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In a contest in which solvers with heterogeneous expertise exert effort to develop solutions, a recent paper

(Terwiesch, C., Y. Xu. 2008. Innovation contests, open innovation and multiagent problem solving. Management

Science. 54(9) 1529–1543) argues that as more solvers enter the contest, every solver will reduce effort due to a

lower probability of winning the contest. This paper corrects mistakes in this theory, and shows that there exist

high-expertise solvers who may raise their effort in response to increased competition. This is because more

entrants raise the expected best performance among other solvers, creating positive incentives for solvers to

exert higher effort to win the contest. Due to this positive effect, we find that a free-entry open contest is

more likely to be optimal to a contest organizer than what Terwiesch and Xu (2008) and other prior literature

asserted.
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1. Introduction

Today many companies use contests (also called tournaments) as a mechanism for R&D (research

and development) outsourcing. A contest is a mechanism wherein a seeker poses a problem to

a population of independent solvers, and awards the solver(s) that creates the best solution(s).

A primary benefit of a contest is that a seeker can tap into a large number of experts outside of

its firm boundary, and can select the most promising solution from many submitted solutions.

However, merely collecting a large number of solutions does not necessarily guarantee the highest

quality solution to a seeker. With many contest participants, solvers expect their individual chance

of winning a contest to be low, and hence they may not have sufficient incentives to exert their
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best effort. Thus, a long-standing question in the contest literature has been “How do solvers’

incentives to exert effort change with more participants in the contest?”.

For contests in which solvers are heterogeneous in their expertise, Terwiesch and Xu (2008)

(hereinafter T&X) provide an answer to this question: Having more solvers in a contest leads

to lower effort for every solver in equilibrium, because each solver’s probability of winning

decreases. This paper points out mistakes in the analysis of T&X, and provides the correct anal-

ysis. Our analysis shows that there exist high-expertise solvers who may raise their effort in

response to increased competition. This finding is in line with Moldovanu and Sela (2006) (here-

inafter M&S) who examine contests wherein solvers are heterogeneous in their costs of exerting

effort.1 We prove this result in a unifying model that encompasses the models of M&S and T&X.

We further articulate the drivers for this result: In addition to the reduced probability of winning,

more entrants raise the expected performance of a runner-up, and therefore solvers have incen-

tives to exert higher effort to win the contest. This second driver provides an opposing force to

the negative externality created by increased competition. As a result, depending on which driver

dominates the other, solvers react to increased competition differently. From a seeker’s perspec-

tive, higher effort from high-ability solvers caused by increased competition is helpful to obtain

a better solution from a contest. Therefore, we find that a free-entry open contest that allows the

entry of all solvers is more likely to be optimal than what T&X asserted. Specifically, whereas T&X

show that when solvers are heterogeneous in expertise, an open contest can be optimal under

a certain condition, our result indicates that an open contest is optimal under a weaker condi-

1 M&S’s model has some similarities to all-pay auctions in the sense that bidders (analogous to solvers) with heteroge-

neous valuations from winning an auction (similar to cost of effort) make bids (analogous to effort) to win the auction.

In all-pay auctions, for example, Hopkins and Kornienko (2007) show that when a distribution for valuation increases

in the likelihood ratio order, high-valuation bidders increase their bids, whereas low-valuation bidders reduce their

bids. However, in all-pay auctions, an auctioneer maximizes the total bids of all bidders, whereas a contest organizer is

interested in obtaining the best solution(s).
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tion than that of T&X.2 This finding helps to justify the increased popularity of open innovation

initiatives today.

2. Model

Consider a contest in which a seeker (“he”) elicits solutions to a specified problem from a set of n

solvers (“she”). Each solver’s performance v is determined based on three components: solver’s

effort, expertise, and productivity. First, each solver i can enhance her performance by investing

in effort ei at the unit cost ci . Second, each solver i is endowed with initial expertise βi , which

measures prior knowledge and experience that will help the solver develop a solution to the

problem posed by the seeker. Third, each solver i is endowed with productivity ai ; given ei , a

solver with a higher ai achieves better performance than a solver with a lower ai . Given her effort

ei , expertise level βi , and productivity level ai , solver i ’s performance is vi (βi ,ai ,ei ) = βi + r (ai ei ),

where r is an increasing and concave effort function.

Based on the performance vector (v1, ...,vn), the seeker’s payoff V is determined as a weighted

combination of the performance of the best solution and the average performance of all solutions:3

V = ρ max
i =1,...,n

vi + (1− ρ)

∑n
i =1 vi

n
, where ρ ∈ [0,1] . (1)

The seeker’s profit 5 is his payoff V less the total amount of awards paid to solvers A; i.e., 5 =

V − A.

2 Contrary to our result, prior literature suggested that restricting the number of participants is optimal to a seeker.

Taylor (1995) considers a contest among a pool of identical solvers, and Fullerton and McAfee (1999) analyze a contest

in which a seeker auctions entry into a contest. These two papers show that more solvers in a contest will lead to lower

effort for every solver, and they conclude that the number of participants should be restricted. However, in line with

our result, Ales et al. (2016a) show that when the performance of solutions created by a pool of identical solvers is

highly uncertain, an open contest is optimal.

