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Abstract

Currently available medication for treating many chronic diseases is often effective only for a 

subgroup of patients, and biomarkers accurately assessing whether an individual belongs to this 

subgroup typically do not exist. In such settings, physicians learn about the effectiveness of a drug 

primarily through experimentation, i.e., by initiating treatment and monitoring the patient’s 

response. Precise guidelines for discontinuing treatment are often lacking or left entirely to the 

physician’s discretion. We introduce a framework for developing adaptive, personalized treatments 

for such chronic diseases. Our model is based on a continuous-time, multi-armed bandit setting 

where drug effectiveness is assessed by aggregating information from several channels: by 

continuously monitoring the state of the patient, but also by (not) observing the occurrence of 

particular infrequent health events, such as relapses or disease flare-ups. Recognizing that the 

timing and severity of such events provides critical information for treatment decisions is a key 

point of departure in our framework compared with typical (bandit) models used in healthcare. We 

show that the model can be analyzed in closed form for several settings of interest, resulting in 

optimal policies that are intuitive and may have practical appeal. We illustrate the effectiveness of 

the methodology by developing a set of efficient treatment policies for multiple sclerosis, which 

we then use to benchmark several existing treatment guidelines.

1 Introduction

Costs associated with the delivery of healthcare in the U.S. have risen sharply in recent 

years, both in terms of total expenditure (e.g., as a percentage of gross domestic product), 

but also in spending recognized as wasteful, redundant or inefficient (Young & Olsen 2010). 

In conjunction with advances in the field of medicine and the use of information technology, 
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this has created increasing pressure for healthcare solutions that deliver better outcomes in a 

cost-effective manner.

Despite this impetus, however, the design of adaptive treatment policies for chronic 

conditions, e.g., multiple sclerosis, Crohn’s disease, and depression, has often been 

perceived as slow,1 with some of the complicating factors intrinsically related to the 

specifics of disease progression and available medication.

Currently available disease modifying therapies (DMTs) for several chronic diseases are 

only effective in a subset of the population (“responders”), and biomarkers that accurately 

assess a priori whether a given patient belongs to this subgroup are not available.2 In such 

cases, the main way to evaluate DMT efficacy is by initiating treatment and then 

continuously monitoring the patient through self-reported surveys, periodic check-ups, or 

more in-depth scans and evaluations.

If the role of treatment were the reversal of an obvious short-term abnormality, such 

monitoring would provide sufficient evidence for how well the patient is responding. 

However, the primary goal of DMTs for chronic diseases is to prevent disease progression in 

the long run, which often translates to limiting the occurrence of infrequent negative health 

events (e.g., disease flare-ups) that can severely diminish a patient’s quality of life. As such, 

the (non)occurrence, or the exact timing and severity of such episodes often convey critical 

information concerning a DMT’s effectiveness for the patient. Quantifying the impact of 

such information and translating it into actionable guidelines for medical decision making is 

often not straightforward.

A primary example of a chronic disease with these features is multiple sclerosis (MS), an 

autoimmune inflammatory disease of the central nervous system that is a leading cause of 

disability in young adults. MS is incurable; DMTs attempt to slow its progression by 

decreasing the frequency and severity of clinical attacks, known as “relapses” (see, e.g., 

Cohen et al. 2004, NMSS 2014). While newly available drugs represent advances for MS 

management, none is fully effective (Rovaris et al. 2001), and the question of identifying 

patients who are not responsive to treatment is centrally important. In the words of the 

National Clinical Advisory Board of the National Multiple Sclerosis Society (NMSS 2004),

“[…] whatever the relative merits of these drugs, all can only be considered 

partially effective agents. This reality raises the difficult problem of the 

identification of a suboptimal response or treatment failure in an individual case 

and, once identified, leads to consideration of the appropriate avenues for 

alternative treatments.”

1For instance, in an editorial paper, Murphy & Collins (2007) state that “despite the activity in evaluating adaptive treatment 
strategies, the development of data collection and analytic methods that directly inform the construction of adaptive treatment 
strategies lags behind.”
2Biomarkers exist for some chronic diseases, e.g., breast cancer. Our focus is on diseases for which the existing biomarkers do not 
perfectly classify patients as responders and non-responders and, thus, there is scope for experimentation with the available treatments. 
As we mention below one such disease is multiple sclerosis. It is worthwhile to note that the discovery of biomarkers for MS is a very 
active field of research, e.g., Derfuss (2012).

Negoescu et al. Page 2

Manage Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As the quote highlights, the problem of identifying patients who do not respond to DMTs is 

quite challenging. For a newly diagnosed patient, current guidelines recommend 

immediately starting treatment, and assessing effectiveness by continually monitoring the 

disease progression, through MRI scans and self-reported assessments of disability, such as 

the Expanded Disability Status Scale (EDSS) (NMSS 2008). The guidelines emphasize the 

critical role of learning, and explicitly recognize that the timing and frequency of relapses, as 

well as more continuous measurements such as EDSS and/or MRI, can all be informative.3 

However, they stop short of providing a systematic way to use this information, and suggest 

only simple rules for discontinuing treatment. To the best of our knowledge, these rules are 

not the outcome of a quantitative framework, and have not been tested for efficiency (see 

Cohen et al. 2004). Furthermore, while several studies have attempted to identify early 

predictors of non-response (Horakova et al. 2012, Romeo et al. 2013), the results have not 

been used to inform the design of optimal treatment plans in a quantitative fashion.

Further underscoring the need for fast and accurate identification of non-responders is the 

fact that DMTs can cause significant side effects, such as persistent flu-like symptoms, 

injection site necrosis, and liver damage, which result in poor compliance and large drop-out 

rates (Prosser et al. 2004). Additionally and quite importantly, treatment is expensive, with 

mean annual costs of $60,000 per diagnosed case in the U.S. (Hartung et al. 2015). This has 

resulted in a significant amount of debate around policies for MS treatment, in the U.S. and 

elsewhere.4

This example and the preceding discussion give rise to several natural research questions. 

Given the available medications, what is the optimal treatment plan for chronic diseases such 

as multiple sclerosis? Does an optimal plan involve discontinuation rules, i.e., is it optimal to 

start a patient on treatment, and then stop at a particular point in time? How can a medical 

decision maker optimally aggregate all of the information acquired during treatment to 

design optimal treatment plans? Would such optimized plans outperform current existing 

medical guidelines?

This paper can be viewed as one step toward answering such questions. We propose a 

framework that can be used to inform treatment decisions for chronic diseases that have the 

features described above: treatment is effective only for a subset of patients that is a priori 
unidentifiable; the frequency and/or severity of side effects and major health events depends 

on a patient’s response type; and information regarding the effectiveness of treatment is 

obtained gradually over time. Our main contributions can be summarized as follows:

3“[…] the effects of current therapies on attack rates and MRI measures of newly accumulated lesion burdens […] are the events that 
are most readily available to the clinician when considering treatment failure or suboptimal response in an individual patient” (NMSS 
2004).
4The National Institute of Health in the UK launched an innovative risk sharing scheme in 2002, according to which patients would be 
closely monitored to evaluate the cost-effectiveness of the drugs used in standard treatment, with an agreement that prices would be 
reduced if overall patient outcomes were worse than predicted. The scheme became controversial when reports from observational 
cohorts suggested that the outcomes were far below expectations–implying that treatment was generally not cost-effective–yet the drug 
providers did not reduce their prices as per the agreement (Boggild et al. 2009, Raftery 2010, Sudlow & Counsell 2003). It is worth 
noting that personalized discontinuation rules for patients were not considered, though such rules might have reduced total costs and 
also improved patient outcomes.
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• We formulate the problem of determining an optimal adaptive treatment policy 

as a continuous-time stochastic control problem. A key point of departure from 

other work in medical decision making is that we incorporate information from 

both the day-to-day monitoring of disease progression, as well as the timing of 

major health events. Our framework thus implicitly trades off the immediate and 

the long-term impact of treatment, providing a systematic way to incorporate 

new information in the design of optimal treatment plans.

• When choosing between two treatments with linear dose-response, our model 

can be analyzed in closed form, resulting in intuitive optimal policies that take 

the form of discontinuation rules. In an extension discussed in Appendix A of the 

Online Companion, we show how these analytical results can be used to derive 

optimal policies for choosing among several treatments by solving very simple 

(one-dimensional, convex) optimization problems. We also discuss conditions 

under which the optimal policy is no longer a simple discontinuation rule, such 

as when dose-response curves are nonlinear or when the severity of major health 

events is indicative of treatment effectiveness.

• We apply our results to multiple sclerosis, for which we develop and test 

adaptive treatment policies for administering interferon-β. Our framework allows 

an explicit trade-off between the benefits of treatment and its associated costs, 

and can be used to generate an entire frontier of cost-effective treatment policies, 

depending on the amount a decision-maker is willing to pay for one additional 

quality-adjusted life year (QALY), expressed as a willingness-to-pay (WTP) 

value. We use these policies to benchmark and test the performance of three 

treatment guidelines: a “no-treatment” policy, which does not prescribe any 

interferon, a “standard” policy, which administers interferon to all patients and 

discontinues treatment upon progression to an EDSS score of 6–7.5 (Río et al. 

2011), and a “consensus” policy, which discontinues treatment when patients 

experience two or more relapses in a year or progress to an EDSS score of 6–7.5 

(Cohen et al. 2004).<1br>Our first finding suggests that a no-treatment policy is 

optimal if the WTP does not exceed $150,000/QALY. Furthermore, the gains 

from interferon treatment are generally not large in absolute terms, and come at 

steep costs: even the best adaptive policy, requiring a WTP exceeding $800,000/

QALY, can only increase the QALYs by 3.45% relative to a no-treatment 

alternative, while increasing costs by 16.2%. Since interventions are generally 

considered cost-effective when the costs per QALY gained do not exceed three 

times the country’s per-capita GDP (Drummond 2005, Hunink et al. 2014), this 

suggests that interferon treatment is not necessarily cost-effective, and that no-

treatment may be optimal under lower WTP. However, this finding should be 

interpreted with caution: even though the increases in QALY may not be large in 

absolute terms, they may nonetheless be significant, particularly for a chronic 

disease as debilitating as MS. <1br>Our results provide validation of the 

consensus criteria proposed by Cohen et al. (2004): the resulting policy is close 

to being efficient at intermediate values of WTP, and achieves net monetary 

benefits close to a fully adaptive policy. As such, these simple discontinuation 
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rules may represent a viable alternative to implementing a complex optimal 

adaptive policy, particularly at intermediate WTP values. <1br>Finally, we find 

that none of the treatment guidelines are satisfactory at very large WTP: the 

consensus and no-treatment policies generate low QALYs, and the standard 

policy is inefficient. An adaptive policy derived from our framework under a 

WTP of $800,000/QALY generates the most QALYs without incurring 

significant costs, and attains a good balance between administering sufficient 

treatment to responders and identifying non-responders early.

While we apply our model to MS and interferon-β primarily because of data availability, we 

note that the treatment of many other chronic diseases could benefit from our framework. 

Such examples include rheumatoid arthritis, where increased disability is associated with 

higher mortality (Pincus et al. 1984); Crohn’s disease, where treatment often involves the 

same classes of medications as multiple sclerosis; and depression and other mental illnesses, 

where psychiatrists must choose between various treatments without knowing a priori which 

one might be effective.

1.1 Relevant Literature

Our model builds on the theory of continuous-time multi-armed bandits (Bank & Küchler 

2007, Berry & Fristedt 1985, Cohen & Solan 2013, Harrison & Sunar 2015, Mandelbaum 

1987). Closest to our work are papers on strategic experimentation (Bolton & Harris 1999, 

Keller & Rady 2010, Keller et al. 2005), which study free riding among a team of agents in 

an experimentation context. We adapt their framework in a medical decision-making setting, 

and extend their model and analysis by allowing the decision maker to learn from observing 

the rewards generated by two stochastic processes whose parameters depend on the choice 

of treatment: a Wiener process (Brownian motion) that models the day-to-day side effects 

experienced by the patient, and a Poisson process that captures the arrival of major health 

events, i.e., disease flare-ups and progression.

Our paper is related to the clinical trials literature, and in particular to the growing number 

of studies that consider adaptive rules for assigning patients to treatments (e.g., Ahuja & 

Birge 2016, Berry 1978, Berry & Pearson 1985, Bertsimas et al. 2014). These approaches 

typically assume that the outcome of a clinical trial is binary (success/failure), and that the 

decision maker can learn from multiple patients since outcomes are positively correlated. It 

is difficult to implement such an approach in the context of a chronic disease, however, as 

one patient’s response to treatment is independent from another’s, and information about the 

quality of treatment is obtained gradually over time, with no single event providing sufficient 

evidence for or against a given treatment plan.

Also closely related is a growing literature (e.g., Denton et al. 2009, Helm et al. 2015, 

Mason et al. 2014, Zhang et al. 2012) that uses Markov decision processes with fully or 

partially observed states and dynamic linear Gaussian systems to derive adaptive treatment 

policies. We formulate the problem using a continuous-time bandit model and derive closed-

form expressions for optimal treatment decisions that as we discuss in the paper may have 

several advantages.
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In the medical literature, Murphy (2003), Murphy (2005), Murphy & Collins (2007), Pineau 

et al. (2007), and Almirall et al. (2012) among others propose adaptive treatment schemes in 

the context of psychiatric conditions such as depression, anxiety disorders, and drug/alcohol 

abuse. In particular, Murphy (2003) motivates and lays the foundation for developing 

dynamic treatment regimes, i.e., a set of rules for choosing effective treatments that are 

tailored to the individual characteristics of patients. The methodology in these studies varies 

from non-quantitative approaches, e.g., pre-defining a protocol to switch therapies after a 

certain time if a criterion is not met (Almirall et al. 2012), to reinforcement learning (Pineau 

et al. 2007) and developing statistical frameworks for optimizing a general outcome while 

achieving a desired level of power or bias (Murphy 2005). Although we share the same 

motivation and use similar methodological tools as some of these studies, i.e., dynamic 

programming (albeit, in continuous time), the emphasis in these papers is not on deriving 

explicit optimal treatment policies nor on preserving the computational tractability of the 

resulting framework. In contrast, our explicit characterization of the optimal adaptive 

policies allows us to compute useful comparative statics with respect to features of the 

underlying environment and to derive optimal policies for the case of multiple treatments by 

solving very simple (one-dimensional) convex optimization problems in an offline fashion 

(see Appendix A).

Finally, our work is also related to empirical cost-effectiveness studies for MS, which have 

found DMTs to be very expensive for the benefits they provide, with costs of up to $1.6 

million per additional QALY gained (Noyes et al. 2011, Phillips 2004, Tappenden et al. 

2009). Although we use a similar disease evolution model, the key point of departure is that 

we assess cost-effectiveness based on optimal adaptive treatments that utilize all available 

information, instead of heuristic treatment guidelines. We find that the optimal interferon 

treatment is not necessarily cost-effective, and we quantify the WTP values under which no-

treatment is optimal.

2 Model Formulation

We first introduce our model in an abstract setting, and then discuss the connection and 

relevance to the medical applications motivating our work. In an effort to make the paper 

accessible to a broad audience, we deliberately keep the exposition style less formal, placing 

more emphasis on the intuition and connection with the applications. Readers interested in 

the mathematical details can refer to El Karoui & Karatzas (1994), Bolton & Harris (1999), 

Keller & Rady (2010), and references therein, which form the basis of our model.

2.1 Model Framework

We consider a continuous time frame, indexed by t ∈ [0,∞). A single decision maker (DM) 

is faced with the problem of choosing how to allocate the current period [t, t + dt) between 

two possible alternatives (“arms”): a “safe” alternative, with known characteristics, and a 

“risky” alternative, which can be of either good (G) or bad (B) type, unbeknownst to the 

DM.

Each arm brings the DM immediate rewards that accrue continuously over time. More 

precisely, the “safe” arm generates instantaneous rewards governed by a Brownian motion 
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with drift rate μ0 and volatility σ, and a risky arm of type θ ∈ {G,B} generates instantaneous 

Brownian rewards with drift rate μθ and volatility σ. When the DM allocates a fraction αt ∈ 
[0, 1] of the time interval [t, t+dt) to the risky arm and the remaining fraction 1−αt to the 

safe arm, the total instantaneous rewards received are dπ1(t) + dπ0(t), where

dπ1(t) =def αtμθ dt + αt σ dZ1(t), (1a)

dπ0(t) =def (1 − αt)μ0 dt + 1 − αt σ dZ0(t) . (1b)

Here, dZ0(t) and dZ1(t) are independent, normally distributed random variables, with mean 0 

and variance dt. To understand the scaling used, note that the DM’s instantaneous rewards 

from the risky and safe arm are normally distributed, with mean αtμθdt and variance αtσ2dt, 
and mean (1−αt)μ0dt and variance (1−αt)σ2dt, respectively. As such, the total instantaneous 

reward exactly equals a fraction αt of the risky reward and 1 − αt of the safe reward.

