several proofs in the literature (cf. Xin and Goldberg

(2015) and the references therein). We proceed by constructing a sequence of random vectors, one

for each sufficiently small ǫ > 0, and later take an appropriate weak limit (which will become the

vector satisfying the conditions of the theorem). As in Xin and Goldberg (2015), given ǫ > 0, we

will pick a sufficiently large time Tǫ s.t. the expected performance of an approximately optimal

(possibly non-stationary) policy π∗,ǫ up to time Tǫ is “close” to OPT(L). We then further prove

the existence of a time T1,ǫ “near” Tǫ s.t. the expedited inventory position and truncated regular

pipeline vector (under policy π∗,ǫ) are “well-behaved” at time T1,ǫ, which will be necessary for

our later arguments, as it will allow us to bound the time needed to “clear the system” if one

orders nothing from that time onwards. We then construct a “modified policy” and associated

Markov chain, which behaves exactly like the expedited inventory position and truncated regular

pipeline vector under π∗,ǫ on [1, T1,ǫ], but after that time forces a sequence of ordering decisions

which cause the associated inventory position and pipeline vector to re-enter a state distributed

as its initial state, at which time the entire process restarts. We note that due to the process

being unbounded from below, here the special initialization involving −
∑Ĝ

i=1D
′
−i will prove useful.

This regenerative structure, combined with our careful selection of T1,ǫ, will allow us to apply

the theory of regenerative processes to prove the existence of a stationary distribution for the

associated Markov chain, which we will prove to satisfy the conditions of an “approximate” version

of Theorem 2 (with the approximation error parametrized by ǫ). Taking a weak limit (as ǫ ↓ 0)

of the associated sequence of random vectors yields a random vector satisfying the conditions of

Theorem 2, completing the proof.

As all results in this subsection will be stated for a fixed L0 ≥ 0 and L > L0 + 1, we assume
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these parameters are fixed and supress any associated notational dependencies. For ǫ > 0, let π∗,ǫ

denote some (fixed) policy in Π̂ s.t. OPT(L) > C(π∗,ǫ) − ǫ

2
. Let Uǫ

∆
= L2( 4U

ǫmin(b,h)
+ 2E[D]), and

U2,ǫ
∆
=
(

L+ Uǫ

E[D]
+ 2
)

(h+ b+ c)Uǫ. It follows from the definition of limsup that there exists Tǫ >

100
(

U2,ǫ +(U +1)L
)

ǫ−1 s.t. C(π∗,ǫ)>T−1
∑T

t=L0+1E
[

Cπ∗,ǫ

t

]

− ǫ

2
for all T ≥ (1− ǫ)Tǫ−L.

5.1.2. Existence of time T1,ǫ, near Tǫ, at which inventory and pipeline are small in

expectation. We first prove that there must exist a time “close to” Tǫ at which the expedited

inventory position and truncated regular pipeline vector (under policy π∗,ǫ) are “small” (in absolute

value) in expectation.

Claim 1. For all ǫ∈
(

0,min( 1
2
, U

2
)
)

, there exists T1,ǫ ∈ [(1− ǫ)Tǫ −L,Tǫ] s.t.

C(π∗,ǫ)>T−1
1,ǫ

T1,ǫ
∑

t=L0+1

E

[

Cπ∗,ǫ

t

]

−
ǫ

2
; (10)

for all k ∈ [0,L− 1],

E[|Îπ
∗,ǫ

T1,ǫ+k−L0
+ qπ

∗,ǫ,E

T1,ǫ+k−L0
|]≤

2UL

ǫmin(b,h)
+ (L0 +1)E[D]; (11)

and for all k ∈ [1,L−L0 − 1],

E[R
π∗,ǫ,T1,ǫ−L0

k ]≤
4UL

ǫmin(b,h)
+ 2LE[D]. (12)

Proof of Claim 1 Note that we may (deterministically) partition the time interval [(1− ǫ)Tǫ −

L,Tǫ] into ⌈ ǫTǫ

L
⌉ disjoint intervals each of length L, plus an additional disjoint time interval of

length possibly less than L. Suppose for contradiction that of these ⌈ ǫTǫ

L
⌉ disjoint time intervals of

length L, there does not exist a single such interval I s.t.