3 We utilize the payoff structure in (1) that is proposed by Terwiesch and Xu (2008) in order to compare our results with

theirs. Moldovanu and Sela (2006) consider a special case of (1) where ρ = 1 and another case where the seeker’s payoff

consists of the total performance of all solutions. Our model subsumes the former case and our results continue to hold

in the latter case.
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The seeker makes two decisions. First, the seeker determines whether to have an open contest

which allows any solver to participate in the contest. If the seeker chooses to restrict entry to the

contest, n becomes the number of solvers that are allowed to enter. Second, the seeker decides on

a vector of awards (A1, A2, ...,An), where Aj is the award given to the solver with the j -th highest

performance and A =
∑n

j =1 Aj . A solver with the best performance is referred to as the “winner,”

and a contest that awards only the winner (i .e., A1 = A) is called a “winner-take-all” contest.

An open contest proceeds in the following sequence. First, the seeker announces the vector of

awards (A1, A2, ...,An). Then, each solver i ∈ {1,2, ...,n} privately learns her ability level (cost ci ,

expertise βi , and productivity ai ), and she determines whether to participate in the contest and

her effort level ei . If solver i chooses not to participate in the contest, then she receives reservation

utility 0. If she chooses to participate, she incurs a fixed cost k (≥ 0), and creates a solution by

exerting effort ei at the unit cost ci (> 0). The seeker collects the solutions of all participating

solvers, and he gives awards to solvers.

In a symmetric Bayesian Nash equilibrium, a solver with ability level (ci ,βi ,ai ) chooses her

equilibrium effort according to the function e∗(ci ,βi ,ai ), and creates a solution with performance

v∗(ci ,βi ,ai ). Because solver i does not know other solvers’ ability levels, the equilibrium perfor-

mance ṽ∗ of any other solver is uncertain. Let Pn
( j )[vi ,v∗] be the probability that solver i ’s perfor-

mance vi is the j -th highest performance when all other (n − 1) solvers use performance function

v∗. We compute this probability as

Pn
( j )[vi ,v

∗] =
(n − 1)!

( j − 1)! (n − j )!
P(vi > ṽ∗)n− j P(vi ≤ ṽ∗) j −1. (2)

Each solver i is risk-neutral, and maximizes her utility from the contest by solving the following

problem:

max
ei

n∑

j =1

Aj P
n
( j )[βi + r (ai ei ),v

∗] − ci ei − k = max
vi

n∑

j =1

Aj P
n
( j )[vi ,v

∗] − ci r
−1(vi − βi )/ai − k. (3)

In equilibrium, vi = v∗ (ci ,βi ,ai ). Solver i will participate in the contest if her utility is non-

negative; i.e.,
n∑

j =1

Aj P
n
( j )[v

∗(ci ,βi ,ai ),v
∗] − ci r

−1(v∗(ci ,βi ,ai ) − βi )/ai − k ≥ 0. (4)
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We consider the following three interesting and tractable special cases.

Cost-based projects (ai = 1, βi = 0, r (ei ) = θei with θ > 0): In a cost-based project that is analyzed

by M&S, solvers are heterogeneous in their cost of effort ci , yet they have identical expertise and

productivity levels. Solver i with effort ei has performance vC
i (ei ) ≡ θei . Cost ci is drawn from a

continuous distribution G with density g and support [c,c] ∈ R+.

Expertise-based projects (ai = 1, ci = c, r (ei ) = θ logei with θ > 0): In an expertise-based project

that is proposed by T&X, solvers are heterogeneous in their expertise levels, while they are iden-

tical in their productivity and cost of effort. Solver i with effort ei has performance vE
i (ei ,βi ) ≡

βi + θ log(ei ). Expertise level βi is drawn from a continuous distribution F with density f and

support [β,β] ∈ R.

Productivity-based projects (βi = 0, ci = c): In a productivity-based project, solvers are hetero-

geneous in their productivity levels, while they are identical in their expertise and cost of effort.

Solver i with effort ei has performance v P
i (ai ,ei ) ≡ r (ai ei ). Productivity level ai is drawn from a

continuous distribution H with density h and support [a,a] ∈ R+.

Let β̃n
( j ), Fn

( j ), and f n
( j ) (resp., ãn

( j ), Hn
( j ), and hn

( j )) represent the random variable, the distribution

function, and the density function of the j -th highest expertise (resp., productivity) among n

solvers, respectively. Note that β̃n
( j ) (resp., ãn

( j )) corresponds to the (n − j + 1)-st order statistic.