In addition to the instantaneous rewards, each arm also induces relatively rare “life events,” 

as well as a special “stopping event” that terminates the decision process. The occurrence of 

any life event generates a deterministic “reward” of −D. The frequency of such events 

depends on the allocation used by the DM. More precisely, when αt ∈ [0, 1] of the period is 

allocated to the risky arm, life events occur according to a Poisson process with rate (1 − 

αt)λ0 + αtλθ, where λ0 (λθ) denotes the rate of life events under a safe arm (a risky arm of 

type θ, respectively). Similarly, the stopping event occurs at a time T that is exponentially 

distributed with rate (1−αt)η0+αtηθ, and generates a reward of magnitude V. We assume 

that, conditional on the risky arm’s type θ and on the allocation αt, the stopping event is 

independent from the Poisson process for life events.5

The DM knows all the underlying parameters governing the arms and the reward structure, 

i.e., μ0, λ0, σ, D, V, μθ, and λθ, for θ ∈ {G,B}, but does not know the type θ of the risky 

arm. At time t = 0, he starts with some initial belief p0 that the risky arm is good, which he 

then updates during the rest of the planning horizon, depending on the observed 

instantaneous and lump-sum rewards. This generates an updated belief pt at time t.

The DM’s goal is to find a non-anticipative allocation policy {αt}t≥0 that maximizes the 

total expected discounted rewards Π up to the stopping event, i.e.,

Π =def 𝔼 ∫
0

T
e−rt[dπ1(t) + dπ0(t) − (Nt + dt − Nt) D] + e−rTV , (2)

5An alternative formulation could have considered the stopping event as a “special instance” of a life event. Since splitting a Poisson 
process would yield an exponentially distributed time for the stopping event, this would be equivalent to our current model.
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where Nt denotes the total number of life events occurring in [0, t).

Some observations regarding the problem formulation are in order. First, note that the 

integrand in the expression for Π contains three terms. The first two, dπ1(t) and dπ0(t), 
correspond to the instantaneous rewards received from the risky and safe arms, given in (1a) 

and (1b), respectively. The third term corresponds to the expected lump-sum reward received 

upon the occurrence of a life event during period [t, t + dt). The integral is taken over the 

total (instantaneous and lump-sum) rewards discounted at a fixed rate r > 0, and the term 

outside the integral corresponds to the reward received upon the occurrence of the stopping 

event at time T. The expectation in (2) is with respect to the stochastic processes dZ0(t), 
dZ1(t), αt, and also pt. The latter reflects the DM’s use of the belief pt at time t with regard 

to the type θ of the risky arm.6

Additionally, note that in choosing a policy αt to maximize the expected rewards, the DM is 

faced with the classical trade-off between “exploration” and “exploitation” (Powell & 

Ryzhov 2012), i.e., between acquiring information about an unknown alternative, which may 
entail higher rewards, versus using a safe option. In this sense, αt critically trades off the rate 

at which new information is gained with the risks entailed by the experimentation. With a 

choice αt = 0, the DM would only gain instantaneous and lump-sum rewards from the safe 

arm, hence completely eliminating the exposure to the risky arm as well as the ability to 

update the belief pt. It is important to emphasize that new information in our model is 

acquired through two channels: (1) by observing the instantaneous rewards dπ1(t) from the 

risky arm, and (2) by (not) observing life events and the stopping event. Whenever αt > 0, 

these channels all convey meaningful information to the DM, potentially tilting his belief pt 

toward (or away from) deeming the risky arm as good.

2.2 Application in the Context of Chronic Diseases

We now discuss how our mathematical framework can be applied to the design of an 

adaptive treatment policy for chronic diseases such as multiple sclerosis (MS).

The arms: In a medical context, the arms of our model correspond to available treatments, 

and the DM is a physician choosing the optimal treatment policy for the patient. Depending 

on the focus, the “rewards” could either correspond to a patient’s health utility, or to a cost-

adjusted health utility that also accounts for the cost of treatment (see our more detailed 

discussion in Section 4). As such, an arm’s instantaneous reward denotes the impact of 

treatment on the patient’s immediate (cost-adjusted) quality of life. “Life events” correspond 

to sudden health episodes associated with normal disease progression, which bring about 

immediate disutility (and costs) to the patient, without altering the fundamental underlying 

disease evolution or the efficacy of treatments. Examples of life events include relapses in 

MS or panic attacks in anxiety disorders. Depending on the circumstance and the exact 

disease modeled, the “stopping event” could be a special instance of a life event or an 

entirely separate event, which changes the disease evolution or the treatment options (e.g., a 

6This effectively means that the expectations of quantities at time t that depend on θ should be taken with respect to a corresponding 
two-point distribution given by pt. For instance, [μθ] = ptμG + (1 − pt)μB.
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heart attack, kidney failure, malignancy or death). We elaborate on these distinctions further 

when discussing the objective. We note that our base-case model only allows choosing 

between two arms/treatments. We discuss the important extension to multiple arms in 

Appendix A.

Safe arm: A “safe” arm represents a treatment with homogenous response in the population. 

In MS, this typically consists of medication aimed at reducing or controlling MS-specific 

symptoms such as bowel and bladder function, spasticity and pain, without modifying 

disease progression. In our model, such a treatment may still yield stochastic outcomes in 

terms of both instantaneous (cost-adjusted) health utility and life/stopping events, as one 

would expect in practice. The critical assumption is that the parameters governing these 

outcomes (μ0, σ, λ0, η0) are known to the physician. This is reasonable, since physicians 

often have more information about the natural disease progression when patients are not 

subjected to treatment, e.g., from studies of large historical cohorts of patients (Scalfari et al. 

2010).

Risky arm: The “risky” arm is only effective for a subset of the population, i.e., when the 

type is good (θ = G). We assume that the physician is unable to determine a priori whether a 

new patient belongs to this subset. This is in keeping with the fact that precise biomarkers do 

not exist for many chronic diseases. For instance, treatments for MS such as interferon-β are 

effective only in a subgroup of patients (Cohen et al. 2004, Horakova et al. 2012, Prosser et 

al. 2003). In such cases, the only way to assess the impact of a drug or therapy is by 

subjecting the patient to treatment, and relying on periodic examinations or self-reported 

assessments, such as the EDSS for MS. When patients respond to treatment, their condition 

may improve (i.e., μG > μ0), the frequency of life events may be diminished (i.e., λG < λ0), 

and the likelihood of a major health event or disease progression may also decrease (i.e., ηG 

< η0). When patients do not respond, their condition may remain the same or even 

deteriorate slightly, e.g., due to side effects from treatment. A central assumption underlying 

our model is that physicians are able to separately assess the parameters governing how 

responders and non-responders are impacted by treatment, i.e., μθ, λθ and ηθ. This is 

reasonable since medical studies often track patients for a relatively long period of time, and 

retrospectively assign them to responder and non-responder groups (e.g., Horakova et al. 

2012).

Lump-sum rewards: Our assumption that the lump-sum “reward” −D received upon life 

events is independent of the type θ is particularly pertinent for diseases such as MS and 

anxiety disorder. For instance, relapses in MS correspond to periods of acute disease activity 

when patients experience neurological symptoms such as sudden paralysis or loss of vision. 

Such episodes generate immediate disutility and have similar severity/consequences in all 

patients, but occur less often among patients responding to treatment (Horakova et al. 2012, 

Kremenchutzky et al. 2006). Our framework can be extended to stochastic rewards that are 

independent of θ, as only their expected value would matter. We discuss the extension to 

rewards dependent on θ in Appendix B.
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Fractional allocations: Our model assumes that fractional allocations of treatment are 

possible, and that the response (i.e., the reward) is directly proportional to the allocation. 

Fractional allocations allow modeling cocktails of drugs (Rudick et al. 2006) or 

administering a lower dosage of a drug, e.g., by adjusting the frequency and/or the 

magnitude of doses. The assumption that the response is linear renders our model 

analytically tractable and is a reasonable first-order approximation, as dose-response 

functions are often S-shaped and thus linear in a central band of values (see, e.g., the MS 

study of OWIMS (1999)). We discuss this limitation further in Section 5, and we examine its 

impact numerically in Appendix D.

Objective: Considering a planning horizon T that corresponds to an exponentially 

distributed “stopping” event allows modeling flexibility, without sacrificing analytical 

tractability. The horizon T could capture the first occurrence of a life event, which is 

appropriate when the risky treatment improves the immediate quality of life of a patient but 

incurs a higher risk of severe side effects. For instance, studies have shown that certain 

rheumatoid arthritis treatments improve pain and disability, but may cause malignancies or 

severe infections (Mariette et al. 2011). More broadly, T could correspond to any major 

event that permanently alters the state of the patient, the disease evolution, or the response/

rewards from treatment. Examples could include progression to severe disease (e.g., in MS, 

transitioning from the relapsing-remitting phase to the secondary-progressive phase (Lee et 

al. 2012)) or the release of a new drug that alters the set of feasible treatment options or 

drastically reduces the cost of treatment, impacting the reward rates in a cost-adjusted 

objective. The rewards V received upon the stopping event can be interpreted as continuation 

values, which allows using our model as a building block for studying diseases with more 

complex dynamics, involving potentially non-stationary reward rates or phase transitions. 

For more details, we refer to our case study in Section 4, which implements this idea.

Our model includes a fixed discount rate r > 0, in keeping with the recommendations of the 

U.S. Panel on Cost-Effectiveness in Health and Medicine that costs and quality-adjusted life 

years should be discounted when estimating the cost-effectiveness of healthcare 

interventions (Gold 1996).

Simplifying assumptions: To preserve analytical tractability, our model makes a number of 

simplifying assumptions: arms/treatments are characterized by Brownian rewards and 

Poisson arrivals with known and stationary parameters; dose-response curves are linear; 

information collection and treatment updating can be conducted very frequently; and 

patients fully adhere to treatment recommendations. In Section 5, we discuss these 

limitations more extensively, providing several extensions and robustness checks, and 

outlining interesting directions for future research.

Although our model simplifies the reality of chronic diseases, it has the advantage of 

allowing exact analytical results, with simple and intuitive interpretations, as we discuss 

next.
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3 Analysis

Letting ℱt denote the information set available to the DM at time t,7 it can be seen that the 

belief that the risky arm is good, pt =def ℙ{θ = G ∣ ℱt}, is a sufficient statistic of the history up 

to time t. Thus, we take pt as the state of the system, and we take the fraction of treatment 

allocated to the risky arm αt as the DM’s action (control). Finally, with 

𝒜 =def {(αt)t ≥ 0 ∣ αt:ℱt [0, 1]} denoting the set of all sequential, non-anticipative policies 

that are adapted to the available information, the DM’s problem can be compactly 

formulated as

max
α ∈ 𝒜

𝔼α ∫0
T

e−rt dπ1(t) + dπ0(t) − (Nt + dt − Nt) D + e−rTV ,

where the expectation is with respect to the stochastic processes dZ0(t), dZ1(t), Nt, αt and pt. 

As a first step in our analysis, we characterize the evolution of the DM’s belief during time 

interval [t, t + dt), as a function of the current belief pt and action αt. We start with the case 

when no life event or stopping event occurs during the interval.

Lemma 1: When no life event or stopping event occurs during time interval [t, t + dt):

i. the posterior belief pt+dt conditional on an observed instantaneous reward from 
the risky arm dπ1(t) = y is given by Bayes’ rule, and takes a value of

pt + dt =
ptF(μG/σ)e

−(λG + ηG)dt

ptF(μG/σ)e
−(λG + ηG)dt

+ (1 − pt)F(μB/σ)e
−(λB + ηB)dt

, (3)

where

ξθ =def (1 − αt)ξ0 + αtξθ, ∀ξ ∈ {λ, η}, ∀θ ∈ {G, B} (4a)

F(μ) =def 1
2πdt

exp − 1
2dt (y/σ − α μdt)2 ; (4b)

7Formally, ℱt is the sigma-algebra generated by the allocations, rewards, events, and lump-sum rewards up to time t, i.e., 

ℱt =def σ {ατ, dπ0(τ), dπ1(τ), Nτ, Lτ}0 ≤ τ < t
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ii. the change in the DM’s belief pt+dt − pt is normally distributed, with mean αtpt(1 

− pt)((λB + ηB) − (λG + ηG)) dt and variance αt
pt(1 − pt)(μG − μB)

σ

2
dt.

We make several observations about this result. First, note that when no life event or 

stopping event occurs during [t, t+dt), the belief evolution only depends on the 

characteristics of the merged process of life and stopping events, which is Poisson under our 

assumptions. Thus, all the results depend on the sum of the rates of life events and stopping 

events, i.e., λi + ηi, ∀i ∈ {0,G,B}.

Part (i) of the result provides the update rule for the DM’s belief. Note that changes only 

occur when the risky arm is used (i.e., when αt > 0), and the posterior only depends on the 

observed instantaneous reward from the risky arm (dπ1), but not from the safe arm (dπ0). 

This is intuitive, since the safe arm conveys no information about the risky arm’s type. Note 

that the result implicitly requires the ability to separately observe the risky rewards, which 

may be problematic when the DM only observes the total instantaneous rewards dπ0+dπ1 

and αt ∈ (0, 1). As our later results will show, this issue becomes moot in our setting, since 

the optimal policy will always entail αt ∈ {0, 1}, so the DM will never observe a mix of safe 

and risky instantaneous rewards.

Part (ii) establishes that the belief change is normally distributed, with parameters that 

depend on the arms’ characteristics. The belief drifts upward—i.e., the risky arm is deemed 

more likely to be good—if and only if events under a good arm are less likely than under a 

bad arm, i.e., λG + ηG < λB + ηB. This is intuitive, since the absence of an event under such 

conditions can be viewed as “good news” for the DM. Consistent with this observation, note 

that “more learning” occurs—i.e., the mean belief update grows—as the difference between 

the rates of events under a good and a bad arm increases. More learning also occurs as pt(1 − 

pt) grows, i.e., as the DM has more uncertainty a priori about the arm’s type, as measured 

through the variance of the prior: as pt gets closer to the extremes (0 or 1), it takes a much 

stronger signal to alter the belief as compared to when pt is close to 0.5. Lastly, as expected, 

more learning occurs as the DM experiments more aggressively with the risky arm, i.e., as 

αt grows. However, such aggressive experimentation also leads to a larger variance in the 

updates, i.e., “more noise.” Updates also get noisier as the DM has more uncertainty a priori 
concerning the arm’s type (i.e., as pt(1−pt) grows), as the difference in mean rewards under a 

good and bad arm is larger (i.e., (μG −μB)2 grows) or as the rewards get less noisy (i.e., σ 
decreases).

Our next result completes the characterization of the DM’s belief update, by focusing on the 

case when a life event occurs during the interval [t, t + dt).

Lemma 2: When a life event occurs during [t, t + dt):

i. the posterior belief pt+dt conditional on an observed instantaneous reward from 
the risky arm dπ1 = y is given by Bayes’ rule, and takes a value of
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pt + dt =
ptF(μG/σ)(1 − e

−λGdt
)e

−ηGdt

ptF(μG/σ)(1 − e
−λGdt

)e
−ηGdt

+ (1 − pt)F(μB/σ)(1 − e
−λBdt

)e
−ηBdt

; (5)

ii. the change in the DM’s belief pt+dt − pt is normally distributed, with

mean =
αtpt(1 − pt)(λG − λB)

λ(pt)
+ αtpt(1 − pt)λGλB

ηB − ηG + (μG − μB)μ(pt)/σ2

(λ(pt))
2 dt

variance = αt
pt(1 − pt)λGλB(μG − μB)

σ

2
dt,

where λ̄
G, λ̄

B, η̄G, η̄
B, F are defined in (4a)–(4b), and ξ(p) =def pξG + (1 − p)ξB, ∀ 

ξ ∈ {λ̄, μ}.

Part (i) of the result provides an expression for the posterior of the DM’s belief, which now 

depends separately on the rates of life events and stopping events under a good/bad arm. Part 

(ii) shows that the belief update remains normally distributed, but with modified mean and 

variance.

The mean update in (ii) now involves two terms. The first term is independent of dt and 

constitutes a jump in the belief caused by the occurrence of a life event. It can be readily 

verified that the posterior belief accounting for this jump, i.e., 

j(αt, pt) =def pt + αtpt(1 − pt)(λG − λB)/λ(pt), is increasing in pt and λG, and decreasing in λB. 