E[|Îπ
∗,ǫ

t−L0
+ qπ

∗,ǫ,E
t−L0

|]≤
2UL

ǫmin(b,h)
+ (L0 +1)E[D] for all t∈ I. (13)

In that case, by the triangle inequality, each of these ⌈ ǫTǫ

L
⌉ intervals contains at least one time

period t for which

E[|Îπ
∗,ǫ

t−L0
+ qπ

∗,ǫ,E
t−L0

−

t
∑

i=t−L0

Di|]>
2UL

ǫmin(b,h)
.
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Hence by (1), non-negativity of costs, and the definition of Tǫ we conclude that

C(π∗,ǫ) >

∑Tǫ

t=⌈(1−ǫ)Tǫ⌉−L
E[Cπ∗,ǫ

t ]

Tǫ

−
ǫ

2

>
min(b,h)× ǫTǫ

L
× 2UL

ǫmin(b,h)

Tǫ

−
ǫ

2
= 2U −

ǫ

2
>

3

2
U,

and thus OPT(L) > 3
2
U − ǫ

2
> U , a contradiction. Let t′ denote the left end-point of the corre-

sponding interval satisfying (13), whose existence we have just proven by contradiction (in case of

multiple such intervals, take the left-most such interval). Now, further suppose for contradiction

that there exists k ∈ [1,L−L0−1] s.t. E[Rπ∗,ǫ,t′−L0

k ]> 4UL

ǫmin(b,h)
+2LE[D]. Then it would follow from

the inventory update dynamics, non-negativity of order quantities, and the triangle inequality that

E[|Îπ
∗,ǫ

t′+k−L0
+ qπ

∗,ǫ,E

t′+k−L0
|]> 2UL

ǫmin(b,h)
+ (L0 +1)E[D], which would itself contradict the definition of t′.

Combining the above, and setting T1,ǫ = t′, completes the proof. �.

5.1.3. Statement of approximate form of Theorem 2. We now formally state the afore-

mentioned approximate version of Theorem 2.

Lemma 6. For all ǫ ∈
(

0,min( 1
2
,U)

)

, one may construct an L − L0 − 1-dimensional random

vector χ∗,ǫ, an L − L0-dimensional random vector q∗,ǫ, and a random variable I∗,ǫ, as well as

{Di, i≥ 1}, on a common probability space s.t. the following are true.

(i) (χ∗,ǫ,q∗,ǫ,I∗,ǫ) has finite mean, and w.p.1 (χ∗,ǫ,q∗,ǫ) is non-negative. Also, (χ∗,ǫ,I∗,ǫ) is inde-

pendent of {Di, i≥ 1} and q∗,ǫi is indepenent of {Dj, j ≥ i} for i∈ [1,L−L0].

(ii) χ∗,ǫ
i ∼ χ∗,ǫ

1 for i∈ [1,L−L0 − 1], and q∗,ǫi ∼ q∗,ǫ1 for i∈ [1,L−L0].

(iii) E[χ∗,ǫ
1 ] +E[q∗,ǫ1 ] =E[D].

(iv) For all k ∈ [1,L−L0],

I∗,ǫ+
k−1
∑

i=1

(q∗,ǫi +χ∗,ǫ
i −Di)+ q∗,ǫk −

k+L0
∑

i=k

Di ∼I∗,ǫ+ q∗,ǫ1 −

L0+1
∑

i=1

Di.

(v)

OPT(L)> cE[q∗,ǫ1 ] +E

[

G

(

I∗,ǫ+ q∗,ǫ1 −

L0+1
∑

i=1

Di

)]

− ǫ.
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5.1.4. Proof of Lemma 6 by construction of a Markov chain with an appropriate

stationary distribution. We now construct an appropriate Markov chain which repeatedly mim-

ics π∗,ǫ for blocks of time of length T1,ǫ, and then (by a sequence of ordering decisions) brings the

system back to a state distributed as its initial state (involving −
∑Ĝ

i=1D
′
−i). This is accomplished

by allowing for an extra “time-accounting” dimension in the state-space. While this “clock” is

between 1 and T1,ǫ, the Markov chain dynamics parallel those of the inventory and pipeline in