3. Analysis of Productivity-Based Projects

We show in Lemma EC.1 of the Online Appendix that cost-based projects of M&S and expertise-

based projects of T&X can be represented as special cases of productivity-based projects with

a general effort function r and a general productivity distribution H . Thus, by analyzing

productivity-based projects, we can also characterize cost-based and expertise-based projects. We

focus on winner-take-all contests, and assume that the fixed cost k = 0 for simplicity.4

4 The results can easily be extended to the case with multiple awards and a positive fixed cost. It can be shown that the

winner-take-all scheme is optimal when the effort function r is not too concave (e.g., r (e) = θ log(e)). See also Ales et al.

(2016b).
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We first derive the solver’s equilibrium effort e∗ and performance v∗. Suppose that v∗ is an

increasing function (which is verified later). Then, from (2), solver i ’s probability of winning

the contest is Pn
(1)[vi ,v∗] = P(vi > ṽ∗)n−1 = Hn−1

(1)

(
(v∗)−1(vi )

)
. Given the winner prize A and other

solvers’ performance function v∗, solver i determines her equilibrium performance v∗(ai ) by solv-

ing the following problem modified from (3):

max
vi

AHn−1
(1)

(
(v∗)−1(vi )

)
− cr−1 (vi ) /ai . (5)

LEMMA 1. For a general productivity distribution H and a general effort function r , a solver

with productivity ai has equilibrium effort e∗ (ai ) = A
cai

∫ ai

a ahn−1
(1) (a)da and performance v∗ (ai ) =

r
(

A
c

∫ ai

a ahn−1
(1) (a)da

)
.

Next, we discuss how the solver’s equilibrium effort changes with the number of her competi-

tors. Let e∗,n denote the equilibrium effort when there are n solvers in the contest. Figure 1(a) illus-

trates that an additional solver has a minimal effect on low-productivity solvers, whereas it has a

negative effect on moderate-productivity solvers, and it has a positive effect on high-productivity

solvers. In order to identify the factors that drive the pattern of Figure 1(a), we decompose the

equilibrium effort e∗,n (ai ) as

e∗,n (ai ) =
A

cai
Hn−1

(1) (ai )

∫ ai

a

a
hn−1

(1) (a)

Hn−1
(1) (a)

da=
A

cai
Hn−1

(1) (ai ) × E [̃an−1
(1) |̃an−1

(1) < ai ], (6)

where Hn−1
(1) (ai ) represents solver i ’s probability of winning the contest which corresponds to her

probability of having a higher productivity than all other solvers, and E [̃an−1
(1) |̃an−1

(1) < ai ] represents

the expected productivity of the runner-up, given that solver i is the winner.

PROPOSITION 1. For a general productivity distribution H and a general effort function r , Hn
(1)(ai ) −

Hn−1
(1) (ai ) < 0 and E [̃an

(1) |̃a
n
(1) < ai ] − E [̃an−1

(1) |̃an−1
(1) < ai ] > 0 for all n and ai ∈ (a,a). Moreover, for any n,

there exists â(n) ∈ [a,a) such that for all ai ∈ (̂a(n),a), e∗,n+1(ai ) > e∗,n(ai ) and v∗,n+1(ai ) > v∗,n(ai ).

Proposition 1 shows that a larger number of solvers n reduces solver i ’s probability of winning

the contest, Hn
(1)(ai ) (see Figure 1(b)). This negative externality is the intuitive explanation offered

by T&X who argue that every solver will reduce her effort with more solvers in the contest. How-

ever, as illustrated in Figure 1(c), the expected productivity of the runner-up given that solver
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(a) e∗,n+1(ai ) − e∗,n(ai ) (b) Hn
(1)(ai ) − Hn−1

(1) (ai ) (c) E [̃an
(1) |̃a

n
(1) < ai ] − E [̃an−1

(1) |̃an−1
(1) < ai ]

Figure 1 The impact of an additional solver on (a) effort, (b) solver i ’s probability of winning, and (c) the expected

productivity of the runner-up given that solver i wins. Setting: Productivity level ai is drawn from Beta

distribution with parameters 0.7and 1, n = 10, r (e) = e0.9

0.9 , A = 1, c = 0.1, and k = 0.

i is the winner (i.e., E [̃an−1
(1) |̃an−1

(1) < ai ]) increases with the number of solvers n. This driver pro-

vides an opposing force to the reduced probability of winning. For high-productivity solvers, the

incentives to exert higher effort to win the contest are stronger, and hence their equilibrium effort

and performance can increase with an additional participant (see Figure 1(a) for illustration). This

result is also empirically observed by Boudreau et al. (2012) for software development contests

organized by TopCoder. Finally, Proposition 1 implies that there are high-expertise solvers who

would raise their effort with more entrants in an expertise-based project (which is a special case

of a productivity-based project). This conflicts with the result of T&X, and it signals a problem in

their analysis.