This confirms the intuition that, ceteris paribus, the occurrence of a life event makes it 

relatively more likely that a risky arm is good when the prior belief that it was good was 

larger, or when life events become more (less) likely under a good (bad) arm. Note that j(αt, 
pt) < pt if and only if λG < λB, so that a life event makes it more likely that the arm is good 

if only if life events are more likely under a good arm than under a bad one. When λG < λB, 

it can also be verified that j(αt, pt) is decreasing in αt, so that a DM who experiments more 

aggressively becomes more skeptical about the risky arm upon the occurrence of a life event.

The second term, which is directly proportional to dt, is a further drift in the belief caused by 

the instantaneous rewards. These rewards also give rise to variability (i.e., variance) in the 

belief update, and it can be checked that this grows as the DM has more uncertainty a priori 
concerning the arm’s type (i.e., as pt(1 − pt) grows), as the good and bad arm differ more in 

their instantaneous rewards (i.e., as (μG − μB)2 grows), as the processes describing life events 

get more noisy (i.e., λ0, λG, λB grow), or as the rewards get less noisy (i.e., σ decreases).

With these results, we can now provide a characterization of the DM’s optimal policy. We 

restrict our subsequent analysis to the “interesting” case: we allow belief updates to be noisy 

(i.e., μG ≠ μB), and we assume that no arm can be eliminated a priori (i.e., a good arm 
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dominates the safe arm, which in turn dominates a bad arm). This is summarized in 

Assumption 1 below.

Assumption 1: The primitives for the framework satisfy

μG ≠ μB and AB < A0 < AG,

where Aθ =def (μθ − λθD + ηθV)/(r + ηθ), ∀ θ ∈ {0,G,B} denote the total rewards per unit time 

for a safe, good and bad arm, respectively.

Theorem 1: Let Assumption 1 hold. Then, the DM’s optimal policy is given by

αt
∗(pt) = 0 if pt < p∗

1 otherwise,
(6)

where

p∗ =def wB(A0 − AB)
wB(A0 − AB) + wG(AG − A0) (7a)

wB =
r + ηB

r + ηB + λB
ν∗ (7b)

wG =
r + ηG

r + ηG + λG
(1 + ν∗) (7c)

and ν∗ =def − 1
2 +

σ2(λB + ηB − λG − ηG)

(μG − μB)4

+
((μG − μB)4 − 2σ2(λB + ηB − λG − ηG))2 + 8σ2(r + ηB + λB)(μG − μB)4

2(μG − μB)4

.

Theorem 1 confirms that the optimal policy is a threshold policy; in particular, fractional 

allocations are not needed, and the DM can always select a single arm at each point of time.

Note that the optimal threshold p* only depends on suitably weighted relative differences of 

the (per unit time) rewards for each arm type, A0,AG,AB. In particular, p* depends on the 
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safe arm only through A0. It can be readily verified that p* is increasing in μ0, reflecting the 

intuitive fact that, ceteris paribus, a safe arm with higher instantaneous rewards makes the 

risky arm less appealing. Furthermore, when λG ≤ min(λB, λ0) and μ0 ≥ μG (as in the case 

of MS), it can also be verified that p* is decreasing in λ0 and in D. This shows that a DM 

behaving optimally should be more prone to experimenting with a risky arm when life 

events under the safe arm become more frequent/likely or when they have more severe 

consequences. The threshold p* is also strictly increasing in σ and r, confirming that 

increased volatility and/or an increasing degree of myopic behavior lead to strictly less 

experimentation with the risky alternative. Finally, note that p* does not depend on the prior 

belief p0 that the arm is good. This is a useful feature in an optimal policy, since it suggests a 

certain separation between the (objective) effectiveness of an arm and the (potentially 

subjective) prior.

We conclude this section with a brief discussion of extensions and implications of the 

results. We start by noting that, although our approach focuses on two arms/treatments, some 

of the results generalize. In Appendix A, we discuss the important case where several arms 

with binary (good/bad) types exist. Although we are unable to explicitly characterize the 

optimal policy, we argue that it remains indexable—involving a single arm used at any point 

of time—and we use our analytical results above to provide an algorithm that calculates the 

optimal policy to within an arbitrary precision. Our proposed algorithm only requires an 

offline solution for a small number of one-dimensional convex optimization problems, and 

an online updating of the beliefs using Lemmas 1 and 2, making it appealing in settings with 

many arms or frequent updating.

Second, we note that the “bang-bang” structure of the optimal policy relies on several of our 

modeling assumptions. The “bang-bang” structure no longer holds, for instance, when the 

response to the DM’s allocation is nonlinear (see our Appendix D) or when the lump-sum 

rewards received from life events depend on the risky arm’s type (see Appendix B). In such 

cases, a strictly fractional allocation that trades off the benefits of the safe arm with those of 

the risky arm turns out to be optimal, and this is true even in cases when the risky arm is 

exactly known to be good or bad.

In the context of chronic diseases that are consistent with our framework, our results suggest 

that, given our modeling assumptions, the optimal treatment policy is a discontinuation rule: 

the patient is given the “risky” treatment as long as the belief that she is responding is above 

a threshold. Once the belief falls below this threshold, the patient is taken off treatment, and 

since no “learning” occurs while on the safe treatment exclusively, the process of 

experimentation essentially stops. We next illustrate how the findings of our simple 

analytical model can be potentially used for a disease with more complex and realistic 

dynamics.

4 Case study: Multiple Sclerosis

We illustrate our framework with a case study of MS. In MS, affected individuals experience 

increasing disability to the point of becoming bedridden, as well as blurred vision, muscle 

weakness, dizziness, fatigue and various sensory abnormalities (Kremenchutzky et al. 2006). 
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No cure currently exists, and treatments are only effective for some patients, with no 

accurate biomarkers for assessing responsiveness a priori (Romeo et al. 2013). While the 

search for biomarkers in MS remains an active area of research (Derfuss 2012), physicians 

currently rely mostly on MRI scans and surveys in which patient-reported symptoms are 

used to compute the Expanded Disability Status Scale (EDSS) score, which can be 

translated into quality-of-life utilities for assessing disease evolution and treatment 

effectiveness (Prosser et al. 2003).

We focus on the most common form of MS, relapsing-remitting multiple sclerosis (RRMS), 

which comprises about 80% of cases. The initial stage of the disease, which typically lasts 

for 10 years on average, is characterized by clearly defined relapses that occur on average 

once per year (Prosser et al. 2004), from which patients may or may not fully recover. After 

this stage, patients typically enter the progressive stage of the disease, characterized by 

gradual worsening of disability (Kremenchutzky et al. 2006). Typically, relapse rates 

decrease over time for all patients regardless of treatment, with rates for responders 

generally lower than for non-responders (Horakova et al. 2012). Mortality for MS patients 

depends on both age and current level of disability (Prosser et al. 2004).

Although MS is incurable, disease-modifying therapies (DMTs) attempt to slow progression 

and reduce relapses (NMSS 2014). The most common treatments are injectable DMTs such 

as interferon-β preparations and glatiramer acetate, and more recently oral DMTs such as 

dimethyl fumarate (approved for use in the U.S. in 2013), teriflunomide (approved in 2012), 

fingolimod (approved in 2010) and natalizumab (approved in 2004) (see NMSS 2014, 

Rovaris et al. 2001, for more details). Interferon-β is often the first treatment prescribed, as 

the newer therapies, especially fingolimod and natalizumab, have been associated with an 

increased risk of severe side effects, such as potentially fatal infections, tumor development, 

lowering of cardiac rate, and encephalitis (Cohen et al. 2010). The response profile to 

interferon has been well documented (Horakova et al. 2012, Romeo et al. 2013) but the 

long-term effectiveness of oral medications has not been established (Carroll 2010).

Our goal in this section is to build a support tool that can inform medical decision makers 

about the benefits of administering interferon-β treatment in addition to conducting 

symptom management without DMT. This decision problem is especially important because 

patients receiving interferon-β experience a significant decrease in quality of life due to side 

effects, such as pain at the local injection site, flu-like symptoms, depression, and allergic 

reactions. Furthermore, interferon-β generates significant and rapidly escalating healthcare 

costs, currently amounting to $60,000 per year for each diagnosed case in the U.S., and 

estimated to increase at rates 5 to 7 times larger than prescription drug inflation (Hartung et 

al. 2015).

Despite the potential benefits, the problem of determining an optimal policy for 

administering interferon has not received much attention in the medical literature. For a 

newly diagnosed patient, current guidelines recommend immediately starting treatment and 

suggest simple discontinuation rules (Cohen et al. 2004, Río et al. 2011). These rules were 

not the outcome of a quantitative framework and have not been tested for efficiency.
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With this motivation, we first describe a detailed disease model from the medical literature, 

which we use as a basis to design adaptive treatments using our results in Section 3. The 

goals of our numerical study are: (1) to quantify how close existing treatment guidelines are 

to being optimal and cost-effective; and (2) to understand the potential benefits of using a 

sophisticated treatment policy that relies on very frequent belief and treatment updating.

4.1 Disease Model

We implement a disease model similar to those in the medical literature (Lee et al. 2012, 

Prosser et al. 2004). Disease progression is modeled as a Markov chain, with states given by 

the patient’s EDSS score8 and whether she is currently experiencing a relapse (see Figure 1 

for details).

As in Lee et al. (2012), our simulation follows a hypothetical cohort of 37-year-old RRMS 

patients with an initial EDSS score of 0–2.5. The cohort includes 10,000 responders and 

10,000 non-responders, consistent with studies documenting the proportion of responders to 

interferon-β in the population to be around 52% (Horakova et al. 2012). We utilize a one-

month time step, and simulate patients over a 50-year time horizon.

Each patient can transition from the score of 0–2.5 (no or few limitations) to a score of 3–5.5 

(mild to moderate mobility limitations), and from there to a score of 6–7.5 (requiring a 

walking aid), and finally to a score of 8–9.5 (bedridden). While in EDSS states 0–2.5 or 3–

5.5, patients can experience relapses, which can be either mild/moderate or severe, and 

which last for exactly one month, after which they can either remain in their pre-relapse 

disability level or progress to the next disability level. Once in EDSS state 6–7.5, patients are 

assumed to have entered the secondary-progressive stage of the disease, characterized by no 

relapses and gradual destruction of neurons. Consistent with medical studies, we also 

assume that: (a) relapses do not occur in states with EDSS score above 6, (b) the probability 

that relapses are severe is independent of EDSS state, treatment or response type, (c) disease 

progression probabilities are independent of whether the patient is currently experiencing a 

relapse, and (d) deaths can occur from all states depending on the patient’s age, with MS-

related deaths only occurring in EDSS state 8–9.5. Furthermore, when simulating patients on 

treatment, we allow patients in earlier disability states (with EDSS lower than 6) to abandon 

treatment in any month within the first three years with a fixed probability, consistent with 

the abandonment rate observed in related medical studies (Cohen et al. 2010, O’Rourke & 

Hutchinson 2005, Prosser et al. 2004). We assume that once a patient discontinues treatment, 

she will remain off treatment for the rest of her life.

Values for the transition probabilities are shown in Table 1, and are consistent with medical 

studies (Lee et al. 2012, Prosser et al. 2004). These probabilities depend on whether the 

patient is on treatment and on the patient’s response type, with successful treatment reducing 

the disease progression and relapse rates by roughly 50% in responders compared to non-

8We choose to focus on EDSS instead of MRI in our study for several pragmatic reasons. First, EDSS is considerably more 
widespread, and there is no consensus in the medical community concerning the use of MRI for monitoring therapeutic response in 
MS (see Cohen et al. 2004). Second, MRI scans may not be available for a large subset of the population, or may be difficult or costly 
to administer frequently. Third, there is insufficient data in medical studies concerning the difference in MRI scans between 
responders and non-responders.
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responders or patients not on treatment. We use age-specific mortality rates published by the 

U.S. Centers for Disease Control and Prevention (Arias 2014).

Each state in the chain is associated with a mean quality-adjusted life year (QALY) value 

capturing a patient’s (quality-of-life) utility (Table 2), with a year in perfect health having a 

utility of 1, and death having a utility of 0. The realized QALYs in a given state are normally 

distributed, with a variance that is consistent with quality-of-life surveys (Prosser et al. 

2003). Mean utilities of low disability states are higher than those of high disability states, 

and mean utilities of non-relapse states are higher than those of relapse states. Furthermore, 

being on treatment reduces the QALYs associated with each state for both responders and 

non-responders, due to side effects, and this effect is more pronounced during the first six 

months of treatment. To the best of our knowledge, no study reports a difference in quality 

of life between responders and non-responders on treatment. We assume that a responder has 

a small increase in quality of life compared to a non-responder (0.0012 per month on 

average), and we vary this value in sensitivity analysis.

In addition to QALYs, each state also has an associated cost (Table 3), representing the 

direct and indirect monthly costs—which occur regardless of whether a patient is on 

treatment—as well as the cost of interferon-β treatment and the cost of managing (severe) 

relapses.

4.2 Treatment Policies

Consistent with medical practice, we assume that all treatments apply standard care and 

symptom management throughout the entire lifetime of the patient. Thus, treatment policies 

choose between two arms, with the “safe” arm corresponding to standard care, and the 

“risky” arm corresponding to prescribing interferon-β in addition to standard care. We 

consider the following policies:

• No treatment: A policy that does not prescribe interferon.

• Standard: A policy that immediately starts all patients on interferon-β, and only 

discontinues treatment when patients reach EDSS disability state 6–7.5. This 

policy is consistent with current recommendations to maintain patients on 

treatment indefinitely (Río et al. 2011), and has been modeled similarly in 

previous studies (Lee et al. 2012, Prosser et al. 2004);

• Consensus Criteria: A policy proposed by Cohen et al. (2004), where all patients 

are started on interferon-β, but treatment is discontinued if patients experience 

two or more relapses in a year, or progress to an EDSS state of 6–7.5;

• Adaptive: A set of adaptive treatment policies based on our model, which we 

describe next.

We henceforth refer to the first three policies above (no treatment, standard, and consensus 

criteria) as treatment guidelines.

4.2.1 Implementation of Adaptive Treatments—Our adaptive policies are derived by 

applying the analytical results in Section 3 to the Markov model in Section 4.1. Since this 
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procedure is required whenever implementing our framework for a complex disease model, 

we elaborate on the critical steps below.

We identify “life events” with relapses, and the “stopping event” with disease progression. 

We apply our model on a disease state basis, and in age-dependent fashion. Consistent with 

practice, we assume that interferon-β is not prescribed for patients with EDSS scores 

exceeding 6, and thus we design treatment only for patients with EDSS scores of 0–2.5 or 3–

5.5, which we henceforth refer to as s1 and s2, respectively. Since mortality is age-

dependent, we allow treatment decisions to depend on the patient’s age when transitioning 

into a particular EDSS state. Applying our model thus generates policies in the form of 

belief thresholds p*(s, x) for both EDSS scores s ∈ {s1, s2} and for various initial age values 

x. This requires fitting our model parameters—the instantaneous reward rates μ0,G,B, the 

standard deviation σ, the relapse rates λ0,G,B, the disutility associated with a relapse D, the 

stopping event rates η0,G,B, the terminal lump-sum reward V, and the discount rate r—for 

each relevant state, as we discuss next.

Objective: We follow the typical approach in healthcare economics to combine the two 

objectives of QALYs and costs into a single objective, using the net monetary benefit 

(NMB) conversion (Drummond 2005, Hunink et al. 2014). This requires pre-defining a 

willingness-to-pay threshold (WTP), which reflects how much policymakers are willing to 

spend in order to gain one additional QALY. Then, the NMB of an intervention that achieves 

additional QALYs of Q at cost C is calculated as NMB = Q × WTP − C. Policies can then be 

compared in terms of their associated NMB, with a higher WTP value shifting the weight 

from costs to QALYs. We adopt this objective, and solve the model for various values of the 

WTP parameter; this allows us to recover an entire frontier of cost-effective treatments.

Instantaneous rewards (μ, σ): A month in each disease state s ∈ {s1, s2} is associated with 

an average QALY value and an average cost. We therefore have

μ(s) = (mean monthly QALY in s) × WTP − (monthly costs in s) .

For instance, for a patient in EDSS state 3–5.5 who is not on treatment, the reward μ0(s2) is 

determined by a baseline utility of 0.0566 QALYs/month (per Table 2) and a baseline cost of 

$4,001/month ($1,037+$2,964, per Table 3). For all patients on treatment, we use the 

instantaneous reward rates based on the QALYs after the first six months. For instance, a 

responder on treatment in EDSS state 3–5.5 has a reward rate μB(s2) determined by a mean 

QALY of 0.0566−0.001+0.00058 (per Table 2), and a monthly cost of $4, 001+$2, 061 (per 

Table 3). We set σ equal to the standard deviation of utility in Table 2.