π∗,ǫ on [1, T1,ǫ], and the clock increases by one in each period. Whenever the clock reaches T1,ǫ,

the Markov chain dynamics instead parallel those of a policy which first orders nothing until the

truncated regular pipeline vector clears and the inventory position goes below 0, then places an

expedited order to bring the inventory position to exactly 0, and finally orders nothing for an addi-

tional geometrically distributed number of time periods, where this geometric idling will preclude

any pathological periodicity that might otherwise arise (ensuring existence of relevant stationary

measures). This brings the system back to a state in which the truncated regular pipeline vector

is empty and the inventory position is distributed as −
∑Ĝ

i=1D
′
−i, at which time the clock restarts

to 1 and the cycle repeats, which thus yields a regenerative process. We further note that in the

associated Markov chain we will also keep track of the most recent expedited order, so that all

relevant inventory and ordering costs can be expressed directly as a function of the state in the

associated Markov chain. This will allow us to apply the theory of regenerative processes to prove

that the expected value of an appropriate function of the corresponding steady-state vector bounds

the average cost incurred by π∗,ǫ on [1, Tǫ], which itself well-approximates OPT(L) (i.e. ensuring

that Lemma 6.(v) is satisfied). Combining the above will allow us to prove that this steady-state

vector satisfies the conditions of Lemma 6.

Proof of Lemma 6 We construct an (L − L0 + 2)-dimensional discrete-time Markov process

{Yǫ
t , t≥ 1}= {(χǫ,t, qǫt ,I

ǫ
t , τ

ǫ
t ), t≥ 1}, where χǫ,t is an (L−L0 − 1)-dimensional random vector, and

qǫt ,I
ǫ
t , and τ ǫ

t are random variables. Let {Bt, t≥ 1} denote an i.i.d. sequence of Bernoulli r.v.s, each

of which equals 1 w.p. 1
2
and 0 w.p. 1

2
. Then {Yǫ

t , t≥ 1} evolves as follows.
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• χǫ,1 = 0 , Iǫ
1 =−

∑Ĝ

i=1D
′
−i , qǫ1 = f̂π∗,ǫ

E,1

(

χǫ,1,Iǫ
1

)

, τ ǫ
1 = 1.

For t≥ 1, the dynamics are as follows.

• χǫ,t+1
i = χǫ,t

i+1 for i∈ [1,L−L0 − 2] , Iǫ
t+1 = Iǫ

t +χǫ,t
1 + qǫt −Dt.

• If τ ǫ
t ∈ [1, T1,ǫ):

— τ ǫ
t+1 = τ ǫ

t +1 , χǫ,t+1
L−L0−1 = f̂π∗,ǫ

R,τǫt
(χǫ,t,Iǫ

t ) , qǫt+1 = f̂π∗,ǫ

E,τǫ
t+1

(χǫ,t+1,Iǫ
t+1).

• If τ ǫ
t = T1,ǫ and either χǫ,t 6= 0 or Iǫ

1 > 0:

—χǫ,t+1
L−L0−1 = qǫt+1 =0 , τ ǫ

t+1 = T1,ǫ.

• If τ ǫ
t = T1,ǫ and χǫ,t = 0 and Iǫ

t+1 ≤ 0:

—χǫ,t+1
L−L0−1 = 0 , qǫt+1 =−Iǫ

t+1 , τ ǫ
t+1 =0.

• If τ ǫ
t =0:

—χǫ,t+1
L−L0−1 = 0 , qǫt+1 = 0 , τ ǫ

t+1 =Bt.

One may easily verify the following properties of {Yǫ
t , t≥ 1}. Let z(x, y)

∆
=E[G(x+y−

∑L0+1

i=1 D′
i)]+

cy, and T̂ǫ denote a r.v. distributed as the time between the chain’s initial and second visit to a

state s.t. τ ǫ
t = 1.

• It follows directly from the Markov chain dynamics that for all t ≥ 1, χǫ,t+1
i ∼ χǫ,t

i+1 for i ∈

[1,L− 1].

• Conditional on the event {τ ǫ
t = T1,ǫ}, the expected number of time steps until τ ǫ

t = 0 is at most

L+ Uǫ

E[D]
.

• Conditional on the event {τ ǫ
t =0, τ ǫ

t−1 = T1,ǫ}, it holds that (w.p.1) χ
ǫ,t+1 = 0, Iǫ

t+1 =−Dt, and

the number of time steps until τ ǫ
t =1 is distributed as Ĝ.

• Conditional on the event {τ ǫ
t = 1}, it holds that Yǫ

t ∼ (0,0,−
∑Ĝ

i=1D
′
−i,1), and the joint

distribution of {Yǫ
i , i∈ [t, t+Tǫ − 1]} is identical to that of {(Rπ∗,ǫ,i, qπ

∗,ǫ,E
i , Îπ

∗,ǫ

i , i), i∈ [1, T1,ǫ]}.

• W.p.1 T̂ǫ ≥ T1,ǫ, and E[T̂ǫ]−T1,ǫ ≤L+ Uǫ

E[D]
+2.