4. Analysis of Expertise-Based Projects

In this section, we first describe the analysis of T&X briefly. Then we derive the correct equilibrium

effort e∗, and discuss managerial implications of this correction. T&X consider a contest in which

the seeker offers two prizes, A1 to the winner and A2 to the runner-up with A1 ≥ A2. Suppose

that the performance of all solvers except solver i is based on the best-response performance

function v∗(βi ), which is continuously differentiable and increasing in the expertise level βi . Given

that all other solvers’ performance function is v∗, each participant i solves the following problem

modified from (3):

max
vi

A1Fn−1
(1)

(
(v∗)−1 (vi )

)
+ A2 (n − 1)

{
Fn−2

(1)

(
(v∗)−1 (vi )

)
− Fn−1

(1)

(
(v∗)−1 (vi )

)}
− cr−1(vi − βi ) − k. (7)
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(a) e∗,n+1(βi ) − e∗,n(βi ). (b) The effort e∗(βi ).

Figure 2 The true equilibrium effort e∗ in an expertise-based project when βi is drawn from a Gumbel distribution

with mean 0 and scale parameter λ = 2, n = 10, A = θ = 1, and c = 0.1. The same parameter values are used

in Figure 2 of T&X.

T&X solve the differential equation in the first-order condition of (7) by using the Fourier method

under the boundary condition v∗(β) = β to obtain the effort

eT(βi ) ≡ r −1(v∗(βi ) − βi ) =
A1F(βi )

n−1 + A2(n − 1) [F(βi )
n−2 − F(βi )

n−1] − k

c
. (8)

LEMMA 2. The effort eT given in (8) (which is copied from equation (3) in the e-companion of Terwiesch

and Xu (2008)) cannot be an equilibrium effort.

As we detail in the proof of Lemma 2, eT in (8) cannot be an equilibrium effort because: (i)

Although T&X assume a best-response effort function eT(βi ) is increasing in βi , this is not neces-

sarily true as we demonstrate later; (ii) the boundary condition v∗(β) = β does not always hold;

and (iii) the differential equation in the first-order condition of (7) does not satisfy the necessary

conditions for the Fourier method. Equation (17) in the Appendix provides the correct version

of (8), which is obtained by solving the first-order condition of (7) directly (without the Fourier

method) using the boundary condition of e∗(β) = 0.

We next present the revised version of Theorem 1B in T&X that concerns expertise-based

projects. As in Theorem 1B, we consider the winner-take-all scheme with A1 = A and A2 = 0.

PROPOSITION 2. In an expertise-based project, only solvers with expertise higher than β f =

F−1((k/A∗)1/(n−1)) will participate, where A∗ is the optimal winner prize. The effort of a participating
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 = 0.2
 = 0.3

 = 0.5

 = 0.7

n

(a) The seeker’s true profit 5.

λ = 0.7θ
λ = 0.5θ

λ = 0.3θ

λ = 0.2θ

n

(b) The seeker’s profit 5 in Figure 2(g) of T&X.

Figure 3 The comparison of the seeker’s true profit with that of T&X for an expertise-based project when βi is drawn

from a Gumbel distribution with mean 0 and scale parameter λ, ρ = 1, A = θ = 1, and c = 0.1.

solver with expertise βi ∈ [β f ,β] is e∗(βi ) = 1
c

∫ βi

β f exp
{

β−βi
θ

}
A∗ f n−1

(1) (β)dβ. The expected number of partic-

ipating solvers in an open contest is n∗ = n
(
1− (k/A∗)1/(n−1)

)
. If k = 0, the optimal prize A∗ = θ and the

seeker’s profit 5 =
∫ β

β
θ log

(∫ βi

β
exp

{
β/θ

}
θ
c

f n−1
(1) (β)dβ

)
[ρ f n

(1)(βi ) + (1− ρ) f (βi )]dβi .

We now discuss the impact of the incorrectly derived effort eT in T&X on their Theorems 1A,

1B, and 1C that concern expertise-based projects. (These theorems also contain results of two

other types of contests.) Theorem 1A states that the winner-take-all scheme “may or may not be

optimal,” and this statement holds under the true equilibrium effort e∗. Theorem 1B presents the

following effort eT :

eT(βi ) =
A∗F(βi )

n−1 − k

c
. (9)

The discrepancy between eT(βi ) in (9) and e∗(βi ) in Proposition 2 bears the following implications.

First, although eT in (9) is decreasing in n, the true equilibrium effort e∗ is not always decreasing

in n; see Figure 2(a) and the earlier discussion in §3.

Second, although eT(βi ) in (9) is increasing in βi , the true equilibrium effort e∗(βi ) is not neces-

sarily increasing in expertise level βi . For example, when βi follows a Gumbel distribution as in

T&X, Figure 2(b) shows that the effort e∗(βi ) decreases with βi when βi is high (e.g., βi > 5). The

intuition from this result is as follows: If a solver knows that she has a relatively higher exper-

tise than most other solvers, then she may not exert as high effort in equilibrium as others do by

anticipating that she can still win the contest.
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(a) F ∼ Gumbel. (b) F ∼ Weibull.

Figure 4 A set of parameters (λ,ρ) under which an open contest is optimal, where region A indicates that an open

contest is optimal under both e∗ and eT , region B indicates that an open contest is optimal under e∗ but

not under eT , and region C indicates that an open contest is optimal under neither e∗ nor eT : (a) F v

Gumbel with mean 0 and scale parameter λ and (b) F vWeibull with mean 0, shape parameter 1, and scale

parameter λ. Other parameters: A = θ = 1 and c = 0.1.