Disutility from relapse (D): Each relapse causes a decrement in the utility and an increment 

in the cost for the month in which it occurs, by the amounts listed in Table 2. Therefore,

D = (decrement in monthly QALY) × WTP + (increment in monthly cost) .
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For instance, if a severe relapse occurs while in EDSS 0–2.5, the mean QALY per month 

decreases by 0.0252, and the cost increases by $5,215.

Relapse and progression rates (λ, η): Table 1 provides the values for the monthly 

probabilities of relapse and progression in the disease Markov model. Using our assumption 

that relapse and progression events occur according to Poisson processes, these monthly 

probabilities can be converted into monthly rates using the relationship pmonthly = 1−e
−ratemonthly. We note that the rates for responders on treatment are lower, according to Table 

1.

Discount rate (r): We take a societal perspective, aggregating costs and QALYs across all 

patients, and discount at an annual rate of 3% (Gold 1996). We incorporate patient death by 

viewing it as an exponentially distributed event with a terminal reward equal to 0. Since the 

mortality rate is the same for both responders and non-responders, we can easily account for 

the death event by directly adding the mortality rate to the discount rate (this can be verified 

formally in the context of Theorem 1). For simplicity, since mortality rates increase with 

age, we set the mortality for a patient of age x equal to the average mortality rate over years 

x+1, x+2, …, x+τ, where τ is the average time spent in a state by responders. The discount 

rates used in each state s ∈ {s1, s2} thus depend on the patient’s age x upon initially 

transitioning into state s.

Terminal reward (V ): The lump-sum terminal reward in any state corresponds to the 

expected NMB upon transitioning from that state to the next disease state. Our 

implementation requires such rewards for any state s ∈ {s1, s2} and for every initial patient 

age x upon entering state s, i.e., we need to specify V (s, x). Rewards may also depend on 

the patient’s response type θ when the patient is subjected to treatment. To account for this, 

we calculate the terminal rewards separately for responders and non-responders (i.e., 

assuming perfect identification), and then weight these by the probability of the patient 

being a responder.

To determine V (s2, x), we first simulate the Markov model separately for each type θ, 

calculating the expected remaining QALYs Q6−7.5(x + τθ) and costs C6−7.5(x + τθ) from the 

random time τθ when the patient transitions into the next disease stage (with EDSS 6–7.5) 

until her death. We then set V (s2, x) = pθ [Q6−7.5(x + τθ) × WTP− C6−7.5(x + τθ)], where 

the weights are taken with respect to the prior probability that the patient is a responder. For 

V (s1, x) we proceed similarly, calculating rewards from the random transition into state s2 

onwards.

Initial prior probability of the patient being a responder: We start every patient in state 

s1 with a prior of 0.52 of being a responder, in accordance with the distribution of 

responders and non-responders in the population. When simulating our adaptive policies, we 

update this belief as long as the patient is on treatment. The updates are done monthly, 

depending on the observed quality-of- life utility and whether a relapse occurred during the 

month, using the results in Lemma 2(i) and Lemma 1(i), respectively.
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We note that, although our implementation captures some of the features of the complex MS 

model in Figure 1, such as disease progression and age-dependent mortality, it nonetheless 

remains an approximation. For instance, it ignores the different magnitudes of side effects in 

the first six months of treatment, the different variances in QALYs in a relapse month, and 

the patient abandonment rates, and does not rigorously account for mortality rates. However, 

our simulation accounts for all of these features, making the performance assessment for all 

policies under consideration considerably more accurate.

4.3 Results

We start by determining optimal adaptive treatments based on our implementation, for 

different values of the WTP parameter. This generates an efficient frontier of policies that 

systematically trade off QALYs and costs, and is useful for benchmarking potential 

alternatives. We consider WTP values from $50,000/QALY to $800,000/QALY, consistent 

with MS studies that report costs in excess of $500,000/QALY gained (Noyes et al. 2011). 

For each WTP, we find the optimal belief thresholds at which treatment should be 

discontinued for each relevant EDSS state (0–2.5 and 3–5.5), and for every patient age.

Table 4 shows these thresholds for a typical 37-year old patient. As expected, we find that 

the propensity to recommend treatment increases with WTP and with age. Note that for a 

typical patient starting with an EDSS of 0–2.5 and a 52% prior probability of being a 

responder, the optimal adaptive treatment would prescribe interferon only for a WTP above 

$200,000/QALY. Since interventions are generally considered cost-effective when the cost 

per QALY is less than three times the country’s per-capita GDP (Drummond 2005, Hunink 

et al. 2014), this suggests that interferon treatment might not be considered cost-effective, 

and that a no-treatment policy is optimal if the WTP is no more than $150,000/QALY.

We next simulate all the policies under consideration—no-treatment, standard, consensus, 

and all our adaptive policies—using the detailed Markov disease model. It is important to 

emphasize that under this simulation, all the policies and information sets/beliefs are 

updated on a monthly basis, so that all the results correspond to the realized performance 

under this frequency. In particular, although all our adaptive policies were calculated under 

the assumption of a continuous-time model, they are implemented and assessed under 

discrete-time updates.

A visual summary of the results is shown in Figure 2, which displays the costs and QALYs 

per patient averaged over responders and non-responders, assuming a 52% fraction of 

responders in the population. To put the results into perspective, the figure also displays the 

performance of a perfect hindsight policy, which correctly classifies all patients a priori, and 

only prescribes interferon to responders. In our simulation, this policy would result in 16.389 

QALYs and costs of $1,143,031.

The no-treatment policy yields the smallest number of QALYs on average (15.794), but is 

also the least expensive ($1,036,656). The standard policy yields an average of 16.333 

QALYs, an increase of 3.4% compared to no-treatment, but is also the most expensive of all 

policies, with an average cost of $1,281,692 per patient. The consensus criteria policy falls 

in between, achieving 15.984 QALYs at a cost of $1,096,950.
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As expected, the adaptive policies form an efficient frontier that dominates all policies 

except the perfect hindsight one. At WTP values below $150,000/QALY, a no-treatment 

policy is equivalent to adaptive policies. The consensus policy is strictly dominated by 

adaptive policies for a WTP value of $205,000–$220,000/QALY, although the differences 

are not very substantial (with QALYs increased by 0.4% or costs reduced by 1.2%). The 

standard policy is dominated by an adaptive policy with a WTP of $800,000/QALY, which 

increases QALYs slightly (by 0.006), but significantly reduces costs (by $77,000, or 6%).

Figure 3 compares the policies in terms of their achieved NMB, expressed as a percentage of 

the NMB of the best adaptive policy. Consistent with our prior observations, note that the 

highest NMB is achieved by the no-treatment policy at low WTP, by the consensus policy at 

intermediate WTP, and by the standard policy at high WTP. Furthermore, all policies except 

standard achieve a high NMB uniformly, i.e., for any WTP value.

These results can be used by policy makers to quantify the benefits of interferon treatment, 

and weigh them against the corresponding costs. Our findings suggest that gains from 

interferon treatment are not large in absolute terms, and come at steep costs: even the best 

adaptive policy can increase QALYs by only 3.45% relative to the no-treatment alternative, 

while increasing costs by 16.2%.9 We find that the WTP required for such improvements 

exceeds $800,000/QALY; this confirms earlier studies reporting costs larger than $500,000/

QALY for interferon (Noyes et al. 2011), showing that this persists even when considering 

optimal adaptive treatments instead of heuristic treatment policies. This reinforces our 

earlier observation that interferon treatment is not necessarily cost-effective, and suggests 

that even in environments with larger WTP (e.g., above $150,000/QALY), not prescribing 

interferon may be the optimal action. However, this recommendation should be interpreted 

with caution—even though improvements in QALYs may not be large in absolute terms, 

they may nonetheless be significant in relative terms, and particularly for chronic diseases as 

debilitating as MS. Furthermore, patients (and policy makers alike) may not easily accept 

the cost-benefit analysis inherent in such a no-treatment recommendation.

Second, our results provide empirical validation of the consensus criteria proposed by Cohen 

et al. (2004). We find that the resulting policy is close to being efficient at intermediate 

values of WTP, and achieves net monetary benefits close to a fully adaptive policy. Thus, 

these simple discontinuation rules may represent a viable alternative to implementing a 

complex optimal adaptive policy, particularly at intermediate values of WTP.

Finally, the results suggest that none of the treatment guidelines is satisfactory at very large 

WTP: the consensus and no-treatment policies generate low QALYs, while the standard 

policy is inefficient, dominated in both QALYs and costs by an adaptive policy. To better 

illustrate the differences in performance, and to understand how the benefits are distributed 

among responders and non-responders, we examine this case in more detail.

9Similar observations can be made with respect to the perfect hindsight policy, which increases QALYs by 3.7% and costs by 10.2% 
relative to no-treatment.
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4.3.1 An Optimal Policy at High WTP—We compare the three treatment guidelines 

with the adaptive policy calculated for a WTP of $800,000/QALY (Section E of the 

Appendix provides a detailed description of this policy). The simulation results by response 

type are summarized in Table 5. As can be seen, the optimal adaptive policy achieves 

QALYs for responders that are close to those of the standard policy (which is optimal for 

this type), and considerably exceeds the no-treatment and consensus policies, by 6.6% and 

4.1%, respectively. At the same time, the adaptive policy also achieves higher QALYs than 

the standard policy for non-responders, by identifying them and removing them from 

treatment earlier; no-treatment and consensus, which are both more aggressive in removing 

patients from treatment, are only marginally superior to the adaptive policy for non-

responders, with QALY improvements of less than 0.6%.

The outcomes of the policies are primarily driven by the number of months each patient 

spends in treatment. The standard policy incurs the most costs, as it keeps patients on 

treatment for the longest time on average (289 months for responders, and 208 months for 

non-responders). In contrast, the adaptive policy keeps responders on treatment for 279 

months on average and non-responders for 78 months, achieving the highest overall gain in 

QALYs. Perhaps the best illustration of the effectiveness of the adaptive policy is Figure 4, 

which plots the proportion of patients on treatment over time, by response type. The 

proportion of non-responders on treatment converges to zero for the adaptive policy, whereas 

the proportion of responders on treatment remains relatively high. The optimal policy thus 

attains a good balance between the optimal treatment for responders (standard) and for non-

responders (no-treatment).

These results can be observed consistently for each year in our simulation, as displayed in 

Figures 5 and 6. Note that both costs and QALYs decrease over time under both the standard 

and the adaptive policy and under both response types; this is due to disease progression, 

and the fact that all patients are taken off treatment once they reach EDSS state 6–7.5. Also, 

consistent with reality, the disutility incurred by patients due to side effects is higher for the 

first six months on treatment, which is why both groups display a non-monotonic pattern in 

the first year.

To test the robustness of our findings, we performed a probabilistic sensitivity analysis in 

which we randomly generated 1,000 problem instances. For each instance, each parameter 

was randomly sampled from a triangle distribution with mode given by the base case value, 

and the lowest and highest values corresponding to the ranges in Tables 1–3. The results of 

the analysis are shown in Figure 7. In this scatter plot, each point represents the result of a 

simulation with 10,000 responders and 10,000 non-responders for a given set of parameters. 

As can be seen, all statistically significant differences in mean QALYs (and costs) between 

the adaptive and standard policies were positive (respectively, negative) for non-responders, 

indicating that our adaptive policy is especially costeffective for non-responders compared to 

the standard policy.
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5 Conclusions, Limitations, and Future Directions

Our paper introduced a quantitative framework that can inform treatment policies for chronic 

diseases sharing the following features: (1) there is a priori uncertainty about whether a 

patient will respond to an available treatment; (2) observations of the effectiveness of 

treatment are noisy, and (3) learning about treatment effectiveness occurs both from 

monitoring day-to-day disease progression, but also from observing the timing and severity 

of less frequent, major health events.

We showed that the problem of choosing between two treatments with linear dose-response 

can be analyzed in closed form, resulting in intuitive optimal policies that take the form of 

discontinuation rules. We also discussed how our analytical results can be used to optimally 

select among several treatments by solving a small number of one-dimensional, convex 

optimization problems, and provided conditions when the optimal treatment is no longer a 

simple discontinuation rule.

Finally, we used our framework to develop a set of treatment policies for administering 

interferon to patients suffering from multiple sclerosis. Our policies explicitly traded off 

treatment benefits and costs through a parameter capturing the policy makers’ willingness to 

pay (WTP) for every quality-adjusted-life-year (QALY) gained. Using these policies as 

benchmarks, we then assessed several treatment guidelines used in practice for 

administering interferon, which lead to three conclusions that can inform policy makers and 

medical practitioners:

1. At WTP values below $150,000/QALY, we found that a no-treatment policy is 

optimal.

2. At WTP values between $150,000/QALY and $500,000/QALY, we found that a 

policy based on the consensus criteria discussed in Cohen et al. (2004) delivers a 

good balance between QALYs and costs, and is almost efficient. Considering its 

simplicity relative to our adaptive policies, it thus emerges as the preferred 

treatment guideline at intermediate WTP values.

3. At WTP values above $500,000/QALY, none of the treatment guidelines 

considered deliver adequate performance; an adaptive policy derived from our 

framework under a WTP of $800,000/QALY attained a better balance between 

administering sufficient treatment to responders and identifying non-responders 

early.

Several next steps can bring our research and findings closer to a treatment recommendation. 

First, our MS case study could be generalized to allow choosing among multiple drugs for 

symptom management and multiple disease modifying agents (NMSS 2014). Appendix A of 

the Online Companion provides a computationally tractable procedure for a model with 

multiple risky treatments/arms, which could be a building block in this direction. To enable 

this approach, one first requires a thorough understanding of the patient response to each 

drug, so as to calibrate the corresponding reward, relapse and progression rates. These could 

be obtained from clinical trials, such as those conducted as part of the drug approval process.
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Second, one could extend our model by relaxing some of the assumptions made for 

analytical tractability. Of key importance here are the assumptions concerning the linear 

dose response and the ability to continuously measure rewards and update beliefs, which we 

discuss next.

Linear dose response: Although exact response curves are the subject of active research, 

response curves reported in the literature for many drugs tend to be S-shaped, exhibiting 

diminishing marginal returns at high dosage values. The assumption of linearity may 

nonetheless remain reasonable within a certain dosage range. For instance, clinical trials 

with interferon β-1a for MS suggest an approximately linear reduction in relapse rate when 

the dosage is below 66 micrograms per week, and a decreasing rate for higher dosage 

(OWIMS 1999).10 In Appendix D, we discuss in detail the impact of the linearity 

assumption on optimal policies and performance when the underlying dose-response is S-

shaped. We find that optimal policies are no longer “bang-bang,” and that a strictly 

fractional treatment allocation may be optimal even when the patient is known to be a 

(non)responder. The optimality loss varies from 0% to 16%, depending on the degree of 

“nonlinearity,” which suggests that embedding nonlinear response curves without sacrificing 

tractability may be a practically (and theoretically) meaningful future direction.

Continuous updates: Our framework allows for continuously measuring rewards and 

conducting belief and treatment updates. This is reasonable when the policies generated 

from our results are interpreted as upper bounds, which are then used either to suggest or 

otherwise benchmark simpler treatments with less frequent updates. Depending on the 

disease and treatment in question, these assumptions may also be(come) realistic. For 

instance, in MS, the use of wearable devices has shown to have great potential for the 

collection and relaying of real-time patient information (McIninch et al. 2015).11 Combined 

with research aimed at understanding how disease progression and treatment response are 

related to observed mobility,12 such developments could potentially make a near-

continuous-time treatment policy feasible in the future (provided, of course, that the benefits 

outweigh the costs). Despite these examples, however, assuming continuous evaluations and 

treatment updates may not be reasonable when extensive medical exams are required (e.g., 

involving doctor visits, MRI scans, etc). Our model could be extended to allow belief 

updates only at particular points in time, provided that the information between these points 

can be suitably aggregated. In Appendix C, we discuss the impact of monitoring frequency 

in more detail, and provide several theoretical and computational results that characterize the 

losses under less frequent updating. For our MS case study, we find that the loss from a 

monthly monitoring policy is less than 8%. However, we also find that as treatments for MS 

become more efficient at reducing the frequency of relapses in responders, these losses are 

10The Once Weekly Interferon for MS Study Group reports a reduction in relapse rates of 9.6%, 19%, 33% and 37% for respective 
weekly dosages of 30μg, 44μg, 66μg, and 132μg (OWIMS 1999).
11In a recent study conducted by the non-profit PatientsLikeMe and Biogen Idec, 248 FitBit One™ devices were distributed to 
patients suffering from MS, and the personal mobility data of all the patients was collected and sent to centralized data servers. The 
results of the study were reported in the 67th American Academy of Neorology’s Annual Meeting (April, 2015), revealing “a high 
degree of patient interest and perceived value in using activity tracking devices to help patients manage their MS” (McIninch et al. 
2015).
12This research endeavor has recently been taken up in a collaboration by Biogen, Google X, and Cleveland Clinic (Bloomberg 2015).
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likely to increase, prompting the need for more research that explicitly captures the costs of 

more frequent belief and treatment updating.