• 0≤E[
∑T̂ǫ

t=1 z(I
ǫ
t , q

ǫ
t)]−E[

∑T1,ǫ

t=1 z(I
ǫ
t , q

ǫ
t)]≤U2,ǫ.

Combining with the basic definitions associated with the theory of regenerative processes (here

we refer the interested reader to Asmussen (2003) for an excellent overview), we conclude that
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{Yǫ
t , t ≥ 1} is a discrete-time aperiodic regenerative process, with regeneration points coinciding

with visits to states s.t. τ ǫ
t = 1. Then we may conclude the following from standard results in the

theory of regenerative processes (cf. Asmussen (2003), Thorisson (1992)).

(a) {Yǫ
t , t≥ 1} converges weakly (as t→∞) to a limiting random vector Yǫ

∞ = (χǫ,∞, qǫ∞,Iǫ
∞, τ ǫ

∞).

(b) Initializing the relevant Markov chain with initial conditions distributed as Yǫ
∞ yields a sta-

tionary Markov process {Y
ǫ

t, t≥ 1} = {(χǫ,t, qǫt,I
ǫ

t, τ
ǫ
t, t≥ 1}. Furthermore, it follows directly

from the relevant Markov chain dynamics that we may construct {Y
ǫ

t, t≥ 1} and {Di, i≥ 1} on

an appropriate probability space s.t. setting χ∗,ǫ = χǫ,1,I∗,ǫ = I
ǫ

1, and q∗,ǫk = qǫk for k ∈ [1,L−L0]

yields a random vector satsifying conditions (i) - (iv) of Lemma 6.

(c) E[z(Iǫ
∞, qǫ∞)] =

E[
∑T̂ǫ

t=1
z(Iǫ

t ,q
ǫ
t )]

E[T̂ǫ]
.

Further combining (c) with our previous bounds for E[T̂ǫ],E[
∑T̂ǫ

t=1 z(I
ǫ
t , q

ǫ
t)], our definition of T1,ǫ,

and some straightforward algebra (the details of which we omit) demonstrates that the same

random vector exhibited in (b) also satisfies condition (v) of Lemma 6, completing the proof of the

lemma. �.

5.1.5. Proof of Theorem 2. We now complete the proof of Theorem 2, by taking an appro-

priate weak limit (as ǫ ↓ 0) of the random vectors which we have proven to satisfy the conditions

of Lemma 6, and verifying certain interchanges of expectation and limit (in inequality form).

Proof of Theorem 2 To complete the proof of Theorem 2, we now prove that the sequence

of random vectors {(χ∗, 1n ,q∗, 1n ,I∗, 1n ), n ≥ 2 + 1
U
} is tight. It follows from Lemma 6.(iii) and (v),

non-negativity, the triangle inequality, the fact that OPT(L)≤U , and (1) that for all n≥ 2+ 1
U
,

E[|I∗, 1n |]≤
2U

min(b,h)
+ (L0 +1)E[D]. (14)

Combining with Lemma 6.(ii) - (iii) and non-negativity, we conclude the desired tightness, and

hence existence of at least one subsequential limit (cf. Billingsley (1999)) (χ∗,∞,q∗,∞,I∗,∞). Let

{ni, i≥ 1} denote any fixed subsequence along which the sequence of measures converges to this

limit, s.t. n1 ≥ 2 + 1
U
. That this weak limit satisfies Theorem 2.(i) - (iii) follows from the defini-

tion of weak convergence. However, it will require somewhat subtle reasoning to prove (iv) - (vi),
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since e.g. dominated convergence does not necessarily hold and thus one must take care when

interchanging limit and expectation. Note that by the Skorohod representation theorem and con-

tinuous mapping theorem, we may construct {(χ
∗, 1

ni ,q
∗, 1

ni , |I
∗, 1

ni |), i≥ 1} and (χ∗,∞,q∗,∞, |I∗,∞|)

on a common probability space s.t. the corresponding sequence of random vectors converges

almost surely (i.e. not only in distribution) to (χ∗,∞,q∗,∞, |I∗,∞|). As all associated r.v.s are non-

negative, we may apply Fatou’s lemma to conclude that E[χ∗,∞
1 ] ≤ lim inf i→∞E[χ

∗, 1
ni ],E[q∗,∞1 ] ≤

lim inf i→∞E[q
∗, 1

ni
1 ], and E[|I∗,∞|] ≤ lim inf i→∞E[|I∗, 1

ni |]. Combining with Lemma 6.(i) and (iii),

as well as (14), then completes the proof of Theorem 2.(iv). Combining with the already proven