Third, as a result of the difference between eT(βi ) and e∗(βi ), the seeker’s expected profit 5

given in Proposition 2 is different from that of T&X; see Figure 3 for illustration. Consequently,

unlike their Theorem 1C, when the expertise distribution F follows a Gumbel distribution with

scale parameter λ and the seeker is interested in only the best solution (i.e., ρ = 1), even if λ <

θ/2, the seeker’s profit 5 can be increasing in n, thereby making an open contest optimal. For

example, Figure 3(a) displays that 5 is increasing in n when λ = 0.3θ , although 5 in T&X is not.

Furthermore, Figure 4 demonstrates that for a large set of (λ,ρ) pairs, an open contest is optimal

under the true equilibrium effort e∗(βi ) but not optimal under eT(βi ) in (9); see region B of Figure

4(a)-(b). Interestingly, as Figure 4(b) depicts, when the seeker’s weight on the best solution ρ =

1 and the expertise distribution F follows a Weibull distribution, an open contest may not be

optimal under eT(βi ) although it is always optimal under e∗(βi ). In addition, whereas an open

contest is never optimal when ρ = 0 under eT(βi ) in (9), we can show that an open contest can be

optimal under e∗(βi ). This is because eT(βi ) in (9) decreases with the number of solvers n for any

expertise level βi so the average performance of solvers (i.e.,
∫ β

β
(βi + r

(
eT(βi )

)
) f (βi )dβi ) decreases

with n; whereas the true equilibrium effort e∗(βi ) increases with n for high-expertise solvers, and
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hence the true average performance of solvers can increase with n. Taken in sum, an open contest

is more likely to be optimal than what T&X asserted because of the positive incentive effect of

increased competition on high-expertise solvers. This result helps explain the widespread use of

open contests in practice.

Appendix

Proof of Lemma 1. Suppose that all solvers except solver i have performance based on the

best-response performance function v∗ (ai ), which is assumed to be continuously differen-

tiable and increasing in the productivity ai . We can write the best-response effort as e∗ (ai ) =

r −1 (v∗ (ai )) /ai . Thus, solver i with productivity ai will solve (5) to determine her performance

vi . Evaluating the first-order condition of (5) at vi = v∗(ai ) = r (ai e∗ (ai )), and multiplying it with

ai r ′(ai e∗ (ai )) [ai (e∗)′ (ai ) + e∗ (ai )] /c, we obtain
ai

c
Ahn−1

(1) (ai ) − [ai (e
∗)′ (ai ) + e∗ (ai )] = 0. (10)

Since v∗(ai ) is increasing, the least productive solver has no chance of winning A, so she will

exert zero effort (i.e., e∗(a) = 0). Thus, solving (10) yields the following equilibrium effort and

performance:

e∗ (ai ) =
1

ai

∫ ai

a

a

c
Ahn−1

(1) (a)da and v∗ (ai ) = r

(∫ ai

a

a

c
Ahn−1

(1) (a)da

)
.

Finally, we verify that the equilibrium performance v∗ (ai ) is continuously differentiable and

increasing in ai . Since all of the terms inside v∗(ai ) above are continuously differentiable in ai , so

is v∗. Thus, v∗ (ai ) is increasing in ai because (v∗)′ (ai ) = r ′
(∫ ai

a
a
c
Ahn−1

(1) (a)da
)

× ai
c

Ahn−1
(1) (ai ) > 0.

Proof of Proposition 1. For any ai < a, we have Hn
(1)(ai )− Hn−1

(1) (ai ) = (H(ai )−1)H(ai )
n−1 < 0. Further-

more, by Corollary 1.C.38 and Theorem 1.C.5 of Shaked and Shanthikumar (2007), ãn
(1) dominates

ãn−1
(1) in the likelihood ratio order, and [̃an

(1) |̃a
n
(1) < ai ] first-order stochastically dominates [̃an−1

(1) |̃an−1
(1) <

ai ] (and the reverse is not true for ai > a). Then, for any ai > a, E [̃an
(1) |̃a

n
(1) < ai ] − E [̃an−1

(1) |̃an−1
(1) <

ai ] > 0. For the solver with productivity a, the equilibrium effort is e∗,n (a) = 1
a

∫ a

a
A∗a

c
hn−1

(1) (a)da =
A∗

ca
E [̃an−1

(1) ]. From above, δ ≡ E [̃an
(1)] − E [̃an−1

(1) ] = E [̃an
(1) |̃a

n
(1) < a] − E [̃an−1

(1) |̃an−1
(1) < a] > 0. For any ai , we

have

e∗,n+1 (ai )−e∗,n (ai ) =
A∗

cai

∫ ai

a

a[hn
(1)(a)−hn−1

(1) (a)]da=
A∗

cai
(E [̃an

(1)]− E [̃an−1
(1) ]−

∫ a

ai

a[hn
(1)(a)−hn−1

(1) (a)]da).