In addition to these, one other assumption worth relaxing would be the requirement that a 

risky (treatment) arm has exactly two types. In practice, more types may exist, e.g., 

corresponding to a patient fully, partially, or not responding to treatment. Our results would 

readily apply if the optimal treatment for each patient type still involved a binary choice 

between the same two alternatives, since then the various types could be aggregated into two 

“macro-types.” When different patient types require different dosages or treatment options, 

our model would have to be extended to explicitly allow learning for all types 

simultaneously. This requires a multi-dimensional state that tracks the probability for each 

type, which considerably complicates the analysis.

Lastly, an important step in making the results implementable, is a clinical trial testing the 

performance of our adaptive policy against other guidelines. To that end, Appendix E of the 

paper’s Online Companion provides an implementation-driven description of our proposed 

policy, which could guide such a design in conjunction with an appropriate selection of a 

cohort of patients.

To conclude, although we illustrated our framework with a case study on MS and interferon-

β, we believe that the ideas could be used to inform the treatment of other chronic diseases, 

such as celiac disease, rheumatoid arthritis, Crohn’s disease, or depression.
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Appendices

A Multiple Risky Arms

In this section, we explore the important extension where several risky arms with binary 

(i.e., good/bad) types exist. Our goal is to show how our previous results can be used to 

devise a very simple scheme that determines the optimal policy to within an arbitrary pre-

specified precision, by solving a small number of one-dimensional convex optimization 

problems.

Consistent with our framework thus far, we assume there are n + 1 arms numbered 0, …, n. 

Arm 0 corresponds to the “safe” arm, yielding instantaneous Brownian rewards with drift 

rate μ0 and volatility σ. Every arm i ≥ 1 is risky, and can be of either good or bad type θi ∈ 
{Gi, Bi}. Depending on the type, the i-th arm thus yields instantaneous Brownian rewards 

with volatility σ and drift rate μGi (if good) or μBi (if bad), and induces life events according 

to a Poisson process with rate λGi (if good) or λBi (if bad). For notational convenience, let 

θ0 =def 0. For simplicity, we ignore the stopping events, and consider an infinite planning 

horizon.

We assume that the DM’s allocation during the interval [t, t+dt) involves a single risky arm 

and the safe arm. The allocation entails a choice i ∈ {1, …, n} and a corresponding fraction 

αt
i ∈ [0, 1] allocated to the i-th risky arm, with the remaining fraction αt

0 =def 1 − αt
i allocated to 

the safe arm. This generates total instantaneous rewards of dπi(t) and dπ0(t), respectively, 

where

dπk(t) =def αt
k μθk

dt + αt
k σ dZk(t), k ∈ {0, i},

and dZi(t) and dZ0(t) are independent, normally distributed random variables with mean 0 

and variance dt. Additionally, under this allocation, life events occur according to a Poisson 

process with rate λ(t, θ) = αt
iλθi

+ αt
0λ0, with every occurrence generating a lump-sum reward 

−D.
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We focus on an infinite planning horizon, so that the DM’s objective is to maximize:

Π =def 𝔼 ∫0
∞

e−rt ∑
i = 0

n
dπi(t) − D · λ(t, θ)dt .

Furthermore, for simplicity, we discuss the case where learning occurs primarily through the 

instantaneous rewards, so that we assume λGi = λBi = λi (similar ideas can be applied to the 

more general version of the problem). As before, we assume that belief updates can be noisy, 

and no arm can be a priori eliminated from consideration, summarized below.

Assumption 2

The model primitives satisfy the conditions μBi − Dλi ≤ μ0 − Dλ0 ≤ μGi − Dλi and μGi ≠ μBi, 
for any i ∈ {1, …, n}.

A sufficient statistic of the history up to time t is given by the vector pt ∈ [0, 1]n, whose i-th 

component pt
i denotes the probability that the i-th arm is good, conditional on all information 

up to time t. The update rule for pt
i can be written exactly as in our benchmark model, 

depending on whether a life event occurs during [t, t + dt), yielding results analogous to 

those in Lemmas 1 and 2. Note that while arm i is used, the beliefs for all arms j ≠ i are 

unaffected.

In this context, it can be readily verified that the evolution of pt
i is driven by a Lévy process, 

and thus our model belongs to the class of Lévy bandits studied in Kaspi & Mandelbaum 

(1995). For such models, it is known that the optimal policy is indexable, i.e., one can define 

a Gittins index for every risky arm i, and the optimal policy is to use the arm with the largest 

index at every point in time (see, e.g., Theorem 3.1 in Kaspi & Mandelbaum 1995). 

Furthermore, if ht
i denotes the stochastic process characterizing the rewards of arm i, then the 

Gittins index of arm i at time t is given by (see, e.g., Corollary 2.1 in Bank & Küchler 2007):

inf m ∈ ℝ:m ≥ 𝔼 ∫
t

S
e−r(u − t) hu

i du + e−r(S − t)m ℱt
i , (8)

where S is any ℱi-stopping time satisfying S ≥ t. In other words, the Gittins index is the 

smallest value of a deterministic “retirement reward” m that would make the DM indifferent 

between (i) immediately retiring at time t and earning a reward of m, or (ii) continuing to use 

the risky arm i and stopping optimally at some future time with a retirement reward of m.

Using this representation theorem in conjunction with our analytical framework enables us 

to characterize the Gittins index of a risky arm as the solution to a simple one-dimensional 

convex optimization problem. This is formalized in our next result.
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Theorem 2

Consider the i-th risky arm, whose prior probability of being good is pt
i ≡ p at time t. Its 

Gittins index is given by

𝒢t
i(p) =

− ∞ , if p < pi
∗(

μ0 − Dλ0
r )

min {m ∈ ℝ:m ≥ f i(p, m)}, i f p ≥ pi
∗(

μ0 − Dλ0
r ),

(9a)

where f i(p, m) =def Ai(p) + Bi(p)
μGi

− μBi
r

pi
∗(m)

pi
∗(m) + νi

∗
pi

∗(m)
1 − pi

∗(m)

νi
∗

, (9b)

pi
∗(m) =def

νi
∗[r · m − (μBi

− Dλi)]

μGi
− Dλi − r · m + νi

∗(μGi
− μBi

)
, (9c)

νi
∗ =def =

−(μGi
− μBi

) + (μGi
− μBi

)2 + 8rσ2

2(μGi
− μBi

) , (9d)

Ai(p) =def
pμGi

+ (1 − p) μBi
− Dλi

r , (9e)

Bi(p) =def (1 − p) 1 − p
p

νi
∗

. (9f)

Furthermore, the function fi(p,m) is convex in m, for any p ∈ [0, 1].

We provide a proof of Theorem 2 in Appendix F. To gain some intuition behind the result, 

note that pi
∗(

μ0 − Dλ0
r ) exactly corresponds to the belief threshold in Theorem 1 for the 

special case of an infinite planning horizon, below which the DM would stop using the i-th 

risky arm and switch to a safe arm. Thus, the first part of expression (9a) confirms the 
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intuitive fact that if the i-th risky arm is not worth experimenting with in isolation, i.e., 

p < pi
∗ μ0 − Dλ0

r , it will not be worth experimenting with in the presence of other risky arms, 

so that i = −∞. The second part of (9a) states that, for an arm that is worth using in 

isolation, i.e., p ≥ pi
∗ μ0 − Dλ0

r , the Gittins index i(p) can be obtained by solving a single 

one-dimensional convex optimization problem. Since such problems can be solved very 

efficiently, for instance through a simple bisection method, this suggests the following 

algorithm for finding the optimal arm to play at any point of time.

Algorithm 1

Gittins Index Calculation

It is important to note that Algorithm 1 can be run entirely offline, before implementing the 

optimal policy in real time. In particular, for a given precision ε > 0 governing the 

discretization, Algorithm 1 can generate the Gittins index for every risky arm i at every 

possible discretized belief value p, by solving 𝒪(n
ε ) one-dimensional convex optimization 

problems. Once these indices are calculated, the DM can obtain an optimal discretized 

policy, as follows. The DM would first discretize time in increments of length δ, chosen 

small enough so that the probability of two or more life events during an interval of size δ is 

very small. At every time instant kδ (k ∈ {0, 1, … }), the DM would start with a belief of 

value p̂i that the arm is good (suitably initialized at time 0) and obtain the associated Gittins 

index via a simple look-up in the table provided by Algorithm 1, yielding (i, p̂i). If all risky 

arms have index −∞, the DM will switch to the safe arm and use it indefinitely. Otherwise, 

the DM would select the risky arm i* with the largest Gittins index, i.e., i* ∈ argmaxj (j, p̂j), 

and use an allocation αt
i∗ = 1 in the time-period [kδ, (k + 1)δ). Once the instantaneous and 
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lump-sum rewards are observed, the DM would update the belief for arm i* according to 

Lemma 1(i) when no event occurs, or Lemma 2(i) upon a life event.

B Type-Dependent Lump-Sum Rewards

In this section, we extend our model to a case where the rewards received upon a life event 

can depend on the unknown type θ. This extension allows us to capture settings where a 

successful treatment also reduces the magnitude/impact of major negative health events, in 

addition to their likelihood/frequency—a feature that is relevant for diseases such as 

depression or Crohn’s disease.

To that end, we assume that any life event can be either “mild” or “severe,” with 

corresponding “rewards” (i.e., disutilities) of size −DM and −DS, respectively, where DM < 
DS. Furthermore, when the DM’s allocation is α ∈ [0, 1], the probability that a given life 

event is mild is qθ =def (1 − α)q0 + αqθ with θ ∈ {B,G}. Here, q0, qG, qB denote the probability 

of a mild life event under a safe, good and bad arm, respectively. For simplicity, we ignore 

stopping events and restrict attention to a model with an infinite planning horizon, i.e., we 

assume η0, ηG, ηB → 0.

We now discuss the belief updating and optimal policy. When no event occurs during [t, t
+dt), the belief is updated according to Lemma 1. When a life event occurs, the posterior 

now depends on whether the event was mild or severe. The following lemma provides the 

learning rule.

Lemma 3

When a life event occurs during [t, t + dt),

i. the posterior belief pt+dt conditional on the observed event type (mild/severe) and 
on the instantaneous reward from the risky arm (dπ1 = y) is given by Bayes’ rule, 
and takes a value of

pt + dt =

pt qG F(μG/σ) (1 − e
−λGdt

)

pt qG F(μG/σ) (1 − e
−λGdt

) + (1 − pt) qB F(μB/σ) (1 − e
−λBdt

)
if the event is mild

pt (1 − qG) F(μG/σ) (1 − e
−λGdt

)

pt (1 − qG) F(μG/σ) (1 − e
−λGdt

) + (1 − pt) (1 − qB) F(μB/σ) (1 − e
−λBdt

)
if the event is severe;
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ii. the change in the DM’s belief pt+dt − pt is normally distributed, with a mean of

jM(αt, pt) − pt + αtpt(1 − pt)λGλB
ηB − ηG + (μG − μB)μ(pt)/σ2

(λ(pt))
2 dt if the event is mild

jS(αt, pt) − pt + αtpt(1 − pt)λGλB
ηB − ηG + (μG − μB)μ(pt)/σ2

(λ(pt))
2 dt if the event is severe,

and a variance of αt(pt(1 − pt)λ̄
Gλ̄

B(μG − μB)/σ)2dt, where λ̄θ, F are given in 
(4a)–(4b), and

jM(αt, pt) =def ptqGλG
(1 − pt)qBλB + ptqGλG

, jS(αt, pt) =def pt(1 − qG)λG
(1 − pt)(1 − qB)λB + pt(1 − qG)λG

.

The proof follows similarly to Lemma 2, and is omitted. As in our main model, the 

occurrence of a life event results in a jump in the DM’s belief, and the posteriors jM(αt, pt) 

and jS(αt, pt) obey similar comparative statics. A critical difference compared with our main 

model is that the posterior is no longer necessarily lower than the belief pt. In particular, it 

can be readily checked that jS(αt, pt) < pt always holds provided λB > λG, so that the 

occurrence of a severe event always lowers the DM’s belief that the arm is good. When the 

event is mild, though, it is possible to have jM(αt, pt) > pt, i.e., the likelihood of the arm 

being good may increase.

Interestingly, this seemingly innocuous change whereby beliefs can admit upward jumps 

bears important implications on the optimal policy. Although finding a closed-form 

expression is no longer feasible due to the nonlinear dependency on αt induced by the 

jumps, by examining the extreme case pt = 1 we can derive the following insights (we omit a 

proof for reasons of space).

Theorem 3. (Fractional allocation)

Assume that belief updates can be stochastic (i.e., μG ≠ μB), and a good arm dominates the 
safe arm, which dominates a bad arm in total rewards per unit time:

μB − λB(qBDM + (1 − qB)DS) ≤ μ0 − λ0(q0DM + (1 − q0)DS) ≤ μG − λG(qGDM + (1 − qG)DS) .

i. If q0 < qG, then the optimal allocation for pt = 1, i.e., αt
∗(1), is given by the 

expression

αt
∗(1) =

μG − μ0
DS − DM

+ (λ0 − λG)(
DS

DS − DM
− q0) + λ0(qG − q0)

2(qG − q0)(λ0 − λG) .
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ii. Furthermore, if −(λ0 − λG)(DMq0 + DS(1 − q0)) − λ0(qG − q0)(DS − DM) < μG − 

μ0 and μG − μ0 < (DS − DM)[qG(λ0 − λG) − λG(qG − q0)] − DS(λ0 − λG) hold, 

then αt
∗(1) ∈ (0, 1), and the optimal policy is not bang-bang even when pt = 1.

Theorem 3 suggests that even when the risky arm is guaranteed to be “good,” a fractional 

allocation may be strictly better than a complete allocation to the risky arm. To gain some 

intuition for the conditions in (ii), we note that they imply a lower bound on qG coupled with 

lower and upper bounds on q0, as well as an upper bound on λG, coupled with lower and 

upper bounds on λ0. Thus, the conditions essentially require that the risky and safe arm 

deliver comparable performance in terms of instantaneous rewards, with the risky arm 

“sufficiently efficient” in reducing the magnitude of disutility from negative health events 

and the safe arm “not too efficient” for this purpose. Under these conditions, mixing the two 

arms can thus achieve “the best of both worlds.”

C Monitoring Frequency

In this section, we explore the impact of the continuous monitoring assumption on our 

results. We consider a case where the allocation αt and the belief concerning the arm type 

can only be updated at particular pre-determined points of time t ∈ {0, Δ, 2Δ, …}. The 

monitoring interval Δ > 0 controls the frequency of monitoring. We restrict our attention to a 

model with an infinite planning horizon, binary allocation decisions (αt ∈ {0, 1}), λG < λB 

= λ0 = 1, and μB = μG < μ0.

We compare treatment decisions and performance for two adaptive policies, with monitoring 

intervals Δ and 2Δ. Let JkΔ(p) and αkΔ(p) denote the optimal value function and the optimal 

policy under a monitoring interval kΔ, k ∈ {1, 2}. We then have the following result.

Lemma 4

For any prior belief p that the arm is good, JΔ(p) ≥ J2Δ(p) and αΔ(p) ≥ α2Δ(p).

Proof

Any policy that is feasible under 2Δ-monitoring is also feasible under Δ-monitoring, by 

ignoring the odd monitoring times (2k + 1)Δ, for k ∈ ℕ. Therefore, JΔ(p) ≥ J2Δ(p).

We claim that αΔ(p) = 0 implies α2Δ(p) = 0, which would complete our proof. Note that if 

αΔ(p) = 0 for some p, then JΔ(p) ≤ J2Δ(p), since the former policy no longer updates the 

allocation (as no learning occurs once αΔ(p) = 0), while the latter policy may update the 

allocation. Thus, we must have JΔ(p) = J2Δ(p), and thus α2Δ(p) = αΔ(p) = 0 maximizes the 

value function.

The lemma confirms the intuition that more frequent monitoring is beneficial: it yields 

higher value functions, and it allows the DM to experiment more aggressively with the risky 

arm, as any potential “mistakes” could be more readily corrected. We note that this finding 

also extends to a more general setting, such as when belief and allocation updating is also 

possible upon the occurrence of life events. This is summarized in the next corollary, whose 

proof follows a similar line of reasoning, and is omitted for space considerations.
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Corollary 1

Suppose monitoring occurs at every deterministic monitoring event as well as upon the 
occurrence of a life event. Then, JΔ(p) ≥ J2Δ(p), and αΔ(p) ≥ α2Δ(p), for any prior belief p.