Theorem 2.(ii) and (iii), with k = 2, yields Theorem 2.(v). Finally, we prove that the correspond-

ing vector also satisfies Theorem 2.(vi). Let Zn
∆
= cq

∗, 1n
1 +G

(

I∗, 1n + q
∗, 1n
1 −

∑L0+1

i=1 Di

)

, and Z∞
∆
=

cq∗,∞1 +G
(

I∗,∞+ q∗,∞1 −
∑L0+1

i=1 Di

)

. The already proven weak convergence, and continuous map-

ping theorem, implies that {Zni
, i ≥ 1} converges weakly to Z∞. It follows from the Skorohod

representation theorem (cf. Billingsley (1999)) that we may construct {Zni
, i ≥ 1} and Z∞ on

a common probability space so that this convergence holds almost surely (as opposed to only

in distribution). Applying non-negativity and Fatou’s lemma, we conclude that on this proba-

bility space, E[lim inf i→∞Zni
] ≤ lim inf i→∞E[Zni

], and hence (combining with the stated almost

sure convergence) E[Z∞] ≤ lim inf i→∞E[Zni
]. Combining with Lemma 6.(v), which implies that

OPT(L) > E[Zni
]− 1

ni
for all i ≥ 1, and the already proven Theorem 2.(v), completes the proof.

�.

5.2. Proof of Lemma 4

In preparation for bounding V ∞
α (r,x) − V n

α (r,x), we first bound the optimal value, and set of

minimizers, of V n
α (r,x), uniformly in n. For α ∈ (0,1) and r ∈ R, let S

n

α(r) denote the supremum

of the set of minimizers (with respect to x) of V n
α (r,x), where we note that a straightforward

contradiction demonstrates that S
n

α(r) ∈ (−∞,∞) for each α,n, r; and it follows from Lemma 3

that V n
α (r,−∞) = V n

α

(

r,S
n

α(r)
)

. Then we prove the following uniform bounds.

Lemma 7. 1. For α ∈ (0,1) and r,x ∈R, it holds that

sup
n≥1

V n
α (r,x)< 2(L0 +1)max(b,h)(|x|+ |r|+E[D])(1−α)−2.
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2. For α ∈ (0,1) and n≥ 1, it holds that |S
n

α(r)|<Sα(r).

3. For all y /∈ [−Sα(r), Sα(r)] and n≥ 1,

E

[

G
(

y−

L0+n
∑

k=n

(Dk − r)
)

]

+αE
[

V n−1
α

(

r, y− (DL0+n − r)
)]

>V n
α

(

r,S
n

α(r)
)

+(L0+1)max(b,h)E[D].

4. For all L>L0 +1,

OPT(L)≥ c(E[D]− rL)+ (1−α)V L−L0
α

(

rL,−Sα(rL)
)

.

Proof of Lemma 7 By evaluating the policy which never orders, we conclude that for all α ∈

(0,1), r,x ∈ R, supn≥1 V
n
α (r,x) is at most E

[

∑∞

i=1 α
i−1G

(

x−
∑i

j=1(Dj − r)−
∑L0+i

k=i+1(Dk − r)
)

]

,

which by (1) is itself bounded by

max(b,h)(|x|+ |r|+E[D])

∞
∑

i=1

(i+L0)α
i−1 < 2(L0+1)max(b,h)(|x|+ |r|+E[D])(1−α)−2.

The remainder of the lemma follows from (1), Lemmas 2 and 3, and a straightforward calculation

and argument by contradiction, and we omit the details. Combining the above completes the proof.

�

With Lemma 7 in hand, we now complete the proof of Lemma 4.

Proof of Lemma 4 We first demonstrate that V ∞
α (r,x) = limn→∞ V n

α (r,x), and complete the

proof of (8). The existence of the corresponding limit follows from the monotonicity (in n) guaran-

teed by Lemma 3. That V ∞
α (r,x)≥ limn→∞ V n

α (r,x) for all α ∈ (0,1) and r,x ∈R follows immedi-

ately from the definitions of the associated optimization problems. To prove the other direction, as

well as (8), we note that for any fixed n≥ 1, it follows from the convexity ensured by Lemma 3 that

there exists an optimal policy π for the problem stated in the r.h.s. of (5) of base-stock form, with

order-up-to levels C1, . . . ,Cn (i.e. order up to level Ci in period i if the pre-order inventory level is

below Ci, otherwise order nothing). Furthermore, it follows from Lemma 7 that maxi=1,...,n |Ci| ≤

Sα(r). Now, consider the policy π′
(

for the problem stated in the r.h.s. of (6)
)

that orders up to

level Ci in period i if the pre-order inventory position is below Ci and otherwise orders nothing in

periods i=1, . . . , n; and orders nothing in all remaining periods, irregardless of the inventory level.
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It follows from a straightforward bounding argument that under policy π′, w.p.1 the absolute value

of the post-ordering inventory position in period i is at most |x|+ Sα(r) + (i− 1)|r|+
∑i−1

k=1Dk.