As ai approaches a, the term
∫ a

ai
a[hn

(1)(a) − hn−1
(1) (a)]da approaches 0, so there exists â1 ∈ [a,a) such

that for ai > â1, we have
∫ a

ai
a[hn

(1)(a) − hn−1
(1) (a)] < δ. Then, for any ai ∈ (̂a1,a), we have
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e∗,n+1 (ai ) − e∗,n (ai ) =
A∗

cai
(δ −

∫ a

ai

a[hn
(1)(a) − hn−1

(1) (a)]da) > 0.

Similarly, noting that the effort function r is increasing, the equilibrium performance v∗ satisfies

v∗,n+1 (a) = r

(
A∗

c
E [̃an

(1)]
)

> r

(
A∗

c
E [̃an−1

(1) ]
)

= v∗,n (a) .

v∗,n+1 (ai ) − v∗,n (ai ) is continuous because v∗,n (ai ) is continuous. Thus, there exists â2 ∈ [a,a) such

that v∗,n+1 (ai ) − v∗,n (ai ) > 0 for all ai ∈ (̂a2,a); so letting â(n) = max{̂a1, â2} yields the proposed

result.

Proof of Lemma 2. To prove that eT cannot be an equilibrium effort, we describe how Terwiesch

and Xu (2008) (hereinafter T&X) derive eT , and point out the problems in their derivation. To

derive the equilibrium effort of a solver, T&X take the perspective of solver i with expertise

level βi , and assume that all other solvers exert effort based on the best-response function eT(βi ),

which is continuously differentiable and increasing in βi .5 They also let vT (βi ) = βi + r (eT(βi ))

be the best-response performance of solvers, and assume that the fixed cost k = 0. With a per-

formance vi , the probability that solver i will receive A1 is P
{
vi ≥ vT(β̃)

}n−1
= F((vT)−1(vi ))

n−1,

and the probability that she will receive A2 is (n − 1)P
{
vi < vT(β̃)

}
P
{
vi ≥ vT(β̃)

}n−2
= (n − 1)(1−

F((vT)−1(vi )))F((vT)−1(vi ))
n−2. Then, solver i solves the following problem given that all other

solvers’ performance function is vT(βi ):

max
vi

A1Fn−1
(1)

(
(vT )−1 (vi )

)
+ A2 (n − 1)

{
Fn−2

(1)

(
(vT )−1 (vi )

)
− Fn−1

(1)

(
(vT )−1 (vi )

)}
− cr−1(vi − βi ). (11)

The first-order condition evaluated at vi = vT(βi ) = βi + r (eT(βi )), after simplifications, yields:

(vT)′(βi )c = r ′
(
r −1(vT(βi ) − βi )

) [
A1 f n−1

(1) (βi ) + A2 (n − 1)
(

f n−2
(1) (βi ) − f n−1

(1) (βi )
)]

. (12)

T&X solve (12) using the Fourier method under the boundary condition vT(β) = β to obtain the

equilibrium effort eT of a solver with expertise βi in (8).

There are three reasons why eT in (8) cannot be an equilibrium effort. First, (12) does not satisfy

the necessary conditions for the Fourier method, and hence (8) does not solve (12). To show this,

we substitute (vT)′(βi ) = 1 + r ′(eT(βi ))(eT)′(βi ) and (eT)′(βi ) from (8) (where F(βi )
n−1 = Fn−1

(1) (βi ))

into the left hand side of (12), and show that it is not equal to the right hand side of (12):

(vT)′(βi )c = c + r ′(r −1(vT(βi ) − βi ))
[
A1 f n−1

(1) (βi ) + A2(n − 1)
(

f n−2
(1) (βi ) − f n−1

(1) (βi )
)]

5 Note that we use a best-response performance function v∗(βi ), whereas T&X use a best-response effort function eT (βi ).

Increasing eT (βi ) implies increasing v∗(βi ), but not vice versa due to the term βi in v∗(βi ) = βi + r (eT (βi )).
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6= r ′(r −1(vT(βi ) − βi ))
[
A1 f n−1

(1) (βi ) + A2(n − 1)
(

f n−2
(1) (βi ) − f n−1

(1) (βi )
)]

,

because the unit cost of effort c is positive. Second, T&X use the boundary condition of vT(β) = β,

which does not always hold. For instance, the effort function r (e) = θ log(e) used in Theorems 1B

and 1C yields limβi →β vT(βi ) = limβi →β

(
βi + θ logeT(βi )

)
= −∞. Thus, when β 6= −∞, this bound-

ary condition is invalid (e.g., F follows a beta or gamma distribution). Third, they start the proof

by assuming that eT(βi ) is increasing with βi , but the equilibrium effort is not necessarily increas-

ing with βi . Therefore, the solver’s effort eT in (8) is different from the true equilibrium effort e∗.