This setting may be particularly relevant in a medical context, since the infrequent life events 

may be inherently associated with a visit to the physician, which warrants additional testing 

and a potential treatment update.

To illustrate the effect of monitoring frequency on the optimal policy and value function, we 

generate and numerically solve several problem instances where we vary λG, λB, and Δ 

relative to λ0. We set λG = (1 − ε)λ0, λB = (1+ε)λ0, and let Δ be proportional to 1/λ0. 

Table 6 shows the optimality loss associated with a finite monitoring frequency as compared 

with continuous monitoring, i.e., 1 − JΔ/J0.

As the table highlights, the efficiency losses resulting from infrequent monitoring are 

relatively small when the difference between the rates under a good and a bad arm is not too 

large (i.e., ε is small). However, the efficiency losses can become substantial as the relative 

benefits of successful treatment increase. For MS, λ0 and λB are approximately 1, and λG is 

approximately 0.5. A monthly monitoring frequency thus is similar to the first line in Table 

6, and therefore optimality losses are less than 8%.

D Impact of Nonlinear Dose Response

In this section, we investigate the sensitivity of our results to the assumption of a linear dose 

response. We consider an S-shaped dose-response curve given by

R(x) = xc

xc + (1 − x)c , (10)

where c is a constant and x represents the dose. Figure 8i illustrates such curves for c ∈ {1, 
2, 4}. Note that the dose-response curve is linear for c = 1, as in our base-case model in 

Section 2, and becomes increasingly nonlinear as c increases, approaching the threshold 

function 𝟙{x > 0.5}.

Solving for an optimal policy with a nonlinear response curve under our general model is 

difficult analytically as well as computationally, and is outside the scope of our study. 

However, we can investigate the effects of a nonlinear response curve in a simplified version 

of our model, which can be solved numerically through value iteration. Namely, we consider 

an infinite planning horizon (η0, ηG, ηB → 0), where μG = μB = μ (learning can be achieved 

only by observing life events), and where the nonlinear response affects the frequency of 

negative health events. In other words, given an allocation of α to the risky arm and 1 − α to 

the safe arm, where α ∈ [0, 1], the instantaneous rewards received are (1 − α)μ0 + αμ 
whereas the life events occur with rate (1 − α)λ0 +R(α)λθ, depending on the risky arm type 

θ ∈ {G,B}.
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Let α(c)
∗  denote the optimal policy corresponding to an S-shaped response curve with 

parameter c. Using our analytical results, we can derive the optimal policy for a linear 

response, i.e., α(1)
∗ . To numerically find α(c)

∗  for a general c, we discretize the [0,1] spaces of 

the prior probability p and allocation α into intervals of size 0.01, and use a value iteration 

algorithm with daily time steps. The optimal policies α(c)
∗  are depicted in Figure 8ii. Note 

that under a nonlinear response (c > 1), bang-bang policies are no longer optimal, and 

strictly splitting the allocation between the risky and the safe arm may be optimal even when 

the risky arm is known to be good or bad.

To measure the losses incurred by an incorrect linearity assumption, for each value of c, we 

simulate the policies α(1)
∗  and α(c)

∗  over a 10-year horizon, and record their respective 

performances J(α(1)
∗ ) and J(α(c)

∗ ), and the optimality loss 1 − J(α(1)
∗ )/J(α(c)

∗ ). The results, 

displayed in Figure 8iii, suggest that losses are relatively small under mild nonlinearities, 

e.g., below 8% for c ≤ 2. As the response approaches a threshold function, losses approach 

16% in a concave fashion. However, a threshold response is in some sense the “worst-case” 

nonlinearity, involving a jump in the profile that is unlikely for drug response curves. For 

instance, using the dose-response values for MS reported in OWIMS (1999) and fitting 

curves (10) for different values of c, it turns out that the linear curve provides the best fit 

under any Euclidean distance. These results suggest that a linear function can provide a 

reasonable first-order approximation when designing treatments in practice.

E Adaptive Policy at High Willingness-to-Pay

In this section, we provide a brief implementation-driven description of our proposed 

adaptive policy at high WTP (above $800,000/QALY). For a new patient, our policy could 

be implemented as:

1. If the patient’s EDSS score is higher than 6, no interferon-β treatment is 

administered.

2. Otherwise, initialize the belief p̂ that the patient is a responder to a suitable value 

(such as the fraction of responders in the population at the patient’s age, e.g., 

52% at age 37).

3. On a monthly basis, and while the EDSS score is 0–2.5 or 3–5.5, repeat the 

following steps:

a. Using the patient’s current age and EDSS score, obtain a threshold p* 

from Figure 9.

b. If p̂ < p*, discontinue treatment.

c. Otherwise,

i. apply interferon-β for the next month;
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ii. at the end of the month, conduct a survey to assess the 

patient’s quality-of-life (QALY) value during the preceding 

month;

iii. using the QALY value and the parameters described in Section 

4, update p̂ according to formula (3) if there was no relapse 

during the preceding month, or according to formula (5) if 

there was a relapse;

iv. update the patient’s age and assess the patient’s new EDSS 

score;

v. go to step 3.

F Proofs

Note: To simplify notation in our proofs, we suppress the subscript t whenever possible. 
Furthermore, since we frequently average quantities with respect to αt or pt, we define the 
following notation:

ξθ = αtξθ + (1 − αt)ξ0, ∀θ ∈ {G, B} Ep[ξ] = pξG + (1 − p)ξB .

That is, an overbar will denote a convex combination of a quantity corresponding to the 
risky arm with the same quantity corresponding to the safe arm, with coefficients αt and 1 − 

αt, e.g., λ̄
G = αtλG + (1 − αt)λ0. Similarly, p[·] will denote an expectation of a quantity 

pertaining to the risky arm taken with respect to p, e.g., p[λθ] = pλG + (1 − p)λB.

Proof of Lemma 1

The proof is similar to Bolton & Harris (1999), except we need to incorporate the 

information provided by the lack of a life event during the interval [t, t + dt). The rewards 

dπ1(t) are observationally equivalent to dπ∼1(t) = αtμ
∼

θdt + dZ1(t), with μ̃θ = μθ/σ. Using 

Bayes’ rule and omitting the subscript t, we have:

pt + dt = ℙ(reward, no event, no stopping ∣ θ = G)ℙ(θ = G)
ℙ(reward, no event, no stopping)

=
pF(μ∼G)e

−λGdt
e
−ηGdt

pF(μG)e
−λGdt

e
−ηGdt

+ (1 − p)F(μ∼B)e
−λBdt

e
−ηBdt

where F(x) = 1
2πdt

exp − (dπ∼1(t) − α x dt)2

2dt . After Taylor-expanding the e−(λ̄θ+η̄θ)dt terms 

and dropping terms of order dt2 or higher, we have:
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dp = pt + dt − p

=
p(1 − p) F∼(μ∼G) − F∼(μ∼B) − dt (F∼(μ∼G)(λG + ηG) − F∼(μ∼B)(λB + ηB))

pF∼(μ∼G) + (1 − p)F∼(μ∼B) − dt pF∼(μ∼G)(λG + ηG) + (1 − p)F∼(μ∼B)(λB + ηB)

(11)

where F∼(x) = exp ( α x dπ1 − 1/2α x2dt). Similar to Bolton & Harris (1999), one can show by 

using Taylor expansions that F∼(x) = 1 + α x dπ∼ + o(dt), where by o(x) we denote any 

function f(x) such that limx 0
f (x)

x = 0. Substituting this into (11), we obtain, after some 

manipulation,

dp =
p(1 − p) ( α(μ∼G − μ∼B)dπ∼ − (λG + ηG − λB − ηB)dt)

1 + α𝔼p[μ∼θ]dπ∼ − 𝔼p[λθ + ηθ]dt
, (12)

where we drop all terms of order dt
3
2  or higher. Also, it can be checked that

1
1 + α𝔼p[μ∼θ] dπ∼ − 𝔼p[λθ + ηθ]dt

= 1 − α𝔼p[μ∼θ] dπ∼ + 𝔼p[λθ + ηθ]dt + o(dt) .

Substituting this back into (12), we have

dp = p(1 − p)(μ∼G − μ∼B)( α dπ∼ − α𝔼p[μ∼θ]dt) − p(1 − p)(λG + ηG − λB − ηB)dt + o(dt)

= p(1 − p)
μG − μB

σ α dZ − αp(1 − p)(λG + ηG − λB − ηB)dt + o(dt),

and by identifying the mean and the variance, we reach the desired result.

Proof of Lemma 2

Using notation similar to that in Lemma 1 and applying Bayes’ rule, we have:
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pt + dt = ℙ{reward, life event, no stopping event ∣ θ = G}ℙ{θ = G}
ℙ{reward, life event, no stopping event}

=
ptF(μ∼G)(1 − e

−λGdt
)e

−ηGdt

(1 − pt)F(μ∼B)(1 − e
−λBdt

)e
−ηBdt

+ ptF(μ∼G)(1 − e
−λGdt

)e
−ηGdt

=
ptF(μ∼G)λG(1 − ηGdt)

(1 − pt)F(μ∼B)λB(1 − ηBdt) + ptF(μ∼G)λG(1 − ηGdt) .

Using again the Taylor series expansion F∼(μ∼) = 1 + αμ∼ dπ∼ + o(dt), we have

dp =
p(1 − p) (λG − λB + α dπ∼ (μ∼GλG − μ∼BλB) − dt(λGηG − λBηB))

λ(p) + α dπ∼(pμ∼GλG + (1 − p)μ∼BλB) − dt(pλGηG + (1 − p)λBηB)

=
p(1 − p)(λG − λB)

𝔼p[λθ] +
αp(1 − p)λGλB(ηB − ηG + (μ∼G − μ∼B)μ∼(p))

(𝔼p[λθ])2
dt + p(1 − p)λGλB α(μ∼G − μ∼B)dZ .

The final expression is normally distributed, with a mean and variance as in our result.

Proof of Theorem 1

Since our bandit model is a special case of the Lévy bandits in Kaspi & Mandelbaum 

(1995), the optimal policy is a threshold policy. More precisely, there exists a threshold p* 

such that the optimal allocation function αt
∗(pt) is such that αt

∗(pt) = 1 for pt ≥ p* and equal to 

zero otherwise. We seek to determine this optimal threshold p*.

Let u(p) be the optimal value function given a current belief p. In this case, u(p) satisfies the 

following Bellman recursion (see Lemma 5 for a proof):

r u(p) = max
α

𝔼p[μθ] − 𝔼p[λθ] D + 𝔼p[ηθ] V − 𝔼p[λθ + ηθ] u(p) + 𝔼p[λθ] u( j(α, p)) + αp(1 − p) (λB + ηB − λG

− ηG) u′(p) + 1
2 α ϕ(p) u″(p) ,

where ϕ(p) =def [
p(1 − p)(μG − μB)

σ ]
2
 and j(α, p) =def pλG/𝔼p[λθ].

Consider a value of p such that p ≥ p* and j(1, p) < p*. The corresponding optimal actions 

are αt
∗(p) = 1 and αt

∗( j(1, p)) = 0. Since the value from using the safe arm until the stopping 

event is u( j(1, p)) = A0 =def μ0 − Dλ0 + η0V

r + η0
, the Bellman recursion for u(p) becomes:
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r u(p) = 𝔼p[μθ] − 𝔼p[λθ] D + 𝔼p[ηθ] V − 𝔼p[λθ + ηθ] u(p) + 𝔼p[λθ] A0 + p(1 − p) (λB + ηB − λG − ηG) u′(p)

+ 1
2ϕ(p) u″(p)],

A particular solution of this equation is given by

upart(p) = pKG + (1 − p)KB, where Kθ =def μθ − λθD + ηθV + λθA0
r + λθ + ηθ

, ∀θ ∈ {G, B} .

For the homogeneous solution to this equation, we use uhom(p) = (1 − p) 1 − p
p

ν
 for some 

fixed ν. Replacing this in the differential equation, we obtain the following quadratic 

equation for ν:

(μG − μB)4ν(1 + ν) − 2σ2(λB + ηB − λG − ηG)ν − 2σ2(r + ηB + λB) = 0.

which has the solutions:

ν1, 2 = − 1
2 +

σ2(λB + ηB − λG − ηG)

(μG − μB)4

±
((μG − μB)4 − 2σ2(λB + ηB − λG − ηG))2 + 8σ2(r + ηB + λB)(μG − μB)4

2(μG − μB)4
.

With ν* denoting the positive root (corresponding to the plus sign), we look for u(p) of the 

form

u(p) = upart(p) + C(1 − p) 1 − p
p

ν∗
.

Since μG ≠ μB, the function u(p) satisfies the value matching and smooth pasting conditions 

at the boundary p = p* (also see Cohen & Solan (2013) and Keller & Rady (2015)). Thus, 

we look for C and p* so that u(p*) = A0 and u′(p*) = 0, respectively. This provides a system 

of two equations, which can be solved for p* and C. We thus find:

p∗ =
ν∗(A0 − KB)

ν∗(A0 − KB) + (1 + ν∗)(KG − A0)
, C =

(p∗)1 + ν∗
(KG − KB)

(1 − p∗)ν
∗

(p∗ + ν∗)
.

By rewriting the expression for p* in terms of A0,AG,AB (as defined in Assumption 1), we 

readily arrive at the desired result.
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Lemma 5

Under the premises of Theorem 1, the optimal value function u(p) satisfies:

r u(p) = max
α

𝔼p[μθ] − D𝔼p[λθ] + 𝔼p[Vθηθ] − 𝔼p[λθ + ηθ] u(p) + 𝔼p[λθu( j(α, p))] + αp(1 − p) (λB + ηB − λG

− ηG) u′(p) + 1
2α ϕ(p) u″(p) ,

where ϕ(p) =def p(1 − p)(μG − μB)
σ

2
 and j(α, p) =def pλG/𝔼[λθ].

Proof of Lemma 5

Let Πt denote the DM’s total rewards from t onwards, and ℒ (respectively, ) denote the 

occurrence of a life (respectively, stopping) event during period [t, t + dt), with ℒc ( c) 

denoting the complementary event. The value function satisfies the following Bellman 

equation:

u(p) = max
α

𝔼[Πt ∣ ℒc, 𝒮c] ℙ[ℒc, 𝒮c] + 𝔼[Πt ∣ ℒ, 𝒮c] ℙ[ℒ, 𝒮c] + 𝔼[Πt ∣ 𝒮] ℙ[𝒮] , (13)

where all the expectations are taken with respect to the filtration ℱt, and we omit subscript t 
for simplicity. In view of our standing assumptions, we have:

ℙ[ℒc, 𝒮c] = 𝔼p[e
−(λθ + ηθ)dt

] = 1 − 𝔼p[λθ + ηθ] dt + o(dt), (14a)

𝔼[Πt ∣ ℒc, 𝒮c] = 𝔼p[μθ] dt + e−rdt 𝔼[u(p + dp) ∣ ℒc, 𝒮c], (14b)

ℙ[ℒ, 𝒮c] = 𝔼p[(1 − e
−λθdt

)e
−ηθdt

] = 𝔼p[λθ] dt + o(dt), (14c)

𝔼[Πt ∣ ℒ, 𝒮c] = − D + 𝔼p[μθ] dt + e−rdt 𝔼[u(p + dp) ∣ ℒ, 𝒮c] (14d)

ℙ[𝒮] = 𝔼p[1 − e
−ηθdt

] = 𝔼p[ηθ] dt + o(dt), (14e)
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𝔼[Πt ∣ 𝒮] = V + 𝔼p[μθ] dt . (14f)

By expanding the term u(p+dp) in (14b) in a Taylor series around p, and using Lemma 1 to 

replace the mean and second moment of dp, we obtain:

𝔼[u(p + dp) ∣ ℒc, 𝒮c] = u(p) + u′(p) 𝔼[dp ∣ ℒc, 𝒮c] + 1
2u″(p)𝔼[dp2 ∣ ℒc, 𝒮c] + o(dt)

= u(p) + u′(p) αp(1 − p) (λB + ηB − λG − ηG)dt + 1
2u″(p) α ϕ(p) dt + o(dt) .

Similarly, by using Lemma 2 and expanding the term u(p + dp) in (14d) in a Taylor series 

around j(α, p) =def p + αp(1 − p)(λG − λB)/𝔼p[λθ] = pλG/𝔼p[λθ], we have:

𝔼 [u(p + dp) ∣ ℒ, 𝒮c] = u j(a, p) + u′ j(α, p) 𝔼[dp ∣ ℒc, 𝒮c] + 1
2u″ j(α, p) 𝔼[dp2 ∣ ℒc, 𝒮c] + o(dp2)

= u j(α, p) + u′ j(α, p) α p(1 − p) λGλB
ηB − ηG + (μG − μB)𝔼p[μθ]/σ2

(𝔼p[λθ])2
dt + 1

2u″ j(α, p) α

p(1 − p)λGλB(μG − μB)
σ

2
dt + o(dt) .