Thus by the dynamics of the underlying inventory problem and (1), it follows that for all i≥ n+1,

Cπ′

i ≤max(b,h)
(

|x|+Sα(r)+(i+L0)|r|+(i+L0)E[D]
)

. Thus since (by construction) Cπ′

i =Cπ
i for

i∈ [1, n], it follows from definitions and straightforward algebra that

E

[

∞
∑

i=1

αi−1Cπ′

i (r,x)

]

−V n
α (r,x) ≤ max(b,h)(Sα(r)+ |x|+ |r|+E[D])

∞
∑

i=n+1

(i+L0)α
i−1

≤ max(b,h)(Sα(r)+ |x|+ |r|+E[D])(1+L0 +n)(1−α)−2αn.

This completes the proof of (8), and letting n → ∞ completes the proof that V ∞
α (r,x) =

limn→∞ V n
α (r,x). Combining with Lemmas 3 and 7, the fact that convexity and monotonicity are

preserved under limits, and a straightforward contradiction argument completes the proof of all

parts of the lemma regarding properties of V ∞
α (r,x) and the associated optimization problems

and optimal policies. Finally, we complete the proof of (9). It follows from Lemmas 3 and 7,

the already proven parts of Lemma 4, and the fact that Theorem 2 ensures rL ∈
[

0,E[D]
]

that

OPT(L)− c(E[D]− rL) is at least

(1−α)

(

V ∞
α

(

rL, S
∞
α (rL)

)

− 2max(b,h)
(

Sα(E[D]) +E[D]
)

(1+L)(1−α)−2αL−L0

)

.

Combining with some straightforward algebra, the definition of U0, and the already proven parts

of Lemma 4 completes the proof. �.

5.3. Proof of Corollary 4

Before proving Corollary 4, we will need a preliminary result which demonstrates that if r is “very

close” to E[D], then M r
i is “very large” for an appropriate range of i. We will then use this result

to show that rL cannot be “too close” to E[D] by deriving a contradiction, showing that in this

case the optimal value would be strictly greater than U , which is impossible.

Lemma 8. If there exists ǫ ∈
[

0,E[D] − Q0

]

s.t. r ∈
(

E[D] − ǫ,E[D]
]

, then for all i, j ∈

[

400p̂−2
0 , (p̂0η0ǫ

−1)2
]

s.t. i≥ j,

M r
i −M r

j ≥
1

5
p̂0η0

(

i
1
2 − j

1
2

)

− (i− j)ǫ− 2η0
(

log(
i

j
)+ 2

)

.
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Proof of Lemma 8 We note that the result would follow from well-known weak-convergence

results under additional assumptions on D (e.g. finite variance, cf. Erdos and Kac (1946)), but to

avoid unnecessary assumptions (and for completeness) we provide a proof from first principles.

Let us fix any ǫ∈
[

0,E[D]−Q0

]

, r ∈
(

E[D]− ǫ,E[D]
]

, and k ∈
[

400p̂−2
0 , (p̂0η0ǫ

−1)2
]

(supposing this

interval is non-empty, i.e. ǫ≤
p̂20η0
20

). Let {A+,r
i , i≥ 1} denote an i.i.d. sequence of r.v.s distributed

as r −D conditioned on the event {r > D}, and {A−,r
i , i ≥ 1} denote an i.i.d. sequence of r.v.s

distributed as D− r conditioned on the event {D≥ r}. Let Br
k denote a binomially distributed r.v.

with parameters k, ρr
∆
= P({r >D}), independent of {A+,r

i , i≥ 1} and {A−,r
i , i≥ 1}. It follows from

definitions and the constraints on ǫ and r that

ρr ∈ [
1

2
p0, p0].