Proof of Proposition 2. The first-order condition of (7) evaluated at vi = v∗(βi ) yields:

(v∗)′(βi )c = r ′
(
r −1(v∗(βi ) − βi )

) [
A1 f n−1

(1) (βi ) + A2 (n − 1)
(

f n−2
(1) (βi ) − f n−1

(1) (βi )
)]

. (13)

Letting the equilibrium effort e∗(βi ) = r −1(v∗(βi ) − βi ), we have r ′(r −1(v∗(βi ) − βi )) = θ/e∗(βi ) and

(v∗)′(βi ) = 1+ r ′(e∗(βi ))(e∗)′ (βi ) = 1+ θ(e∗)′(βi )/e∗(βi ). Substituting these into (13), and by multi-

plying both sides of (13) with e∗(βi )

cθ
exp

{
βi
θ

}
, we obtain the following equation that e∗(βi ) satisfies:

exp

{
βi

θ

}
e∗(βi )

θ
+ exp

{
βi

θ

}
(e∗)′(βi ) = exp

{
βi

θ

}[
A1

c
f n−1
(1) (βi ) +

A2(n − 1)

c
( f n−2

(1) (βi ) − f n−1
(1) (βi ))

]
. (14)

Note that the left hand side of (14) is the derivative of exp{βi /θ}e∗(βi ) with respect to βi . When

fixed cost k = 0, because a solver with expertise level β has no chance of winning the contest,

her effort e∗(β) = 0. Thus, by integrating both sides of (14) and then multiplying both sides with

exp{−βi /θ}, we obtain

e∗(βi ) =
1

c

∫ βi

β

exp

{
β − βi

θ

}
[
A1 f n−1

(1) (β) + A2 (n − 1)
(

f n−2
(1) (β) − f n−1

(1) (β)
)]

dβ. (15)

Then v∗(βi ) = θ log
(∫ βi

β
exp

{
β

θ

} [ A1
c

f n−1
(1) (β) + A2

c (n − 1)
(

f n−2
(1) (β) − f n−1

(1) (β)
)]

dβ
)

. Since all of the

terms of v∗(βi ) are continuously differentiable, so is v∗(βi ). Also, v∗(βi ) is increasing because

(v∗)′(βi ) = (θ/(ce∗(βi )))exp
{
βi /θ

} [
A1 f n−1

(1) (βi ) + A2 (n − 1)
(

f n−2
(1) (βi ) − f n−1

(1) (βi )
)]

> 0.

Next, when there is a fixed cost k ≥ 0, only solvers with expertise level βi ∈ [β f ,β] will participate

in the contest, where β f satisfies e∗(β f ) = 0 and the zero-utility condition (see (4)):

A1Fn−1
(1) (β f ) + A2 (n − 1)

[
Fn−2

(1) (β f ) − Fn−1
(1) (β f )

]
− k = 0. (16)

Solving the first-order condition with e∗(β f ) = 0, we obtain the following correct version of (8):

e∗(βi ) =
1

c

∫ βi

β f
exp

{
β − βi

θ

}
[
A1 f n−1

(1) (β) + A2 (n − 1)
(

f n−2
(1) (β) − f n−1

(1) (β)
)]

dβ. (17)
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For k ≥ 0, from (16) with A1 = A∗ and A2 = 0, we obtain β f = F−1((k/A∗)1/(n−1)). For any solver

with expertise βi < β f , constraint (4) is violated, so only solvers with βi ≥ β f will participate.

Effort e∗ is obtained by substituting A1 = A∗ and A2 = 0 into (17). The probability that a solver

participates is P(β̃ ≥ β f ) = 1− (k/A∗)1/(n−1), so the expected number of participating solvers in an

open contest is n∗ = n
(
1− (k/A∗)1/(n−1)

)
. If k = 0, then β f = F−1(0) = β. Thus, from (1), the seeker’s

profit

5 =
∫ β

β

θ log

(∫ βi

β

exp
{
β/θ

} A∗

c
f n−1
(1) (β)dβ

)

[ρ f n
(1)(βi ) + (1− ρ) f (βi )]dβi − A∗. (18)

The optimal prize satisfies the first-order condition
∫ β

β
θ 1

A∗ [ρ f n
(1)(βi ) + (1− ρ) f (βi )]dβi − 1= θ 1

A∗ −

1 = 0. Thus, the optimal prize A∗ = θ , and the expected profit is obtained by plugging A∗ = θ in

(18). �
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LEMMA EC.1. (a) When the effort function r (ei ) = θei where θ > 0, the equilibrium performance satisfies

v∗,P(ai ) = v∗,C(c/(θai )) for any ai ∈ [a,a]. Thus, a cost-based project in which the cost level ci is drawn

from a general distribution G is a productivity-based project in which productivity level ai = c/(θci ) is

drawn from distribution H(ai ) = 1− G(c/(θai )) and the unit cost of effort is c.

(b) When the effort function r (ei ) = θ logei where θ > 0, the equilibrium performance satisfies v∗,P(ai ) =

v∗,E(θ log(ai )) for any ai ∈ [a,a]. Thus, an expertise-based project in which the expertise level βi is drawn

from a general distribution F is a productivity-based project in which productivity level ai = exp(βi /θ) is

drawn from distribution H(ai ) = F(θ log(ai )).