Substituting these expressions together with (14a)–(14f) into (13), we finally obtain:

u(p) = max
α

𝔼p[μθ] dt + u(p) + u′(p) α p(1 − p) (λB + ηB − λG − ηG)dt + 1
2u″(p) α ϕ(p) dt

− ru(p) dt − 𝔼p[λθ + ηθ] u(p) dt − 𝔼p[λθ] D dt + u j(α, p) 𝔼p[λθ] dt + 𝔼p[ηθ] V dt + o(dt) .

By canceling u(p) on both sides, dividing by dt and taking the limit dt → 0, we obtain the 

result.

Proof of Theorem 2

Note that the representation result given in expression (8) implies that the Gittins index of an 

arm is independent of the other arms, and is only determined by the intrinsic value of 

continuing to play that arm compared against retiring to earn a deterministic reward.

Thus, we focus on the Gittins index for a given arm i in our model, having a prior with value 

pt
i ≡ p at time t. The problem of optimally choosing when to stop using this arm and switch 

to a retirement reward (received indefinitely thereafter) exactly corresponds to a special 

instance of our base-case model, namely when η0, ηB, ηG = 0. In particular, by Theorem 1, 

the optimal policy is “bang-bang,” and exactly corresponds to (optimally) stopping the use 

of the risky arm and switching to the safe arm, to earn a “retirement reward” given by the 

latter’s expected discounted rewards, i.e., 
μ0 − Dλ0

r .
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With this equivalence, the arguments in the proof of Theorem 1 become directly applicable. 

More precisely, assuming the deterministic “retirement” reward from infinitely using the 

safe arm is given by a generic value m (instead of 
μ0 − Dλ0

r ), the optimal policy for playing 

the i-th risky arm is bang-bang, characterized by a threshold pi
∗(m). Furthermore, the 

differential equation for the value function ui(p,m) in the region of beliefs ( pi
∗(m), pi

∗(m) + ε] 

for small enough ε > 0 becomes:

p μGi
+ (1 − p) μBi

− Dλ − r ui(p, m) + 1
2

p(1 − p)(μGi
− μBi

)

σ

2
ui″(p, m) = 0.

It can be verified that a particular solution to this ODE is given by 
pμGi

+ (1 − p)μBi
− Dλ

r , 

while the homogenous solution is given by (1 − p) 1 − p
p

νi
∗
, where

νi
∗ =def

−(μGi
− μBi

) + (μGi
− μBi

)2 + 8rσ2

2(μGi
− μBi

) .

Imposing the value-matching and smooth-pasting conditions at pi
∗(m), we obtain:

pi
∗(m) =

νi
∗ r · m − (μBi

− Dλi)

μGi
− Dλi − r · m + νi

∗(μGi
− μBi

)

ui
∗(p, m) =

m, if p < pi
∗(m)

f i(p, m), if p ≥ pi
∗(m),

where fi(p,m) is given by (9b). Thus, from the representation result in (8), we immediately 

have 𝒢t
i = inf {m ∈ ℝ:m ≥ ui(p, m)}, which yields (9a). The convexity of fi(p,m) in m follows 

since

∂2 f i

∂m2 = Bi(p)
μGi

− μBi
r

νi
∗

νi
∗(ϕ0 − ϕBi

)

(1 + νi
∗)(ϕGi

− ϕ0)

νi
∗

(ϕGi
− ϕBi

)

(ϕ0 − ϕBi
)(ϕGi

− ϕ0)2
,
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where ϕξ =def μξ − Dλξ, ∀ ξ ∈ {0,Gi,Bi}. Specifically, by Assumption 2, we have ϕBi ≤ ϕ0 ≤ 

ϕGi, so that all the terms above are positive, establishing that 
∂2 f i

∂m2 ≥ 0.
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Figure 1. 
Multiple sclerosis disease model. All patients start in the lowest disability state (EDSS 0–

2.5). In each month, a given patient can: (1) remain in the same state, without a relapse, (2) 

experience a relapse (in the two lowest disability states), which can be either mild or severe, 

and which lasts exactly one month, or (3) progress to the next level of disability. Values for 

transition probabilities are shown in Table 1.
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Figure 2. 
Population-averaged costs and QALYs for all policies. The arrows indicate the values of the 

WTP parameter under which the adaptive policies were obtained.
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Figure 3. 
Net Monetary Benefits (NMB) achieved by each policy relative to the optimal adaptive 

policy.
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Figure 4. 
Proportion of patients on treatment until age 60 under the consensus, standard and adaptive 

policy (for WTP = $800,000/QALY), for responders and non-responders.
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Figure 5. 
QALYs experienced under all treatment policies for responders and non-responders: Yearly 

means and 95% confidence intervals for the means.
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Figure 6. 
Costs incurred under all treatment policies for responders and non-responders: Yearly means 

and 95% confidence intervals for the means.
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Figure 7. 
Results of probabilistic sensitivity analysis: Incremental costs and QALYs for responders 

and non-responders (adaptive treatment policy compared to standard treatment policy).
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Figure 8. 
Impact of nonlinear dose-response curves on the optimal policy and value function. Here, λ0 

= 1 relapse/year, λG = 0.85 relapses/year, λB = 1.75 relapses/year, D = 0.56 QALYs, μ0 = 

0.64 QALYs/year, μG = μB = 0.62 QALYs/year, and r = 0.03.
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Figure 9. 
Optimal policy for a WTP = $800,000/QALY. The plots correspond to the threshold values 

where treatment should be switched in each EDSS state, as a function of the patient’s age.
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Table 1

Transition Probabilities for the Disease Model in Figure 1. Sources: (1) Lee et al. (2012), (2) Horakova et al. 

(2012), (3) Prosser et al. (2004).

Parameter Value Range Source

If not in treatment or non-responder

 Monthly probability of disease progression

  EDSS 0–2.5 0.004438 0.0033–0.0055 (1)

  EDSS 3–5.5 0.009189 0.0070–0.0115 (1)

  EDSS 6–7.5 0.003583 0.0027–0.0045 (1)

  EDSS 9–9.5 0.000952 0.0007–0.0012 (1)

 Monthly probability of relapse (EDSS states 0–2.5, 3–5.5) 0.0799 0.0566–0.0944 (1,2,3)

 Conditional probability of severe relapse 0.23 0.14–0.56 (1)

Responder on treatment

 Probability of progression (relative to non-responder) 0.5 0.38–1.00 (2)

 Probability of relapse (relative to non-responder) 0.5 0.33–0.90 (2)

 Monthly probability of treatment discontinuation 0.0087 0–0.0174 (1)
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Table 2

Utility Values for each Disease State. Sources: (1) Lee et al. (2012), (2) Prosser et al. (2003). (*) Values were 

converted from yearly to monthly values.

Parameter Value Range Source

Utility Means (in QALYs per month)

Baseline utilities by disability level

 EDSS 0–2.5 0.0687 0.0515–0.0833 (1)

 EDSS 3–5.5 0.0566 0.0424–0.0708 (1)

 EDSS 6–7.5 0.0444 0.0333–0.0555 (1)

 EDSS 9–9.5 0.0409 0.0307–0.0512 (1)

Reduction in utility from treatment in first 6 months 0.0096 0.0038–0.0154 (1)

Reduction in utility from treatment after first 6 months 0 0–0.0096 (1,2)

Change in utility on treatment, due to response type

 Responder +0.00058 0–0.002 –

 Non-responder −0.00058 −0.002–0 –

Reduction in utility from relapse (in QALYs)

 Mild or Moderate 0.0076 0.0053–0.0099 (1)

 Severe 0.0252 0.0198–0.0305 (1)

Utility Standard Deviation (in QALYs per month*) 0.0087 0.0034–0.0262 (2)
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Table 3

Direct, Indirect, and Treatment Costs for MS. Sources: Lee et al. (2012), Noyes et al. (2011).

Monthly costs (in USD) Value Range

Interferon-β treatment 2,061 1,000–3,828

Direct costs by disability level

 EDSS 0–2.5 536 402–607

 EDSS 3–5.5 1,037 778–1,296

 EDSS 6–7.5 2,460 1,845–3,075

 EDSS 9–9.5 4,327 3,245–5,408

Direct costs per relapse

 Mild or Moderate 104 0–200

 Severe 5,215 3,911–6,519

Indirect costs by disability level

 EDSS 0–2.5 1,421 1,066–1,776

 EDSS 3–5.5 2,964 2,223–3,705

 EDSS 6–7.5 3,124 2,343–3,905

 EDSS 9–9.5 3,182 2,387–3,978
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Table 4

Optimal Discontinuation Thresholds for a Patient Aged 37 in State s1 (EDSS score 0–2.5) and State s2 (EDSS 

score 3–5.5), for Various WTP Values.

WTP ($/QALY) p*(s1, 37) p*(s2, 37)

50K 1 1

100K 1 1

150K 0.77 1

200K 0.48 0.67

250K 0.36 0.45

300K 0.28 0.34

500K 0.16 0.18

800K 0.10 0.11
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Table 6

Optimality Loss (%) Associated with Finite Monitoring Frequencies, Compared to Continuous Monitoring. 

Here, μ0 = 0.958 QALYs/year, μG = μB = 0.938 QALYs/year, D = 0.559 QALYs, λ0 = 1 event/year, λG = (1 − 

ε)λ0, λB = (1+ε)λ0.

Monitoring interval ε = 0.1 ε = 0.25 ε = 0.5 ε = 0.75

Δ = 1/(8λ0) 0.047 0.05 0.08 0.11

Δ = 1/(4λ0) 0.10 0.11 0.22 0.32

Δ = 1/(2λ0) 0.12 0.22 0.49 0.75

Δ = 1/λ0 0.15 0.47 1.1 1.7

Δ = 2/λ0 0.2 0.8 2 3.4

Δ = 4/λ0 0.3 1.3 3.6 6.7

Δ = 8/λ0 0.5 2.3 6.8 12.3

Δ = 16/λ0 0.7 4.0 11.7 19.4
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	2 Model Formulation
	2.1 Model Framework
	2.2 Application in the Context of Chronic Diseases
	The arms: In a medical context, the arms of our model correspond to available treatments, and the DM is a physician choosing the optimal treatment policy for the patient. Depending on the focus, the “rewards” could either correspond to a patient’s health utility, or to a cost-adjusted health utility that also accounts for the cost of treatment (see our more detailed discussion in Section 4). As such, an arm’s instantaneous reward denotes the impact of treatment on the patient’s immediate (cost-adjusted) quality of life. “Life events” correspond to sudden health episodes associated with normal disease progression, which bring about immediate disutility (and costs) to the patient, without altering the fundamental underlying disease evolution or the efficacy of treatments. Examples of life events include relapses in MS or panic attacks in anxiety disorders. Depending on the circumstance and the exact disease modeled, the “stopping event” could be a special instance of a life event or an entirely separate event, which changes the disease evolution or the treatment options (e.g., a heart attack, kidney failure, malignancy or death). We elaborate on these distinctions further when discussing the objective. We note that our base-case model only allows choosing between two arms/treatments. We discuss the important extension to multiple arms in Appendix A.Safe arm: A “safe” arm represents a treatment with homogenous response in the population. In MS, this typically consists of medication aimed at reducing or controlling MS-specific symptoms such as bowel and bladder function, spasticity and pain, without modifying disease progression. In our model, such a treatment may still yield stochastic outcomes in terms of both instantaneous (cost-adjusted) health utility and life/stopping events, as one would expect in practice. The critical assumption is that the parameters governing these outcomes (μ0, σ, λ0, η0) are known to the physician. This is reasonable, since physicians often have more information about the natural disease progression when patients are not subjected to treatment, e.g., from studies of large historical cohorts of patients (Scalfari et al. 2010).Risky arm: The “risky” arm is only effective for a subset of the population, i.e., when the type is good (θ = G). We assume that the physician is unable to determine a priori whether a new patient belongs to this subset. This is in keeping with the fact that precise biomarkers do not exist for many chronic diseases. For instance, treatments for MS such as interferon-β are effective only in a subgroup of patients (Cohen et al. 2004, Horakova et al. 2012, Prosser et al. 2003). In such cases, the only way to assess the impact of a drug or therapy is by subjecting the patient to treatment, and relying on periodic examinations or self-reported assessments, such as the EDSS for MS. When patients respond to treatment, their condition may improve (i.e., μG > μ0), the frequency of life events may be diminished (i.e., λG < λ0), and the likelihood of a major health event or disease progression may also decrease (i.e., ηG < η0). When patients do not respond, their condition may remain the same or even deteriorate slightly, e.g., due to side effects from treatment. A central assumption underlying our model is that physicians are able to separately assess the parameters governing how responders and non-responders are impacted by treatment, i.e., μθ, λθ and ηθ. This is reasonable since medical studies often track patients for a relatively long period of time, and retrospectively assign them to responder and non-responder groups (e.g., Horakova et al. 2012).Lump-sum rewards: Our assumption that the lump-sum “reward” −D received upon life events is independent of the type θ is particularly pertinent for diseases such as MS and anxiety disorder. For instance, relapses in MS correspond to periods of acute disease activity when patients experience neurological symptoms such as sudden paralysis or loss of vision. Such episodes generate immediate disutility and have similar severity/consequences in all patients, but occur less often among patients responding to treatment (Horakova et al. 2012, Kremenchutzky et al. 2006). Our framework can be extended to stochastic rewards that are independent of θ, as only their expected value would matter. We discuss the extension to rewards dependent on θ in Appendix B.Fractional allocations: Our model assumes that fractional allocations of treatment are possible, and that the response (i.e., the reward) is directly proportional to the allocation. Fractional allocations allow modeling cocktails of drugs (Rudick et al. 2006) or administering a lower dosage of a drug, e.g., by adjusting the frequency and/or the magnitude of doses. The assumption that the response is linear renders our model analytically tractable and is a reasonable first-order approximation, as dose-response functions are often S-shaped and thus linear in a central band of values (see, e.g., the MS study of OWIMS (1999)). We discuss this limitation further in Section 5, and we examine its impact numerically in Appendix D.Objective: Considering a planning horizon T that corresponds to an exponentially distributed “stopping” event allows modeling flexibility, without sacrificing analytical tractability. The horizon T could capture the first occurrence of a life event, which is appropriate when the risky treatment improves the immediate quality of life of a patient but incurs a higher risk of severe side effects. For instance, studies have shown that certain rheumatoid arthritis treatments improve pain and disability, but may cause malignancies or severe infections (Mariette et al. 2011). More broadly, T could correspond to any major event that permanently alters the state of the patient, the disease evolution, or the response/rewards from treatment. Examples could include progression to severe disease (e.g., in MS, transitioning from the relapsing-remitting phase to the secondary-progressive phase (Lee et al. 2012)) or the release of a new drug that alters the set of feasible treatment options or drastically reduces the cost of treatment, impacting the reward rates in a cost-adjusted objective. The rewards V received upon the stopping event can be interpreted as continuation values, which allows using our model as a building block for studying diseases with more complex dynamics, involving potentially non-stationary reward rates or phase transitions. For more details, we refer to our case study in Section 4, which implements this idea.Our model includes a fixed discount rate r > 0, in keeping with the recommendations of the U.S. Panel on Cost-Effectiveness in Health and Medicine that costs and quality-adjusted life years should be discounted when estimating the cost-effectiveness of healthcare interventions (Gold 1996).Simplifying assumptions: To preserve analytical tractability, our model makes a number of simplifying assumptions: arms/treatments are characterized by Brownian rewards and Poisson arrivals with known and stationary parameters; dose-response curves are linear; information collection and treatment updating can be conducted very frequently; and patients fully adhere to treatment recommendations. In Section 5, we discuss these limitations more extensively, providing several extensions and robustness checks, and outlining interesting directions for future research.Although our model simplifies the reality of chronic diseases, it has the advantage of allowing exact analytical results, with simple and intuitive interpretations, as we discuss next.
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	3 Analysis
	Lemma 1: When no life event or stopping event occurs during time interval [t, t + dt):i.the posterior belief pt+dt conditional on an observed instantaneous reward from the risky arm dπ1(t) = y is given by Bayes’ rule, and takes a value of(3)where(4a)(4b)ii.the change in the DM’s belief pt+dt − pt is normally distributed, with mean αtpt(1 − pt)((λB + ηB) − (λG + ηG)) dt and variance .We make several observations about this result. First, note that when no life event or stopping event occurs during [t, t+dt), the belief evolution only depends on the characteristics of the merged process of life and stopping events, which is Poisson under our assumptions. Thus, all the results depend on the sum of the rates of life events and stopping events, i.e., λi + ηi, ∀i ∈ {0,G,B}.Part (i) of the result provides the update rule for the DM’s belief. Note that changes only occur when the risky arm is used (i.e., when αt > 0), and the posterior only depends on the observed instantaneous reward from the risky arm (dπ1), but not from the safe arm (dπ0). This is intuitive, since the safe arm conveys no information about the risky arm’s type. Note that the result implicitly requires the ability to separately observe the risky rewards, which may be problematic when the DM only observes the total instantaneous rewards dπ0+dπ1 and αt ∈ (0, 1). As our later results will show, this issue becomes moot in our setting, since the optimal policy will always entail αt ∈ {0, 1}, so the DM will never observe a mix of safe and risky instantaneous rewards.Part (ii) establishes that the belief change is normally distributed, with parameters that depend on the arms’ characteristics. The belief drifts upward—i.e., the risky arm is deemed more likely to be good—if and only if events under a good arm are less likely than under a bad arm, i.e., λG + ηG < λB + ηB. This is intuitive, since the absence of an event under such conditions can be viewed as “good news” for the DM. Consistent with this observation, note that “more learning” occurs—i.e., the mean belief update grows—as the difference between the rates of events under a good and a bad arm increases. More learning also occurs as pt(1 − pt) grows, i.e., as the DM has more uncertainty a priori about the arm’s type, as measured through the variance of the prior: as pt gets closer to the extremes (0 or 1), it takes a much stronger signal to alter the belief as compared to when pt is close to 0.5. Lastly, as expected, more learning occurs as the DM experiments more aggressively with the risky arm, i.e., as αt grows. However, such aggressive experimentation also leads to a larger variance in the updates, i.e., “more noise.” Updates also get noisier as the DM has more uncertainty a priori concerning the arm’s type (i.e., as pt(1−pt) grows), as the difference in mean rewards under a good and bad arm is larger (i.e., (μG −μB)2 grows) or as the rewards get less noisy (i.e., σ decreases).Our next result completes the characterization of the DM’s belief update, by focusing on the case when a life event occurs during the interval [t, t + dt).Lemma 2: When a life event occurs during [t, t + dt):i.the posterior belief pt+dt conditional on an observed instantaneous reward from the risky arm dπ1 = y is given by Bayes’ rule, and takes a value of
(5)ii.the change in the DM’s belief pt+dt − pt is normally distributed, with
where λ̄G, λ̄B, η̄G, η̄B, F are defined in (4a)–(4b), and
, ∀ ξ ∈ {λ̄, μ}.Part (i) of the result provides an expression for the posterior of the DM’s belief, which now depends separately on the rates of life events and stopping events under a good/bad arm. Part (ii) shows that the belief update remains normally distributed, but with modified mean and variance.The mean update in (ii) now involves two terms. The first term is independent of dt and constitutes a jump in the belief caused by the occurrence of a life event. It can be readily verified that the posterior belief accounting for this jump, i.e., 
, is increasing in pt and λG, and decreasing in λB. This confirms the intuition that, ceteris paribus, the occurrence of a life event makes it relatively more likely that a risky arm is good when the prior belief that it was good was larger, or when life events become more (less) likely under a good (bad) arm. Note that j(αt, pt) < pt if and only if λG < λB, so that a life event makes it more likely that the arm is good if only if life events are more likely under a good arm than under a bad one. When λG < λB, it can also be verified that j(αt, pt) is decreasing in αt, so that a DM who experiments more aggressively becomes more skeptical about the risky arm upon the occurrence of a life event.The second term, which is directly proportional to dt, is a further drift in the belief caused by the instantaneous rewards. These rewards also give rise to variability (i.e., variance) in the belief update, and it can be checked that this grows as the DM has more uncertainty a priori concerning the arm’s type (i.e., as pt(1 − pt) grows), as the good and bad arm differ more in their instantaneous rewards (i.e., as (μG − μB)2 grows), as the processes describing life events get more noisy (i.e., λ0, λG, λB grow), or as the rewards get less noisy (i.e., σ decreases).With these results, we can now provide a characterization of the DM’s optimal policy. We restrict our subsequent analysis to the “interesting” case: we allow belief updates to be noisy (i.e., μG ≠ μB), and we assume that no arm can be eliminated a priori (i.e., a good arm dominates the safe arm, which in turn dominates a bad arm). This is summarized in Assumption 1 below.Assumption 1: The primitives for the framework satisfy