Note that for k ≥ 1, we may construct W r
k on an appropriate probability space s.t. W r

k =

∑Br
k

i=1A
+,r
i −

∑k−Br
k

i=1 A−,r
i , in which case (by non-negativity) E[max(0,W r

k )] is at least

E

[ Br
k
∑

i=1

A+,r
i −

k−Br
k

∑

i=1

A−,r
i

∣

∣

∣

∣

{

Br
k ≥ ρrk+

(

ρr(1− ρr)k
)

1
2

}]

P

(

Br
k − ρrk

(

ρr(1− ρr)k
)

1
2

≥ 1

)

.

Furthermore, since ρrE[A
+,r
1 ] = (1 − ρr)E[A

−,r
1 ] − (E[D] − r), it follows from non-negativity and

independence that

E

[ Br
k
∑

i=1

A+,r
i −

k−Br
k

∑

i=1

A−,r
i

∣

∣

∣

∣

{

Br
k ≥ ρrk+

(

ρr(1− ρr)k
)

1
2

}]

≥
(

ρrk+
(

ρr(1− ρr)k
)

1
2
)

E[A+,r
1 ]−

(

(1− ρr)k−
(

ρr(1− ρr)k
)

1
2
)

E[A−,r
1 ]

=
(

ρr(1− ρr)k
)

1
2 (E[A+,r

1 ] +E[A−,r
1 ])− k(E[D]− r).

Let N(0,1) denote a standard normal r.v. By the celebrated Berry-Esseen Theorem (cf.

Korolev et al. (2010)),

∣

∣

∣

∣

P

(

Br
k − ρrk

(

ρr(1− ρr)k
)

1
2

≥ 1

)

−P
(

N(0,1)≥ 1
)

∣

∣

∣

∣

≤ 2
(

ρr(1− ρr)k
)− 1

2 .

It is easily verified from definitions that

E[A+,r
1 ] +E[A−,r

1 ]≥ η0 ,
(

ρr(1− ρr)
)

1
2 ≥ p̂0 , P

(

N(0,1)≥ 1
)

≥
1

10
.
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Thus combining the above, we conclude that

E

[ Br
k
∑

i=1

A+,r
i −

k−Br
k

∑

i=1

A−,r
i

∣

∣

∣

∣

{

Br
k ≥ ρrk+

(

ρr(1− ρr)k
)

1
2

}]

≥ p̂0η0k
1
2 − ǫk, (15)

and

P

(

Br
k − ρrk

(

ρr(1− ρr)k
)

1
2

≥ 1

)

≥
1

10
− 2p̂−1

0 k− 1
2 . (16)

As our assumptions on ǫ, r, k ensure that the r.h.s. of both (15) and (16) are non-negative, we

conclude that E[max(0,W r
k )] is at least

(

p̂0η0k
1
2 − ǫk

)(

1
10

− 2p̂−1
0 k− 1

2

)

, which is itself at least

1
10
p̂0η0k

1
2 − kǫ− 2η0. Thus by Lemma 5,

Mi−Mj =
i−1
∑

l=j

l−1
E
[

max(0,W r
l )
]

≥
1

10
p̂0η0

i−1
∑

l=j

l−
1
2 − (i− j)ǫ− 2η0

i−1
∑

l=j

l−1

≥
1

10
p̂0η0

∫ i

j

x− 1
2dx− (i− j)ǫ− 2η0

(

log(
i

j
)+ 2

)

=
1

5
p̂0η0

(

i
1
2 − j

1
2

)

− (i− j)ǫ− 2η0
(

log(
i

j
)+ 2

)

,

where we have used the well-known fact that for all n≥ 1, log(n)≤
∑n

l=1 l
−1 ≤ log(n)+2. Combining

the above completes the proof. �

Before completing the proof of Corollary 4, it will be useful to collect a few additional auxiliary

bounds. For α∈ (0,1), let Gα denote a geometrically distributed r.v. with success probability 1−α,

i.e. P(Gα = k) = (1−α)αk−1 for k ≥ 1, independent of {ZrL
k , k ≥ 1}, and mα

∆
= ⌈− 1

log2(α)
⌉ denote a

median of Gα. Note that the memoryless property implies P
(

Gα ≥ 2mα

)

≥ 1
4
. Let ξ

0

∆
= 2−

p̂2
0

400 , and

ξ0
∆
= 2

− 4

p̂2
0
η2
0

ǫ20
.

Lemma 9.

(i) .998< ξ
0
≤ 1− ǫ0 ≤ ξ0 < 1.

(ii) L≥ ǫ−2
0 implies ǫ−3

0 L exp(−ǫ0L)≤ 25.

(iii) α ∈ [ξ
0
, ξ0] implies:

• mα , 2mα ∈
[

400p̂−2
0 , (p̂0η0ǫ

−1
0 )2

]

;
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• 1
4
(1−α)−1 ≤mα ≤ 4(1−α)−1.