Proof. In a productivity-based project, from solver i ’s perspective, another solver’s performance is

a random variable ṽ∗,P ≡ v∗,P (̃a). Thus, plugging Pn
( j )[vi ,v∗] expression of (2) into (3), and simpli-

fying it for productivity-based projects, we obtain solver i ’s problem as follows:

max
vi

n∑

j =1

Aj
(n − 1)!

( j − 1)! (n − j )!
P(vi > ṽ∗,P)n− j P(vi ≤ ṽ∗,P) j −1 − c

r −1(vi )

ai
− k. (EC.1)

(a) In a cost-based project, all solvers except solver i have performance based on v∗,C(ci ). We will

construct a bijective mapping η : R+ → R+ from a solver’s cost ci to a productivity ai (i.e., η(ci ) =

ai ) such that given that all other solvers have performance v∗,P(ai ) = v∗,C(ci ), solver i will have

the same best-response performance. Define solver i ’s productivity as ai = η(ci ) = c/(θci ). Given

v∗,P(ai ) = v∗,C(ci ), another solver’s performance is the following random variable: ṽ∗,C ≡ v∗,C (̃c) =

v∗,P (̃a) = ṽ∗,P. Then, under r (e) = θe, solver i ’s problem (3) in a cost-based project becomes

max
vi

n∑

j =1

Aj
(n − 1)!

( j − 1)! (n − j )!
P(vi > ṽ∗,C)n− j P(vi ≤ ṽ∗,C) j −1 − ci

vi

θ
− k (EC.2)
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= max
vi

n∑

j =1

Aj
(n − 1)!

( j − 1)! (n − j )!
P(vi > ṽ∗,P)n− j P(vi ≤ ṽ∗,P) j −1 − c

vi

ai θ
− k, (EC.3)

where the equality follows because ṽ∗,C = ṽ∗,P and ci = η−1(ai ) = c/(θai ). Thus, under r (e) = θe,

the solver’s problem (EC.2) in a cost-based project is equivalent to the solver’s problem (EC.3) in

a productivity-based project. As a result, given that all other solvers have performance v∗,P(ai ) =

v∗,C(ci ), by using the mapping η, we obtain the same best response for solver i under cost-based

and productivity-based projects. This shows that the equilibrium performance under cost-based

and productivity-based projects satisfies v∗,P(ai ) = v∗,P(η(ci )) = v∗,C(ci ) = v∗,C(c/(θai )). Finally,

using ã = η(̃c) = c/(θ c̃), we obtain

H(ai ) = P(̃a ≤ ai ) = P(c/(θ c̃) ≤ ai ) = P(c/(θai ) ≤ c̃) = 1− G(c/(θai )).

(b) In an expertise-based project, all solvers except solver i have performance based on v∗,E(βi ).

We will construct a bijective mapping ω : R+ → R+ from a solver’s expertise βi to a productiv-

ity ai (i.e., ω(βi ) = ai ) such that given that all other solvers have performance v∗,P(ai ) = v∗,E(βi ),

solver i will have the same best-response performance. Define solver i ’s productivity as ai =

ω(βi ) = exp(βi /θ). Given v∗,P(ai ) = v∗,E(βi ), another solver’s performance is the following ran-

dom variable: ṽ∗,E ≡ v∗,E(β̃) = v∗,P (̃a) = ṽ∗,P. Then, under r (e) = θ loge, solver i ’s problem (3) in an

expertise-based project becomes

max
vi

n∑

j =1

Aj
(n − 1)!

( j − 1)! (n − j )!
P(vi > ṽ∗,E)n− j P(vi ≤ ṽ∗,E) j −1 − cexp((vi − βi )/θ) − k (EC.4)

= max
vi

n∑

j =1

Aj
(n − 1)!

( j − 1)! (n − j )!
P(vi > ṽ∗,P)n− j P(vi ≤ ṽ∗,P) j −1 − c

exp(vi /θ)

ai
− k, (EC.5)

where the equality follows because ṽ∗,E = ṽ∗,P and βi = ω−1(ai ) = θ log(ai ). Thus, under r (e) =

θ loge, the solver’s problem (EC.4) in an expertise-based project is equivalent to the solver’s prob-

lem (EC.5) in a productivity-based project. As a result, given that all other solvers have perfor-

mance based on v∗,P(ai ) = v∗,E(βi ), by using the the mapping ω, we obtain the same best-response

for solver i under an expertise-based project as that under a productivity-based project. This

shows that the equilibrium performance under expertise-based and productivity-based projects
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satisfies v∗,P(ai ) = v∗,P(ω(βi )) = v∗,E(βi ) = v∗,E(θ log(ai )). Finally, using the mapping ã = ω(β̃) =

exp(β̃/θ), we obtain

H(ai ) = P(̃a ≤ ai ) = P(exp(β̃/θ) ≤ ai ) = P(β̃ ≤ θ log(ai )) = F(θ log(ai )).
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