where
, ∀ θ ∈ {0,G,B} denote the total rewards per unit time for a safe, good and bad arm, respectively.Theorem 1: Let Assumption 1 hold. Then, the DM’s optimal policy is given by
(6)
where
(7a)
(7b)
(7c)
and
.Theorem 1 confirms that the optimal policy is a threshold policy; in particular, fractional allocations are not needed, and the DM can always select a single arm at each point of time.Note that the optimal threshold p* only depends on suitably weighted relative differences of the (per unit time) rewards for each arm type, A0,AG,AB. In particular, p* depends on the safe arm only through A0. It can be readily verified that p* is increasing in μ0, reflecting the intuitive fact that, ceteris paribus, a safe arm with higher instantaneous rewards makes the risky arm less appealing. Furthermore, when λG ≤ min(λB, λ0) and μ0 ≥ μG (as in the case of MS), it can also be verified that p* is decreasing in λ0 and in D. This shows that a DM behaving optimally should be more prone to experimenting with a risky arm when life events under the safe arm become more frequent/likely or when they have more severe consequences. The threshold p* is also strictly increasing in σ and r, confirming that increased volatility and/or an increasing degree of myopic behavior lead to strictly less experimentation with the risky alternative. Finally, note that p* does not depend on the prior belief p0 that the arm is good. This is a useful feature in an optimal policy, since it suggests a certain separation between the (objective) effectiveness of an arm and the (potentially subjective) prior.We conclude this section with a brief discussion of extensions and implications of the results. We start by noting that, although our approach focuses on two arms/treatments, some of the results generalize. In Appendix A, we discuss the important case where several arms with binary (good/bad) types exist. Although we are unable to explicitly characterize the optimal policy, we argue that it remains indexable—involving a single arm used at any point of time—and we use our analytical results above to provide an algorithm that calculates the optimal policy to within an arbitrary precision. Our proposed algorithm only requires an offline solution for a small number of one-dimensional convex optimization problems, and an online updating of the beliefs using Lemmas 1 and 2, making it appealing in settings with many arms or frequent updating.Second, we note that the “bang-bang” structure of the optimal policy relies on several of our modeling assumptions. The “bang-bang” structure no longer holds, for instance, when the response to the DM’s allocation is nonlinear (see our Appendix D) or when the lump-sum rewards received from life events depend on the risky arm’s type (see Appendix B). In such cases, a strictly fractional allocation that trades off the benefits of the safe arm with those of the risky arm turns out to be optimal, and this is true even in cases when the risky arm is exactly known to be good or bad.In the context of chronic diseases that are consistent with our framework, our results suggest that, given our modeling assumptions, the optimal treatment policy is a discontinuation rule: the patient is given the “risky” treatment as long as the belief that she is responding is above a threshold. Once the belief falls below this threshold, the patient is taken off treatment, and since no “learning” occurs while on the safe treatment exclusively, the process of experimentation essentially stops. We next illustrate how the findings of our simple analytical model can be potentially used for a disease with more complex and realistic dynamics.
	Lemma 1: When no life event or stopping event occurs during time interval [t, t + dt):i.the posterior belief pt+dt conditional on an observed instantaneous reward from the risky arm dπ1(t) = y is given by Bayes’ rule, and takes a value of(3)where(4a)(4b)ii.the change in the DM’s belief pt+dt − pt is normally distributed, with mean αtpt(1 − pt)((λB + ηB) − (λG + ηG)) dt and variance .We make several observations about this result. First, note that when no life event or stopping event occurs during [t, t+dt), the belief evolution only depends on the characteristics of the merged process of life and stopping events, which is Poisson under our assumptions. Thus, all the results depend on the sum of the rates of life events and stopping events, i.e., λi + ηi, ∀i ∈ {0,G,B}.Part (i) of the result provides the update rule for the DM’s belief. Note that changes only occur when the risky arm is used (i.e., when αt > 0), and the posterior only depends on the observed instantaneous reward from the risky arm (dπ1), but not from the safe arm (dπ0). This is intuitive, since the safe arm conveys no information about the risky arm’s type. Note that the result implicitly requires the ability to separately observe the risky rewards, which may be problematic when the DM only observes the total instantaneous rewards dπ0+dπ1 and αt ∈ (0, 1). As our later results will show, this issue becomes moot in our setting, since the optimal policy will always entail αt ∈ {0, 1}, so the DM will never observe a mix of safe and risky instantaneous rewards.Part (ii) establishes that the belief change is normally distributed, with parameters that depend on the arms’ characteristics. The belief drifts upward—i.e., the risky arm is deemed more likely to be good—if and only if events under a good arm are less likely than under a bad arm, i.e., λG + ηG < λB + ηB. This is intuitive, since the absence of an event under such conditions can be viewed as “good news” for the DM. Consistent with this observation, note that “more learning” occurs—i.e., the mean belief update grows—as the difference between the rates of events under a good and a bad arm increases. More learning also occurs as pt(1 − pt) grows, i.e., as the DM has more uncertainty a priori about the arm’s type, as measured through the variance of the prior: as pt gets closer to the extremes (0 or 1), it takes a much stronger signal to alter the belief as compared to when pt is close to 0.5. Lastly, as expected, more learning occurs as the DM experiments more aggressively with the risky arm, i.e., as αt grows. However, such aggressive experimentation also leads to a larger variance in the updates, i.e., “more noise.” Updates also get noisier as the DM has more uncertainty a priori concerning the arm’s type (i.e., as pt(1−pt) grows), as the difference in mean rewards under a good and bad arm is larger (i.e., (μG −μB)2 grows) or as the rewards get less noisy (i.e., σ decreases).Our next result completes the characterization of the DM’s belief update, by focusing on the case when a life event occurs during the interval [t, t + dt).Lemma 2: When a life event occurs during [t, t + dt):i.the posterior belief pt+dt conditional on an observed instantaneous reward from the risky arm dπ1 = y is given by Bayes’ rule, and takes a value of
(5)ii.the change in the DM’s belief pt+dt − pt is normally distributed, with
where λ̄G, λ̄B, η̄G, η̄B, F are defined in (4a)–(4b), and
, ∀ ξ ∈ {λ̄, μ}.Part (i) of the result provides an expression for the posterior of the DM’s belief, which now depends separately on the rates of life events and stopping events under a good/bad arm. Part (ii) shows that the belief update remains normally distributed, but with modified mean and variance.The mean update in (ii) now involves two terms. The first term is independent of dt and constitutes a jump in the belief caused by the occurrence of a life event. It can be readily verified that the posterior belief accounting for this jump, i.e., 
, is increasing in pt and λG, and decreasing in λB. This confirms the intuition that, ceteris paribus, the occurrence of a life event makes it relatively more likely that a risky arm is good when the prior belief that it was good was larger, or when life events become more (less) likely under a good (bad) arm. Note that j(αt, pt) < pt if and only if λG < λB, so that a life event makes it more likely that the arm is good if only if life events are more likely under a good arm than under a bad one. When λG < λB, it can also be verified that j(αt, pt) is decreasing in αt, so that a DM who experiments more aggressively becomes more skeptical about the risky arm upon the occurrence of a life event.The second term, which is directly proportional to dt, is a further drift in the belief caused by the instantaneous rewards. These rewards also give rise to variability (i.e., variance) in the belief update, and it can be checked that this grows as the DM has more uncertainty a priori concerning the arm’s type (i.e., as pt(1 − pt) grows), as the good and bad arm differ more in their instantaneous rewards (i.e., as (μG − μB)2 grows), as the processes describing life events get more noisy (i.e., λ0, λG, λB grow), or as the rewards get less noisy (i.e., σ decreases).With these results, we can now provide a characterization of the DM’s optimal policy. We restrict our subsequent analysis to the “interesting” case: we allow belief updates to be noisy (i.e., μG ≠ μB), and we assume that no arm can be eliminated a priori (i.e., a good arm dominates the safe arm, which in turn dominates a bad arm). This is summarized in Assumption 1 below.Assumption 1: The primitives for the framework satisfy

where
, ∀ θ ∈ {0,G,B} denote the total rewards per unit time for a safe, good and bad arm, respectively.Theorem 1: Let Assumption 1 hold. Then, the DM’s optimal policy is given by
(6)
where
(7a)
(7b)
(7c)
and
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	5 Conclusions, Limitations, and Future Directions
	Linear dose response: Although exact response curves are the subject of active research, response curves reported in the literature for many drugs tend to be S-shaped, exhibiting diminishing marginal returns at high dosage values. The assumption of linearity may nonetheless remain reasonable within a certain dosage range. For instance, clinical trials with interferon β-1a for MS suggest an approximately linear reduction in relapse rate when the dosage is below 66 micrograms per week, and a decreasing rate for higher dosage (OWIMS 1999).1010The Once Weekly Interferon for MS Study Group reports a reduction in relapse rates of 9.6%, 19%, 33% and 37% for respective weekly dosages of 30μg, 44μg, 66μg, and 132μg (OWIMS 1999). In Appendix D, we discuss in detail the impact of the linearity assumption on optimal policies and performance when the underlying dose-response is S-shaped. We find that optimal policies are no longer “bang-bang,” and that a strictly fractional treatment allocation may be optimal even when the patient is known to be a (non)responder. The optimality loss varies from 0% to 16%, depending on the degree of “nonlinearity,” which suggests that embedding nonlinear response curves without sacrificing tractability may be a practically (and theoretically) meaningful future direction.Continuous updates: Our framework allows for continuously measuring rewards and conducting belief and treatment updates. This is reasonable when the policies generated from our results are interpreted as upper bounds, which are then used either to suggest or otherwise benchmark simpler treatments with less frequent updates. Depending on the disease and treatment in question, these assumptions may also be(come) realistic. For instance, in MS, the use of wearable devices has shown to have great potential for the collection and relaying of real-time patient information (McIninch et al. 2015).1111In a recent study conducted by the non-profit PatientsLikeMe and Biogen Idec, 248 FitBit One™ devices were distributed to patients suffering from MS, and the personal mobility data of all the patients was collected and sent to centralized data servers. The results of the study were reported in the 67th American Academy of Neorology’s Annual Meeting (April, 2015), revealing “a high degree of patient interest and perceived value in using activity tracking devices to help patients manage their MS” (McIninch et al. 2015). Combined with research aimed at understanding how disease progression and treatment response are related to observed mobility,1212This research endeavor has recently been taken up in a collaboration by Biogen, Google X, and Cleveland Clinic (Bloomberg 2015). such developments could potentially make a near-continuous-time treatment policy feasible in the future (provided, of course, that the benefits outweigh the costs). Despite these examples, however, assuming continuous evaluations and treatment updates may not be reasonable when extensive medical exams are required (e.g., involving doctor visits, MRI scans, etc). Our model could be extended to allow belief updates only at particular points in time, provided that the information between these points can be suitably aggregated. In Appendix C, we discuss the impact of monitoring frequency in more detail, and provide several theoretical and computational results that characterize the losses under less frequent updating. For our MS case study, we find that the loss from a monthly monitoring policy is less than 8%. However, we also find that as treatments for MS become more efficient at reducing the frequency of relapses in responders, these losses are likely to increase, prompting the need for more research that explicitly captures the costs of more frequent belief and treatment updating.In addition to these, one other assumption worth relaxing would be the requirement that a risky (treatment) arm has exactly two types. In practice, more types may exist, e.g., corresponding to a patient fully, partially, or not responding to treatment. Our results would readily apply if the optimal treatment for each patient type still involved a binary choice between the same two alternatives, since then the various types could be aggregated into two “macro-types.” When different patient types require different dosages or treatment options, our model would have to be extended to explicitly allow learning for all types simultaneously. This requires a multi-dimensional state that tracks the probability for each type, which considerably complicates the analysis.Lastly, an important step in making the results implementable, is a clinical trial testing the performance of our adaptive policy against other guidelines. To that end, Appendix E of the paper’s Online Companion provides an implementation-driven description of our proposed policy, which could guide such a design in conjunction with an appropriate selection of a cohort of patients.To conclude, although we illustrated our framework with a case study on MS and interferon-β, we believe that the ideas could be used to inform the treatment of other chronic diseases, such as celiac disease, rheumatoid arthritis, Crohn’s disease, or depression.
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