Proof of Lemma 9

i: That ξ
0
> .998 follows from the fact that p̂0 < 1, and thus 2−

p̂2
0

400 > 2−
1

400 ≥ .998. That ξ
0
≤ 1− ǫ0

follows from the fact that (by definition) ǫ0 ≤ 1− ξ
0
. We now prove that 1− ǫ0 ≤ ξ0. By definition

ǫ0 ≤
1
4
(η0p̂0)

2, which implies that 4
p̂2
0
η2
0

ǫ20 ≤ ǫ0. Combining with the exponential inequality and the

fact that log(2)< 1, we conclude that

ξ0 ≥ 2−ǫ0 ≥ 1− log(2)ǫ0 ≥ 1− ǫ0,

completing the proof. As trivially ξ0 < 1, this completes the demonstration.

ii: It is easily verified that ζ1(L)
∆
=L exp(−ǫ0L) is decreasing in L on [ǫ−1

0 ,∞). Thus L≥ ǫ−2
0 implies

ǫ−3
0 L exp(−ǫ0L)≤ ǫ−3

0 ζ1(ǫ
−2
0 ) = ǫ−5

0 exp(−ǫ−1
0 ).

As ζ2(ǫ0)
∆
= ǫ−5

0 exp(−ǫ−1
0 ) is increasing in ǫ0 on (0, 1

5
), and by definition ǫ0 <

1
5
, it follows that

ζ2(ǫ0)≤ ζ2(
1
5
)< 25. Combining the above completes the proof.

iii: The first assertion follows immediately from the definitions of ξ
0
, ξ0, and mα, and a straight-

forward calculation. To prove the second assertion, note that due to (i), α ∈ [ξ
0
, ξ0] implies

α ∈ (.998,1). It follows from a straightforward Taylor expansion of the logarithm function that

α ∈ (.998,1) implies −2(1− α) ≤ log2(α)≤ −(1− α), and thus 1
2
(1− α)−1 ≤ − 1

log2(α)
≤ (1− α)−1.

Noting that α∈ (.998,1) implies ⌈(1−α)−1⌉ ≤ 4(1−α)−1 completes the proof.

With Lemmas 8 and 9 in hand, we now complete the proof of Corollary 4.

Proof of Corollary 4 Suppose for contradiction that for some L > ǫ−2
0 + L0 + 1, it holds that

rL > E[D]− ǫ0. In this case, it follows from Corollary 3, (1), and Jensen’s inequality that for all

α∈ ( 1
2
,1),

OPT(L)≥min(b,h) inf
S∈R

∞
∑

k=1

(1−α)αk−1
∣

∣S+M
rL
k

∣

∣−U02
L0(1−α)−3LαL. (17)
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Note that we may interpret the r.h.s. of (17) as an appropriate single-stage newsvendor problem

(with ordering level S and demand distributed as M
rL
Gα

). We conclude from Lemmas 8 and 9, well-

known results for the newsvendor problem (cf. Zipkin (2000)), and the memoryless property that

for all α∈ [ξ
0
, ξ0],

OPT(L) ≥ min(b,h)E
[
∣

∣M rL
mα

−M
rL
Gα

∣

∣

]

−U02
L0(1−α)−3LαL

≥
1

4
min(b,h)

(

M rL
2mα

−M rL
mα

)

−U02
L0(1−α)−3LαL

≥
1

4
min(b,h)

(

1

5
p̂0η0

(

(2mα)
1
2 −m

1
2
α

)

− ǫ0mα − 2η0
(

log(2)+2
)

)

−U02
L0(1−α)−3LαL

≥
1

20
min(b,h)p̂0η0(2

1
2 − 1)m

1
2
α − ǫ0mα − 6η0 −U02

L0(1−α)−3LαL

≥ c0(1−α)−
1
2 − 4ǫ0(1−α)−1 − 6η0 −U02

L0(1−α)−3LαL.

Setting α= 1− ǫ0, and combining the above with Lemma 9.(i) and the fact that 1− ǫ0 ≤ exp(−ǫ0),

we conclude that

OPT(L)≥ c0ǫ
− 1

2

0 −U02
L0ǫ−3

0 L exp(−ǫ0L)− 6(η0 +1).

Applying Lemma 9.(ii) and the fact that OPT(L)≤U , along with a straightforward contradiction

argument, completes the proof. �.
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